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Convex approximation of integrals
by

J. van de Lune & M. Voorhoeve

ABSTRACT

For continuous f, the integral fz f(x) dx is canonically approximated

by the trapezoidal sums
T (f3a,b) = L {-1 £(a) +]®  f(a+k(b-a)/n) -+ £(b)}
n 77 n 2 k=0 2 '

In this paper we establish some criteria for these sums to be convex (in n).
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0. INTRODUCTION

Let f: [a,b] - IR be continuous. We define the n-th canonical trape-
zoidal approximation Tn(f;a,b) of fz f(x) dx by
1, 1 s 1
T (f3a,b) = ={-5 f(a) + } f(a+k(b-a)/n) -% £(b)}.
n n 2 2
k=0

In this paper we investigate the sums Tn(XS;a,b) for s ¢ IR. The first nam-
ed author showed in [ 2] that the sequence {Tn(xs;O,l)}:=] is decreasing for
any fixed s > 1. This is equivalent to the inequality

25 (me1)S +05 (n+1)ST!

s+1 s+1 ’
-n

ks>%
1 (n+1)

(s > 1).

o~

k

In the first part of this paper we show that for fixed m ¢ IN the se-

quence {T (xm;O,l)}oo is convex, i.e.
n n=1
m m m
2Tn(x 30,1) < Tn_](x s0,1) + Tn+1(x ;0,1).
This immediately implies that the sequence {Tn(f;O,b)}:=] is convex if the
Taylor expansion of f around the origin converges in [0,b] and has non-

negative coefficients. The convexity of the sequence {Tn(xm;O,l)}:=1 is

proved by defining a suitable function ¢(y) such that
$(n) = T_(x"30,1)

and checking that ¢"(y) > 0 for y > 0, so that ¢ is convex.
In the second part of this paper we prove that for fixed s < 0O the se-

quence {Tn(xs;a,b)}:=1 is logarithmically convex, i.e.
2, s ’ s ]
Tn(x ;a,b) < Tn_}(x ;a’b)Tn+l(X ;a,b), (0 <a<b;s <0).

The essential step of this prove lies in establishing the convexity of the

function



AX

which implies the log —convexity of {Tn(e ;a,b)}:=1 for all A ¢ IR, a < b.

1
1. CONVEX APPROXIMATION OF J xtdx, (m e IN).
0

1.1. Preliminaries; statement of the Theorem

Let f: [0,1] -~ IR be twice differentiable with continuous second deri-

vative. Then we have by the Euler-Maclaurin summation formula

Sk 1 _
L £6) -3 £} =

T (£) Lt (50,1 = Li-L g0y +
n n n 2 k=0

f(x)dx +

B

n
f (x -[x] —%)df(%).
0

]
O —

Let the function 6(t) be defined by
t

(1) p(t) = - J (x -[x] —%)dx, t € IR.
0

Since 9(t) = 0 for t € Z we can write

f(x)dx - —%
n

T X —
T () £1(0)de(x) =

Ov—— = O

f(x)dx + —%
n

£ (%) 6 (x)dx

O3 O3

Now define
t

% f @0 x)dx, £ > 0.
t o
If £ is four times differentiable and if £f"(1) = f(s)(i) = 0, then ¢f(t)

4(0)

has a continuous second derivative for t > 0, satisfying



1
ou(E) = = f (12" (w) +8uf P (w) +u? @ (w))e (tu)du.
t
0

Let m e N, m = 5 and put

g () = (1-0",

Note that, by symmetry, Tn(m) def Tn(xm_l) = Tn(gm(x)), so that

n
1 1 n X
Tn(m) = E'+ “3'[ 8m(599(x)dx-
"0

. " — = s ‘ . ges
Slnce‘gm(l) =8, 0, the corresponding function ¢m(t) ¢gm(t)
satisfies

T 1
t ¢ (t) -
(2) - - f (@ +m)u® - 8mu +12}(1 —u)™ 6 (tu)du.
(m=-1) (m-2) 4

We intend to prove
THEOREM |. For every m € IN, the sequence {Tn(:cm_l;o,l)}:=1 18 convex.

We shall prove this theorem by showing that the right-hand side of (2),

and thus ¢;(t), is positive for m 2 9 and t > 0. Since by Taylor's theorem
- = l " "
¢ (n+D) + ¢ (m=1) =2¢ (n) + (6 (t,) +¢(t,)),

where tl e (n=1,n) and t2

m=1,...,8 we express Tn(m) by means of the Bernoulli polynomials (Com—

€ (n,n+1), this implies Theorem 1 for m > 9. For
pare for example [1]):

1 m -2k
T m) == ) (,)B. n
n m 0<k<ln 2k 72k

For m = 1,...,8, the theorem can be verified directly by this formula. So

it is sufficient to show that for t > 0 and m = 9



1
(3) J {(mz +m.)u2 —-8mu + 12} (1 ~u)m-56(tu)du > 0.
0

1.2. Some Lemma's

LEMMA 1. Let o(t) be defined by (1). Then

a) 6 78 pertodic with period 1.
1

b) 9(t)=—2-t(l—t) for 0 <t <1,

¢) 8(t) s g for all t € R 8(t) <t fort 2,

& g ~1—’2)dt =0 forne Z.

&) Ii(y - e(t))dté—zz—l/%<—]—]2-6.

PROOF. By straightforward verification from (1). O

1

LEMMA 2. If 0 < a < Ecmd 0 <t< 2, then 6(at) Z%te(Za).

PROOF. Since 0 < at < 2a < 1, we have 6(at) = %at(l —-at) and 6(2a) = a(l -2a).

Since 0 < t £ 2, we then have

6 (at) =—;-at(1 —at) 2-;— £ (1 -2a) =%t6(2a). 0
LEMMA 3. If 0 < a < gand 2 < t <6, then 6(at) < 3 t8(2a).

PROOF. If at < 1 we have by t = 2

Lot -2a) =

B(at) = —;—at(l -at) 5

IA

te(2a).

N|—

IA

If at =2 1, then since 1 < at 2 and 0 £ 2a < 1

to(2a) - 26(at) at(l =2a) - (at-1)(2 -at)

(at)2 - 2(1 +a)at + 2

(at)? - 2(1 +a)at + (1+a)% > 0. 0

v

LEMMA 4. If'az%andOsXsZ, then



xa(x) def p(at)dt = x2/32.

h
O———N

IA

PROOF. Suppose 0 < 1. Then we have

X ax ax
xa(x) = J p(at)dt = S J 8 (u)du 5 J > u(l —u)du =
0 0 0
o N2y 12 12
= TE'X(33X 2(ax)”) = 5 X a(3 -2ax) = 7 ax .

" So the lemma holds if a > 3/8. But if a < 3/8 we have that ax < 6/8, so
(3.-2ax) = 3/2. Hence

X
O 1. 23_ 12
J p(at)dt = 5 ax (3 -2ax) = 8 5 =35 % -
0
Suppoese that ax > 1. Then by lemma 1(d) and 1(e)
X ax ax
- x,1 gy = X1 1 _
f g(at)dt = T§-+ - [ (6 (u) 12)du 5 T [ (]2 8 (u))du
0 0 [ax]
b4 1 1 1
* 77 " 120 2 *G7 1200 2 ¥ /32
since x < 2. ]
LEMMA 5. For m = 9 we have
6
def
I(m) == | t(t-2)(t-6)(1 -t/m)™ dt > 0.
0
PROOF. Integration by parts reveals that
I(m) = ——312—— '(12—24(1 _oym=3 -1—655-3‘99(1 —é)“"2 +
(m-3) (m-4) | m m-2 m-2 m
2
6m 6m 6,m-1]

te @) @hen e [



By direct calculation one may verify that I(m) > O for m = 9,...,20. Since

(1 --6/m)m increases to its limit e_6 we have

2
m f 14 8
I > ey s 2 "ol @D @2)
(2w, 2w 6m> \ e—e}
\@6)> @2 @6 (@1)@m2)@6)/

Since the form in curly brackets { } is monotonically increasing in m and

is positive for m = 21, the proof is complete.

1.3. Proof of the Theorem

Put hm(t) def (t=2) (t-6) (1 —t/m)m_s. We shall prove that for a > 0 and
m=9
6
(4) J h_(t)e(at)dt > 0.
0
Since hm(t) >

0 for t 2 6 and since 6(t) 2 0 for all t, (4) implies

hm(t)e(at)dt > 0,

oO——-H

so that, putting u = t/m and y = am,
1
f (m2y2 -8mu +12) (1 "u)m_se(uy)du > 0,
5 .

which implies (3) and the Theorem. Hence it is sufficient to show (4). Now

suppose that 0 < a < lu By Lemmas 2 and 3 we have

4
6 » 2 6
»J h_(t)e(at)de > { J + f } hm(t)~% t0(2a)dt =
0 )
6
= —;— 6(2a) j thm(t)dt > 0,
0

by Lemma 5.



So let a = %-and as before, put xa(x) = fg g(at)dt. Since Xa(o) =0 =
hm(2), we have that ‘

[aN
Hh

e

I (m)

OoOV—nN

2 2
f h (£)e(at)de = | h_(t)dx_(t) = '—[ Xa(t)d h (t).
0 0

IA

Observe that hm(t) is decreasing for 0 < t < 2. We thus have by Lemma 4

2 2 2
I](m) > —J -g—— dhm(t) = j hm(t) Tt6_ dt.
0 0

Since hm(t) < 0 for 2 < t < 6 we have by Lemma 1

6 6
Iz(m) def J hm(t)e(at)dt > J hm(t) 1—t6— dt.
2 2
Hence, by Lemma 5
6 6
j h ()6(at)dt = T (m) + T, (m) > 1—‘6— J th (£)dt > 0
0 0

for m 2 9, completing the proof of Theorem 1.

1.4. An inequality for Tn(m); conclusion

Theorem 1 reads

Tn—l(m) + Tn+l(m) > 2 Tn(m), (my,n e N; n > 2).

Since

1 m-1

(n+])an+](m) = ann(m) + %—nm— + %-(n+l) ,
we can write the above inequality as
m m m—1 m-1
T(m)((f_l]\,—2+<——il]>\’2% n _% n + 21 ,
n s n ‘ (n-1)" (+)™  n% -1



or

nm_l(n+l)m-+2(n+1)m_](n—1)mr] +nm—l(n_l)m

@+ 1™ - 2@+ D" (@-1)" +2"(a-1)™

Tn(m) >

. . . . . s .
The method in this section can be applied to functions x~ with s 2 9.
For s <9 and s ¢ IN we cannot prove anything. However, numerical evidence

supports the following stronger conjecture.

Conjecture. For any fixed real s > 1 the sequence{Tn(xs;O,l)}:___l is logar-

ithmically convex.
, B
2. LOGARITHMICALLY CONVEX APPROXIMATION OF J X—SdX, s > 0.
a

2.1. Preliminaries

® is called logarithmically convex (or log-convex) if

n-12n+ for allm > 2. If {a } _, and

{bn}n=1 are log—convex then {pan}n=], (p > 0), {anbn}n=] and {an+bn}n=1 are

A sequence {an}n=1

a > 0 for all n € IN and if ai < a

log-convex. The first two results are trivial, the last one is proved by

means of the Cauchy-Schwartz inequality. Moreover we have

LEMMA 2.1. Let {An(t)}:=] be a log-convex sequence for each t € [a,Bl. If
p(t) = 0, then the sequence {bn}:=1, given by

B
bn = f p(t)An(t)dt, (n=1,2,...)
. ‘

18 log—convex.

PROOF. Write an(t) /An(t). We have

B B
bi = ( J p(t)An(t)dt)2 < ( [ p(t)an_](t)an+1(t)dt)2 <
o o
B 8 ’
< J p(t)ai_l(t)dt [ p(t)ai+1(t)dt =b_ b - ]

o o



. -AX L
2.2. Convexity of {Tn(e ,a,B)}n=]

The following lemma is essential.
LEMMA 2.3. The function
1
X

K(x) = e +1 +

1
X
satisfies

(log K(x))" = 0.

PROOF. Define ¢(x) = log K(x). Observe that
1 1

o1 4 2(e¥ +e )
L S s R
x3 X -e X) x4(ex -e x)

we need to show that for u > 0

. 1
Setting u = -

4u + 2u2(eu-+e_u)

I - u -u u -u,2 >0
e -e (e -e )
or, equivalently, that
(6) e4u - 2e2u + 1 = 4u(e3u —eu) + 2u2(e3u +eu) > 0,

The left-hand side is an entire function of u with power series expansion

o
n
nZO cu,

say.

Now observe that CO = c] = 0 and that for n = 2

c_ = ;‘.— ™ =2 3™l L an 4 on@=-1)3""2 + 20(n-1)).



10

Hence c, = o0, cy = 0, c, =2, c. =4, C = 77/18. For n = 7 we have

n!cn > —l+n3n_1 +2n(n—l)3n“2 = 2n(n—7)3n—2 >0,
so that c >0 forn=0,1,2,... . This proves (6) and the lemma. O

We now prove

THEOREM 2. Let A € IR be fixed and let (a,b) c IR. Then the sequence
AX ®
{Tn(e ;a‘yb) ]’n___]

18 logarithmically convex (in n).
PROOF. Put A = b —a. We have

n-1

T (exx;a’b) _ 1 Z {ex(a+kA/n) . ek(a+(k+l)A/n)} _
n 2n
k=0
_1 e o MRy
2 AA n eAA?n._l ‘
. 1 2Aa, AA . ..
Since 5 e (e"” =1)/AA is positive, we must show that the sequence
n [e ]

KGE et

is log-convex. For A > 0 this follows from Lemma 2.3. For A < O observe

that K(x) = K(-x). For A = 0 the theorem is trivial. O

2.2. The main Theorem

THEOREM 3. Let s > 0 be fixed and let b > a > 0. Then the sequence

-s ©
{T (x “3a,b)} _,



11

i8 logarithmically convex.

PROOF. For s > 0 and x > 0 we have

T'(s) = J e_uus_ldu = x° J e—Xtts_ldt.
0 0

so that

-xt_ s-—1
X = T0s) J e t dt.
0

Since Tn acts as a linear operator, we have for 0 < a < b

-s _ 1 -Xt s—1

.Tn(x ;a,b) = () j Tn(e ;a,b)t dt.
0

Since each sequence Tn(e_Xt;a,b) is log-convex, the theorem follows direct-

ly from Lemma 2.1. 0

Theorem 2.1 can be generalized as follows. Let {ck}:= be a sequence

1
of real numbers such that

f(x) =

o~ 8
(]
~
]

k=1

is convergent for x € [a,b]. Then

-k
Tn(f;a,b) = can(x sa,b)

1 k

oo

n.
Il o~ 8

I
No~18
0
-
-~
oO——-38
=
=]
~~
o
|
]
rt
o
o
N
rt
-
I
[N
rt
N——"

-Xt
g(t) T_(e" ;a,b)de,

]
OY—— 8

o C -
where g(t) ='k§1 ?TET tk ]. If g(t) converges for t ¢ R and is non-nega-

tive on IR', then it follows that Tn(f) is log—-convex.
2m+1 2 2m

EXAMPLE. Let f(x) = z (—1)k+1x_k, Then g(t) =1 - —E—+ ET-— con +-£—T
—_— k=1 1! 2! 2m!



12

2m+1
Since e t. g(t) = =—s———v e nt for some n € (0,1) by Taylor's theorem, we
(2m+1)!

find that g(t) > 0 for all t e Hf: So {Tn(f;u,B)}:=l is log-convex. The

above argument can be directly extended to functions of the form

f(x) =

He~18
e]
"
o

k=1

where 0 < s, < s, < ... are real numbers, the c, 's satisfying similar cond-

1 2 k
itions as above. The reader will have no difficulties in constructing an

integral analogue of the above generalization of theorem 2.1.
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