
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

A. Eliens

Parallel inference based on delta processing

Computer Science/Department of Software Technology Report CS-R8846 November

Bib!iothee."t
Centrumvoor V ·;s:,,•r, •u e:-i !nformatica

/lr-)~fr·n::Je:ro

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

''

Copyright'«:> Stichting Mathematisch Centrum, Amsterdam

Parallel Inference based on Delta Processing

A. Eliens
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Expert system reasoning can be considered a special form of resolution. The disadvantage of general

resolution, involving full forward and backward subsumption is that it is rather costly. A technique is

presented that effectively reduces the computational cost of resolution-based inference in expert system

reasoning. The idea is to encode the effects of a resolution step as instructions to modify a set of clauses.

The technique, moreover, allows efficient parallelism, both by simultaneously processing generated informa­

tion (AND-parallelism), and by exploring different search paths when splitting on a positive disjunction (oR­

parallelism).

1980 Mathematics Subject Classification: 68G15.

1982 CR Categories: C.2.4, 1.2.1.
Key Words & Phrases: expert systems, resolution, parallelism.

Note: The work in this document was conducted as part of the PRISMA project, a joint effort with Philips

Research Eindhoven, partially supported by the Dutch "Stimulerings-projectteam lnformatica-onderzoek"

(SPIN).

Report CS-R8846
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1

2

1. INTRODUCTION

From various perspectives it seems worthwhile to apply resolution based theorem proving tech­
niques to expert system reasoning. In [I] it is noted that the operational characterization of the
semantics of the knowledge representation formalism of MYCIN-like expert systems tends to obscure
the meaning of a knowledge base. In [5] it is argumented that the limited reasoning capabilities of
traditional expert systems like MYCIN, DENDRAL and PROSPECTOR will not suffice for intrinsically
difficult problems, that require as they call it 'unfocussed search'. Both complaints can be accomo­
dated by embedding an expert system in a general purpose resolution based theorem prover, such as
LMA/ITP [5]. The disadvantage of general resolution, involving full forward and backward subsump­
tion, however, is that it is rather costly.

Based on an analysis of the specific requirements imposed by expert system reasoning on a resolution
based theorem prover, this paper presents an implementation technique that effectively reduces the
cost of resolution based inference for this specific instance of automated reasoning. The idea is to
encode the effects of a resolution step as instructions to modify a set of clauses. The technique, more­
over, allows efficient parallelism on a multi-node distributed memory machine, both by simultaneously
processing generated information (AND-parallelism), and by exploring different search paths when
splitting on a positive disjunction (OR-parallelism).

2. EXPERT SYSTEM REASONING AS RESOLUTION

Expert system reasoning distinguishes itself from other applications of theorem proving by a clear
distinction between data and rules [6]. It has been observed in [l] and [5] that, in order to apply reso­
lution based inference, a model construction technique might be used. The generated model consists
of the collection of facts that are positively true, such that all the rules in the knowledge base are
satisfied, that is that for no rule both the conditions are fulfilled and the conclusions are false with
respect to the interpretation represented by the collection of facts. To the extent that resolution based
inference techniques apply, the algorithms for model generation presented here allow an efficient
parallel implementation of expert system reasoning, assuming that the majority of rules is ground.

The conversion of production rules in if-then format to clauses is rather straightforward. As an exam­
ple, the rule ifp(X) and q(f(X)) then r(X,f(X)) reads in clause form -p(X)l -q(f(X))lr(X,f(X)).
The conditions of a production rule correspond with the negative literals in the clause, and the con­
clusion corresponds with the positive literal. When multiple conclusions occur in a rule these have to
be distributed over several clauses with an identical negative part. Production rules generally
translate to Hom clauses, containing only one positive literal. Negative conditions in production
rules, however, must translate to positive literals. [l] Clauses offer greater expressiveness than produc­
tion rules since the positive part may contain more than one (positive) literal. However, positive
(parts of) clauses represent a choice between alternative solutions which may be expensive to com­
pute. Unit-clauses, that contain only one literal, play an important role in expert system reasoning
since they represent the data. A set of clauses C 1, ••• , Cn will be written as C 1 & · · · & Cn.

Resolution. Binary resolution is the rule that states that, for example, from clauses - a I b and - b I c
one can derive the clause - a I c. The atom b that occurs positive in the first clause and negative in
the second clause is called the clashing atom. The resulting clause is formed by joining the two
clauses after deleting the literal that corresponds to the clashing atom. When variables are involved
binary resolution requires that a substitution is found such that the atoms that potentially clash
become identical. For instance, the clauses a(l) and -a(X)lb(X) result in the clause b(l) with the
unifying substitution that binds X to 1.
A disadvantage of binary resolution is that it generates all possible resolvents. Therefore, a number
of inference rules have been proposed [5] that effectively reduce the number of generated clauses.

3

Each rule reflects a choice of strategy by imposing restrictions on what is allowed as input to the
inference operation and what is allowed as output. In unit resolution resolution is restricted in such a
way that at least one of the two input clauses is a unit clause. The objective of unit-resulting resolu­
tion is to produce a unit clause from a set of clauses one of which is a non-unit clause; the remaining

must be unit clauses. For example, from the clause set -p & q & -q IP lr the unit r can be derived
by applying unit-resulting resolution. The application of unit-resulting resolution can be viewed as a
sequence of unit resolutions. Unit-resulting resolution is not refutation-complete for non-Hom
clauses. The restrictions obeyed by hyper-resolution, that produces a positive clause from a set of

clauses, one of which is negative or mixed while the remaining ones are positive, do not affect the
completeness for arbitrary clauses.

Subsumption. Another way of limiting the amount of clauses generated is by applying a check for
subsumption. Clause C 1 subsumes clause C 2 if there is a substitution 8 such that C 18 is contained in
C2• We speak of forward subsumption when a newly generated clause is discarded because a previ­
ously retained clause subsumes it; and of backward subsumption when a newly generated clause is
used to discard previously retained clauses.

Set of support. To further restrict the number of clauses generated, as an additional strategy, a set of
support may be maintained. The clauses are divided over two lists, an axiom list and a set of support.
The set of support strategy [5] prohibits application of an inference rule to a set of clauses unless at
least one clause has support. For a given rule of inference, a typical inference cycle, involving the set
of support, can be characterized as follows.

while set of support =/:- 0 do
l. Select a clause from the set of support.
2. Compute all the resolvents of the selected clause and the other clauses.

3. Check for subsumption and add the remaining resolvents to the set of support.
od

The clause that is selected in step 1 is removed from the set of support and added to the axiom list.
When an empty clause is generated in step 2 then an inconsistency must be reported. In step 3, when
a resolvent clause is subsumed by an already retained clause it need not be added to the set of sup­
port; when a retained clause is subsumed by the generated clause it can be deleted.
The set of support strategy combined with binary resolution (and factoring) is complete, provided that
the complement of the set of support is satisfiable. The use of the set of support, however, might inflict
upon the completeness of a strategy, as for instance is the case with hyper-resolution when the set of
support contains only negative literals.

For a typical expert system application the axiom-list (which in the sequel will be called the theory)
is initialized to the set of rules, and the set of support to the data. Initially then, the set of support con­
sists of unit clauses only. When unit-resultion resolution is applied, all generated clauses will be unit
clauses. In this case the distinction between rules and data is preserved: resolving with the selected
clause adds new data and testing for subsumption modifies the rules. Unfortunately, unit-resulting
resolution is not complete for general (non-Hom) clauses. Other resolution strategies are, but these

do not allow an interpretation of rules and data as operators on each other, unless the notion of data
is extended to allow general clauses as input data, which clearly defeats the intent of the distinction.

Splitting. When positive clauses containing more than one literal occur, a model may be found by
arbitrarily choosing an atom from the positive clause and trying to find a model for the augmented
set of axioms, that now includes the chosen literal as a unit clause. For example, the clause set
c & -a I b & -c I a I b has models { a,b,c} and { b,c }, which may be found by respectively choosing
for a and b when a I b is generated. This example also shows that, dependent on the choice, it is not
necessarily a minimal model that is found. This technique of model-generation is known as splitting:
from a set of clauses T containing a positive clause in which an atom a occurs we can form the sets

4

T 1 = T & a and T 2 = T & -a.
Splitting on clauses containing variables might be unsound, as illustrated by the example where
T = a(X) I b(X) & -a(l) & -b(2). This set is satisfiable. Naive splitting however gives, after apply­
ing resolution and subsumption, T 1 = a(X) & -a(l) & -b(2) and T2 = b(X) & -a(X) & -b(2)
that are both refutable. It was observed in [4] that when the clauses satisfy the condition of range­
restriction, which is the case if no variables occur in the positive literals of a clause that do not occur
in a negative literal, then the resulting positive clauses will be variable-free.

Constraints. Clearly, splitting brings about an exponential growth in the cost of computation. In some
cases, however, literals of a positive clause can be deleted by clashing them with negative unit clauses.
Although negative units are not informative with respect to the model itself, except for detecting a
contradiction, this use stresses the importance of negative (unit) clauses as constraints on generated
clauses.

Expert system reasoning can be characterized by a clear distinction between data and rules. The
set of support strategy, together with a suitable combination of hyper-resolution, unit-resulting resolu­
tion and case splitting allows to maintain this distinction during the inference, in the sense that either
positive units are generated, or positive clauses that can be used for splitting, or negative units that
may function as constraints. Other resolution strategies, like unit resolution or binary resolution, do
not behave satisfactorily, in this respect. Why it is profitable to maintain this distinction can be
clarified by the following observation concerning subsumption. When all the parents of a derived
clause, except for one, are unit clauses and the non-unit parent clause is ground, then the derived
clause subsumes the non-unit parent clause. For example the clause c Id derived from
a & b & -a I -b I c Id subsumes the non-unit parent clause. As counter examples consider
a(l) & -a(X)l-b(X) (containing variables) and a lb & -a le (non-unit parents). The last exam­
ple, by the way, can be handled by splitting on a I b. Assuming that the knowledge base is ground,
this observation allows to apply unit resolution with the input data, and to effect subsumption simply
by deleting the clashed literal from the rule.
The algorithms presented in the next sections will be based on the assumption that the majority of
rules in the knowledge base is ground. How to deal with clauses containing variables will only be
treated briefly.

3. THE BASIC INFERENCE ALGORITHM

As input to the procedure, we are given a theory T that is a set of clauses representing the rules
and a set S of units that represent the data. The intent is to create a model M consisting of positive
units. To allow checking for constraints, also a constraint set C is maintained, containing the nega­
tive unit clauses. An inference state, that is any point in the computation is fully characterized by the
tuple I = (T,S,M,C), consisting of a theory T, a set of support S, a model set Mand a constraint set
c.

Algorithm I.
Input: To,So
Output: model M or inconsistent
Initialize M and C to empty, and invoke the procedure infer.
proc infer (T, S,M, C) =
repeat

while S =/= 0 do
I. Take a unit I from S. If I is positive and not in M

then add I to M, otherwise if I is negative and not in
C then add I to C. Set S to S-1.

2. If C and M contain complementary units then signal an inconsistency,
else

3. locate all clauses that contain a literal /' that clashes
with/.

od

Remove the clashed literals from the respective clauses, and
if a unit remains add this to the set of support S.

If T does not contain any positive clauses then report that
To & So is satisfiable and has model M, else
select a positive clause from T, and invoke the yrocedure infer
recursively both for (T, {I },M,C) and (T, t -/ },M,C).

forever

5

The procedure given above can be characterized as unit resolution. Since T is ground and one of the
parents of each generated clause is a unit, subsumption can be handled in place, by simply deleting
the clashed literal. As an additional test for subsumption it might be checked whether the selected
unit corresponds with a literal of similar sign in a clause. In that case the entire clause can be deleted.

When there are non-ground clauses in T the clause resulting from the clash with the selected unit
must be added to T, unless the resolvent is a unit clause. Assuming that only a small part of the rules
will contain variables, a test for (either forward or backward) subsumption is not necessary, since sub­
sumption merely serves to prune the search. As an optimization it might be considered to postpone
resolving with the non-ground clause until either the set of support is exhausted or a sufficient number
of units is available to apply hyper-resolution or unit-resulting resolution.

Implementation aspects. The set of support is a stream that presents units I of the form +a or -a to
the theory T with the request to deliver back every unit that can be generated by processing this
information. The theory-component must maintain an index to locate all occurrences of literals that
clash with /, and further keep track of the contents of the clauses in order to check whether units can
be send back to S. Processing the units delivered by T involves merely a check whether a unit of
opposite sign is not contained in either the model set M or the constraint set C.

4. DELTA PROCESSING

Case-splitting is intrinsically expensive, since it involves copying a full inference state, the theory T
as well as the model set M and constraint set C. The resulting situation can be depicted by a tree of
which the branches are labelled with the choices. For each node on the tree the inference state can be
identified by the subscript formed from the labels on the path from the root to that node. For
instance I +a-bis the result of choosing respectively +a and -bas illustrated by

6

The amount of space needed to store the inference states grows exponentially. Even when use is made
of backtracking the amount of space needed is proportional to the number of choices made. Moreover
in the case of parallel execution the communication involved in creating new copies of inference states
is prohibitive.

An alternative characterization of inference states allows to compute a model for a given theory and
data more efficiently. Inference states will not be characterized as consisting of a theory T;, a set of
support S;, a model M; and a constraint set C;, for some index i, but rather as a sequence of changes,
named delta's, relative to an original inference-state I = (T,S,M,C).

When discussing case splitting it was observed that the alternative inference states corresponding to
the nodes of the tree could be uniquely identified by the sequence of labels occurring on the branches,
representing the choice for a particular unit. This mode of indexing can be generalized by introducing
nodes with one successor branch labelled by the unit selected from the set of support. In its most sim­
ple form, the sequence of delta's, that allows to (re)construct a particular inference state from a given
inference state, is just of the form <I;>;, where each I; is of the form +a or -a for an atom a.
Oearly, when a choice is involved, the delta information is structured as a tree. The set of delta­
sequences represented by the tree are all the subsequences of the sequences that are formed by going
from the root to the leaves.

Merely recording the sequence of units processed by the set of support gives relatively little gain,
except that storage of the modified theories for backtracking is no longer necessary. One can wonder
if re-processing a sequence of changes isn't more expensive than just recording the state. A more
refined notion of delta's, however, seems to induce a minimum of computational overhead in recon­
structing an inference state from the delta-information, compared to copying full inference states, and
moreover also seems to effectively reduce the communication-costs in the parallel processing of alter­
native states due to case splitting.

When the basic inference algorithm is more closely analysed it can be observed that the following
kind of information is involved:

1. add a unit either to the model M or the constraint set C,
2. add a unit to T, to compute the resolvents,
3. delete a literal from a clause, due to a clash,
4. remove a subsumed clause from T,
5. add a unit to the set of support,

and in the presence of variables

6. add a clause to T as the result of a resolution step.

The case of adding a unit to the model M or the constraint set C involves a check for the consistency,
which need only be performed once for each added unit. Adding a unit to T to compute the resol­
vents involves the major part of the work done during the inference process. For each given unit the
clauses that contain a clashing literal must be located, the clauses must be accordingly simplified, a
check must be made whether unit clauses should be added to the set of support, and whether the
clashing-information must be updated. The result of this processing is a sequence of deletions of

7

literals from clauses and (possibly) a sequence of additions to the set of support. Processing a unit
might also give rise to the removal of a clause due to subsumption. The delta's that have to be
recorded to avoid recomputing the clash must contain the information that tells which occurrences of
literals to delete, which clauses must be removed, and what has to be added to the set of support. All
units that are added to the set of support will eventually also be put either on the model set or on the
constraint set.

The following delta's are needed

a+ add atom a to the model M
a add atom a to the constraint set C
<c,/> delete literal I from clause c
- c remove clause c from T

It is assumed that each clause has a unique clause number. The c in <c,l> and -c refer to this
number. When non-ground rules occur, as additional delta we need

(c,C) add clause C with clause number c to T

Whenever a clause is added to Tit must first be assigned a unique clause number, to allow the other
delta's to refer to it.

As an example, let the theory T consist of clauses C1 = -a lb, C2 = -b le Id and C3 = -c le, and
let S = {a}. The sequence <a+ ,<l,-a>,b+ ,<2,-b>> results initially, and will after splitting on
c Id (in the modified clause C2) be continued with either <c+ ,<3,-c>,e+ >or <c- ,<2, +c>,d+ >.

As another example, involving variables, let T consist of C 1 = - a (X) I - b (X) I c (X) and
C2 = -a(X) 1-c(X). With S = { a(l)} this would result in <a(l)+ ,(3,C3),c(l)- ,b(l)- >, where
C3 = -b(l)lc(l). Note that C3 is added because C1 contains variables; C2 does not give rise to an
extra clause since clashing with a(l) delivers the unit clause -c(l), which is directly put on the set of

support.

Using delta's allows to avoid copying full inference states since any state can be recomputed from a
given state by processing the difference of the delta-sequence of the given state and the delta-sequence
of the state that is to be reconstructed. Especially in the ground case, this can be done very
efficiently. This setup also allows for efficient backtracking since, nice indeed, the delta's are reversi­
ble.

Treating equality. One extension that has to be dealt with, for the application in mind, is the possibil­
ity that a function term acquires a value during the inference, because of the occurrence of a positive
equality unit. Operationally, a positive equality unit eq(t 1,ti) allows to replace a term t by t2 pro­
vided that t is identical to t 1• If t 1 contains variables then a matching substitution 8 must be found
such that t 18 = t; in this case t is replaced by t28. To perform all simplifications due to an equality
unit eq(t 1,ti) all terms must be located that potentially match with t 1• The position of a (sub)term in
a term can be indicated by an integer sequence denoting the path to follow in a term. The empty
sequence is the term itself and each subsequent number indicates the choice for a particular argument
position. For instance, the term t(X) is located on position <1,2> in p(j(a,t(X))). The delta that
results from a simplification must indicate, apart from the clause number and the literal number, the
position in the atom of the literal and the value that is substituted. Also, in order to garantuee that
delta's are reversible, the replaced term must be included. So, the delta that corresponds to replacing
t(X) by bin p(j(a,t(X))) will be like [c,l, <1,2>,(t(X),b)], where c and l respectively are a clause and a
literal number. When equality units are required to be of the form eq(t,v), where vis some (irreduci­
ble) value, and moreover function terms are not allowed to occur nested, the term resulting from a
simplification does not have to be further simplified, neither is it necessary to check whether due to
this simplification other simplifications become possible.

8

5. PARALLELISM

The fact that delta's allow to recompute any inference-state from an initial state very efficiently is
advantageous when employing a parallel search by case-splitting, since the communication overhead
of copying the state in which the choice is made can be avoided.

5.1. Splitting

The parallel algorithm can be stated as follows. It is assumed that each process has the theory T
built in when starting the computation. The model set M and constraint set C are local to a process
and initialized to empty. The input to the procedure infer is a sequence of changes 8 and a set of sup­
port S. Initially 8 is empty and S contains the data provided by the user of the system. For conveni­
ence, delta notation a± and literal notation +a will be used interchangably.

Algorithm 2:
proe infer (8,S) =
Recompute the inference state by processing the sequence 8
repeat

while S =/=- 0 do
l. Take a unit from S, say a*, and update the model or

constraint set dependent on whether a• is +a or - a.
If C and M contain complementary units then signal an inconsistency.

2. Add a* to 8, and send a* to the theory component that
computes the resolvents.

3. Collect the sequence of changes 8' that results from
processing a*.
Process 8', that is add all new items of the form a*
to the set of support and all other items to 8.

Request a choice atom a to use in case splitting,
If no such choice atom can be provided, report that model M
has been found, else put +a on the set of support and invoke an inference process with a set of
support - a and delta-sequence 8.

forever

All intrinsically expensive computing is performed only once, in the resolution process, activated in
step 2. The resulting state can efficiently be recomputed by a process waiting for the assignment of
an inference-task, when it is invoked with a sequence of changes 8 and a set of support S. An arbi­
trary number of processes can be initialized to the theory T.and activated whenever necessary to per­
form the search. A possible optimization is to keep the waiting processes up to date by informing
them about the changes.

A distinction has to be made between the top-level inference process and the processes at a lower
level. Failure or inconsistency for low level processes merely indicates that the selected branch gives
no result, whereas when the top-level process fails this directly indicates an inconsistency. When by
splitting on an atom a precisely one branch succeeds, say +a, then +a can be considered derivable;
otherwise, in the case that both branches succeed neither +a nor -a is derivable, and in the case
that both branches fail an inconsistency must be noted, with respect to the choices made thus far.

5.2. Clustering

The top level process as described in the previous section represents the linear part of the inference
process. This part can take a proportional size. However, using delta's allows to simultaneously pro­
cess items on the set of support. Linear parts of the inference can be computed by a cluster of
processes according to the following algorithm.

9

Assume the cluster consists of resolution processes Pi> i = l, ... ,n. Each such process is initialized to

the theory T, and has the capability to perform resolution, that is to look for clashes and to effect

simplifications. Initially, there is one master process with a cluster of slaves. A master-process can

invoke another master process when splitting on a choice atom. Each master has a list of its resolu­

tion slaves as well as a free list of the slaves that are waiting for a task. A task is of the form a*

where * is either + or - .
Algorithm 3:
proc infer (8,S) =
free: list of processes waiting for a task
slaves: list of all slave resolution processes
Initialize M and C by processing 8, and broadcast 8
to all slaves.
repeat

while S =/=- 0 do
I. Take a unit a• from S, update Mand C and check

for consistency.
2. Select a process Pi from the free list, and send it a•.
3. Check for responses from slave processes, if slave p;

responds with delta sequence 8' broadcast 8'
to all slaves except p;, and process 8',

od

that is add all new items of the form a• to the

set of support and all other items to 8.

Request a choice atom a for case splitting.
H no such choice atom can be found report model M,
otherwise put +a on the set of support and invoke another

master process with sequence 8 and set of support - a.
·forever

The clusters invoked can be of arbitrary size. Since delta processing can be applied the resolution­

processes of these clusters can be initialized to Tat startup time and remain waiting for a task. Also

it would be possible for a cluster to grow, for instance when the set of support exceeds a certain size,

by invoking new resolution processes. These processes would then have to adapt their state to the

current delta sequence of the master process before accepting any task. Note that, when the deltas

are reversible, as is the case for the delta's used in algorithm 3, the theory in processes that have

failed can be re-used simply by applying the delta's in reversed order.

5.3. Implementation

Delta's can be implemented very efficiently, at least for the ground case. When the rules contain no

variables, and when we also know what units will be given as initial data, then all the terms and

atoms that may occur in the inference can be determined in advance. Moreover, since in this case,

resolution with units from the set of support will not result in new clauses, the set of clauses will not

change in size. This static behavior, due to a ground knowledge base, allows for an efficient scheme

of indexing, along the lines indicated in [3]. This scheme can be generalized to deal with the dynamic

behavior due to the addition of new clauses and terms in the presence of variables.

Indexing. The most straightforward implementation of a ground theory is as an array of clauses,

where each clause is an array of literals. Each clause contains an indication of the number of nega­

tive literals and the number of positive literals. A delta for literal deletion may have the form <c,l>

where c is the clause number and I the literal number.
To find efficiently all clashing literals for an incoming unit a clash table is needed, containing for each

atom its occurences in the clauses, in the form of a clause number, a literal number and possibly

whether it occurs positively or negatively. Performing the clash consists, for each clause, in which a

complementary literal occurs, of marking the clashed literal as deleted, and decrementing the number

10

of positive or negative literals. When the number of literals decreases to one, a unit will be generated
and the clause may be marked as deleted. If, after literal deletion, the clause contains only positive
literals it is a candidate for splitting. All clauses in which the unit occurs as a literal can be deleted
rightaway, due to subsumption. For performing the simplifications efficiently the clash table must
also contain for each term the positions in which it occurs.

Variables. When the set of clauses grows dynamically the scheme presented above is too rigid, unless
the number of added clauses is known in advance. Clauses can still be implemented as arrays since
unit resolution does not increase the length of the clauses. Hyper-resoltution, however, may result in
clauses that contain more literals than the parent clauses. To profit from the fact that in the majority
of cases ground resolution suffices, the best solution seems to distinguish between a static clause list
(containing the rules of the knowledge base) and a dynamic clause list (containing the clauses gen­
erated by a resolution step).
The process that generates a new (non unit) clause must request a (globally unique) clause number,
insert the clause in the dynamic clause list and generate a delta containing the clause number and the
clause. Since the size of the static part is known in advance, a process can decide by inspecting the
clause number if a clause belongs to the dynamic part or the static part.
The presence of variables precludes a direct identification of clashing literals by means of a table of
ground atoms. For non ground literals only a potential clash can be indicated. Whether the incom­
ing unit clashes with a non-ground literal depends on whether a unifying substitution can be found.
Similarly, for simplifications only possibly matching terms can be located.

Distribution. At the start of the computation an arbitrary number of slave resolution processes can be
initialized with the theory T, that is the static part of the clause set, and a clash table containing
information of the locations of terms and atoms in the clauses. The most general and space efficient
solution for the clash table is to have for each predicate name and function name a list of occurrences
of the form <c,l,p>, where for atoms the position p is the empty sequence. Initially all resolution
processes will have copies of T and the clash table, that will be updated by the delta's generated dur­
ing the inference. The clash table must be updated only when new clauses are generated, which can
be done by the resolution processes on the basis of the received delta's.

To reduce the cost of communication, a further simplification of the delta's might be achieved by
maintaining a global table of all (ground) terms that occur, whereby we regard atoms as terms. Each
of the master processes as well as the resolution slave processes must have a copy of this table at
startup time and keep it updated by delta's of the form (t, T) which indicates that t is the number of
T. This allows that both the model set and the constraint set consists of term numbers. Also the
delta's corresponding to the addition of units to the set of support will be shorter; however if a new
unit is generated, say a(l)+ then two delta's may be needed, one to include a(l) in the term table
and one to add it to the set of support, as in <(t,a(I)),t+ >, where t is a new term number. The
slave process that generates the new term must ask for a unique (term) number, similarly so when a
new clause is generated.

To allow the resolution processes some liberty with respect to the inference strategy they employ, each
such process must also have a copy of the model set M and constraint set C. It seems a reasonable
strategy to postpone the resolution with a non ground clause until sufficient information is available.
To extend the algorithm by allowing also non-unit clauses on the set of support seems unwise, even
when units are given preference, in particular since the technique of splitting allows to generate a
model even when non-units are disallowed to have support.

Complexity. The worst case complexity of the sequential procedure clearly is 0 (2n) in the ground
case, where n is the number of literals. If linear processing suffices, that is when no splitting is neces­
sary, the sequential procedure has polynomial (more precisely quadratical) complexity. The speedup
due to parallel case splitting is linear, that is in the order of the number of processors. The speedup

11

by using a cluster of slave processes seems in the ground case to be also linear. However there is
some overhead in processing the delta's. For the ground case the length of a delta sequence will not
exceed the size of the knowledge base. With respect to expert system reasoning, it seems a reasonable
assumption that in the average case only a limited number of units will be generated.

6. DISCUSSION

The idea of delta processing was partly inspired by the approach to incremental text processing as
allowed by sccs under UNIX. Similar approaches are found in keeping logs of databases, and incre­
mental parser generation.

The advantage of delta processing is that the information needed to characterize (and recompute) an
inference state is kept to a minimum.

The approach to parallelism, applying delta processing, was inspired also by [2], in which a general
approach to parallelism in deduction systems is described. The idea explored there is to use a collec­
tion of processes, attached to a master process that distributes tasks as determined by the clauses
selected from the set of support, to perform the actual inference, which involves to determine the
clashes, to test for subsumption and to simplify clauses on behalf of positive equality units. To main­
tain a theory over several processes in general, however, clauses that are added due to an inference
step must be broadcast to each slave. This may involve expensive indexing and integration activity
for each slave process that receives such a clause. Utilizing appropriate delta's might reduce the cost
of adding clauses. The restrictions that apply to expert system reasoning however allow to utilize very
simple delta's, most of the time. Since the updating information is of a relatively small size, no
shared memory is needed to attain a reasonable performance, as was suggested in [2]. These restric­
tions, which consist of having a clean distinction between a (ground) theory and (ground) data, effect
that the set of support contains unit clauses only and allow for the possibility to perform subsumption
in place, by merely marking a literal as deleted. Communication overhead is avoided since processing
delta's allows to reconstruct any inference state from one given initial inference state, so that an arbi­
trary number of processes can be allocated in advance and adapted to the current needs rather
efficiently. The reversibility of delta's moreover allows to re-use processes by simply undoing the
changes recorded in the delta sequence. Experiments are needed to show that the approach presented
in this paper is fruitful in practice.

REFERENCES

[l] M. Bezem Consistency of rule-based expert systems CADE-9 LNCS 310 Springer (1988) 151-162
[2] R.M. Butler and N.T. Karonis Exploitation of parallelism in prototypical deduction problems

CADE-9 LNCS 310 Springer (1988) 333-343
[3] W.F. Dowling and J.H. Gallier Linear time algorithms for testing the satisfiability of propositional

Horn formulae J. of Logic Programming 3 (1984) 267-284
[4] R. Manthey and F. Bry SATCHMO: A theorem prover implemented in Prolog CADE-9 LNCS

310 Springer (1988) 415-434
[5] L. Wos, R. Overbeek, E. Lusk and J. Boyle Automated Reasoning: Introduction and applications

Prentice Hall 1984
[6] J. Treur Completeness and definability in diagnostic expert systems Proc. ECAI-88 Miinchen

