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1. INTRODUCTION 

From various perspectives it seems worthwhile to apply resolution based theorem proving tech­
niques to expert system reasoning. In [I] it is noted that the operational characterization of the 
semantics of the knowledge representation formalism of MYCIN-like expert systems tends to obscure 
the meaning of a knowledge base. In [5] it is argumented that the limited reasoning capabilities of 
traditional expert systems like MYCIN, DENDRAL and PROSPECTOR will not suffice for intrinsically 
difficult problems, that require as they call it 'unfocussed search'. Both complaints can be accomo­
dated by embedding an expert system in a general purpose resolution based theorem prover, such as 
LMA/ITP [5]. The disadvantage of general resolution, involving full forward and backward subsump­
tion, however, is that it is rather costly. 

Based on an analysis of the specific requirements imposed by expert system reasoning on a resolution 
based theorem prover, this paper presents an implementation technique that effectively reduces the 
cost of resolution based inference for this specific instance of automated reasoning. The idea is to 
encode the effects of a resolution step as instructions to modify a set of clauses. The technique, more­
over, allows efficient parallelism on a multi-node distributed memory machine, both by simultaneously 
processing generated information (AND-parallelism), and by exploring different search paths when 
splitting on a positive disjunction (OR-parallelism). 

2. EXPERT SYSTEM REASONING AS RESOLUTION 

Expert system reasoning distinguishes itself from other applications of theorem proving by a clear 
distinction between data and rules [6]. It has been observed in [l] and [5] that, in order to apply reso­
lution based inference, a model construction technique might be used. The generated model consists 
of the collection of facts that are positively true, such that all the rules in the knowledge base are 
satisfied, that is that for no rule both the conditions are fulfilled and the conclusions are false with 
respect to the interpretation represented by the collection of facts. To the extent that resolution based 
inference techniques apply, the algorithms for model generation presented here allow an efficient 
parallel implementation of expert system reasoning, assuming that the majority of rules is ground. 

The conversion of production rules in if-then format to clauses is rather straightforward. As an exam­
ple, the rule ifp(X) and q(f(X)) then r(X,f(X)) reads in clause form -p(X)l -q(f(X))lr(X,f(X)). 
The conditions of a production rule correspond with the negative literals in the clause, and the con­
clusion corresponds with the positive literal. When multiple conclusions occur in a rule these have to 
be distributed over several clauses with an identical negative part. Production rules generally 
translate to Hom clauses, containing only one positive literal. Negative conditions in production 
rules, however, must translate to positive literals. [l] Clauses offer greater expressiveness than produc­
tion rules since the positive part may contain more than one (positive) literal. However, positive 
(parts of) clauses represent a choice between alternative solutions which may be expensive to com­
pute. Unit-clauses, that contain only one literal, play an important role in expert system reasoning 
since they represent the data. A set of clauses C 1, ••• , Cn will be written as C 1 & · · · & Cn. 

Resolution. Binary resolution is the rule that states that, for example, from clauses - a I b and - b I c 
one can derive the clause - a I c. The atom b that occurs positive in the first clause and negative in 
the second clause is called the clashing atom. The resulting clause is formed by joining the two 
clauses after deleting the literal that corresponds to the clashing atom. When variables are involved 
binary resolution requires that a substitution is found such that the atoms that potentially clash 
become identical. For instance, the clauses a(l) and -a(X)lb(X) result in the clause b(l) with the 
unifying substitution that binds X to 1. 
A disadvantage of binary resolution is that it generates all possible resolvents. Therefore, a number 
of inference rules have been proposed [5] that effectively reduce the number of generated clauses. 
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Each rule reflects a choice of strategy by imposing restrictions on what is allowed as input to the 
inference operation and what is allowed as output. In unit resolution resolution is restricted in such a 
way that at least one of the two input clauses is a unit clause. The objective of unit-resulting resolu­
tion is to produce a unit clause from a set of clauses one of which is a non-unit clause; the remaining 

must be unit clauses. For example, from the clause set -p & q & -q IP lr the unit r can be derived 
by applying unit-resulting resolution. The application of unit-resulting resolution can be viewed as a 
sequence of unit resolutions. Unit-resulting resolution is not refutation-complete for non-Hom 
clauses. The restrictions obeyed by hyper-resolution, that produces a positive clause from a set of 

clauses, one of which is negative or mixed while the remaining ones are positive, do not affect the 
completeness for arbitrary clauses. 

Subsumption. Another way of limiting the amount of clauses generated is by applying a check for 
subsumption. Clause C 1 subsumes clause C 2 if there is a substitution 8 such that C 18 is contained in 
C2• We speak of forward subsumption when a newly generated clause is discarded because a previ­
ously retained clause subsumes it; and of backward subsumption when a newly generated clause is 
used to discard previously retained clauses. 

Set of support. To further restrict the number of clauses generated, as an additional strategy, a set of 
support may be maintained. The clauses are divided over two lists, an axiom list and a set of support. 
The set of support strategy [5] prohibits application of an inference rule to a set of clauses unless at 
least one clause has support. For a given rule of inference, a typical inference cycle, involving the set 
of support, can be characterized as follows. 

while set of support =/:- 0 do 
l. Select a clause from the set of support. 
2. Compute all the resolvents of the selected clause and the other clauses. 

3. Check for subsumption and add the remaining resolvents to the set of support. 
od 

The clause that is selected in step 1 is removed from the set of support and added to the axiom list. 
When an empty clause is generated in step 2 then an inconsistency must be reported. In step 3, when 
a resolvent clause is subsumed by an already retained clause it need not be added to the set of sup­
port; when a retained clause is subsumed by the generated clause it can be deleted. 
The set of support strategy combined with binary resolution (and factoring) is complete, provided that 
the complement of the set of support is satisfiable. The use of the set of support, however, might inflict 
upon the completeness of a strategy, as for instance is the case with hyper-resolution when the set of 
support contains only negative literals. 

For a typical expert system application the axiom-list (which in the sequel will be called the theory) 
is initialized to the set of rules, and the set of support to the data. Initially then, the set of support con­
sists of unit clauses only. When unit-resultion resolution is applied, all generated clauses will be unit 
clauses. In this case the distinction between rules and data is preserved: resolving with the selected 
clause adds new data and testing for subsumption modifies the rules. Unfortunately, unit-resulting 
resolution is not complete for general (non-Hom) clauses. Other resolution strategies are, but these 

do not allow an interpretation of rules and data as operators on each other, unless the notion of data 
is extended to allow general clauses as input data, which clearly defeats the intent of the distinction. 

Splitting. When positive clauses containing more than one literal occur, a model may be found by 
arbitrarily choosing an atom from the positive clause and trying to find a model for the augmented 
set of axioms, that now includes the chosen literal as a unit clause. For example, the clause set 
c & -a I b & -c I a I b has models { a,b,c} and { b,c }, which may be found by respectively choosing 
for a and b when a I b is generated. This example also shows that, dependent on the choice, it is not 
necessarily a minimal model that is found. This technique of model-generation is known as splitting: 
from a set of clauses T containing a positive clause in which an atom a occurs we can form the sets 
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T 1 = T & a and T 2 = T & -a. 
Splitting on clauses containing variables might be unsound, as illustrated by the example where 
T = a(X) I b(X) & -a(l) & -b(2). This set is satisfiable. Naive splitting however gives, after apply­
ing resolution and subsumption, T 1 = a(X) & -a(l) & -b(2) and T2 = b(X) & -a(X) & -b(2) 
that are both refutable. It was observed in [4] that when the clauses satisfy the condition of range­
restriction, which is the case if no variables occur in the positive literals of a clause that do not occur 
in a negative literal, then the resulting positive clauses will be variable-free. 

Constraints. Clearly, splitting brings about an exponential growth in the cost of computation. In some 
cases, however, literals of a positive clause can be deleted by clashing them with negative unit clauses. 
Although negative units are not informative with respect to the model itself, except for detecting a 
contradiction, this use stresses the importance of negative (unit) clauses as constraints on generated 
clauses. 

Expert system reasoning can be characterized by a clear distinction between data and rules. The 
set of support strategy, together with a suitable combination of hyper-resolution, unit-resulting resolu­
tion and case splitting allows to maintain this distinction during the inference, in the sense that either 
positive units are generated, or positive clauses that can be used for splitting, or negative units that 
may function as constraints. Other resolution strategies, like unit resolution or binary resolution, do 
not behave satisfactorily, in this respect. Why it is profitable to maintain this distinction can be 
clarified by the following observation concerning subsumption. When all the parents of a derived 
clause, except for one, are unit clauses and the non-unit parent clause is ground, then the derived 
clause subsumes the non-unit parent clause. For example the clause c Id derived from 
a & b & -a I -b I c Id subsumes the non-unit parent clause. As counter examples consider 
a(l) & -a(X)l-b(X) (containing variables) and a lb & -a le (non-unit parents). The last exam­
ple, by the way, can be handled by splitting on a I b. Assuming that the knowledge base is ground, 
this observation allows to apply unit resolution with the input data, and to effect subsumption simply 
by deleting the clashed literal from the rule. 
The algorithms presented in the next sections will be based on the assumption that the majority of 
rules in the knowledge base is ground. How to deal with clauses containing variables will only be 
treated briefly. 

3. THE BASIC INFERENCE ALGORITHM 

As input to the procedure, we are given a theory T that is a set of clauses representing the rules 
and a set S of units that represent the data. The intent is to create a model M consisting of positive 
units. To allow checking for constraints, also a constraint set C is maintained, containing the nega­
tive unit clauses. An inference state, that is any point in the computation is fully characterized by the 
tuple I = (T,S,M,C), consisting of a theory T, a set of support S, a model set Mand a constraint set 
c. 



Algorithm I. 
Input: To,So 
Output: model M or inconsistent 
Initialize M and C to empty, and invoke the procedure infer. 
proc infer (T, S,M, C) = 
repeat 

while S =/= 0 do 
I. Take a unit I from S. If I is positive and not in M 

then add I to M, otherwise if I is negative and not in 
C then add I to C. Set S to S-1. 

2. If C and M contain complementary units then signal an inconsistency, 
else 

3. locate all clauses that contain a literal /' that clashes 
with/. 

od 

Remove the clashed literals from the respective clauses, and 
if a unit remains add this to the set of support S. 

If T does not contain any positive clauses then report that 
To & So is satisfiable and has model M, else 
select a positive clause from T, and invoke the yrocedure infer 
recursively both for (T, {I },M,C) and (T, t -/ },M,C). 

forever 
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The procedure given above can be characterized as unit resolution. Since T is ground and one of the 
parents of each generated clause is a unit, subsumption can be handled in place, by simply deleting 
the clashed literal. As an additional test for subsumption it might be checked whether the selected 
unit corresponds with a literal of similar sign in a clause. In that case the entire clause can be deleted. 

When there are non-ground clauses in T the clause resulting from the clash with the selected unit 
must be added to T, unless the resolvent is a unit clause. Assuming that only a small part of the rules 
will contain variables, a test for (either forward or backward) subsumption is not necessary, since sub­
sumption merely serves to prune the search. As an optimization it might be considered to postpone 
resolving with the non-ground clause until either the set of support is exhausted or a sufficient number 
of units is available to apply hyper-resolution or unit-resulting resolution. 

Implementation aspects. The set of support is a stream that presents units I of the form +a or -a to 
the theory T with the request to deliver back every unit that can be generated by processing this 
information. The theory-component must maintain an index to locate all occurrences of literals that 
clash with /, and further keep track of the contents of the clauses in order to check whether units can 
be send back to S. Processing the units delivered by T involves merely a check whether a unit of 
opposite sign is not contained in either the model set M or the constraint set C. 

4. DELTA PROCESSING 

Case-splitting is intrinsically expensive, since it involves copying a full inference state, the theory T 
as well as the model set M and constraint set C. The resulting situation can be depicted by a tree of 
which the branches are labelled with the choices. For each node on the tree the inference state can be 
identified by the subscript formed from the labels on the path from the root to that node. For 
instance I +a-bis the result of choosing respectively +a and -bas illustrated by 
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The amount of space needed to store the inference states grows exponentially. Even when use is made 
of backtracking the amount of space needed is proportional to the number of choices made. Moreover 
in the case of parallel execution the communication involved in creating new copies of inference states 
is prohibitive. 

An alternative characterization of inference states allows to compute a model for a given theory and 
data more efficiently. Inference states will not be characterized as consisting of a theory T;, a set of 
support S;, a model M; and a constraint set C;, for some index i, but rather as a sequence of changes, 
named delta's, relative to an original inference-state I = (T,S,M,C). 

When discussing case splitting it was observed that the alternative inference states corresponding to 
the nodes of the tree could be uniquely identified by the sequence of labels occurring on the branches, 
representing the choice for a particular unit. This mode of indexing can be generalized by introducing 
nodes with one successor branch labelled by the unit selected from the set of support. In its most sim­
ple form, the sequence of delta's, that allows to (re)construct a particular inference state from a given 
inference state, is just of the form <I;>;, where each I; is of the form +a or -a for an atom a. 
Oearly, when a choice is involved, the delta information is structured as a tree. The set of delta­
sequences represented by the tree are all the subsequences of the sequences that are formed by going 
from the root to the leaves. 

Merely recording the sequence of units processed by the set of support gives relatively little gain, 
except that storage of the modified theories for backtracking is no longer necessary. One can wonder 
if re-processing a sequence of changes isn't more expensive than just recording the state. A more 
refined notion of delta's, however, seems to induce a minimum of computational overhead in recon­
structing an inference state from the delta-information, compared to copying full inference states, and 
moreover also seems to effectively reduce the communication-costs in the parallel processing of alter­
native states due to case splitting. 

When the basic inference algorithm is more closely analysed it can be observed that the following 
kind of information is involved: 

1. add a unit either to the model M or the constraint set C, 
2. add a unit to T, to compute the resolvents, 
3. delete a literal from a clause, due to a clash, 
4. remove a subsumed clause from T, 
5. add a unit to the set of support, 

and in the presence of variables 

6. add a clause to T as the result of a resolution step. 

The case of adding a unit to the model M or the constraint set C involves a check for the consistency, 
which need only be performed once for each added unit. Adding a unit to T to compute the resol­
vents involves the major part of the work done during the inference process. For each given unit the 
clauses that contain a clashing literal must be located, the clauses must be accordingly simplified, a 
check must be made whether unit clauses should be added to the set of support, and whether the 
clashing-information must be updated. The result of this processing is a sequence of deletions of 
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literals from clauses and (possibly) a sequence of additions to the set of support. Processing a unit 
might also give rise to the removal of a clause due to subsumption. The delta's that have to be 
recorded to avoid recomputing the clash must contain the information that tells which occurrences of 
literals to delete, which clauses must be removed, and what has to be added to the set of support. All 
units that are added to the set of support will eventually also be put either on the model set or on the 
constraint set. 

The following delta's are needed 

a+ add atom a to the model M 
a add atom a to the constraint set C 
<c,/> delete literal I from clause c 
- c remove clause c from T 

It is assumed that each clause has a unique clause number. The c in <c,l> and -c refer to this 
number. When non-ground rules occur, as additional delta we need 

(c,C) add clause C with clause number c to T 

Whenever a clause is added to Tit must first be assigned a unique clause number, to allow the other 
delta's to refer to it. 

As an example, let the theory T consist of clauses C1 = -a lb, C2 = -b le Id and C3 = -c le, and 
let S = {a}. The sequence <a+ ,<l,-a>,b+ ,<2,-b>> results initially, and will after splitting on 
c Id (in the modified clause C2) be continued with either <c+ ,<3,-c>,e+ >or <c- ,<2, +c>,d+ >. 

As another example, involving variables, let T consist of C 1 = - a (X) I - b (X) I c (X) and 
C2 = -a(X) 1-c(X). With S = { a(l)} this would result in <a(l)+ ,(3,C3),c(l)- ,b(l)- >, where 
C3 = -b(l)lc(l). Note that C3 is added because C1 contains variables; C2 does not give rise to an 
extra clause since clashing with a(l) delivers the unit clause -c(l), which is directly put on the set of 

support. 

Using delta's allows to avoid copying full inference states since any state can be recomputed from a 
given state by processing the difference of the delta-sequence of the given state and the delta-sequence 
of the state that is to be reconstructed. Especially in the ground case, this can be done very 
efficiently. This setup also allows for efficient backtracking since, nice indeed, the delta's are reversi­
ble. 

Treating equality. One extension that has to be dealt with, for the application in mind, is the possibil­
ity that a function term acquires a value during the inference, because of the occurrence of a positive 
equality unit. Operationally, a positive equality unit eq(t 1,ti) allows to replace a term t by t2 pro­
vided that t is identical to t 1• If t 1 contains variables then a matching substitution 8 must be found 
such that t 18 = t; in this case t is replaced by t28. To perform all simplifications due to an equality 
unit eq(t 1,ti) all terms must be located that potentially match with t 1• The position of a (sub)term in 
a term can be indicated by an integer sequence denoting the path to follow in a term. The empty 
sequence is the term itself and each subsequent number indicates the choice for a particular argument 
position. For instance, the term t(X) is located on position <1,2> in p(j(a,t(X))). The delta that 
results from a simplification must indicate, apart from the clause number and the literal number, the 
position in the atom of the literal and the value that is substituted. Also, in order to garantuee that 
delta's are reversible, the replaced term must be included. So, the delta that corresponds to replacing 
t(X) by bin p(j(a,t(X))) will be like [c,l, <1,2>,(t(X),b)], where c and l respectively are a clause and a 
literal number. When equality units are required to be of the form eq(t,v), where vis some (irreduci­
ble) value, and moreover function terms are not allowed to occur nested, the term resulting from a 
simplification does not have to be further simplified, neither is it necessary to check whether due to 
this simplification other simplifications become possible. 



8 

5. PARALLELISM 

The fact that delta's allow to recompute any inference-state from an initial state very efficiently is 
advantageous when employing a parallel search by case-splitting, since the communication overhead 
of copying the state in which the choice is made can be avoided. 

5.1. Splitting 

The parallel algorithm can be stated as follows. It is assumed that each process has the theory T 
built in when starting the computation. The model set M and constraint set C are local to a process 
and initialized to empty. The input to the procedure infer is a sequence of changes 8 and a set of sup­
port S. Initially 8 is empty and S contains the data provided by the user of the system. For conveni­
ence, delta notation a± and literal notation +a will be used interchangably. 

Algorithm 2: 
proe infer (8,S) = 
Recompute the inference state by processing the sequence 8 
repeat 

while S =/=- 0 do 
l. Take a unit from S, say a*, and update the model or 

constraint set dependent on whether a• is +a or - a. 
If C and M contain complementary units then signal an inconsistency. 

2. Add a* to 8, and send a* to the theory component that 
computes the resolvents. 

3. Collect the sequence of changes 8' that results from 
processing a*. 
Process 8', that is add all new items of the form a* 
to the set of support and all other items to 8. 

Request a choice atom a to use in case splitting, 
If no such choice atom can be provided, report that model M 
has been found, else put +a on the set of support and invoke an inference process with a set of 
support - a and delta-sequence 8. 

forever 

All intrinsically expensive computing is performed only once, in the resolution process, activated in 
step 2. The resulting state can efficiently be recomputed by a process waiting for the assignment of 
an inference-task, when it is invoked with a sequence of changes 8 and a set of support S. An arbi­
trary number of processes can be initialized to the theory T.and activated whenever necessary to per­
form the search. A possible optimization is to keep the waiting processes up to date by informing 
them about the changes. 

A distinction has to be made between the top-level inference process and the processes at a lower 
level. Failure or inconsistency for low level processes merely indicates that the selected branch gives 
no result, whereas when the top-level process fails this directly indicates an inconsistency. When by 
splitting on an atom a precisely one branch succeeds, say +a, then +a can be considered derivable; 
otherwise, in the case that both branches succeed neither +a nor -a is derivable, and in the case 
that both branches fail an inconsistency must be noted, with respect to the choices made thus far. 

5.2. Clustering 

The top level process as described in the previous section represents the linear part of the inference 
process. This part can take a proportional size. However, using delta's allows to simultaneously pro­
cess items on the set of support. Linear parts of the inference can be computed by a cluster of 
processes according to the following algorithm. 
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Assume the cluster consists of resolution processes Pi> i = l, ... ,n. Each such process is initialized to 

the theory T, and has the capability to perform resolution, that is to look for clashes and to effect 

simplifications. Initially, there is one master process with a cluster of slaves. A master-process can 

invoke another master process when splitting on a choice atom. Each master has a list of its resolu­

tion slaves as well as a free list of the slaves that are waiting for a task. A task is of the form a* 

where * is either + or - . 
Algorithm 3: 
proc infer (8,S) = 
free: list of processes waiting for a task 
slaves: list of all slave resolution processes 
Initialize M and C by processing 8, and broadcast 8 
to all slaves. 
repeat 

while S =/=- 0 do 
I. Take a unit a• from S, update Mand C and check 

for consistency. 
2. Select a process Pi from the free list, and send it a•. 
3. Check for responses from slave processes, if slave p; 

responds with delta sequence 8' broadcast 8' 
to all slaves except p;, and process 8', 

od 

that is add all new items of the form a• to the 

set of support and all other items to 8. 

Request a choice atom a for case splitting. 
H no such choice atom can be found report model M, 
otherwise put +a on the set of support and invoke another 

master process with sequence 8 and set of support - a. 
·forever 

The clusters invoked can be of arbitrary size. Since delta processing can be applied the resolution­

processes of these clusters can be initialized to Tat startup time and remain waiting for a task. Also 

it would be possible for a cluster to grow, for instance when the set of support exceeds a certain size, 

by invoking new resolution processes. These processes would then have to adapt their state to the 

current delta sequence of the master process before accepting any task. Note that, when the deltas 

are reversible, as is the case for the delta's used in algorithm 3, the theory in processes that have 

failed can be re-used simply by applying the delta's in reversed order. 

5.3. Implementation 

Delta's can be implemented very efficiently, at least for the ground case. When the rules contain no 

variables, and when we also know what units will be given as initial data, then all the terms and 

atoms that may occur in the inference can be determined in advance. Moreover, since in this case, 

resolution with units from the set of support will not result in new clauses, the set of clauses will not 

change in size. This static behavior, due to a ground knowledge base, allows for an efficient scheme 

of indexing, along the lines indicated in [3]. This scheme can be generalized to deal with the dynamic 

behavior due to the addition of new clauses and terms in the presence of variables. 

Indexing. The most straightforward implementation of a ground theory is as an array of clauses, 

where each clause is an array of literals. Each clause contains an indication of the number of nega­

tive literals and the number of positive literals. A delta for literal deletion may have the form <c,l> 

where c is the clause number and I the literal number. 
To find efficiently all clashing literals for an incoming unit a clash table is needed, containing for each 

atom its occurences in the clauses, in the form of a clause number, a literal number and possibly 

whether it occurs positively or negatively. Performing the clash consists, for each clause, in which a 

complementary literal occurs, of marking the clashed literal as deleted, and decrementing the number 
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of positive or negative literals. When the number of literals decreases to one, a unit will be generated 
and the clause may be marked as deleted. If, after literal deletion, the clause contains only positive 
literals it is a candidate for splitting. All clauses in which the unit occurs as a literal can be deleted 
rightaway, due to subsumption. For performing the simplifications efficiently the clash table must 
also contain for each term the positions in which it occurs. 

Variables. When the set of clauses grows dynamically the scheme presented above is too rigid, unless 
the number of added clauses is known in advance. Clauses can still be implemented as arrays since 
unit resolution does not increase the length of the clauses. Hyper-resoltution, however, may result in 
clauses that contain more literals than the parent clauses. To profit from the fact that in the majority 
of cases ground resolution suffices, the best solution seems to distinguish between a static clause list 
(containing the rules of the knowledge base) and a dynamic clause list (containing the clauses gen­
erated by a resolution step). 
The process that generates a new (non unit) clause must request a (globally unique) clause number, 
insert the clause in the dynamic clause list and generate a delta containing the clause number and the 
clause. Since the size of the static part is known in advance, a process can decide by inspecting the 
clause number if a clause belongs to the dynamic part or the static part. 
The presence of variables precludes a direct identification of clashing literals by means of a table of 
ground atoms. For non ground literals only a potential clash can be indicated. Whether the incom­
ing unit clashes with a non-ground literal depends on whether a unifying substitution can be found. 
Similarly, for simplifications only possibly matching terms can be located. 

Distribution. At the start of the computation an arbitrary number of slave resolution processes can be 
initialized with the theory T, that is the static part of the clause set, and a clash table containing 
information of the locations of terms and atoms in the clauses. The most general and space efficient 
solution for the clash table is to have for each predicate name and function name a list of occurrences 
of the form <c,l,p>, where for atoms the position p is the empty sequence. Initially all resolution 
processes will have copies of T and the clash table, that will be updated by the delta's generated dur­
ing the inference. The clash table must be updated only when new clauses are generated, which can 
be done by the resolution processes on the basis of the received delta's. 

To reduce the cost of communication, a further simplification of the delta's might be achieved by 
maintaining a global table of all (ground) terms that occur, whereby we regard atoms as terms. Each 
of the master processes as well as the resolution slave processes must have a copy of this table at 
startup time and keep it updated by delta's of the form (t, T) which indicates that t is the number of 
T. This allows that both the model set and the constraint set consists of term numbers. Also the 
delta's corresponding to the addition of units to the set of support will be shorter; however if a new 
unit is generated, say a(l)+ then two delta's may be needed, one to include a(l) in the term table 
and one to add it to the set of support, as in <(t,a(I)),t+ >, where t is a new term number. The 
slave process that generates the new term must ask for a unique (term) number, similarly so when a 
new clause is generated. 

To allow the resolution processes some liberty with respect to the inference strategy they employ, each 
such process must also have a copy of the model set M and constraint set C. It seems a reasonable 
strategy to postpone the resolution with a non ground clause until sufficient information is available. 
To extend the algorithm by allowing also non-unit clauses on the set of support seems unwise, even 
when units are given preference, in particular since the technique of splitting allows to generate a 
model even when non-units are disallowed to have support. 

Complexity. The worst case complexity of the sequential procedure clearly is 0 (2n) in the ground 
case, where n is the number of literals. If linear processing suffices, that is when no splitting is neces­
sary, the sequential procedure has polynomial (more precisely quadratical) complexity. The speedup 
due to parallel case splitting is linear, that is in the order of the number of processors. The speedup 
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by using a cluster of slave processes seems in the ground case to be also linear. However there is 
some overhead in processing the delta's. For the ground case the length of a delta sequence will not 
exceed the size of the knowledge base. With respect to expert system reasoning, it seems a reasonable 
assumption that in the average case only a limited number of units will be generated. 

6. DISCUSSION 

The idea of delta processing was partly inspired by the approach to incremental text processing as 
allowed by sccs under UNIX. Similar approaches are found in keeping logs of databases, and incre­
mental parser generation. 

The advantage of delta processing is that the information needed to characterize (and recompute) an 
inference state is kept to a minimum. 

The approach to parallelism, applying delta processing, was inspired also by [2], in which a general 
approach to parallelism in deduction systems is described. The idea explored there is to use a collec­
tion of processes, attached to a master process that distributes tasks as determined by the clauses 
selected from the set of support, to perform the actual inference, which involves to determine the 
clashes, to test for subsumption and to simplify clauses on behalf of positive equality units. To main­
tain a theory over several processes in general, however, clauses that are added due to an inference 
step must be broadcast to each slave. This may involve expensive indexing and integration activity 
for each slave process that receives such a clause. Utilizing appropriate delta's might reduce the cost 
of adding clauses. The restrictions that apply to expert system reasoning however allow to utilize very 
simple delta's, most of the time. Since the updating information is of a relatively small size, no 
shared memory is needed to attain a reasonable performance, as was suggested in [2]. These restric­
tions, which consist of having a clean distinction between a (ground) theory and (ground) data, effect 
that the set of support contains unit clauses only and allow for the possibility to perform subsumption 
in place, by merely marking a literal as deleted. Communication overhead is avoided since processing 
delta's allows to reconstruct any inference state from one given initial inference state, so that an arbi­
trary number of processes can be allocated in advance and adapted to the current needs rather 
efficiently. The reversibility of delta's moreover allows to re-use processes by simply undoing the 
changes recorded in the delta sequence. Experiments are needed to show that the approach presented 
in this paper is fruitful in practice. 
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