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Convex approximation of integrals 

by 

J. van de Lune & M. Voorhoeve 

ABSTRACT 

b 
For continuous f, the integral / f(x) dx is ,canonically approximated 

a 
by the trape'.zoidal sums 

1 1 'i'n I 
Tn(f;a,b) = n{-2 f(a) +lk=O f(a+k(b-a)/n) - 2 f(b)}. 

In this pape'.r we establish some criteria for these sums to be convex (in n). 
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0. INTRODUCTION 

Let f: [a,b] + 1R be continuous. We define then-th canonical trape­

zoidal approximation T (f;a,b) of !b f(x) dx by 
n a 

T (f;a,b) = l {-l f(a) + I f(a +k(b -a)/n) --2
1 f(b)}. 

n n 2 k=O 

In this paper we investigate the sums T (xs;a,b) for s E 1R. The first nam­
n s 0:, 

ed author showed in [ 2] that the sequence {Tn(x ;O,l)}n=I is decreasing for 

any fixed s > 1. This is equivalent to the inequality 

n · s+l s s s+l l ks> ,l n (n+l) +n (n+I) 
k=l 2 (n+l/+I -ns+l 

(s > I). 

In the first part of this paper we show that for fixed m E 1N these-
m ro 

quence {Tn(x ;O,l)}n=I is convex, i.e. 

0:, 

This immediately implies that the sequence {T (f;O,b)} 1 is convex if the 
n n= 

Taylor expansion off around the origin converges in [O,b] and has non-
m aa 

negative coefficients. The convexity of the sequence {Tn(x ;O,l)}n=l is 

proved by defining a suitable function ¢(y) such that 

m 
¢(n) = T (x ;0,1) 

n 

and checking that ¢"(y) > 0 for y > O, so that¢ is convex. 

In the second part of this paper we prove that for fixed s < O these-
s 00 

quence {Tn(x ;a,b)}n=l is logarithmically convex, i.e. 

(0 <a< b; s < 0). 

The essential step of this prove lies in establishing the convexity of the 

function 



2 

log(! e: + 1 ) for x > 0, 

ex -1 

11.X oo 
which implies the log -convexity of {T (e ;a,b)} 1 for all 11. E lR, a< b. n n= 

I 

i ~- CONVEX- APPROXIMATION OF f xmdx, (m E IN). 

0 

I.I. Preliminaries;' statement of the Theorem 

Let f: [0,1] • lR be twice differentiable with continuous second deri­

vative. Then we have by the Euler-Maclaurin summation formula 

T (f) def T (f;0,1) =.!..{--
2
1 f(0)+ I f(k)-.!..f(I)} = 

n n n k=0 n 2 

I n 

= I f(x)dx + ! f 
0 0 

Let the function e(t) be defined by 

t 

(1) e(t) = - I t € lR. 

0 

Since e (t) = 0 for t E 2'l we can write 

T (f) n 

Now define 

1 n 

= I f(x)dx - ~ I f'(~)d0(x) = 
0 n O 
I n 

I 1 I x = f(x)dx + 3 f"(n)e(x)dx 

0 n 0 

t 

= 1 f f"-(f)e{x)dx, 
t 0 

t > o. 

If f is four times differentiable and if f"(I) = f( 3)(i) = 0, then ~f(t) 

has a continuous second derivative fort> 0, satisfying 



<l>"(t) 
f 

1 

= ~ f 
t 0 

(12f"(u) +8uf(3) (u) +u2/ 4) (u))e(tu)du. 

Let m € lN, m ~ 5 and put 

m-1 g (x) = (1-x) • 
m 

Note that, by symmetry, T (m) def T (xm-l) = T (g (x)), so that 
n n n m 

Since g"(I) 
m 

satisfies 

(2) 

T (m) 
n 

n 

=.!.+_If 
m 3 

n 0 

X g"(-)e(x)dx. 
m n 

= g (3)(1) = 
m 

def O, the corresponding function <l>m(t) === <1>8m(t) 

t4<1>"(t) 1 

-(m ___ l_)m_(m---2-) • ! 2 2 m-5 {(m +m)u - 8mu + 12}(1 -u) e(tu)du. 

We intend to prove 

m-1 00 
THEOREM I. For every m E lN, the sequence {T (x ; 0, I)} 1 is convex. 

n n= 

3 

We shall prove this theorem by showing that the right-hand side of (2), 

and thus <l>"(t), is positive form~ 9 and t > O. Since by Taylor's theorem 
m 

<I> (n + 1) + <I> (n - I) = 2<!> (n) + .!.(<l>"(t ) +<J>"(t )) m m m 2ml m2' 

where t 1 € (n ... l,n) and t 2 € (n,n+l), this implies Theorem 1 form~ 9. For 

m = 1,: •• ,8 we express T (m) by means of the Bernoulli polynomials (Corn-n 
pare for example [1]): 

T (m) 
n 

Form= 1, ••• ,8, the theorem can be verified directly by this formula. So 

it is sufficient to show that fort> 0 and m ~ 9 



4 

(3) 

1 I {(m2 +m)u2 -8mu + 12}(1 -u)m-S0(tu)du > 0. 

0 

1.2. Some Lenuna's 

LEMMA L Let e(t) be defined by (I). Then 

a) e is pePiodia with pePiod 1. · 

b) 0(t) 
1 = 2 t (I - t) foP O :,; t < I. 

c) e(t) 
1 :,; 8 foP aU t E IR; e(t) :,; l~ t foP t ~ 2. 

d) !~(0 (t) -rr)dt = 0 fop n E 2'l. 

e) x 1 < 13 1 
!0(12 - e(t))dt - 216 < 120. 

PROOF. By straightforward verification from (1). D 

1 1 
LEMMA 2. If O:,; a:,; 2 and O:,; t:,; 2, then e(at) ~ 2 t0(2a). 

PROOF. Since O:,; at:,; 2a:,; I, we have 0(at) = ~at(l -at) and 0(2a) = a(1 -2a). 

Since O:,; t:,; 2, we then have 

1 1 1 
0 (at) = 2 at (I - at) ~ 2 at ( 1 - 2a) = 2 t e (2a). D 

1 1 
LEMMA 3. If O:,; a:,; 3 and 2:,; t:,; 6, then 0{at):,; 2 te(2a). 

PROOF. If at< 1 we have by t ~ 2 

1 1 1 
0 (at) = 2 at (I - at) :,; 2 at ( 1 - 2a) = 2 t 0 (2a). 

If at~ 1, then since I:,; at:,; 2 and O:,; 2a < 

t0(2a) - 28(at) = at(l -2a) - (at-1)(2 -at) 

(at/ - 2(1 +a)at + 2 

~ (at) 2 - 2(1 +a)at + (l+a) 2 ~ O. D 

1 
LEMMA ·4. If a~ 4 and O:,; x:,; 2, then 



X 

X (x) 
def 

J a 
e(at)dt 2 

2 
X /32. 

0 

PROOF. Suppose 0 s ax s I. Then we have 

X ax ax 

X (x) I e(at)dt I e(u)du I I -u)du = = - = - - u ( I = 
a a a 2 

0 0 0 

I 2 I 2 >I 2 = 12 x (3ax - 2 (ax) ) = 12 x a (3 - 2ax) _ 12 ax . 

So the lennna holds if a:?: 3/8. But if a< 3/8 we have that ax s 6/8, so 

(3 - 2ax) :?: 3/2. Hence 

X 

f I 2 I 23 I 2 e(at)dt = 12 ax (3 -2ax) 2 48 x 2 = 32 x • 

0 

Suppose that ax> I. Then by lemma I(d) and l(e) 

X 

J x I 
e(at)dt = - + -12 a 

0 

since x s 2. D 

LEMMA 5. Fol" m :?: 9 we have 

ax 

I I x I (8(u) --)du - - --12 - 12 a 
0 

6 

I(m) def I m-5 
t(t -2)(t -6)(1 -t/m) dt > 0. 

0 

PROOF. Integration by parts reveals that 

I(m) = 

6m2 
+--c-----s,--,---,-

(m-1) (m-2) 
6m 2 ( 1 __ m6) m- i"fl • 

(m-1 )(m-2) 

ax 

J 
[ax] 

5 
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By direct calculation one may verify that I(m) > 0 form= 9, ••• ,20. Since 

(I -6/m)m increases to its limit e - 6 we .have 

m2 f 2 14 8 + 
I(m) > (m-3) (m-4) 1 -m-1 - (m-1) (m-2) 

( 24m3 20m3 6m3 ) -6} 
- \ 3 + 2 + e • 

(m-6) (m-2)(m-6) (m-l)(m-2)(m-6) 

Since the form in curly brackets { } is monotonically increasing in m and 

is positive form= 21, the proof is complete. 

1.3. Proof of the Theorem 

m ;;:: 9 

(4) 

Put h (t) def (t-2)(t-6)(1 -t/m)m-s. We shall prove that for a> 0 and 
m 

6 

f hm(t)e(at)dt > 0. 

0 

Since h (t);;:: 0 fort;;:: 6 and since 8(t);;:: 0 for all t, (4) implies 
m 

m 

f hm(t)e(at)dt > 0, 

0 

so that, putting u = t/m and y = am, 

1 I (m2y2 -8mu + 12)(1 -u)m-Se(uy)du > 0, 

0 

which implies (3) and the Theorem. Hence it is sufficient to show (4). Now 
1 suppose that 0 <a< 4. By Lemmas 2 and 3 we have 

by Lemma 5. 

6 I hm(t)S(at)dt 

0 

2 6 

;;::{f +f} 
0 2 

6 

= ½ 8(2a) f 
0 

1 hm(t) 2 t8(2a)dt = 

th (t)dt > 0, 
m 
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So let a~! and as before, put xa(x) = f~ e(at)dt. Since xa(O) = 0 = 
h (2), we have that 

m 

2 2 2 
def 

I 1 (m) === J hm(t)S(at)dt 

0 
= f h (t)dx (t) m a = ~ f X (t)d h (t). a m 

0 0 

Observe that h (t) is decreasing for O ~ t ~ 2. We thus have by Lemma 4 
m 

2 2 

I 1 (m) ~ -f ;2 dhm(t) = 
0 

Since h (t) ~ 0 for 2 ~ t ~ 6 we have by Lemma 
m 

6 

~ f hm(t) I~ dt. 

2 

Hence, by Lemma 5 

6 6 

f hm(t)e(at)dt = I 1(m) + I 2(m) 

0 

~ ft f thm(t)dt > 0 

0 

form~ 9, completing the proof of Theorem 1. 

1.4. An inequality for T (m); conclusion 
n 

Theorem I reads 

T 1(m) + T 1(m) ~ 2 T (m), n- n+ n (m, n E IN; n ~ 2) • 

Since 

we can write the above inequality as 

(( \m ( n \ID\ nm-I 
T (m) ~ I -2 + I I > _!_ ---

n \\n-1} \n+l)) - 2 (n-l)m 

m-1 
n ---+--, 2 2 (n+l)m n -I 
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or 

m-1 m m-1 m-1 m-1 m 
T (m) > ..!.. n (n+l) +2(n+l) (n-1) +n (n-1) 

n -2 mm m m m m (n+l) n -2(n+l) (n-1) +n (n-1) 

The method in this section can be applied to functions xs withs~ 9. 

Fors< 9 ands i ]N we cannot prove anything. However, numerical evidence 

supports the following stronger conjecture. 

ConJ'ecture. For any fixed reals> I the sequence {T (x~0,1)}00 
1 is logar-n n= 

ithmically convex. 

s I -s 2. LOGARITHMICALLY CONVEX APPROXIMATION OF x dx, s > 0. 

a. 

2. I • Preliminaries 

m 
A sequence {an}n=l is called logarithmically convex (or log-convex) if 

an~ 0 for all n E IN and if a!~ an_lan+l for all n ~ 2. If {an}:=l and 

{bn}:=l are log-convex then {pan}:=l' (p > 0), {anbn}:=l and {an+bn}:=l are 
log-convex. The first two results a~e trivial, the last one is proved by 

means of the Cauchy-Schwartz inequality. Moreover we have 

m 
LEMMA 2.1. Let {An(t)}n=l be a log-convex sequence for each t E [a.,SJ. If 

p(t) ~ O, then the sequence {bn}:=l' given by 

a. 

is fog-convex. 

PROOF. Write a (t) n 

b2 ( = n 

s 
~ I 

Cl 

p(t)A (t)dt, 
n 

= IA (t). We have n 

s 

I p(t)A (t)dt/ ~ n 
a. 

s 

(n = 1,2, ••• ) 

s 
( I p(t)an_1(t)an+l(t)dt) 

a. 

2 I 2 
p(t) an-I (t)dt p(t)an+l (t)dt = b n-1 bn+l • 

Cl 

2 
~ 

• 



-Ax 00 

2.2. Convexity of {Tn(e ;a,S)}n=l 

The following lemma is essential. 

LEMMA 2.3. The function 

K(x) 
I ex+ I =----x 1 

X € JR.+ 

ex - I 

satisfies 

(log K(x)) 11 ~ 0. 

PROOF. Define ~(x) = log K(x). Observe that 

4 
X X 

~ II (X) 
1 + 2(e +e ) 

=-- I I 2 
X 3 X X 4 C x -x)2 x (e -e ) x e -e 

Setting u I need to show that for u > 0 = - we 
X 

4u 2 2( U. -u) 
I + u e +e 

> 0 -
( u -u)2 u -u 

e -e e -e 

or, equivalently, that 

(6) 
4u 2u 3u u 2 3u u 

e - 2e + I - 4u ( e - e ) + 2u ( e + e ) > 0. 

The left-hand side is an entire function of u with power series expansion 

say. 

00 

I 
n=O 

n 
C U , 

n 

Now observe that c0 = c 1 = 0 and that for n ~ 2 

I n n+l n-1 n-2 
en= n! (4 -2 -4n3 +4n+2n(n-1)3 +2n(n-I)). 

9 
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Hence c2 = 0, c3 = O, c4 = 2, c5 = 4, c6 = 77/18. For n ~ 7 we have 

n-1 n-2 n-2 n!c > -4n3 +2n(n-1)3 = 2n(n-7)3 ~ O, 
n 

so that c ~ 0 for n = 0,1,2, •••• This proves (6) and the lemma. D 
n 

We now prove 

THEOREM 2. Let A e: IR be fixed and Zet (a, b) c IR. Then the sequence 

is ZogarithmicaZZy convex (inn). 

PROOF. Put l:J. = b - a. We have 

n-1 
AX I \ A{a+kl:J./n) + eA(a+(k+l)!:J./n)} = 

T (e ;a,b) = -2 l {e 
n n k=O 

• I A.a Al:J. Since 2 e (e -1)/Al:J. is positive, we must show that the sequence 

is log-convex. For A> 0 this follows from Lemma 2.3. For A< 0 observe 

that K(x) = K(-x). For A= 0 the theorem is trivial. D 

2.2. The main Theorem 

THEOREM 3. Lets> 0 be fixed and Zet b >a> O. Then the sequence 



is ZogarithmicaZZy convex. 

PROOF. 

so that 

Fors> 0 

r(s) 

-s 
X 

and x > 0 we have 

co co 

J 
-u s-1 s 

J 
-xt s-1 = e u du = X e t dt. 

0 0 

co 

l 
= r (s) I -xt s-1 

e t dt. 

0 

Since T acts as a linear operator, we have for O <a< b 
n 

00 

-s l I -xt s-1 .Tn(x ;a,b) = r(s) Tn(e ;a,b)t dt. 

0 

l l 

-xt Since each sequence T (e ;a,b) is log-convex, the theorem follows direct­
n 

ly from Lemma 2.1. D 

co 
Theorem 2.1 can be generalized as follows. Let {ck}k=l be a sequence 

of real numbers such that 

co 

f(x) I -k 
= ckx 

k=l 

is convergent for X E [a,b]. 

T (f;a,b) = 
n 

co 

Then 

I -xt = g(t) Tn(e ;a,b)dt, 

0 

co ck k-1 where g(t) = k~l r(k) t If g(t) converges 

co 

fort E nt 
. JR+ then it follows that T (f) log-convex. tive on , is n 

2m+1 
(-1l+lx-k, EXAMPLE. Let f(x) I Then g(t) I 

t = = - -+ 
k=l I ! 

-xt k-1 \ 
Tn(e ;a,b)t dt} 

and is non-nega-

t2 t2m 
2T - +--2m! 
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t t 2m+l -n·t 
Since e- = g(t) - (2m + 1) ! e for some n e: (0, 1) by Taylor's theorem, we 

+ 00 • find that g(t) > 0 for all t e: IR • So {T (f;a,S)} 1 1.s log-convex. The n n= 
above argument can be directly extended to functions of the form 

00 -s 
f(x) = l ckx k, 

k=l 

where 0 < s 1 < s 2 < ••• are real nurubers, the ck's satisfying similar cond­

itions as above. The reader will have no difficulties in constructing an 

integral analogue of the above generalization of theorem 2.1. 
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