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This paper is devoted to the asymptotic distribution of estimators for the
posterior probability that an observation vector originates from one of k
populations. The estimators are based on training samples. The random vectors
contain both continuous and discrete variables. Observation vector and prior
probabilities are regarded as given constants. The continuous part of the
random vector has conditional on the discrete part a multivariate normal
distribution. Several assumptions about homogeneity of the dispersion matri-

ces are considered.
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1, INTRODUCTION

Let us assume that an observation originates from one of k populations.
Information about each of the populations is available in the form of a
training sample i.e. outcomes of independent random vectors. Each random
vector contains both continuous and discrete random variables. So we have

the realizations of the independent random vectors

T .
(xhi],...,xhip,whil,...,whiq) s =N ho= 1, ke

where Xhil""’Xhip are p continuous and W h 1,...,W q discrete random

hiq
variables. The discrete variable W L has a finite range of ap distinct

values or categories. We combine the q discrete variables into one

hi
Writing Xhi (Xhll""’xh ) and assuming conditional normality for the

discrete variable D . with values in the set 1,...,d where d = £— Op.

continuous variables we shall concentrate on the random vectors

(1.1) (Xhi\), i= 1

,...,Nh; h=1,...,k
Dhi
where
(1.2) &ﬁl £~ NJHM&hQ, h=1,...,k; £=1,...,d
Dyi=
and
d

P(D =) = p,, > O with Z] Ppp =1 b=l k

Let fhﬂ denote the N (uhﬂ’ hﬂ) probablllty density function. The given
observation vector, denoted by (x ,J) X € IRP je{l,...,d},
considered as the result of a drawing from one of k distributions, each
associated with one population. The distributions have densities
phjfhj(x), h=1,...,k in the point (XT,j)T w.r.t. the product of Lebesgue
measure and counting measure. Assume that the prior probabilities of

belonging to the populations are PpoeessPpe The posterior probabilities

are defined by




£

(%)

. _ PPy
t|(x,3)  ;k
Zh=1°hPhjTn; &)

(1.4) t]

t=1,...,k.

. T ..T .
We shall consider pl,...,pk and (x7,j)" as given constants. The k unknown
posterior probabilities are considered as unknown parameters which are
estimated from the training samples. Let Rt](x 5 denote an estimator for
y .
pt](x,j)’ t=1,...,k. Using the notation

_ T
R = R R

(1.5)
_ T
P T PPk L5

k 1
N hall ? . .y ) i i
h=1, We shall prove that N (R'I(X,J) p'I(X,J)) is asymptotically

and N = %
normal with expectation zero and a singular dispersion matrix.
We shall consider four different situations depending on assumptions about
homogeneity of the variance-covariance matrices of the multivariate normal
distributions. v

The literature about estimating posterior probabilities in discriminant
analysis deals mostly with the assumptions k = 2 and joint normality of
the measured variables. So this paper in which discrete variables are
added is an important extension. SCHAAFSMA & VAN VARK (1977) considers the
case p = 1, k = 2. SCHAAFSMA & VAN VARK (1979) deals with p 2 1, k = 2.
AMBERGEN (1981) considers the case p 2 1, k 2 2 and gives of various
stochasts exact moments. AMBERGEN & SCHAAFSMA (1982) considers
p=>=1, k >2 with normality assumptions as well as only assumptions
about continuous densities, in the latter case a nonparametric approach

is given. AMBERGEN & SCHAAFSMA (1983%) contains an application
to physical anthropology. AMBERGEN & SCHAAFSMA (1983b) contains a simula-

tion experiment in which the theoretical confidence coefficient for
confidence intervals for the posterior probabilities is compared with
that obtained by using asymptotically normal approximations. AMBERGEN &
SCHAAFSMA (1984) is a revised version of the latter. SCHAAFSMA (1982) has

an emphasize on the selection of variables. Apart from the "estimative"

methods used in this paper the "predictive' method of GEISSER (1964) has
been discussed in the literature. AITCHISON, HABBEMA & KAY (1977) is a
comparison of the twomethods. McLACHLAN (1977) studies the bias of sample
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based posterior probabilities. McLACHLAN (1979) compares the bias of

classical plug in estimators with that of predictive estimators. RIGBY
(1982) constructs credibility intervals for the posterior probabilities in
order to cémpare the estimative and predictive estimators. In KRZANOWSKI
(1975) an allocation model for two populations with mixtures of continuous
and binary variables is considered. The continuous variables have also
conditional on the discrete variables multivariate normal distributions.
However, more structure is supposed for estimation the discrete and
continuous parameters than in this paper will be done. The argumentation
in that paper is obvious because for small training samples the

unstructured estimation can be unsatisfactory.
2, RESULTS

In this section we define the estimators and give the asymptotic
distributions for the posterior estimators in four different cases. The
proofs are given in the following sections. We use the following definitions

and notations, in which h =1,...k and £ = 1,...,d:

2 T A1,
Mesne = )™ EpGew p)

-1 2
fhl(x) = f(X;“hﬁ’Zhﬂ) = [ZNthl zeXp(_%Ax;hZ)

N, size of h-th training sample

h
K N
h
N= LN, by = :
h=1 .
h

bopi = TO;=0), Npp = izl boei
. Ny
Phe 7 T

1 I;,h
., = A,

he TN, oL Tnitnei
1 Th



M T X = 2
’ Zs=lpspsjfsj(x)

~ . -~

-~ )
£ .(x) = fhj(x,u Zhj

hj “hi’® )

ok, . . .
where Zhj 1s an estimator for Zhj defined in theorem 2.1.We state now

THEOREM 2.1.

1
2 -
.1 LN (R'I(X,j) p'I(X,j)) -> Nk(O,WAW)
where
(2.2) Y =

e T e i) P )

(2.3) ¥

t,s —%ptl(x,j)psl(x,j) t#s

R-](x,j)’p-l(x,j) afe defined in (1.5) and for A we distinguish four

cases dependent on Zhj’ the estimator for %, .:

hj
Case I.
(2.4) 2. =3%. h=1 K
L3 hj - hj - ’.'.’
4 2 4
= 1-p_.) + + .
M ¢ D ( Pyy) b.P. . (p Ax;tj)
(2.5) t t] t]
At,s =0 t+¢s
Case II. Assumption: le = ,,, = ij (=£.)
* ~ 1 k a A
(2.6) Iy = Iy = 3 By PhiZn;




R

4 4 2 -1.4
= (1-p_.) +——— A" . +2 Z A .
t,t P Pe btpti x3E] ( h=1 hPh ;) x3t]
2.7
-1 T.—1 2
Case TIII. Assumption g = e = de(=2)
(2.8) X, =L = b Py pZy
hj nZ h ok, PreThe
4
A 2 A
t,t b p,. (I-p_.)+ AT . ¥ 200 .
2.9) tht] t] btptj x3t] x3t]
T 2
At’s 2{(x-u J-) (x-u_ )} t#s
Case 1IV. Assumptlon: Zhl = .,, = Zh1(=2h), h 1,...,k
Sk
(2.10) N 2 Prelne
4
_ 4(1—pt-) 9 2(p+Ax;tj)
A (1+A7 ) +
t,t tptj xs3t] bt
(2.11)
At,s =0 t#s

Remark. A special situation occurs if only one discrete state is possible:

=1, h=1,...,k; j = 1. For the four cases we obtain:

phj

Case I = Case IV

(2.12) fe,e Bgt_ (p+A4;t)
At,s =0 t#s
Case II = Case III
A - & A2 + 2A4
(2.13) t,t b X3t X3t
A s = 2{(x-ut)TZ—1(x—us)}2 t#s
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S
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where we dropped the index j = 1 in Ai. . These expressions (2.12) and

st
(2.13) are the same as found earlier in a model with only continuous
multivariate normal variables, see e.g. formulas (2.4) and (3.6) in

AMBERGEN & SCHAAFSMA (1982).

3. SOME PROPERTIES OF MATRICES

We introduce some definitions and give a summary of properties which
enable us to perform computations in a relatively short and elegant way.
We closely follow notations in MAGNUS & NEUDECKER (1979).

- If A is a m Xn matrix, Afj ;he jth cglumn ofTA, then vec(A) is the mm
columvector defined by vec (A) = (A-l""’A'n)'

- If Ais amxn and B a s Xt matrix then the Kronecker product A ®B is
the (ms,nt) matrix defined by A®B = (aijB)

- (A1»®B])(A2 ®BZ)"'(Ak.®Bk) = (AIAZ"'Ak) ®(BIBZ"'Bk) provided that
A A Ak and BIB7...B exists.

- (:\@]23).T.= AT @BT ‘
- (A®B) ®C = A ® (B®C)

- (A+B) ®C = (A®B) + (B®C)
- A®(B+C) = A®B + A®C

- vec (ABC) = (CTe®A)vec (B)

- A=18A=A®1

- trace(AB) = vecT(A$)vec(B)

-~ For e, the i-th unit dolummn vector of dimension p we define

i
kK =32 P (E..®FE..) where E.. = e.e?.
ij  ji ij

P i=1"3=1 173
- K vec(A) = vec(AY)

P
-K =K

P

p
- K (A®B) = (B®A)K
P T P
- vec(I)vee (I) = . .E.. ®E,,

1,1 1] 1]
For p a px1 vector and I a symmetric pxXp matrix we shall use frequently:

T
- vec(up) = u®p = In®u.1 = (Ieu) (pel) = (Isu)u
-~ (u®I)T = u®L because

(o)1)’ = T(uieI) = (16) (u'eI) = plez = (uer)’
- (I8p)r = (Z@u)T because
(oW 1)’ = z(1eu’) = (zo1) (o) = zeu’ = (zow)T




u@Z@uT because

T T T
((pez)el) (Ien") = ((ueI)I)e(l.u”) = udIs’y
uT®Z®u because

- (uer) (Tou’)
(uoz) (Tou")
- (zow) (n'eT)
(o) (We1)T = (uoI) (zeu’) = (uoI) (1o(zenT)) = (n.1)e(I(zeu’)) =

T

T
ueIou- = (u ®Z®u)T

4, ASYMPTOTIC DISTRIBUTION OF A BASIC RANDOM VECTOR
The asymptotic distribution presented in lemma 4.1 will be the corner-

stone for the proof of theorem 2.1.

For h=1,...,k and s = 1,...,d we define

N

Uh,s = .E I(Dhi=s) : 1 x1 r,v.
1=1
N

Sh,s = izl XhiI(Dhi=S) :p x 1 r.v,
N

Th,S = Z (Xhi®xhi>I(Dhi=S) H pz X1 1.V.

and formulate the lemma

LEMMA 4.1.
-_l_U _ -
Nh h,s Phs
P
N_h,s Phsths
1
1 ﬁ;Th,s phs(vec(zhs)+uhs®uhs) L
2
Nh 1 — N2(1+p+p2)(93Mh)
Nhlh,t ~ Phe
R P
N h,t Phethe
: ]
F Th,e ~ Ppevec(p vy, on, )




with Mh partitioned as

Mh,ss Mh,st

Mh,ts Mh,tt

and with an obvious further partioning, we state further that

Mh,ss;l,l - Phs(l—phs)

= p,_(1-p, Ju’
Mh,ss;],Z Phs V' " Phg/ Phs

_ _ - T T T
Mh,ss;1,3 - phs(l phs){vec (Zhs)+uhs®uhs}

_ _ T
M,8532,2 ~ Phsihs * Phs (Prg)Mghe
o T T
M ,8552,3 ~ Phs Mns®Phs ns® s Phs (1 Ppg) Ty gvee (B ) +

T T
uhs(uhs®uhs)}
T

) T
= +
Mh,ss;3,3 phs{(zhs®zhs)(I+Kp)+(uhsuhs)®zhs+uhs®zhs®uhs
T T
"he® hs™hs * Zhs®hsPhs! T Phs (! Phs -
{vec(Z )vecT(Z Y+vec (X )(ﬂT ®uT Y+(u, ®u )vecT(Z )
hs hs hs hs "hs hs "hs hs

T

he) d

T
+ (uhs®uhs)(uhs®u
and
M,ts31,1 = PhtPhs
_ T
Mh,ts;1,2 PhtPhsths
- T T T
M ts31,3 = “PePrs{vec Gy )+ ow 3

M, es52,1 = PhtPhsthe

T
M ,t8352,2 7 "PhtPhs¥ntths

o T T T
M ts32,3 = “PhtPhsthevec (pgdtwy, ow t




SN

{vec(Z

}

Mh,ts33,1 = PhePhs he) PMhe®he

T
Tvec (2 Jvup om

Mh,ts33,2 = "PhtPhs
’ = -p, p_{vec(Z )Dvec (I )+(u ®u )Ivec (5, )
M,ts33,3 - PntPhs ht ns?* Pht®he hs
T T T T
+ vee(z, )Gy on )+(u e )Gy eu )Y,
In order to prove lemma 4.1 we shall first formulate two other lemmas.

For that purpose we shall introduce the short notation X = Xhl and

IS = I(Dh]=s) which we shall use in the remaining part of this section.

LEMMA 4.2,
(a) EIS = phs
(b) var Is = phs(l_phs)
(e) EISX = phsuhs
(d) EI XXT=p (z, +u uT)
s hs ""hs "hs' hs
(e) EISX®X = phs(vec(zhs)+uhs®uhs).

PROOF. (a) and (b) follow from the binomial (l,phs) distribution,’(c), (d)

and (e) can be derived with use of conditional expectation.

1 1
LEMMA 4.3. If U ~ NP(O,I), X = w+I%U with 2 symmetric positive definite
then

(a) EU®U- = I
(b) EU @U = vec(I)
(e) EUUT ®U = 0
(d) EUUL ®UT = 0
(e) EX(XT®XT) = u(uT®uT)+uvecT(Z)+uT®Z+Z®uT
T T T

(£) EUU ®UU™ = Kp+I®I+vec(I)vec (D

T _T T T T T
(g) E(X8X) (X"8X") = up ®up +I8up +(udp)vec (I) +

uT®Z®u+u®E®uT+vec () (uT®uT) +
LU e+ (287) (I+Kp)+vec(2)vecT(Z) i
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PROOF. (a)...(d) follow directly from

EU, = EU? = (
i i
and
EU? =1, EU? =3
i i

where Ui is the i-th component of U. To prove (e):
1 1 1
EX (X'@X') = E(ut320) (u 40U 22)e(u +UT5?) =
1 1 1 1 1 1
u(uT®uT) + Eu(UT22®UTZZ) + EZZU(uT®UTZZ) + EZZU(UT22®uT)

where we have deleted terms with first and thirth moments. Using

1 1 1
22U = 183°U = 1?U®1 for the last two terms we get

1 1 1 1 1 1
u(uTauT) + uE(UT®UT)(22®22) + uT®ZZEUUTZZ + ZZEUUTZZ®uT

With EUUT =1, EUTSUT = vecT(I) and the property vec(ABC) = (CT®A)vec(B)
1

using the special choice A = C = £% and B = I (e) is proved.

proof of (f):

By defining T,. = E,. + E.. we obtain
3 1] ji

MR

EU,U. 00" = T,, + §,.1
i7] ij ij

where Gij is the Kronecker delta: aij =1if i = j and =0 if i # j.

Now
EUUT®UUT = EI. . U.U.E..@UUT =
1,17 1 3 1]
. (E,.®(T..+§..I)) = ¢, E..®T.,. + L. E..®8,.1 =
1,7 1] 1] i] 1,3 1] 1] 1,1 1] 1]
. E..®E =

.. + . .E .®E.,. + (£.E,..)®I
L,3 1] 13 1,313 J1 111

vec(I)vecT(I) + KP + I®I

proof of (g):

E(X@X)(XT®XT) = EXXT®XXT =

1 1 1 1
E(u+220) (T4 s 2) e(uez2u) (u Tz ?)

deleting terms with first and fifth moments this becomes
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1 1
uuT®puT + ZZEUUTZZ®uu

T T

1 1
T + EuUT22®uUTZZ +

1 1 1
®uUT22 + EuU zzgzzuuT +
T

1
ET 2Un

1 1 1 1
EszuT®z?Uu + uuT®22EUUT22 +
| 1 1 1
Ex 20U z%er 2Uu 2.
T T L
Now, use EUU™ = I, EUT®UT = vec (I) and vecT(I)(ZEQZZ) = vecT(Z) then the

first three terms become
T T T T
pp ®up + ey + (ueu)vec ().

Because EU@UT = T we obtain for the fourth term

1 T 1
(1e(x%eu)) (uer?) =
T

sty 1(uTert)

1 1 1 1
(1.uD)e((z?ew)z?) = ue{zlew) (z281) = u arey

The fifth term is the transpose of the fourth term and is u®z®uT.

Further

(zert)vec (D) (uTenT) = vee (@) (u enT)

T T

and 1
£? = py ez

T 1
uy ®L2EUU
The last term can be written as

ST J O S
(2% 2)EUU 80U (Z283%)

1 1 1 1 1 1
now using (Z‘2®ZZ)Kp = Kp(22822) and (2?®z2)vec(I) = vec(Z) the proof of
(g) and thus of lemma 4.3 is finished. []

Proof of lemma 4.1, With the results of lemma 4.2 and lemma 4.3 it is

now easy to compute the components of the partitioned matrices Mh os and
]
Mh . We have
,ts
1
-4 -1
- 2 = = = =
Mh,ss;l,l var(Nh Uh,s) Nh cov(XiI(Dhi s), ZjI(Dhj s))

-1 . B _
Nh Ei var(I(Dhi—s)) var(IS)

since I(Dhi=s) and I(Dhj=s) for i # j are independent. Further, without

complete proofs we summarize:
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El XT - EI EI XT
s s s

Mh,ss;l,z

-Mh,ss;1,3
T

Mh ' = EI XX~ - EI XEI XT
»8832,2 s s s

EI XT®XT - EI EI XT®XT
s 8 s

EISX(XT®XT) - EISXEISXT®XT

Mh,ss;2,3
Mh,ss;3,3

The components of the partitioned matrix Mh s 2T derived in a similar
b

EIS(X®X)(XT®XT) - EISX®XEISXT®XT~

way. We have

-1 -1 -1
Mh,ts;l,l cov(Nh Uh,t’Nh Uh,s) Nh cov(ZiI(Dhi s),ZjI(Dhj £))

cov(Is,It) = EISIt - EISEIt = —EISEIt

Where we have used the independence between I(Dhi=s) and I(Dh.=F) for

i # j and the fact that EISIt = 0. This is because I.I,, the product of
the two variables IS and It, can only have the value 0. So that

EISItY = 0 for any random variable Y. Deleting terms with such an expecta-

tion it is easy to verify that

T
= -EL.E
Mo ess1,2 - PLELE
T

T
= -EI.E ®
Mh,ts;1,3 EL BI X ®X

Mh,ts;Z,] B _EItXEIs
T
Mﬁ,ts;Z,Z - —EItXEIsX

T
= - X X'®
Mh,ts;2,3 EIt EIS X

= -EI_X®
Mh,es53,1 T TR
T

= -EI_X®XE
Mh,ts;3,2 EL XeXEL X

T T
- -EI X6XEI X ®X .
Mh,ts33,3 I XeXEL X ®X

T

Application of lemma 4.2 and lemma 4.3 gives the earlier mentioned

expresgions.
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The following lemma, "the S-method", will play a dominant role in

the remaining part of this paper. It can be found in SERFLING (1980),

§3.3, theorem A. We will refer to it as "the &-method".

1
LEMMA 5.1. suppose Lmz(Ym—n) > NP(O,Z) for some sequence of random
vartables Y assuming outcomes in WP, suppose moreover that

h = (hl,...,gq): RP >RY 45 differentiable at n,

oh ah
= (—L -4 B o S 05T
Vh = ( BX(n),..., BX(n)) where S = (axl""’ax )
then
Im? T
m (h(Ym)—h(n)) > Nq(O,(Vh) Z(Vh))-
Let us now define
2 = _l.. U
Phs Nh h,s
; - Sh,s _ l/Nh Sh,s
hs Uh,s l/NhU.h’S
el ) = T,s  50,5%%n,s _ M Th,s /M S, ® /M Sh,s
®
hs® U o T OO o UN T o NG TN T
We formulate the lemma
LEMMA 5.2.
Phs—phs
uhs_uhs
oy |vee @y )-vee@ ) By ,ss Bh,st
N . =\ 2, (0, )
h _ 2(1+p+p ) B B
Pht Pht h,ts “h,tt’
Yhe Hht
. _vec(th)—vec(th)d
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where
Phs(]—phs) 0 0
1
B = 0 —— 0
h,ss Phe hs |
0 0 —(I+K )(Z, ®% )
he p’ " "hs "hs
and
“PhePhs 0 O
Bh,ts = 0 0 0
0 0 0
. _ T . .
while Bh,st = (Bh,ts) and Bh,tt is Bh,ss with s replaced by t.

PROOF. The lemma can be proved with lemma 5.1 and lemma 4.1. So we need
the matrix Vh of partial derivatives in the point n, = (p ,uT ,vecT(Z ),

T T T ] hs’"hs hs
Pheo Mo Vee (th)) . Write

_ Vh,ss vh,st
V =
h \Y Y
h,ts 'h,tt
then V is (; aT VecT(f )) differentiated to
h,ss hs’"hs’ hs

. . T , T\T
( \( AR

\a(l/Nh U, ) \a (/N shS)J \a(1/m, Ths)/ Ji

. . T T
in the point (phs,uhs,vec (2, )):

1 T 1 T 1 T T
1 ——q ——vec (Z, ) +——u. ®u
Phs hs phs hs phs hs "hs
1 1 T 1 T
v = 0 —I ey, ®I ) ———(I ®u, )
h,ss Ppg P Pyq hs p Phe P hs
o 0 L1,

Phs P

I {th ., s v -
vh,tt is h,ss with s replaced by t and it is easy to see that Vi, ts

Vh ot = 0. With use of the properties presented in section 3 the
3

computation is straightforward.




15

6. CASE I, NO ASSUMPTION ABOUT HOMOGENEITY OF VARIANCE-COVARIANCE MATRICES

1
In order to derive the asymptotic distribution of N*(R oy .

. . ymp ( '!(X,J) p'I(X,J))’
in which (x,j) is the observation vector, it is easiest first to find out

the asymptotic distribution of
1G 3

Remember that
1 —% Ta=-1

L (T} s _A
lzhjl exp (-3 (x uhj) Zhj(x uhj))

£ .(x) = —=
hj (2,")13/2

where ﬁhj and ghj have been defined in section 2. Application of the

§-method requires that we need

el

=3

F

o Jlaae
~
=3
N’
1

= fhj (X)

P, -
(6.1) ——lgkgl————(n) = (X)Z (x—u ) and

Ppith; hj

"hj hj(X)< ) = p £ . () {~bvec (T D+ 67} G, ) e (k)
vaEiéﬁi) "= Ppithi z hj’" 2%*hi * Mhj hi ¥ "hj

T T T
where n = (phj,uhj,vec (Zhj))

Now with lemma 5.2 in which it is sufficient only to consider that
component of the random vector which has Bh ij as the asymptotic
’

variance, we obtain:
LEMMA 6.1.

PROOF., With the remarks preceding lemma 6.1 we compute immediately the

variance

2 2 T,.—1
Phj(l-phj)fhj(X)-+phjfhj(X)A i aPhJ hj (X)[{—vec (Zhj) +

s +(Z;;(x—uhj))T®(Z;;(x—uhj))T}(I+Kp)(ZhjEZhj){—vec(Z;;} +

(z;;(x—uhj>)a(z;;<x—uhj)>}].
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For the terms between the square brackets we obtain after the cross—

multiplication as first term:
‘vecT(Z—!)(I+K ) (T, .8% .)vec(Z_!)
hj p” " hj hj hj

. -1, _
now, using (Zhj®2hj)vec(2hj) = vec(Zhj)
K = .
ﬁvec(Zhj) VeC(ZhJ)
and
vecT(Z_!)vec(Z L) = tr(Z—}Z ) =tr(I) = p
hj hj hj hj ’

this first term becomes 2p. As second term we get
—vecT(Z—!)(I+K Y (E, .®% .){(Z—!(x—u .))@(Z—!(x—u 1}
hj p’ hj Thj hj hj hj hj’ "’

by using

P
= vec ((x—y) (x-u)T) = (x-n)®(x-u)

K (G )@y ) = Kvee (Geoiy ) (x-uhj)T) -

this term becomes

—2vecT(Z;;){(X—uhj)®(x—uhj)} —2vecT((x—uhj)Z;;(x—uhj)) =

2
= _ZAx;hj'

With the same technique we find for the thirth term —ZAi. . and for the
k4

hj

.. Together we obtain for the variance

fourth 2A4
x3hj

2 2 2

4
x3hj

2 2 4
1 -
+2phjf]j(x){p 2A hj +A shi

which is equal to {phj(l—phj) +%phj(p+A )}fij(x). This finishes the

proof.

If we extend our considerations to all k populations, remembering

N
that N = N, ... +N_and b, 1

1 " = WT""’bk = 5 as introduced in section 2

we obtain

}

9
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17

prAiX)— pufu(x)

N . > N, (0,D)

-~

fkj(x) fk (%)

ij pk]

where D is a diagonal matrix with

Once again using the &-method we get for the estimator R'l<x ) for
b ]
., that

Pl T |

NM@E e ) 5w 0,

| x,3) 7 | (x,3) k'’

in which

R . (1- ,
6.2) £,t 2ptl(x’.])( ptl(X,J))

t,s _%ps](x,j)pt](x,j) s Ft

and A a diagonal matrix with

)

N -
A =3 {4Q1 Phj) +2(p+AX;hJ

hPhj

7. CASE II. ASSUMPTION: Z;. = ... = I, .(=L,)
] ki ]

In this case the variance-covariance matrix Zj is estimated by

N

_ | k “h
. = (X, .1 .)( fo.) I( ;=3)
J NIJ R R Xh hj Xhl hj
B % ﬁ“‘IfEi?ﬁ"" Eh' T P,.b.* : +p, .b § bhsh'gh"
h=1 17 i M P11 TPk b=t 3

First we formulate a lemma

LEMMA 7.1. If Km are symmetric positive definite random pxp matrices with

= (vec(ﬁm) —-vec(A)) -+ N(O,M)
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where A is also symmetric positive definite then

-1

Lm%(vec(K;’)—vec(A“)) > N0, A ea M lea™ly)y.

PROOF. By noting that

ij . . T, -1 _ _
ga = —alaaBJ or E%EE%%j_l = —-A 1®A 1’
of
where we used the notation a. i3 = Aij and a'J = (A—l)ij, the lemma follows

directly with the 6&-method.

The theorem of section 5 and the independence between the samples

for the k populations gives

vec (%, .)-vec(z.)
137 3

Nl—
-

N . + N(0,T)

ij "ij

vec(Z, .)-vec(x])
L kJ J e
where T is a block-diagonal matrix with on the diagonal the blocks

SR Bl‘ G ) (er )}, b=k

{— .
hj 3 Pp Pp;

1
b, hj (1- phJ)’b 5

The partial derivatives of vec (Z ) Wlth respect to p £° atj and

vec(th) in n (pt.,ij,vec (Z )) for t = 1,,..,k are

t
8vecT(§.) svec: )
() = 0, —p=—1-(n))
Pej tj
avecT(Z.) Py
© () = ] I,.

Bvec(ztj) t b1p1j+...+b

kPkj P
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Thus the &-method gives

1

e G y-vee ) &
»N (vec(Zj) vec(Zj)) N(O, (I+Kp)(2j®2j)).

k .
(poPyPy3)
Using the lemma of this section we get
N%(vec(ifl)—vec(z:fl)) L N(O, 1 (1+k ) - lezT 1)
3 ] k P’ ]

CpePpPyj)

which is, as can easily be seen, asymptotically independent of the

estimators th’ ﬁhj’ h=1,...,k. Hence

p]j-plj

M137H

D=
—

N . -+ N(Q,V).
Pri Pkj
_vec(f}l)—vec(zgl)d

where V is a block-diagonal matrix with on the diagonal the blocks

1 1 1
{(“"'P -(I_P .),"'—'————Z.)h=l,...,k},
bh hj hj bh bh' N

(7.1)

1 vl _—1
(I+K ¥z. ®%. ).

ko b py 1]
h=1 h*hj

For the partial derivatives of the estimator for the Maha;anobis

(z )

squared distance Az with respect to u and vec(ZJ ) for h,t = 1,...,k

in the point n (pT;?i]J,...,ka,uk.,vecT(Z )) we get
Ejé-z}f—f—il-m) = 217 Gy 8
8u £j uh ht
~2

BAX b
— 28] __(n) = (x-u, .)®(x-u, .)
Svec(ZJl) hj hj




20

where aht

is de KRonecker delta notation.

Again applying the S-method gives:

Pj "Plj
1 5 « TPy, s ' T
N2 kj “kj 3N (0,( 0\\)_
A2 2 2k \F r )
x31] %313 0 A
~2 * 2
Haski sk
Where
= —l-p L(1-p,.)
pstt bt t] t]
Fp;ts =0 t#s
and
_ 4 2 2 4
1-IA;tt - btpt. AX;tj * (Zk b ) Ax;tj
J h=1"hPhj
r = 2 {(x-u, ) £ (eu_ )}
Asts (Zk b ) t31” 7 sj
h=1"hPhj
and FO = 0.
Now, note that for t = 1,...,k
-~ ~2
-1
. ) Dtptiéxp( 2Ax;tj)
tl(x’j) k - _lAz
Z=1PhPpjeXP (28, ps)
and
p.p..ex (—1A2 )
o) _ PP TP 2 e
t](x,3) k _152
Zy=1PhPR; %P 2y p5)

We have the following

e

partial derivatives:




s
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Q
&
“
>
P
W
Ll
Gt &
S’
7~~~
g
I

B, "5 e (P
EEElSELil (n) = el s #t
aﬁSj st pSE(X’j) pt](xxvj)

and

il

aRt-l (X’j) ( )
) n

aAx;tj

Fel i) g -

e, (P, 5))

el eei) PG 0T E

So we obtain

} - L)
N (R'l(xgj) p'l(x,j)) N(O,‘PA‘I’).

where ¥ is defined in the previous section and A is defined by

4 4 2 2 4
A, =—— (1-p_.) + ;77— A . + —5—— A .
tt tptj t] btptj x3t] ( E—]bhph‘) x3t]
(7.2)
_ 2 _ T.-1, _ 2
Ay s & o) {(x “tj) Zs (x usj)} t #s
h=1"h"hj

8. CASE III. ASSUMPTION 211 B L., = de(=2)

In this section we assume that the variance-covariance matrices for
each population and for each possible outcome of the discrete random
variable are the same, namely X.

As estimator for I we use

k d Y

l -~ -~
X (X .= ) (X .-u ,)I(D .=£)
N hzl ZZI iZI Xhl Yhe Xhl Uhe hi

™)
[}

d
b, ¥ p,=
h L, Pne’he

1

K
. = 7
h=
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d
where th is defined in section 2. Write Wh =£Zl thZhK and so

~ k -~

L = hzl by ¥, .
For the partial derivatives of Ehs and vecT(§h) with respect to §ht and
vec(ght) in n =(ph],...,phd,vécT(Z))T we obtain

2 ) = 5, Sy () = 0

Phe 8 Zht

BvecT(@ ) : avecT(Q )

—~—=r-—ll— (n) = vecT(Z ) -—‘——ﬂrll' (n) =p. 1.
9y ¢ h hs Bvec(zhs) " hs p?

Application of the theorem and lemma of section 5 gives

Phs Phs 'phs(l—phs) 0 0
! ~ L 1
Nﬁ L U + N(O, 0 5——2 0 ).
R hs
vec(Th)—vec(Z)J 0 0 (I+Kp)(2®2)

For the asymptotic distributions dealing with £ and E—l we obtain in an

easy way

N%(vec(g)—vec(z)) > sz(O,(I+Kp)(Z®Z))
and

N (vee G H-vee@™)) » sz(o,(I+Kp)(z:']®z_l)),

where we have used the lemma of section 7 for the last transition.

So we obtain
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Plj_plj 1
M7
3 ) L
N . + N(O,W)
ij_pkj
_vec(f-])-vec(Z—])_

where W is a block-diagonal matrix with on the diagonal the blocks

1 1 1 5 - -1__-1
{G=p, .(I-p, .)s7——12) h=1,...,k}, (I+K )(Z '®% ).
bh hj hj bh bhj D
Note that we have now obtained a formula similar to formula (7.1). Since
from this point on the computation are the same we can directly use
formula (7.2) by replacing Zj by I and Xk bhphj by 1.

h=1
Hence

N? (R ) £ neo, v ayy

o &P ] (%,

where ¥ is defined in section 6 and A by

4 2 4

A = —— (I-p_.) + +—— A . + 2A_ .

t,t tptj t] btptj x3t] x3t]

; T -1 2
At,s = 2{(x “tj) pX (x-usj} t # s.
9. CASE IV. ASSUMPTION £, = ... =12 .(<5), h=1,....k
Here we have
d Y

™)
I

I ~ ~ T
h TN L izl‘(xhi‘“hz)(xhi'”hz) 1D ;=8)

d
ZZI phﬂzhﬂ = Wh, defined in section 8.
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Therefore we can use the result of expression 8 if we replace Qh by I, :

h
phs—Phs phs(l—Phs) 0 0
1 ~ L 1
2 - —
Nh L <+ N(O, 0 phSZh 0 ).
vec(Zh)—vec(Zh) 0 0 (I+Kp)(2h®zh)

If we now look back to the beginning of section 6 we see that the partial
derivatives presented in formula (6.1) are also valid for the case of

this section if we replace Zhj by Zh.

In similar way as in lemma 6.1 we obtain that

4

x;hj)+

1 ~m A~ L 2
2 - - 1
Nh(phjfhj(x) phjfhj(x)) 3 N(O,{phj(l phj)+2phj(p+A

2

2
x;hj}fhj(x))

and hence

1
N2 (R £ neo,¥Taw

(x,§)’

'| (xsj)—p e

where ¥ is defined in formula (6.2) and A is diagonal with

4
4(1-p, .) 2(p+A_ ., L)
A.h = "'b—“-ll‘l— (1+A2.h.) + bX,hJ .
0P j x5 h
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