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§1. Some conventions 

Let H be a finite system with an associative binary operation (a finite 

semigroup). In this report 1 no special knowledge of semigroups is 

assumed on the part of the reader. 

Our theorems will deal with sequences of elements of H and the proofs 

involve SE?quences of such sequences. Hence 9 to avoid confusion, let us 

employ the old hand notion of "a word" 1 according to the following con­

ventions. 

1. A sequence of one or more terms& in which each term is an element 

of H, is called a word over H. The comma's in a word will be often 

left out; if so, the terms will be called letters. 

2. The value of a word w = a1 a 2 ••• ak over a semi group (H,"it-) is 

defined by 

lwl = a • a • ••• • 1 2 

3o A subword of a word Wis a word, consisting of one or more conse­

cutive letters of Win their proper order, 

§2. Introduction 

Some elementary principles in the theory of finite groups admit a neat 

formulation in the above terminology. We summarize them in the form of a 

theorem: 

Theorem I 

ao Any word W of length n, over a group G of order n, contains a sub­

word with unit value. 

bo Given a group G of order n ~ 2 9 there is a word W of length n-1 

over G~ which has no subwords with unit value. 

For a proof of this theoremi if needed, see §3. 

The object of this note is~ to establish some results on finite semigroups 9 

which have a close resemblance to theorem Io The part which is played by 

the unit element in theorem I, will be taken over by elements e which have 

the property that e2 = e. Such elements are called: idempotent. 
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The following theorem II implies the well-known fact, that any finite 

semigroup has at least one idempotent elemento Of course 1 much easier 

proofs of the same fact can be given and are available in any text­

book on the subject o 

Theorem II 

To each finite semigroup Ha positive integer). can be assigned, 

such that any word W of length A over H contains a subword with 

idempotent value. 

This theorem has an amusing corollary in the theory of numbers (which 

will be proved, together with the theorem, in §5): 

Corollary Given n, there is a constant, such that any positive integer 
n 

with more than, divisors, has at least one divisor d ! 2 n 
with the property that d(d-1) is divisible by no 

In particular, any positive integer with a sufficient amount of divisors 

will have a divisor! 2® whose two final digits in the decimal scale are 

00 9 01, 25 or 760 One might try to find a direct arithltl.etical proofo 

We shall give further attention to this kind of problem in a Mathematical 

Centre report on arithmetical semigroups, which is soon to appear. In the 

present note we are concerned with abstract systems onlyo 

When looking for the least possible A in theorem IIt such as to be valid 

for all Hof a fixed order ne we found the following theorem, It gives 

the critical values of A8 plus an additional item of some interest. 

Theorem III 

Define a function L(n) as follows: 

[ 
L( 1) = 

L(n) = 

1~ L(2) = 2,, 

n n [E.J 
43 • (fil)3 - 3 

32 

then L(n) is a positive integer with the following properties: 

a. Any word W of length L(n) 9 over a semigroup Hof order n~ contains 

a subword with idempotent valueo 
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bo Given n > 2 1 there is a semigroup Hof order nt over which a 

word W of length L(n)-1 can be constructed 1 such that W has 

no subwords with idempotent value. 

There is even a commutative H with this propertyo 

~~~~!~~o It is easy to prove that 

Further we have 

L(n) = 22k if n = 3k 1 L(n) = 3o22k- 1 if n = 3k+1 (k > 1 ) • 

i -
L(n) = 9.22k-2 if n = 3k+2 J,· 

If the latter two formulae are applied with k = 0, which is forbidden, 
h . , , . () t ey give 12 and 249 respectively 3 whereas the true values of L 1 and 

L(2) are 1 and 2. The fact that L(n) is an increasing function of n can 

be easily proved, but is not trivial a priorio 

Tabulation for n < 10: -
n 2 3 4 5 ' 6 7 8 9 10 

,-

L(n) 2 4 6 9 16 24 36 64 96 

Theorem III will be proved (in §8) as a consequence of the much more 

intricate theorem IV, to be stated next o It deals with those semigroups 

of order n, which have a prescribed number of idempotent elementso 

Theorem IV 

Given a pair of integers ns 0 with n > 0 > 1o 

Define two integers q and a by 

n = (2g_-1)0 +·a, 0 ~ a~ 20-10 

Then q and o are uniquely defined and we have q .::, 1 o 

Next 9 define a function L(n 9 0) by 

( ) 20= o ) a L :n 9 0 = q • (q+1 , 
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then we havei 

Ao Any word W of length L(n,e) over a semigroup of order n which has 

exactly e idempotents 0 contains a subword with idempotent value. 

B, Given a pair ni e with 1 ~ e ~ n-1 9 there is a semigroup of order 

n with exactly 8 idempotents 8 over which a word W of length 

L(n 9 8)-1 can be constructed• such that W has no subwords with 

idempotent value o 

There is even a commutative sem1group with this propertyo 

Remark. For readers who have worked their way through the above statement, 

we mention the following values: 

L(n 9 8) = 1 if and only if e = n. 

1 fore.:::, 3 n. 

L(n 9 1) = ~ (n+1 ?J for all n. 

1 4 3 0 2 L ( n, 2) = 25b ( n +8n ) + .. ( n ) for n-+ co• 

Before we give the proofs of I, II, IV and III 0 one question remains to 

be settled. Is there a non-commutative semigroup which satisfies the 

assertion IV B? 

Certainly not in all cases. We have• for instance I the fact that a semi­

group with n = 2 9 e = 1 is necessarily commutative. In many cases 0 however 9 

the answer is affirmative 9 as may be seen from the following statement, to 

be proved in §7: 

Supplementary theorem 

In each of the following cases there is a non-commutative semi-

group with the property of theorem IV B. 

(i) If q_ is an even number! 6. 

(ii) If g_ 1S an odd number~ 5 0 provided that 0~ 2o 
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For instance, any word of 36 letters over any sem1.group of order 11 which 

has only one idempotent, has a subword whose value is equal to that idem­

potento B~~ if we replace the number 36 by 35~ the assertion becomes false 

and there are commutative as well as non-commutative semigroups to disprove 

ito 

A special class of non-commutative sem1.groups (where each member is the 

semigroup of all mappings of a finite set in itself) will be made the object 

of further study in a forthcoming Mathematical Centre report 8 by one of the 

authors under title. 

§3. Proof of theorem I 

a. The assertion Ia is trivial in case n = 1. For n > 2 8 we put 

W = a 1a2 ••• an and consider the sequence 

e 

where e 1.s the unit-element of the group (G,*)o 
A lef't-hand division of two equal terms in this sequence (they are 

provided by the pigeon-hole principle)e leads ·up to the required 

subword of W o 

b. The assertion Ibis trivial in case n = 2o For n ~ 3 0 let 

(g1 , g2 , oooi gn_ 1) be an arbitrary permutation of those elements of 

G which are# e. Then the sequence 

=1 g C ~g 
n-2 . n=1 

fulfils.the requirements of Ibil if the terms are considered as letters 

of a word w. (We remark that by this method (n-1)! different words W 

can be eonstructed and that these words are the only ones 9 which 

satisfy Ib). 

§4. The notion of a central word-set 

The following notions and properties will be used frequently 1.n the next 

sectionso 
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If a 1 ooo ap and b1 ooo bq are words over one and the same semigroup and 

if we denote them by w1 and w2 ~ respectively~ then we shall denote the 

word a 1 ••• apb1 ooo bq by w1w2• Clearly we have 

lw1w2I = lw, I# lw2I • 

where* is the operation in the semigroupo 

A set of one or more words will be called a central set if it can be 

written as 

( 1 ) 

It is easily seen that the following assertions hold true: 

(2) 

(i) If all the words of a central set are given, then the components 

w. of the presentation (1) and their order of succession are 
i 

uniquely detenninedo 

(ii) A non-empty subset of a central set is central. 

(iii) If (1) contains at least two wordsi then 

is a central set as wello 

For instance, if a, band care elements of a semigroup, the set 

{abai abacb, abacbbt abacbbaa} 

is central and we have$ in the presentation (1): w1 = aba, w2 = cb~ w3 = b, 

w4 = aa. Its subs~t 

{abacb 8 abacbbaa} 

is central too, but here we have w1 = abacb 1 w2 = baa. 

Finally 

{baa} 

is a central set, which has been derived from the previous one like (2) 

from (1). 
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§5. Proof of theorem II and its corollary 

The following proof may be omitted by the reader, as II is implied by 

IV A and we shall give an independent proof of IV Ao However& the 

present proof is shorter. The truth of the assertion I is clearly 

implied by lemma 1 and lemma 2o 

Lemma 1o An infinite word over a finite H has a (finite) subword with 

idempotent value. 

Proofo Let c 1c2c3 •••bean infinite word over (H,~)o The ci may be 

considered as elements of Hor as finite words over H; this will make 

no difference as to our argumento Consider the infinite, central word-set 

As His infinite, C will have an infinite subset c1 i such that any word 

w ~ c1 has one and the same value in H. Denoting this subset by 

c, = {w,, w,w,,. w,w,,w12' ooo}, 

each of its elements has the value lw1 Io Next 5 consider the "derived" set 

{w11 , w11 w12 , w11w12w13 , ooo}o This set does not need to be single-valued 

like c1, but it has certainly an infinitez single=valued subset: 

c2 = {w2, w2w21' w2w21w220 ooo}o 

Here each of the elements has the value lw2 J and we have moreover 

lw1 1 * iw2 1 = lw1 1 • as the word w1w2 is one of the words of c1 o Next~ 

consider the set {w21 , w21 w22 , w21 w22w23 , ooo} and repeat the previous 

argument,; this can be done as long as one wishes o The procedure yields, 

finally, an infinite sequence of words 

0 0 O 

where each wi is a subword of the given c 1c 2c 3 ,oo 9 and where moreover 

(3) I w i .,...1 w ·I - ·1· w I , 3 1·~ 4 - 3 ' 

and so Ono 
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By the law of associativityt (3) implies 

The values lw11, lw21 • aoo cannot be all different from each othere 

Hence there is a pair k 1 m with k < m and lwkl = lw la Then (4) gives 
2 m 

lwkl = lwkl, which proves lexmna 1o 

Lemma 2o Suppose, there is a finite H to which no boundary le~gth A 

can be assigned with the property of theorem Io Then there 

is an infinite word W over H without subwords of idempotent 

value, 

Proofo The assumption implies the existence of an infinite set of 

finite words over H: 

such that no word in v1 has a subword with idempotent valueo As His 

finite 0 H contains an element b 18 which is the beginning letter of 

infinitely many words in V 1 o These words form a subset V 2 CV 1 o Next 8 

H contains an element b2, serving as the second letter of infinitely 

many words of V 2 o These words form a V 3 e,v 2 and every word of V 3 has 

the initial piece b 1b2o Iterating the argument 1 an infinite sequence 

b 18 b2, b3 , eoo of elements of His shown to exist, such that every 

word in Vk+i has the initial piece b 1b2 ooo bka Writing the::;same: .. ,i: 

sequence as a word 

we find that each finite subword of Wis subword of one of the words in 

some Vka Hence it is subword of a word in v1, so that its value is not 

idempotento This proves lemma 2o 

~~~~!-~!_!~=-~!!!~=!!=~!-~~~~!!~~lo The multiplicative semigroup of all 
residue-classes modulo n defines a number A in the sense of theorem Ila 

A 
Let us denote 2 -1 by tno Then any positive integer with more than 'n 

divisors can be written as 
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where each q. is a prime number 0 not necessarily different from the 
J. 

other ones, and whereµ> Ao Theorem II~ applied on the word 

q1 q2 ooo qA modulo n leads up to a divisor d ! 2 with d2 = d mod n. 

The latter congruence implies that d(d - 1) is divisible by no 

§ 6 o Proof of theorem IV A 

The proof is based upon lennna 3 - lemma Be 

Given (Ht·*), let X be a s;ubset of H, such that X does not contain 

idempotent elements. 

A function f(z) 0 defined on H& is called an order-function with respect 

to X, if the following properties (5) hold trueo 

(5) 

for z EH\ Xe 

{ 

f(z) = 0 

f(z) is a positive integer for z E Xo 

r(x) > f(y) for all x, y with xeX and X ~ y = Xo 

If an order-function f(z) with respect to X has been given~ the number 

of solutions of the equation f( z) = k will be denoted by sk o Hence we 

have 

(6) sk is, the number of el.ements z « Hi such that f(z) = ko 

Lemma 3o 

Definitions~ Let (H 8#) be a finite semigroup, 

Assumption 

Assertion 

W a word over H without subwords of idempotent value, 

X the set of all values of all subwords of W, 

f(z) an order-function with respect to Xo 

Each central set of subwords W contains less than N words w 

such that f( lwl) ~ k-1 o 

Here N and k are arbitrary positive integers. 

Any central set of subwords of W will contain less than 

N(sk+1) words w such that f( lwl) !, ko 
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Proof o Due to the assumption we need only to prove that a central set 

contains at most Nsk words w for which f(lwl) = ko 

If sk = 0~ the assumption is identical with the assertion, whence we 

may assume that sk ~ 1o If a wordset C (which need not be central) 

contains Nsk + 1 words w with f( lwl) = k 9 it will certainly contain~ 

by the pigeon-hole principle 9 a subset c1 of N + 1 words 9 all of which 

have one and the same value in Ho 

Hence 9 if such a set C is moreover centralt it will have a central subset 

in which each word has the value lw1 Io Denoting lw1 I by Xt we have x E.X 

and f(x) = ko 

Next• let us consider the "derived" set 

and let y ,be the value of one of its words o Then we have x * y = x and 

hence, by (5). 

f(x) > f(y) o 

This means that f( lwl) :;:,, k-1 for all we c2o But c2 has exactly N elements 9 

which is contradictory to the assumption of the lemmao 

Lemma 4o Let H, W0 X and f(z) be defined as in the previous lemmao Then 

the length of W is less than 

where Mis the maximum value of f(z) 9 or any integer exceeding 

that maximum valueo 

Proof o ThEi assumption of lemma 3 is true for N = 1 ~ k = 1 o Hence~ by the 

same lemma 11 it is also true for N = 1+s 1~ k = 2; hence too for N = 

= (1+s 1)(1+s2 ), k = 3; and so ono Since sk = 0 for any k which exceeds the 

maximum value of f(z) 9 one may proceed as long as one wishes~ the final.· 

result beingll that the amount of words J..n any central set is less than the 

positive integer (7) o As the number of letters in W is equal to the number 

of words in the largest possible central set 0 lemma 4 has has been provedo 
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The following diophantine statement and its proof are independent of 

the previous texto 

Lemma 5 • Given M > 1 and T ~ 1 o Then the function 

considered in the lattice-point region 

(9) 

takes the maximum value 

(10) (1 + p)M-o • (2 + p)o• 

where p and o are determined by the quotient-residue formula 

( 11 ) T = pM + o (0 ! a ! M-1) o 

Proofo As the result is trivial for M = 1 and all T9 let us assume 

that M.::, 2o 

(i). Let P be a point (t 1, t 2 , 000 9 tM) of (9), such that lti < T• then 

,(P) is certainly not maximalg t 1 can be augmented by 1 and, will 

increaseo 

(ii). Let P be such that t.-t. ~ 2 for at least one pair i, j, then 
J. J 

,(P) is not maximalg ti can be replaced by ti-1 and tj by tj+1, then, 

will certainly increase. Hence 9 the coordinates of a maximizing point 

of (9) either have all the same value 9 or they are distributed over two 

consecutive integral valueso In the first case, denote that value by p; 

in the second case 9 denote the two values by p and p+1o 

It follows by (i) and (ii) that a maximum value can be reached only in 

such points. where T coordinates have a certain value p and o coordinates 

have the value p+1 9 whilst moreover 
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Eliminating, from these relations® we find as a necessary conditiong 

T = pM + o, 0 ~ cr ~ M=1, which is formula (11)o For the maximal value 

(which certainly exists) we find (10) and this proves the lemmao 

Applying 1.ennna 5 on lemma 4 0 we find at once the following resultg 

Lennna 60 Let M, W 9 X and f(z) be defined as in lemma 3o 

Let M be an integer > the maximum value of f(z)o 

Let T be an integer ~ the number of elements of the set Xo 

Let p and cr be defined by the quotient-residue formula 

T = pM + cr , 0 .;, cr ~ M-1 o 

Then we have p ~ 0 9 and the length of Wis less than 

The above lemma may look like a statement which is 11biting its own 

tail"o One might remark that the set X has been defined with help of 

the word w, that the function f(z) depends on the structure of X and 

hence, that all the parameters in the final estimate are depending on 

the word W itself, possibly in a bad wayo 

Luckily this is not trueo We know that Xis free of idempotents® so 

that we may take T = n = 99 where n is the order of Hand 9 is the 

number of its idempotents o The indeterminate constant M will be dealt 

with, likewise, in the following lemma's 7 and Bo It will be shown that 

we may tak,e M = 29 in all relevant cases o 

l:lennna 7o Let (H,*) be a finite semigroup with 9 < no Let 

be a sequence of non-idempotent elements of H, such that 

( 13) x. * x. = x. 
J. J J. 

for all pairs i 9 j with i < .i o 

r.I1hen we have: 1( ~ 29 o 

Proofo Take an arbitrary x. from the sequence (12) and consider its 
J. 

powers 
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It is well-known and easy to prove that this sequence contains a term 

which is an idempotent element of Ho (This is easily seen 9 for instance, 

by applying theorem II on a word x.x.oooX. of sufficient length, but we 
J. J. J. 

have promised that our proof of theorem IV A wo:uld be independent of II o) 

Denote such an idempotent by e(x.) 9 then e(x.) = x~ for some po (The fact 
J. J. J. 

that there is only one element e(x.) for each x. is not relevant hereo) 
J. J. 

If the length of (12) exceeds 26• there will certainly exist a sub-sequence 

of (12) 9 say x, y, z, such that e(x) = e{y) = e(z); this follows from the 

pigeon-hole principleo We have then• for some triple of positive integers 

q 9 r, s: 

e(x) 

and hence, by (13): 

(14) 

= xq • e{y) r = y • 

{ : : : : :· 
q r s 

X = y = Z o 

e(z) 

The relations (14) imply• in any semigroup 9 that 

r 
Y = Ye 

as we have 

s = z 

= Yo 

In our present case the element y 9 which occurs as a term in (12) 9 would 

be equal-to e(y), which is an idempotento This would contradict our 

assumption on (12); hence the length of (12) does never exceed 260 

Lemma 80 Let (H,*) be a finite semigroup wi~h 6 < no 

Let X be a non-empty subset of H without idempotentso 

Then there exists an order-function f(z) with respect to X 

such that 

f(z) < 26 for all Zo 
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~:'.~2!o A sequence (12) with.-property (13) will be called an x ... tail of 

z. if x1 = z and if moreover all the xi (including z) are elements of x. 
Sin, ce ( 13) holds trivially true for ,r = 1 • any z e X has at least one 

X-tail 5 a tail with length 1o 

For any z E X we define ,r ( z) as the maximal length 9 which is realized 

among the X-tails of z. For any z 5 H \ X we define ,r ( z) = 0 o We shall 

now prove that ,r (x) > ,r(y) for all x, y with x E.X and x * y = Xo 

The assertion is trivial for yGH'\Xo For yEX 8 let x1, oooe x,r be 

an X-tail of y, then we have x1 = y and it follows from x * y = x 9 that 

x 9 x1, ooo, x,r is an X-tail of Xo Hence we have certainly ,r(x) > ,r(y)o 

In view of lemma 7 we have moreover: ,r(z) ~ 20 for all Zo 

Thus we have proved lemma 81 with f(z) = ,r(z)o 

Theorem IV A follows easily from lemma's 6 and 80 Fore= n the assertion 

is trivial. Fore< n, choose a word W over H without subwords of idempotent 

value; define X as the set a~ all values of all subwords of W; define f(z) 

according to lemma 8; take in lemma 6g T = n - 6 and M = 26. Then the 

formula T = pM + a gives n = (2q-1)0 + a with O ~ cr ~ 20-1. where q = p+1 ~ 1. 

Finally the estimate function of- lemma 6 yields L(n,0) 9 Thus we have proved 

IV A. 

Remark. The underlying ideas in the foregoing proof are as follows: 

Let X be any subset of an arbitrary• finite semigroup (H~~), which 

contains 6 idempotents. 

Define s0 = H\ Xo 
k 

sk+1 = {x Ex \ U 
i=O 

Define for 

S. g X * y 
1 

k > 0 9 by induction: 
k 

=x-+y,us.}o 
. 0 1 1= 

Then the following statements hold true: 

(a) X will be free of idempotents if and only if the union of all 

Sk equals Ho 

(b) The number of non-empty classes Sk with k ~ 1 is at most 20. 



15 

§7 o Proof of theorem IV B and the supplementary theorem 

First ll let us consider the indeterminate boundary length A 0 as given 

in theorem II. Let us denote by ;\.(H) the least possible value of A 

for a given Ho Further, let us denote the order of H by n(H) and the 

number of its idempotents by 0(H)o 

Assertion IV A, which has been proved in the previous section, is 

equivalent to the statement that ;\.(H) exists and is< L(n 9 8)i where 

n = n(H), e = 8(H) 9 for every Ho 

Likewise, assertion IV B can be restated as follows: 

* Theorem IV B 

Given a pair n 9 e with 1 < 0 < n 9 there is a commutative H such 

that 

{ 

n(H) = n, 

(14) e(n) = e. 

;1..(H) > L(n 0 6)o 

# 
To: pr.ove IV B and hence IV B, we need three lennna I s a They provide 

information for the supplementary theorem as wello 

Lemma 9 o Let H 1 and n2 be disjunct finite semigroups of an arbitrary 

structureo Then there is a semigroup H with the following 

properties: 

(a) n(H) = n(H1) + n(H2) 0 

(b) 0(H) = 0(H1) + 6(H2) 0 

(c) l(H) > A(H 1)A(H2)o 

(d) If both H1 and H2 are commutative~ so is Ho 

(e) H contains a sub-semigroupt which is isomorphic with H1 and 

a sub-semigroup which is isomorphic with H2• 

Proof. Let us denote the operations in H1 and H2 by O and~~ respectivelyo 

We define a. set H by H = H1 U H2 and we define in H an operation # as 

follows: 
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a~b = a • b if a4:.H19 b ei H1 o 

( 15) a* b = at,, b if ae: H2 8 b ~H2 o 

. a. *b = b *a = a if alf:,H 1 • b ~H2• 

Then (Ht*) is a semigroup, satisfying (a) 1 (b) t (d) and (e). So far 9 

the procedure is not altogether unknown, but now (c) has to be proved. 

If A(H 1) = 1 or A(H2 ) = 1 9 (c) is implied by (e); hence we may assume 

that A1-1 ! 1 and A2-1 ! 1, where Ai is an abbreviation of A(Hi)o 

Let a 1a 2oooaA _1 be a word over H9 without subwords of idempotent 
1 

value. Let W be a word over H29 of length A2-1 and likewise free of 

subwords of idempotent value. Such words exist, by the definition of 

A .• Then the word 
1 

(16) over H 

consists of exactly A1A2-1 letters; we shall prove that it has no sub­

words of idempotent value in Ho The statement is trivial for those sub­

words w of (16), which are contained in one of its subwords of the form w. 
Next• let w be a subword of ( 16) which is not contained in one of the W o 

Then the sequence w (for w is a sequence~) certainly contains a sub­

sequence 

a • p 
a 

q 
(1 < p < q < A =1) 

= - - 1 

such that ap_ 1 and aq+,• if they exist. do not occur in the sequence w. 

It follows then by (15) and the law of associativity. that 

lwl = a * ooo * a = a O ••• • a o p q p q 

Hence lwl is not idempotento 

Thus we have proved (c)o It should be noted that the semigroups H1 and 

H2 may not-change places in this proofe although the result is symrn.etrico 
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Lemma 100 Let \H 18 H2, oooe Ht} be a non~empty collection of disjunct 

finite semigroupso Then there exists a semigroup H with the 

following properties; 

(a) n(H) = 

(b) 8(H) = 

I 
i 

1 

n (H.) • 
J. 

8 (H.) • 
J. 

i 

(c) A(H) > TI A(H.)o 
- i J. 

(d) If all the H. are commutative, so is Ho 
J. 

(e) H contains a sub-semigroup • H .• for all io 
J. 

Proofo The statement is trivial fort= 1, the case t = 2 is covered 

by lemma 9. fort! 3 it can be proved by repeated application of lemma 9o 

Lemma 10 suggests already the construction of a semigroup H, which has a 

critical word-length of exponential ordero It is 9 however, not strong 

enough to reach the estimate (14); we shall bolster it up by the following 

le:mme.o 

Lemma 110 

(a) For any positive integer q there are semigroups S8 T and U 

such that 

n(S) = 2q-1 n(T) = 2q n(U) = 2q+1 

e(s) = 1 8 (T) = 1 e(u) = 1 

A(S) 2 A (T) q(q+1) A(U) 2 
! q > > (q+1) 0 - -

(b) Scan be chosen such that it is commutativeo 

The same holds for 'l' and for Uo 

(c) Scan be chosen such• that it contains a sub-semigroup 

which is isomorphic with an arbitrarily prescribed group 

G of order qo, 

The same holds for To 

(d) U can be chosen such as to contain a sub-semigroup 1 which 

is isomorphic with an arbitrarily prescribed group G of 

order q+1 o 
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Proofo The assertions on U in the above statement are superfluous• 

from a logical point of viewo As soon as we have verified any assertion 

on S for all q1 the corresponding property of Uhas been proved as wello 

For q = 1 0 the assertions on Sare trivial and those on Tare easy to 

verifyo Now let q ~ 2o Choose an arbitrary group (G 1 °) of order q and 

let e be its unit-elemento Apart from G8 choose a non-empty set 

0 0 0 t 

of objects• which are not elements of Go 

d l 
rl 

In the set G UV we define an operation * as followsg 

a* d. = d. '"'a = a if aE: Go 
( 17) l. l. 

d. * d. = di+j if i+j < re 
l. J -

d. * d. = e if i+j > re 
l. J 

Then GUV is a semigroup under the operation *o Denotin12: GUV by H9 

we have 

( 18) 

(19) 

(20) 

(21) 

n(H) = q + r• 

8(H) = 1 (e is the unique -idempotent), 

if G is commutative 9 so is H; 

H contains a sub-semigroup • Go 

For this semigroup (H,*) we shall prove: 

(22) >.(H) ~ q(r + l)o 

To that end we need theorem Ibo It shows the existence of a word 

a 1a2oooaq-l over G, without subwords of unit-value in Ge hence without 

subwords of idempotent value in Ho 

. 
which contains exactly r letterso Then vl ·.has~-e"vi&frit"1"-y.-:·,rl0· s:ubwords,:;.,~::.: 

of idempotent value. 
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It is easy to verify 9 that now the word 

consists of exactly q(r+1)-1 letterso Moreover it has no subwords of 

idempotent value in H, as may be seen from an argument 9 similar to the 

one we have used when dealing with (16)0 

Thus we have proved (22)o The semigroups Sand Tare obtained as special 

semigroups H by taking r = q-1 and r = q 9 respectivelyo 

Their p~perties follow at once from (18) 8 (19) 1 (20)• (21) 8 (22)o 

~=~~~o The foregoing proof has many features in common with the proof 

of lemma 9, and our reference to (16) 8 at the end of the proof, is perhaps 

somewhat disturbing. This slackness can be avoided by the following 

procedure: in lemma 9e take H1 = G and H2 = vU{z}, where z is a zero­

element which makes a semigroup of VU{z}o Thereup~n • identify the 
l .. ~ . #... - ' -- -· . . . 

elements z and e of H1UH2 and lemma 9 will lead to lemma 110 The exact 

procedure requires some care 1 but is not unknown in the theory of semi­

groupso 

* Using lemma's 11 and 10 8 we are now able to prove IV Be which is another 

form of IV Bo 

Given a pair n, e with 1 < e ~ n 8 we define q and o by 

n = (2q-1)e + o (0 ~a~ 20-1) 

and recall that 

L(n,e) = q20-o Q (q+1)oo 

Defining three inte~ers a, 8 9 y by 

e - 0 + [~o] = a, 

a - 2a~ = Se 

[~o] = Ye 

we find the following properties (which may justify the curious choice 

of these inte~ers): 
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(23) a+ 13 + y = e, 

{2" +a 
= 20 - C1 

(24) 
13 + 2y = C1 ' t 

(25) a.! 0 • s > 0 t y > o, - - t 

(26) a + 13 > 1 0 = 

Now we consider a collection of disjunct semigroups 

(27) 

such that 

a semigroups are of the type s (order 2q-1) z 

s semi groups are of the type T (order 2q) 

y semi groups are of the type u (order 2q+1) 9 

as described in lemma 110 By the same lemma 9 we may take each H. to be 
J. 

commutatiYeo Then lemma (10), applied on the collection (27)® leads to 

a commutative H with pr~perty (14)o Thus theorem IV B has been provedo 

For the supplementary theorem we have to make a little change of tactics 9 

though the main procedure remains unalteredo We do not require the 

commutatiYity of the H. in (27) 0 but we try to make at least one of them 
J. 

non-commutative; in view of lemma 10 (e) this is a sufficient condition 

for the validity of the supplementary assertiono 

In which cases can this be done? 

(i) If q is even and! 6 8 there exists a non-commutative group of order 

q (for instance, the symmetry group of the regular polygon with !q 

vertices)o By lemma 11(c) this group can be embedded in a semigroup of 

the types, as well as in a semigroup of the type To Now it follows from 

(26) that a,! 1 or S ,! 1o Hence~ for at least one H. a non=commutative 
J. 

semigroup can be takeno 

(ii) If q is odd and,! 5 0 there exists a non-commutative group of order 

q+1o By lemma 11(d) this group can be embedded in a semigroup of the 

type Uo Now suppose that o ,! 2~ then we have y = no] .! 1 o Hence~ for 

at least one H. a non-commutative semigroup may be takeno 
J. 

Thus we have proved the supplementary theoremo 
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Remark. Our construction depends on the diophantine sy;.stem (24) 0 (25), 

which implies (23) and (26). If 6 and cr are given and if 9 for the momentt 

we consider a 9 Bandy as unknowns 9 all the solutions of the system are 

given by 

ak = ao k 

Bk = Bo + 2k 

y = y - k k 0 

where a0 , B0 , y0 is the particular solution which we have employed in 

our proof. In all cases where cr = o, cr = 1 or cr = 26-1, the system 

(24), (25) has no other solutions than a0 , B0 , Yo• 

§8. Proof of theorem III 

A necessary and sufficient condition for the validity of theorem !II 

is the following one~ 

(28) Max 1(n 9 8) = 1(n) 
e 

for all no 

The verification is easy for n = 1 and n = 2t as we haveg 1(1 9 1) = 1(1), 

1(2,1) = L(2) = 2; 1(2 9 2) = 1. 

For the rest of our proof we assume n ~ 3, though most of our argument 

will be valid for n = 1 and n = 2 as wello 

Defining the integer q as before, we have 

(29) (2q-1)8 < n < (2q+1)6-1o - -
Furthermore we have, after a slight rearrangement of the definition­

formula: 

(30) L(n,8) 

where 

(31) E(q) = _q_2_q_+1_ = q(q+1) > 9,(q+1) > q(q+1) 
(q+1 )2q-i (1 + l) 2q e2 10 

q 
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Hence we have 9 in particular 9 

(32) 
E(2) = *" 

and 

(33) E(q) > 1 for all q ~ 2c 

After these preparations I let us first prove that 

(34) L(n,e) ! L(n) 

for all pairs n, 80 We distinguish three caseso 

In· this cai~e we find by ( 29) that e > l n + l and it follows that 
- 3 3 

(35) L(n,0) 
2 1 2 2 

= 2n-e < 2'11 • 2- 3 < 2'11 ° (lI.)3 < L(n). 
32 

Next, we consider all pairs n • e for which q ~ 2 o ----------Q·-~-------------~--=~~--=-~~~~=~-~~-=~ 
Here the other part of (29) implies that e < 2n 1 and hence 9 as e is 

= q-
an integer 11 that 

(36) e < CE_l 
-{2q=fJ 

By (30), (33) and (36) we conclude that 

(37) 
, 1 n { }G2:_,:J 

Lln,e) ! (1 + ~) E(q) = 2!~1 { 1 .}2: .. 1 - G2:-,~ 
q E1 q) 

where the latter equality is a consequence of the definition of E(q) in (31) 0 

The following piroperty is easily verified, in view of ( 32): 

(38) For q = 2 1 the right-hand side of (37) equals L(n). 

This implies that (34) holds for all pairs n, e for which q = 2. 
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Finally we, consider all pairs n® e for which q > 3o 
.,..,,,.,i,,-QICla,m~!;:IO""""'ei=,e,a:,Cl!:lC!lll:lcallSc=:iac:,o=,Q10m,:,""""====m&1a,;:,=,:::o=::ie=,=.=oir,e::,:,::,=,=ccQm===e,i,-,,:i:oe:,:l:l)ei:i:,=,=~Olll:I 

Here (37) yields, in view of (33)~ 

2n 

(39) ( ~ L n~e) < q 
1 

~·• . . 
Now q is a decreasing function of q for q ~ 3, hence we find 

f'.roin (39): 

(40) 

where the middle inequality requires some elementary calculation (it 

may be recluced to 33 < 25) o 

Thus we have proved ( 34) , but not yet ( 28) o 

The truth of (28) can be seen by a supplementary argument 0 from the 

foregoing formulae~ .ro that end one should observe that 0 if in ( 36) 

the sign of equality holds~ the same will be true for the first sign 

in ( 37) o 'I~hereupon ~ property ( 38) shows at once that 

(n ~ 3) o 

This completes the proof of theorem III o 




