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§1, Some conventions

Let H be a finite system with an associative binary operation (a finite
semigroup), In this report, no special knowledge of semigroups is

assumed on the part of the reader,

Our theorems will deal with sequences of elements of H and the proofs
involve sequences of such sequences, Hence, to avoid confusion, let us
employ the old hand notion of "a word", according to the following con-

ventions.

1. A sequence of one or more terms, in which each term is an element

of H, is called a word over H, The comma's in a word will be often

left outy if so, the terms will be called letters.
2, The value of a word w = a.a_ .00 &, _over a semigroup (H,») is

172 k
defined by

|W|=a]*&2*ooo*&ko

3. A subword of a word W is a word, consisting of one or more conse=
TR RIS PTCEETE IS

cutive letters of W in their proper order,

§2, Introduction

Some elementary principles in the theory of finite groups admit a neat
formulation in the above terminology., We summarize them in the form of a

theorems
Theorem I

a. Any word W of length n, over a group G of order n, contains a sub=
word with unit value,
b, Given a group G of order n > 2, there is a word W of length n=1

over G, which has no subwords with unit value.
For a proof of this theorem, if needed, see §3.

The object of this note is, to establish some results on finite semigroups,
which have a close resemblance to theorem I, The part which is played by
the unit element in theorem I, will be taken over by elements e which have

the property that e2 = e, Such elements are called: idemgotente




The following theorem II implies the well-known fact, that any finite
semigroup has at least one idempotent element, Of course, much easier
proofs of the same fact can be given and are avallable in any text-

book on the subject,
Theorem II

To each finite semigroup H a positive integer A can be assigned,
such that any word W of length A over H contalns a subword with

idempotent value.

This theorem has an amusing corollary in the theory of numbers (which

will be proved, together with the theorem, in §5):

Corollary Given n, there is a constant T, Such that any positive integer
with more than T divisors, has at least one divisor d 2 2

with the property that d(d-1) is divisible by n,

In particular, any positive integer with a sufficient amount of divisors
will have a divisor > 2, whose two final digits in the decimal scale are

00, 01, 25 or T6. One might try to find a direct arithmetical proof.

We shall give further attention to this kind of problem in a Mathematical
Centre report on arithmetical semigroups, which is soon to appear. In the

present note we are concerned with abstract systems only,

When looking for the least possible A in theorem II, such as to be valid
for all H of a fixed order n, we found the following theorem. It gives

the critical values of A, plus an additional item of some interest,
Theorem III
Define a function L(n) as follows:
L(1) = 1, L(2) = 2,

2 - [F
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L(n)

then L(n) is a positive integer with the following properties:

a. Any word W of length L(n), over a semigroup H of order n, contains

a subword with idempotent valueo



b, Given n > 2, there is a semigroup H of order n, over which a
word W of length L(n)-1 can be constructed, such that W has
no subwords with idempotent value,

There is even a commutative H with this property.

Remarks. It is easy to prove that

0.89 (WM™ < L(n) < (WI" for n > 3.

Further we have

L(n) = 2 . ifn = 3k
L(n) = 3,221 irn = 3k+1 (k > 1)
L(n) = 9,252 ifn = 3ke2

If the latter two formulae are applied with k = 0, which is forbidden,
they give 13 and 2i, respectively, whereas the true values of L(1) and
L(2) are 1 and 2, The fact that L(n) is an increasing function of n can

be easily proved, but is not trivial a priori.

Tabulation for n < 10
n . l 1 2 3 L4 5.6 T 8 9 10
La) | 1 2 4 6 9 16 24 36 64 96

Theorem III will be proved (in §8) as a consequence of the much more
intricate theorem IV, to be stated next. It deals with those semigroups

of order n, which have a prescribed number of idempotent elements.
Theorem IV

Given a pair of integers n, 6 withn > 6 > 1,

Define two integers q and ¢ by
n = (2g=1)6 +0 , 0 < 0 < 26=1,

Then q and o are uniquely defined and we have q > 1.

Next, define a function L(n,6) by

20="0

L(n,8) = q o (q+1) %,

. - . .




then we have:s
A, Any word W of length L(n,8) over a semigroup of order n which has
exactly 6 idempotents, contains a subword with idempotent value,
B. Given a pair n, 6 with 1 < 6 < n-1, there is a semigroup of order
n with exactly 6 idempotents, over which a word W of length
L(n,e)-1 can be constructed, such that W has no subwords with
idempotent value,

There is even a commutative semigroup with this property.

Remark, For readers who have worked their way through the above statement,

we mention the following values:

L(ng®) = 1  if and only if 6 = n.
L(n,8) = 2°°  for o > -;- n.
_ 11 2
L(n,1) = [17 (n+1)J for all n.
L(n,2) = 3%3 (nh+8n3) +-()(n2) for n + «,

Before we give the proofs of I, II, IV and III, one question remains to
be settled., Is there a non-commutative semigroup which satisfies the

assertion IV B?

Certainly not in all cases, We have, for instance, the fact that a semi=-
group with n = 2, 6 = 1 is necessarily commutative., In many cases, however,
the answer 1s affirmative, as may be seen from the following statement, to

be proved in §T:
Supplementary theorem

In each of the following cases there is a non-commutative semi=

group with the property of theorem IV B,
(1) If q is an even number > 6,

(ii) If q is an odd number > 5, provided that o > 2.




For instance, any word of 36 letters over any semigroup of order 11 which
has only one idempotent, has a subword whose value is equal to that idem=-
potent, But if we replace the number 36 by 35, the assertion becomes false
and there are commutative as well as non=commutative semigroups to disprove
ite

A special class of non-commutative semigroups (where each member is the
semigroup of all mappings of a finite set in itself) will be made the object
of further study in a forthcoming Mathematical Centre report, by one of the

authors under title,

§3, Proof of theorem I

a. The assertion Ja is trivial in case n = 1, For n > 2, we put .

W= 848, sso By and consider the sequence

e P PR - ... > - %g,” 3 2
? 17 ¢ 17 %o [ ®q0 0 9 a'f 8-2 o6 @ an

where e is the unit-element of the group (Gg»).
A left=hand division of two equal terms in this sequence (they are
provided by the pigeon-hole principle), leads up to the required

subword of W,

b, The assertion Ib is trivial in case n = 2, For n > 3, let
(g1, Bor ooo gn_1) be an arbitrary permutation of those elements of

G which are # e. Then the sequence

Q.‘ ? - 81 %gz -8 *o 0 °$ ® gnneﬁgnu‘l

fulfils. the requirements of Ib, if the terms are considered as letters
of a word W, (We remark that by this method (n-1)! different words W
can be constructed and that these words are the only ones, which
satisfy Ib),

§4, The notion of a central word-set

The following notions and properties will be used frequently in the next

sections,

- > =»hn~n=Bn BB B+&BnB»n— @@ S



If 8y oo ap and b1 000 bq are words over one and the same semigroup and

if we denote them by L and Voo respectively, then we shall denote the

ooo b by w
q ¥y

word a, eeo &_b s Clearly we have

1 p-1 12

eyl = Jary] = fw ]y
where % is the operation in the semigroup.

A set of one or more words will be called a central set if it can be .

written as
(1) {W,‘, W1W29 W1W2W3g 060 }o
It is easily seen that the following assertions hold true:

(1) If all the words of a central set are given, then the components
s of the presentation (1) and their order of succession are

uniquely determined.
(ii) A non-empty subset of a central set is central.

(iii) If (1) contains at least two words, then
(2) {Wzg szés ooo}

is a central set as well,
For instance, if a, b and c are elements of a semigroup, the set
{aba9 abacb, abacbb, abacbbaa}

is central and we have, in the presentation (1): W, = aba, W, = cby Wy = b,
wh = aa, Its subset

{abacb, abacbbaa}

is central too, but here we have Wy = abacb, L baa,

Finally
{baa}

is a central set, which has been derived from the previous one like (2)

from (1),



§5, Proof of theorem II and its corollary

The following proof may be omitted by the reader, as II is implied by
IV A and we shall give an independent proof of IV A. However, the
present proof is shorter, The truth of the assertion I is clearly

implied by lemma 1 and lemma 2.

Lemma 1. An infinite word over a finite H has a (finite) subword with

idempotent value.

Proof. Let c1c203 «os be an infinite word over (H,*). The c; may be
considered as elements of H or as finite words over Hj; this will make

no difference as to our argument. Consider the infinite, central word-set
C = {c1, C4Co c1cgc3, eoa}o

As H is infinite, C will have an infinite subset C1, such that any word

1«@01 has one and the same value in H, Denoting this subset by
Cy = oy v g v e eesky

each of its elements has the value IW1|0 Next, consider the "derived" set
{w11, LITLLPY w11w12w13, ooc}o This set does not need to be single=valued

like C,, but it has certainly an infinite, single=valued subset:

1D
02 = {wei W2W219 w2w21w225 oco}o

Here each of the elements has the value lw2] and we have moreover

12 1
so0s] and repeat the previous

lw1| * [w2[ = |w1|, as the word w_ w_, is one of the words of C,. Next,

consider the set {w T

' Wa1e ¥p1¥ppe Mo1¥poto3e
argument; this can be done as long as one wishes., The procedure yields,

finally, an infinite sequence of words
W15 W2, W35 coo

where each LA is a subword of the given c csop and where moreover

160%3

(3w lwlwyl = doy ] Twglelngl = [yl 5 faglslmd = fugl s

and so on.




By the law of associativity, (3) implies

(4) Iwkl 3 IWﬁI = [wk[ for all "pairs k, m with k < m.

The values lw,llg lW2[0 soo cannot be all different from each other,

Hence there is a pair k, m with k < m and |w | = 'Wmlo Then (4) gives

W
k
IWkIQ = Iwkl, which proves lemma 1,

Lemma 2, Suppose, there is a finite H to which no boundary length A
can be assigned with the property of theorem I, Then there
is an infinite word W over H without subwords of idempotent

value,

Proof, The assumption implies the existence of an infinite set of

finite words over H:

V1 = {a.”D a21a22. a31a32a33, ooo}g

such that no word in V1 has a subword with idempotent value. As H is

finite, H contains an element b19 which is the beginning letter of

infinitely many words in V.. These words form a subset V2(2V10 Next

10
H contains an element bz» serving as the second letter of infinitely

many words of V_. These words form a V3@§V2 and every word of V_ has

2° 3
the initial piece b1b2o Tterating the argument, an infinite sequence
b1, b29 b3, soo Of elements of H is shown to exist, such that every

word 1in Vk+1

sequence as a word

has the initial piece b1b2 ) bko Writing the.same. .i:

W= b1b2b3 6060 g

we find that each finite subword of W is subword of one of the words in
some Vko Hence it is subword of a word in V19 so that its value is not
idempotent, This proves lemma 2.

Proof of the arithmetical corollary. The multiplicative semigroup of all

residue-classes modulo n defines a number A in the sense of theorem II,.
Let us denote 2A-1 by T e Then any positive integer with more than L

divisors can be written as




where each qs is a prime number, not necessarily different from the
other ones, and where u > A, Theorem II, applied on the word
Ay 9 oo Qy modulo n leads up to a divisor 4 > 2 with d2 £ d mod n,

The latter congruence implies that d(d = 1) is divisible by n,

§6, Proof of theorem IV A

The proof is based upon lemma 3 - lemma 8.

Given (H,*), let X be a subset of H, such that X does not contain
idempotent elements,

A function f(z), defined on H, is called an order-function with respect

to X, if the following properties (5) hold trues
f(z) =0 for z€ H\ Xo
(5) f(z) is a positive integer for z € X
£(x) > f(y) for all x, y with x€X and x * y = X,

If an order=function f(z) with respect to X has been given, the number
of solutions of the equation f(z) = k will be denoted by Sy e Hence we
have

(6) 5, is the number of elements z&H, such that f(z) = k.

Lemma 3,

Definitions: Let (H,*) be a finite semigroup;
W a word over H without subwords of idempotent value;
X the set of all values of all subwords of W

f(z) an order-function with respect to X,

Assumption : Each central set of subwords W contains less than N words w
such that f(|w|) < k=1,

Here N and k are arbitrary positive integers.

Assertion : Any central set of subwords of W will contain less than
N(sk+1) words w such that £(|w|) < k.




10

Proof, Due to the assumption we need only to prove that a central set

contains at most Ns, words w for which £(|w]|) = k.

If s, =0, the assumption is identical with the assertion, whence we

may assume that s, > 1, If a wordset C (which need not be central)

k
contains Nsk + 1 words w with f£(|w|) = k, it will certainly contain,
by the pigeon=hole principle, a subset C1 of N + 1 words, all of which
have one and the same value in H,

Hence, if such a set C is moreover central, it will have a central subset

Cy = fwgs wyvipy wooy Wivpeawp by

in which each word has the value |W1’g Denoting |w1| by x, we have xe&X

and f(x) = k.
Next, let us consider the "derived" set

C2 =.{W2. W2W3. 660 p W2W3000WN+1}

and let y be the value of one of its words. Then we have x % y = x and

hence, by (5),
f(x) > £(y)e

This means that f(|w[) < k=1 for all we&C,, But 02 has exactly N elements,

2

which is contradictory to the assumption of the lemma.

Lemma 4, Let Hy, W, X and f(z) be defined as in the previous lemma., Then
the length of W is less than

(7) (1 + s )(1 + S2) 5006 (1 + 8

1 M)9

where M is the maximum value of f(z), or any integer exceeding

that maximum value,

Proof, The assumption of lemma 3 is true for N = 1, k = 1, Hence, by the

same lemma, it is also true for N = 1+s1a k = 2; hence too for N =

= (1+s1)(1+s2)D k = 3; and so on. Since s, = 0 for any k which exceeds the

k
maximum value of f(z), one may proceed as long as one wishes, the final .

result being, that the amount of words in any central set is less than the
positive integer (7). As the number of letters in W is equal to the number

of words in the largest possible central set, lemma L4 has has been proved.
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The following diophantine statement and its proof are independent of

the previous text.
Lemma 5, Given M > 1 and T > 1, Then the function

(8) ¢=(1+t.§)(1+t2) soo (14 %)y

considered in the lattice~-point region

t, >0, t

1 Z_Og ssoy T ZO

2 M

(9)

BoF byt oeee Hhy ST,

takes the maximum value

M=o o
(10) (1+p)" « (2+0p),
where p and 0 are determined by the quotient=residue formula

(11) T=pM+0 (0<0<M=1),

Proof, As the result is trivial for M = 1 and all T, let us assume

that M > 2,

(i), Let P be a point (’(:,gg t2

¢(P) is certainly not maximal: t

» 060 tM) of (9), such that Zti < T, then
4 can be augmented by 1 and ¢ will
increase,

(ii), Let P be such that tintj > 2 for at least one pair i, j, then
¢(P) is not maximals ti can be replaced by tim1 and tj by tj+1; then ¢
will certainly increase, Hence, the coordinates of a maximizing point
of (9) either have all the same value, or they are distributed over two

consecutive integral values, In the first case, denote that value by p;

in the second case, denote the two values by p and p+i.

It follows by (i) and (ii) that a maximum value can be reached only in
such points, where T coordinates have a certain value p and ¢ coordinates

have the value p+1, whilst moreover
T+ 0 =M

p + o(p+1) = T,

T2 1,
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Eliminating 1 from these relations, we find as a necessary conditions
T=pM+ o0, 0 <0 <M1, wvhich is formula (11), For the maximal value

(which certainly exists) we find (10) and this proves the lemma.
Applying lemma 5 on lemma L4, we find at once the following result:

Lemma 6, Let M, W, X and f(z) be defined as in lemma 3.

Let M be an integer > the maximum value of f(z).

>
Let T be an integer > the number of elements of the set X,
Let p and o be defined by the quotient=residue formula

T=pM+ 0, 0< 0 < M=Ts

Then we have p > 0, and the length of W is less than
M=o o}
(1 + p) c (2 +p) ‘

The above lemma may look like a statement which is "biting its own

tail"o One might remark that the set X has been defined with help of
the word W, that the function f(z) depends on the structure of X and
hence, that all the parameters in the final estimate are depending on

the word W itself, possibly in a bad way,

Luckily this is not true, We know that X is free of idempotents, so
that we may take T = n - 8, where n is the order of H and 6 is the
number of its idempotents. The indeterminate constant M will be dealt
with, likewise, in the following lemma's 7 and 8. It will be shown that

we may take M = 20 in all relevant cases,
Lemma T, Let (H,*) be a finite semigroup with 6 < n, Let

(12) Xqs Xpp o0oop X

be a sequence of non=-idempotent elements of H, such that

(13) X; %X, =X for all pairs i, j with 1 < j.

Then we have: q[ < 20,

Proof, Take an arbitrary x; from the sequence (12) and consider its

povers

X X2 X3
ig ip ig 660606 O

S
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It is well=known and easy to prove that this sequence contains a term
which is an idempotent element of H, (This is easily seen, for instance,
by applying theorem II on a word X;X:000X, OF sufficient length; but we
have promised that our proof of theorem IV A would be independent of II.)
Denote such an idempotent by e(xi)a then e(xi) = x? for some p. (The fact

that there is only one element e(xi) for each X: is not relevant here.)

If the length of (12) exceeds 26, there will certainly exist a sub=sequence

of (12), say x, ¥, 2z, such that e(x) = e(y) = e(z); this follows from the
pigeon-hole principle. We have then, for some triple of positive integers

Qs 'y S3

and hence, by (13):

(14) y*z

L}
O]

The relations (14) imply, in any semigroup, that

r
Yy =V

as we have

yVoexlexley=yTay=yay =y=s®=y,

In our present case the element y, which occurs as a term in (12), would

be equal-to e(y), which is an idempotent. This would contradict our )

assumption on (12); hence the length of (12) does never exceed 26,

Lemma 8, Let (H,*) be a finite semigroup with 6 < n,
Let X be a non-empty subset of H without idempotents.,
Then there exists an order=-function f(z) with respect to X
such that

f(z) < 26 for all z.




1k

Proof, A sequence (12) with property (13) will be called an X=tail of

z, if x, = z and if moreover all the Xs (including z) are elements of X.

Sin‘ ce 213) holds trivially true for m = 1, any ze€X has at least one
X=tail, a tail with length 1,

For any z€ X we define m(z) as the maximal length, which is realized
among the X~tails of z. For any z&H\X we define 7m(z) = 0. We shall
now prove that m(x) > m(y) for all x, y with x€X and x = y = X,

The assertion is trivial for y@ H\N X, For y@ X, let X., 0oy x be

10

an X=-tall of y, then we have x, = y and it follows from x % y = x, that

1
Xy Xyp s00y X is an X-tail of x. Hence we have certainly m(x) > m(y).
In view of lemma 7 we have moreover: m(z) < 26 for all z.

Thus we have proved lemma 8, with f(z) = n(z),

Theorem IV A follows easily from lemma's 6 and 8, For ©® = n the assertion

is trivial, For 6 < n, choose a word W over H without subwords of idempotent
value; define X as the set of all values of all subwords of W; define f(z)
according to lemma 8; take in lemma 6: T = n = 6 and M = 26, Then the

formula T = pM + 0 gives n = (2g=1)6 + o with 0 < 0 < 26=1, where q = p+1 > 1,
Finally the estimate function of lemma 6 yields L{n,0). Thus we have proved
IV A,

Remark. The underlying ideas in the foregoing proof are as follows:

Let X be any subset of an arbitrary, finite semigroup (H,*), which
contains 6 idempotents,
Define §j = H\ X, Define for k > 0, by inductions:
k k
S,4q = {x€X \U s ixmy=xsve Y s;te

Then the following statements hold true:

(a) X will be free of idempotents if and only if the union of all

Sk equals H.

(b) The number of non-empty classes S with k > 1 is at most 26,

k
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§7. Proof of theorem IV B and the supplementary theorem

First, let us consider the indeterminate boundary length A, as given
in theorem II., Let us denote by A(H) the least possible value of A
for a given H, Further, let us denote the order of H by n(H) and the
number of its idempotents by 6(H).

Assertion IV A, which has been proved in the previous section, is
equivalent to the statement that A(H) exists and is < L(n,0), where

n =n(H), 6 = 6(H), for every H,

Likewvise, assertion IV B can be restated as follows:
3

Theorem IV B

Given a pair n, 6 with 1 < 6 < n, there is a commutative H such

that
"n(H) = n,
(14) 8(H) = 0,
A(H) > L(n,0),

To. prove IV B* and hence IV B, we need three lemma's, They provide

information for the supplementary theorem as well,

Lemma 9. Let H1 and H2 be disjunct finite semigroups of an arbitrary

structure, Then there is a semigroup H with the following

properties;
(a) n(H)
(b) o(H)

(e) A(H)

n(H1) + n(H2)D

6(H1) + O(Hz),

iv

ME A

(d) 1If both H, and H, are commutative, so is Ho

(e) H contains a sub=semigroup, which is isomorphic with H, and

a sub-semigroup which is isomorphic with Heo
Proof, Let us denote the operations in H, and H2 by ° and A, respectively,
We define a set H by H = H1L}H2 and we define in H an operation # as

followss
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a=b

1]
)

“b if agH,, b&H,

(15) a*b

]
)

Ab  if a&Hy, beHy,

a%b=Dbwxa=a if‘za.é,}I1,bégH20
Then (H,*) is a semigroup, satisfying (a), (b), (d) and (e). So far,

the procedure is not altogether unknown, but now (c) has to be proved,

If A(H1) =1 or X(Hz) = 1, (c) is implied by (e); hence we may assume

that A,-1 > 1 and A

Let a1a2000ax1_1

value, Let W be a word over H2, of length A2-1 and likewise free of
subwords of idempotent value. Such words exist, by the definition of

Aio Then the word

o=1 21, where A, is an abbreviation of A(Hi)o

be a word over H, without subwords of idempotent

(16) Wa Wa W o00 Wa

185 W over H

Al

consists of exactly A, A.=1 letters; we shall prove that it has no sub=-

A
words of idempotent v;lie in H, The statement is trivial for those sub=
words w of (16), which are contained in one of its subwords of the form W,
Next, let w be a subword of (16) which is not contained in one of the W.
Then the sequence w (for w is a sequence!) certainly containe a sub=-
sequence

a_

. seo 5 & (1;p:qi>\1=‘l)

Spt1 ® q

such that ap_1 and aq+1, if they exist, do not occur in the sequence W,

It follows then by (15) and the law of associativity, that

IWI-_-& R o0 P A& = 8 ° 500 ° 8
b q p

Hence |w| is not idempotent,

Thus we have proved (c). It should be noted that the semigroups H, and

H2 may not- change places in this proof, although the result is symmetric.
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Lemma 10, Let {H1D Hyo oo Ht} be a non-empty collection of disjunct
finite semigroups. Then there exists a semigroup H with the

following properties:

(a) n(H) = Z n(Hi),
1

(b) o() = } o(H),
1

(e) A(H) > T M(H,).
1

(d) If all the H, are commutative, so is H.

(e) H contains a sub-semigroup = H, for all i,

Proof., The statement is trivial for t = 13 the case t = 2 is covered

by lemma 9; for t > 3 it can be proved by repeated application of lemma 9.
Lemma 10 suggests already the construction of a semigroup H, which has a
critical word-length of exponential order, It is, however, not strong

enough to reach the estimate (14); we shall bolster it up by the following

lemma.,

Lemma 11,

(a) For any positive integer g there are semigroups S, T and U

such that

n(s) = 2q=1 n(T) = 2q n(U) = 2q+1
6(s) =1 6(T) =1 0(U) = 1

A(8) > o MT) > ala*1)  A(U) 2 (g+1)Z,

(b) S can be chosen such that it is commutative,
The same holds for T and for U,

(¢) S can be chosen such, that it contains a sub=-semigroup
which is isomorphic with an arbitrarily prescribed group
G of order q.
The same holds for T.

(d) U can be chosen such as to contain a sub=-semigroup, which
is isomorphic with an arbitrarily prescribed group G of

order q+1,
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Proof, The assertions on U in the above statement are superfluous,

from a logical point of view., As soon as we have verified any assertion

on S for all q, the corresponding property of U has been proved as well,

For q = 1, the assertions on S are trivial and those on T are easy to
verify, Now let q > 2, Choose an arbitrary group (Gy°) of order q and
let e be its unit=-element, Apart from G, choose a non-empty set

V = {d‘l’ d2’ 500 g dr}
of objects, which are not elements of G.

In the set GUV we define an operation * as follows:

as*b=a°b 1if a&G, b&G,

a*di=di*a=a if a & Go
(17) o

di*dj "di+j if 1+] < re

di*dj=e if i+ > re

Then GUV is a semigroup under the operation %, Denoting GUV by H,

we have

(18) n(H) = q+ r,

(19) 8(H) = 1 (e is the unique idempotent);
(20) if G is commutative, so is H;

(21) H contains a sub=semigroup # G.

For this semigroup (H,*) we shall prove:
(22) A(H) > qlr + 1),

To that end we need theorem Ib, It shows the existence of a word

6.18,26 aoaq_.l

subwords of idempotent value in H,

over G, without subwords of unit=value in G, hence without

Apart from this word, letcus céonsides a word

W = d1d d.‘oaod d

1 171°

which contains exactly r letters., Then Vf'hasé'é-vi@éﬁﬁljﬁ“rio Subwords: -

of idempotent value.
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It is easy to verify, that now the word

Wa1Wa2W 6o Waq_1w

consists of exactly q(r+1)=1 letters, Moreover it has no subwords of
idempotent value in H, as may be seen from an argument, similar to the
one we have used when dealing with (16),

Thus we have proved (22), The semigroups S and T are obtained as special
semigroups H by taking r = gq=1 and r = q4 respectively,

Their properties follow at once from (18), (19), (20), (21), (22),

Remark, The foregoing proof has many features in common with the proof
of lemma 9, and our reference to (16), at the end of the proof, is perhaps
somewhat disturbing. This slackness can be avoided by the following

procedure: in lemma 9, take H =G and H, = vU{z}, where z is a zero-

2 ,
element which makes a semigroup of V‘J{Z}a Thereupon , identify the

elements z and e of H1UII and lemma 9 will lead to lemma 11, The exatct

2
procedure requires some care, but is not unknown in the theory of semi=-

groups.

Using lemma's 11 and 10, we are now able to prove IV B*D which is another
form of IV B,

Given a pair n, 6 with 1 < 6 < n, we define q and o by
n = (2g=1)6 + o (0 < 0 < 20=1)

and recall that

L(n,8) = q26=0 o (g+1)%

Defining three integers a, B, Yy by

6 =0 + Ez—,oj = qa,
o - 2[1d] = 8,
E%oj':Y:

we find the following properties (which may justify the curious choice

of these integers):

o o W i & ) w
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(23) o+ B+ y=0;
200 + B = 20 = ©
(2k)
B+2y =0 3
(25) «>0, B>20, v 203
(26) Ct+Bu>=1o

Now we consider a collection of disjunct semigroups

(27) {H1 v Hy s coo s He}9

such that

o semigroups are of the type S (order 2qg=1),
B semigroups are of the type T (order 2q)
Y semigroups are of the type U (order 2q+1),

as described in lemma 11, By the same lemma, we may take eakh H, to be
commutative, Then lemma (10), applied on the collection (27), leads to

a commutative H with property (14), Thus theorem IV B has been proved.

For the supplementary theorem we have to make a little change of tactics,
though the main procedure remains unaltered, We do not require the
commutativity of the Hi in (27), but we try to make at least one of them
non=commutative; in view of lemma 10 (e) this is a sufficient condition

for the validity of the supplementary assertion.
In which cases can this be done?

(i) If g is even and > 6, there exists a non-commutative group of order
q (for instance, the symmetry group of the regular polygon with %q
vertices), By lemma 11(c) this group can be embedded in a semigroup of
the type S, as well as in a semigroup of the type T, Now it follows from
(26) that @ > 1 or B > 1, Hence, for at least one H; a non-commutative

semigroup can be taken,

(ii) If q is odd and > 5, there exists a non-commutative group of order
g+1, By lemma 11(d) this group can be embedded in a semigroup of the
type U. Now suppose that ¢ > 2, then we have y = E%c] > 1. Hence, for

at least one Hi a non-commutative semigroup may be taken,

Thus we have proved the supplementary theorem.
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Remark, Our construction depends on the diophantine system (24), (25),

2 b o2 o 0 3

which implies (23) and (26), If 6 and ¢ are given and if, for the moment,

we consider o, B and Y as unknowns, all the solutions of the system are

given by
ak = ao =k
B = By * 2k (0 <k < Min(aysvy)),
Yy T Yy = k

where Cos BO’ Yo is the particular solution which we have employed in
our proof. In all cases where 0 = 0, 0 = 1 or ¢ = 26=1, the system
(24), (25) has no other solutions than % Bgs Yoo

§8, Proof of theorem III

A necessary and sufficient condition for the validity of theorem TII

is the following one:

(28) Max L(n,0) = L(n) for all n.
6

The verification is easy for n = 1 and n = 2, as we have: L(1,1) = L(1);

L(2,1) = L(2) = 23 L(2,2) = 1,

For the rest of our proof we assume n > 3, though most of our argument

will be valid for n = 1 and n = 2 as well,
Defining the integer q as before, we have
(29) (2g=1)6 < n < (2q+1)0=1,

Furthermore we have, after a slight rearrangement of the definition=-

formula:
(30) L(n,8) = (1 +‘&)n {E(q)}en
where
2q+1
(31)  E(q) = =3 - —algrt) o algr1) | alg+1)
: (#1274 +%f‘1 2 10
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Hence we have, in particular,

= 32.
(32) E(2) = 2=
and
(33) E(q) > 1 for all q > 2,

After these preparations, let us first prove that
(34) L(n,6) < L(n)

for all pairs n, 6, We distinguish three cases,
First we consider all pairs n, 6 for which q = 1,

In this case we find by (29) that 6 :,% n o+ - and it follows that

3
2, .1 2 2
(35) L(n,8) =270 <23 .2 323 o (&3 < 1m).

Next, we consider all pairs n, 6 for which q » 2,

Here the other part of (29) implies that 6 < and hence, as 6 is

e
, 2q=1
an integer, that

(36) 8 5,“[;2-—:1-] o

By (30), (33) and (36) we conclude that

n ] =20 n__rn ]
(37) L(n,8) < (1 +':I) (B(q)} 291" o 20 E1q__}2q=1 a1

where the latter equality is a consequence of the definition of E(q) in (31),
. The following property is easily verified, in view of (32):
(38) For q = 2, the right=hand side of (37) equals L(n).

This implies that (34) holds for all pairs n, 6 for which q = 2,
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Finally we consider all pairs n, 6 for which gq > 3.

Here (37) yields, in view of (33):

2n

(39) L(n,0) < 2!,
1 B

ComC————c

Now qzq’1 is a decreasing function of q for q > 3; hence we find =~

from (39):
2n  eZn 2
3

(40) L(n,8) < 3° <23 (8

where the middle inequality requires some elementary calculation (it

may be reduced to 33 < 25)0

Thus we have proved (34), but not yet (28).

The truth of (28) can be seen by a sﬁpplementary argument, from the
foregoing formulae: o that end one should observe that, if in (36)
the sign of equality holds, the same will be true for the first sign
in (37). Thereupon:, property (38) shows at once that

L(naﬁﬂ) = L(n) (n > 3),

This completes the proof of theorem IITI,






