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I. INTRODUCTION 

Let us assume that an observation originates from one of k populations. 

Information about each of the populations is available in the form of a 

training sample i.e. outcomes of independent random vectors. Each random 

vector contains both continuous and discrete random variables. So we have 

the realizations of the independent random vectors 

T 
( X. X. W W ) i = I , ••• ,Nh: h = I , ••• ,k. -~it'··•,-~ip' hil'"""' hiq ' • 

where ¾iI'''"'¾ip are p continuous and Whil'"··,Whiq q discrete random 

variables. The discrete variable Whil has a finite range of al distinct 

values or categories. We combine the q discrete variables into one 

discrete variable Dhi with values in the set I, ••• ,d where d = rri=I al. 
Writing ¾i = (¾it'···,¾ip)T and assuming conditional normality for the 

continuous variables we shall concentrate on the random vectors 

(I.I) ( ¾i), i = I, •.• ,Nh; h = I, ••• ,k 
Dhi, 

where 

( I. 2) h = 1, ••• ,k; l = I, •.• ,d 

and 

d 
P(Dh

1
.=l) =Pho> 0 with L p = I, h = I, .•• ,k. 

~ l=I hl 

Let fhl denote the Np(µhl'rhl) probability density function. The given 

b . d d b ( T • )T JRP . { I d} . o servat1.on vector, enote y x ,J , x E , J E , ••• , , 1.s 

considered as the result of a drawing from one of k distributions, each 

associated with one population. The distributions have densities 

phjfhj(x), h = I, .•• ,k in the point (xT,j)T w.r.t. the product of Lebesgue 

measure and counting measure. Assume that the prior probabilities of 

belongi~g to the populations are p1, •.. ,pk. The posterior probabilities 

are defined by 
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( I. 4) t = l, ••• ,k. 

as given constants. The k unknown 

posterior probabilities are considered as unknown parameters which are 

estimated from the training samples. Let RIC .) denote an estimator for 
t x,J 

Ptj(x,j)' t = l, ... ,k. Using the notation 

(1.5) 

k 1 
and N = Eh=lNh we shall prove that N2 (R•l(x,j)-p•!(x,j)) is asymptotically 

normal with expectation zero and a singular dispersion matrix. 

We shall consider four different situations depending on assumptions about 

homogeneity of the variance-covariance matrices of the multivariate normal 

distributions. 

The literature about estimating posterior probabilities in discriminant 

analysis deals mostly with the assumptions k = 2 and joint normality of 

the measured variables. So this paper in which discrete variables are 

added is an important extension. SCHAAFSMA & VAN VARI< (1977) considers the 

case p = l, k = 2. SCHAAFSMA & VAN VARK (1979) deals with p ~ l, k = 2. 

AMBERGEN (1981) considers the case p ~ l, k ~ 2 and gives of various 

stochasts exact moments. AMBERGEN & SCHAAFSMA ( 1982) considers 

p ~ 1, k ~ 2 with normality assumptions as well as only assumptions 

about continuous densities, in the latter case a nonparametric approach 

is given. AMBERGEN & SCHAAFSMA (1983a) contains an application 

to physical anthropology. AMBERGEN & SCHAAFSMA (1983b) contains a simula­

tion experiment in which the theoretical confidence coefficient for 

confidence intervals for the posterior probabilities is compared with 

that obtained by using asymptotically normal approximations. AMBERGEN & 

SCHAAFSMA (1984) is a revised version of the latter. SCHAAFSMA (1982) has 

an emphasize on the selection of variables. Apart from the "estimative" 

methods used in this paper the "predictive" method of GEISSER (1964) has 

been d"iscussed in the literature. AITCHISON, HABBEMA & KAY (1977) is a 

comparison of the twome..thods. McLACHLAN (1977) studies the bias of sample 
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based posterior probabilities. McLACHLAN (1979) compares the bias of 

classical plug in estimators with that of predictive estimators. RIGBY 

(1982) constructs credibility intervals for the posterior probabilities in 

order to compare the estimative and predictive estimators. In KRZANOWSKI 

(1975) an allocation model for two populations with mixtures of continuous 

and binary variables is considered. The continuous variables have also 

conditional on the discrete variables multivariate normal distributions. 

However, more structure is supposed for estimation the discrete and 

continuous parameters than in this paper will be done. The argumentation 

in that paper is obvious because for small training samples the 

unstructured estimation can be unsatisfactory. 

2. RESULTS 

In this section we define the estimators and give the asymptotic 

distributions for the posterior estimators in four different cases. The 

proofs are given in the following sections. lJe use the following definitions 

and notations, in which h = I, ••• k and l = l, •.• ,d: 

b.2 
x;hl 

Nh size of h-th training sample 

k 
N = l Nh, 

h=I 

Nh 
b = -h N 

b.hli = I(Dhi=l), Nhl = 

Nhl 

I 
Nh 

phi = I ¾ib.hli Nhl i=I 

I 
Nh - -I = 1 (¾i-µhl)(¾i-µhl)b.hli hl Nhl i=I 
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A A* 

= fh . (x; yh,. ' Eh . ) J , J J 

,,,.* 
where rhj is an estimator for Ehj defined in theorem 2.1.We state now 

THEOREM 2. 1 • 

(2. 1) 

where 

(2. 2) 

(2. 3) 

'¥ t,t 

R.l (x,j)'P•l(x,j) a~: defined in (1.5) and for A we distinguish four 

cases dependent on Ehj, the estimator for Ehj: 

Case I. 

(2.4) 
A* A 

Ehj = Ehj h = 1, ••• ,k 

(2.5) 

A = 0 t f: s t,s 

Case II. Assumption: r 1j = 

(2. 6) 



(2. 7) 

A t,t 

A t,s 

4 . 4 2 k -1 4 
= b ( I -pt ' ) + b A t . + 2 ( Eh I b hph ' ) A t . 

tptj J tpti x; J = J x; J 

k -1 T -1 2 
= 2(Eh lbhph.) {(x-µt.)~L (x-µ .)} 

= J J J SJ 
t 'F s 

Case III. Assumption E11 = = E (=E) kd 

(2. 8) 

A 
4 4 2 . 

2 
4 = t,t b p . (1-pt.) +b A • + A • 

(2. 9) t tJ J tptj x;tJ x;tJ 

A 
T -1 2 t 'f s = 2{(x-µ .) I (x-µ .)} t,s tJ SJ 

Case IV. Assumption: rhl = 

(2. 10) 

(2. 1 I) 

"'* ,. d 
I 

,. 
Ehj = Eh = PhlEhl 

l=l 4 
4( 1-ptj) 

(l+A2 .) 
2(p+A .) 

At t = + x; tJ 

' btptj x;tJ bt 

A t,s = 0 t 'F s 

5 

Remark. A special situation occurs if only one discrete state is possible: 

phj = I, h = I, ••• ,k; j =I.For the four cases we obtain: 

Case I= 

(2.12) 

Case II = 

(2. I 3) 

Case IV 

2 4 
A = - (p+A ) 
t,t b x·t 

t ' 

A t,s = 0 t 'F s 

Case III 

A t,s t 'F s 
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2 
where we dropped the index j = 1 in ~x·t• These expressions (2.12) and , 
(2.13) are the same as found earlier in a model with only continuous 

multivariate normal variables, see e.g. formulas (2.4) and (3.6) in 

AMBERGEN & SCHAAFSMA (1982). 

3. SOME PROPERTIES OF MATRICES 

We introduce some definitions and give a sunnnary of properties which 

enable us to perform computations in a relatively short and elegant way. 

We closely follow notations in MAGNUS & NEUDECK.ER (1979). 

If A is a m x n matrix, A •. the j th column of A, then vec (A) is the nm 
J T T T 

colunmvector defined by vec (A)= (A 1, ••. ,A ). • •n 
If A is a m x n and B a s x t matrix then the Kronecker product A® B is 

the (ms,nt) matrix defined by A0B = (a .. B) 
1J 

- (A1 @B 1)(A2 @B2) ••• (~0Bk) = (A1A2 ••• ~) @(B 1B2 ••. Bk) provided that 

A1A2 ••. ~ and B1B7 ••• Bk exists. 
(A@B)-T~ = AT @BT 

- (A@B) @C = A@ (B@C) 

- (A+B) @ C = (A@B) + (B0C) 

- A 0 (B+C) = A @ B + A 0 C 

- vec (ABC)= (CT0A)vec(B) 

- A = l @A = A@ 1 

- trace(AB) = vecT(AT)vec(B) 

- Fore. the i-th unit dolunm 
1 

K = 2:~ 1z:~ I (E .. @E .. ) 
p 1= J= it J1 

vector of dimension p we define 
T where E .. = e.e .. 

- K vec(A) = vec(A) 
p T 

- K = K 
p p 

- K (A@B) = (B@A)K 
p T p 

- vec(I)vec (I) = L .E .. @E .. 
1,J 1J 1J 

1J 1 J 

Forµ a pxl vector and 2: a synnnetric pxp matrix we shall use frequently: 
T - vec(µµ ) = µ @µ = Iµ 0µ. l = (I@µ) (µ@l) = (I@µ)µ 

- (µ@I)I = µ®I because 

((µ@I)E)T = 2:(µT0I) = (102:)(µT@I) = 
T - (I@µ)E = (2:0µ) because 

• T T T ((I@µ)I) = 2:(I@µ) = (I@l)(I@µ) = 

T T µ 02: = (µ@I) 

T T I@µ = (I@µ) 
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T T - (µ@E)(I®µ) = µ®E®µ because 

(µ@E)(I@µT) = ((µ@E)@l)(I@µT) = ((µ@E)I)@(l.µT) = µ@E®µT 

- (E®µ)(µT®I) = µT®E®µ because 
T T T T T ((E@µ)(µ @I)) = (µ@I)(E@µ) = (µ@I)(l@(E@µ )) = (µ.l)@(I(E@µ )) = 

µ®E®µT = (µT@E®µ)T 

4. ASYMPTOTIC DISTRIBUTION OF A BASIC RANDOM VECTOR 

The asymptotic distribution presented in lemma 4.1 will be the corner­

stone for the proof of theorem 2.1. 

For h = I, ... ,k ands= I, ... ,d we define 

Nh 
u = I I(Dhi=s) h,s i=l 

I x I r.v. 

Nh 
s = I ¾il(Dhi=s) h,S i=l 

p x I r.v. 

Nh 
T = I (¾i®¾i)I(Dhi=s) h,s i=l 

2 
p x I r.v. 

and formulate the lemma 

LEMMA 4. I. 

_IU 
Nh h,s - Phs 

_I_S 
Nh h,s - phsµhs 

,., 



8 

with~ partitioned as 

. ('b,ss Mh,st) 
~,ts ~.tt 

and with an obvious further partioning, we state further that 

and 

~,ss;l,l 

~,ss;I,2 

~,ss;I,3 

~,ss;2,2 

~,ss;2,3 

= Phs(l-phs)µ!s 

· T T T 
= Phs(l-phs){vec (Ehs)+µhs®µhs} 

= p E + p (Ip )µ µT 
hs hs hs - hs hs hs 

T T T 
= phs{µhs®Ehs+Ehs®µhs}+phs(l-phs){µhsvec (Ehs) + 

( T T ) } 
¾s µhs®µhs 

~,ss;3,3 = phs{(Ehs®Ehs)(I+Kp)+(µhsµ!s)®Ehs+µ!s®Ehs®µhs + 

T T 
µhs ®Ehs ®µhs + Ehs ®µhs µhs} + phs ( l -phs ) 0 

T T T T 
{vec(Ehs)vec (Ehs)+vec(Ehs)(µhs®µhs)+(µhs®µhs)vec (Ehs) 

T T 
+ (µhs®µhs)(µhs®µhs)} 

~.ts; I, I 
= -phtphs 

~,ts;I,2 
T 

= -phtphsµhs 

T T T 
~.ts; I ,3 

= -ph Ph {vec (Eh )+µh ®µh} t _s s s s 

~,ts;2,I = -phtphsµht 

~,ts;2,2 
T 

= -phtphsµhtµhs 

T T T 
~,ts;2,3 = -phtphsµht{vec (Ehs)+¾s®µhs} 



~,ts;3,I 

~,ts;3,2 

~,ts;3,3 

T 
= -phtphs{vec(Iht)+µht®µht}µhs 

T T 
= -phtphs{vec(Iht)vec (Ihs)+(µht®µht)vec (Ihs) 

T T T T 
+ vec(Iht)(µhs®µhs)+(µht®µht)(µhs®µhs)}. 

In order to prove lennna 4.1 we shall first formulate two other lennnas. 

For that purpose we shall introduce the short notation X = ~I and 

I = I(D =s) which we shall use in the remaining part of this section. 
s hl 

LEMMA 4.2. 

(a) EIS= phs 

(b) var Is = phs (1-phs) 

(c) 

(d) 

(e) 

EI X = ph µh s s s 
T T 

EI XX = ph (Ih +µh µh) s s s s s 

EI X@X = ph (vec(Eh )+µh @µh ). s s s s s 

9 

PROOF. (a) and (b) follow from the binomial (I,phs) distribution, (c), (d) 

and (e) can be derived with use of conditional expectation. 

! ! 
LEMMA 4.3. If U ~ N (O,I), X = µ+I 2U with I 2 symmetric positive definite 

p 
then 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

EU @U = vec(I) 

EUUT @U = 0 

EUUT @UT = 0 

T T T T T T T EX(X @X) = µ(µ @µ )+µvec (I)+µ @I+I©µ 

T T T EUU @UU = K +I@I+vec(I)vec (I) 
p 

E(X@X)(XT@XT) = µµT©µµT+I©µµT+(µ@µ)vecT(I) + 
T T T T µ @E@µ+µ®E@µ +vec(I)(µ ®µ) + 

µµT@I+(I@I)(I+K )+vec(I)vecT(I). 
p 
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PROOF. (a) ••• (d) follow directly from 

EU.= EU~= 0 

and 

l. l. 

2 EU. = I, 
l. 

EU~= 3 
l. 

where U. is the i-th component of U. To prove (e): 
l. 

where we have deleted terms with first and thirth moments. Using 
! ! ! 

I 2U = l@I 2U = I 2U@l for the last two terms we get 

With EUUT = I, EUT@UT = vecT(I) and the property vec(ABC) = 
! 

using the special choice A= C = I 2 and B = I (e) is proved. 

proof of (f) : 

By defining T. . = E. . + E. . we obtain 
l.J l.J J l. 

ENI. U. UUT = T. . + o .. I 
l. J l.J l.J 

T (C @A)vec(B) 

where o .. is the Kronecker delta: o .. = I if i = j and= 0 if i I j. 
l.J l.J 

Now 

EUUT®UUT = EL . . U.U.E .. @UUT = 
1,J l. J l.J 

I .. (E .. @(T .. +o .. I)) = L .E •• @T .. + L .E .. @o .. I= 
1.,J l.J l.J 1.J l.,J l.J l.J l.,J l.J l.J 

L .E •• @E .. + I .. E .. @E .. + (I.E .. )@I= 
l.,J l.J l.J l.,J l.J J l. 1. l.l. 

vec(I)vecT(I) + K + l®l 
p 

proof of (g): 

E(X@X)(XT@XT) = EXXT@XXT = 

1 T T 1 1 T T 1 
E(µ+I 2U)(µ +U I 2 )@(µ+E 2 U)(µ +U I 2

) 

deleting terms with first and fifth moments this becomes 
" 



I I 

T T 1 T 1 T T 1 T 1 
µµ @µµ + r 2 EUU r 20µµ + EµU r 20µU r 2 + 

1 T T 1 T 1 1 T Er 2Uµ ®µU L 2 + EµU r 20r 2uµ + 

I T I T T ! T ! 
Er 2Uµ 0L·2Uµ + µµ 0r 2 EUU L 2 + 

I T I I T I 
Er 2uu r 20r 2uu r 2 

T TT T T I I T 
Now, use EUU = I, EU @U = vec (I) and vec (I)(r 20r 2) = vec (r) then the 

first three terms become 

T T T T µµ @µµ + r0µµ + (µ@µ)vec (r). 

T 
Because EU®U = I we obtain for the fourth term 

1 T 1 1 T 1 
(r 20µ)I(µ 0r 2

) = (I0(r 20µ))(µ 0r 2 ) = 

T 1 1 T 1 1 T (I.µ )0((r 20µ)r 2
) = µ 0(r 20µ)(r 201) = µ 0r0µ 

T The fifth term is the transpose of the fourth term and is µ0r0µ 

Further 

1 1 T T T T (r 20r 2 )vec(I)(µ ®µ) = vec(r)(µ ®µ) 
and T 1 T 1 T ~µ 0r 2 EUU r 2 = µµ @r 

The last term can be written as 

I ! ! ! ! ! 
now using (r 20r 2 )K = K (r 20r 2

) and (r 20r 2 )vec(I) = vec(r) the proof of 
p p 

(g) and thus of lennna 4.3 is finished. D 

Proof of lennna 4. I. With the results of lennna 4.2 and lennna 4.3 it is 

now easy to compute the components of the partitioned matrices M. and -n,ss 
M. • We have -n, ts 

~,ss;I,I 

var(I) 
s 

since 15nhi=s) and I(Dhj=s) for i I j are independent. Further, without 

complete proofs we summarize: 
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~,ss;l,2 = EI XT - EI EI XT 
s s s 

~,ss;l,3 = EI XT®XT - EI EI XT®XT 
s s s 

~,ss;2,2 = EI XXT - EI XEI XT 
s s s 

~,ss;2,3 

The components of the partitioned matrix M. are derived in a similar 
-h, ts 

way. We have 

~'ts; I, I 

= cov(I ,It)= EI I - EI EI = -EI EI s s t s t s t 

where we have used. the independence between I(Dh.=s) and I(Dh.=t) for 
1. J -

if j and the fact that EI I = 0. This is because I I, the product of 
s t s t 

the two variables Is and It' can only have the value O. So that 

EisitY = 0 for any random variable Y. Deleting terms with such an expecta­

tion it is easy to verify that 

~,ts;I,2 = -EitEI
8

XT 

~,ts;l,3 = -EI EI XT®XT 
t s 

~,ts;2,l = -EitXEis 

~,ts;2,2 = -EitXEI
8

XT 

~,ts;2,3 = -EI XEI XT®XT 
t s 

~,ts;3,l = -EI X@XEI 
t s 

T 
~,ts;3,2 = -EI X@XEI X t s 

~,ts;3,3 = -EI X@XEI XT@XT. 
t s 

Application of lermna 4.2 and lemma 4.3 gives the earlier mentioned 

expreseions. 



5. ASYMPTOTIC DISTRIBUTION OF SOME ESTIMATORS 

The following lennna, nthe cS-method", will play a d.ominant role in 

the remaining part of this paper. It can be found in SERFLING (1980), 

§3.3, theorem A. We will refer to it as "the o-method". 

l 
LEMMA 5.1. suppose Lm 2 (Y -n) • N (O,I) for some sequenae of random m p 
variabZes Y assuming outaomes in JR.P, suppose moreover that 

m 
h = (h

1
, ••• ,liq): JRP +JR.q is differentiabZe at n, 

ah1 ahq a a a T 
Vh = <ax(n), ... ,ax-(n)) where ax= <ax1'"""'ax/ 

then 

Let us now define 

p = _I U 
hs Nh h,s 

- sh' s - I /Nh sh ' s 
µhs - ~h - 1 /Nh uh 

,s ,s 
A T s ®S 

(I ) _ h,s h,s h,s = 
vec hs - -U-- - U ®U 

h,s h,s h,s 

We formulate the lemma 

LEMMA 5.2. 

A 

vec(Ihs)-vec(Ihs) 

µht-µht 

vec(Eht)-vec(Iht) 

1/Nh Th,s 

I/Nh uh,s 

l /Nh sh, s 01 /Nh sh, s 

1/Nh uh,s 1/Nh uh,s 

13 
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where 

and 

B h,ss 
0 0 I 

-
1
-E 0 

phs hs 

0 -
1
-(I+K )(Eh ®Eh) 

Phs p s s 

1

-phtphs O OI 
B = 0 0 0 h,ts 

0 0 0 

while Bh = (Bh )T and Bh is Bh withs replaced by t. ,st ,ts ,tt ,ss 

PROOF. The lemma can be proved with lemma 5.1 and lemma 4.1. So we need 
T T 

the matrix Vh of partial derivatives in the point nh = (phs'µhs'vec (Ehs), 
T T( ))T . pht'µht'vec Eht . Write 

( d ( a \ T ( a \ T\ T 

\ a (I /Nh uhs) ' a ( 1 /Nh shs)) ' a (I /Nh Ths)} } 

T T 
in the point (phs'µhs'vec (Ehs)): 

1 T 
--.-µ 

phs hs 

V = h,ss 
0 -

1
-I 

phs p 

0 0 

I T l T T 
--vec (Eh ) +--µh ®µh 

Phs s phs s s 

__ l_(µT ®l ) __ l_(I ®µT ) 
phs hs p Phs p hs 

1 
-I 2 
phs P 

V is V h,tt h,ss 
withs replaced by t and it is easy to see that Yh ts= 

' Vh = 0. With use of the properties 
,st 

presented in section 3 the 

computation is straightforward. 
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6. CASE I. NO ASSUMPTION ABOUT HOMOGENEITY OF VARIANCE-COVARIANCE MATRICES 

l 
In order to derive the asymptotic distribution of N2 (R I -p ) 

• (x, j) • I (x, j) ' 
in which (x,j) is the observation vector, it is easiest first to find out 

the asymptotic distribution of 

Remember that 

-where µhj and rhj have been defined in section 2. Application of the 

a-method requires that we need 

(6. 1) 

Now with lemma 5.2 in which it is sufficient only to consider that 

component of the random vector which has Bh .. as the asymptotic 
,JJ 

variance, we obtain: 

LEMMA 6.1. 

PROOF. With the remarks preceding len:o:na 6.1 we compute immediately the 

variance 
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For the terms between the square brackets we obtain after the cross-· 

multiplication as first term: 

T -I -I 
vec (Ihj)(I+Kp)(Ihj®Ihj)vec(Ihj) 

• - I 
now, using (Ihj®Ihj)vec(Ihj) = vec(Ihj) 

K vec(Ih.) = vec(Ih.) 
p J J 

and 

T -I -I 
vec (Ihj)vec(Ihj) = tr(Ihjihj) = tr(I) = p, 

this first term becomes 2p. As second term we get 

by using 

T 
K ( (x-µh.) ® (x-µh. ) ) = K vec ( (x-µh. ) (x-µh. ) ) = 

p J J p J J 
T = vec((x-µ)(x-µ) ) = (x-µ)®(x-µ) 

this term becomes 

T -I 
= -2vec ((x-µhj)Ihj(x-µhj)) = 

2 
= -2/Ji. h'. x; J 

With the same technique we find for the thirth term -2~
2 

h' and for the 
x; J 

fourth 2~4 h·• Together we obtain for the variance 
x; J 

2 2 2 I 2 2 4 
phj (l-phj)fhj (x) +phjfh/x)~x;hj + 2Phjfh/x){p-2~x;hj +~x;hj} 

which is equal to {phj(l-phj) +½phj(p+~;;hj)}f~j(x). This finishes the 

proof. 

If we extend our considerations to all k populations, remembering 
N1 Nk 

that N = N1 + •.• +Nk and b 1 = N, ... ,bk = N as introduced in section 2, 

we obtain 



N½1: < 1/xl : P 1/ 1/xl I 
pkjfkj(x) pkjfkj(x) 

L 
-+ Nk(O,D) 

where Dis a diagonal matrix with 

Once again using the a-method we get for the estimator R•l(x,j) for 

p •
1 
(x,j) that 

in which 

(6. 2) 

! 

N2(R.I·( ')-p•I( ')) . x,J I x,J 

wt,t = ½Ptl(x,j)(l-ptl(x,j)) 

wt,s = -½psl(x,j)Ptl(x,j) s # t 

and A a diagonal matrix with 

I 4 
/1_ = b {4(1-phJ.) +2(p+l:lx,·hJ')} 
·1i hphj 

In this case the variance-covariance matrix I. is estimated by 
J 

A 
k Nh 

A A T • 
L = I I (¾i-µhj)(¾i-µhj) I(Dhi=J) 

J N 1.+ ••• +Nk. h=l i=l J J 

k Nh. 
= I N J N ~hJ0 = 

h=l lj+ ••. + kj 

k 
A A 

A b b I bhphJ.LhJ .. Ptj l+ •.. +pkj k h=l 

First we formulate a lennna 

17 

LEMMA 7.1. If A are syrrnnetric positive definite random pxp matrices with 
m 

! A 

Lm 2 (vec(A )-vec(A))-+ N(O,M) 
m 
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where A is also symmetric positive definite then 

1 --I -I -I -I -I -I Lm 2 (vec(A )-vec(A )) • N(O,(A ®A )M(A @A )). 
ID 

PROOF. By noting that 

vecT(A- 1) -I -I 
or vec(A) = -A ®A ' 

where we used the notation a .. = A .. and aij = -I 
(A ) .. , the lemma follows 

l.J l.J 1J 
directly with the a-method. 

The theorem of section 5 and the independence between the samples 

for the k populations gives 

1 

p Ij-p lj 

µ lj-µ lj 

vec(I 1.)-vec(E.) 
J J 

N2 L 
• N(O,T) 

A 

µkj-µkj 

vec (Ek. )-vec(E;) 
J J 

where Tis a block-diagonal matrix with on the diagonal the blocks 

The partial 

vec(I .) in 
tJ 

I I I I I 
{bph.(1-ph.),b- L,bb(I+K )(L®L)}, h = I, ... ,k 

h J J h phj J h hj p J J 

T A 

avec (E.) 

avec(f .)Cnt) = 
tJ 



Thus the a-method gives 

l A L I 
N2 (vec(I.)-vec(I.)) + N(O, k (I+K )(I.@I.)). 

J J (Ih=l bhph.j) p J J 

Using the lemma of this section we get 

l --1 -1 L 1 1 I 
N2 (vec(I. )-vec(I. )) + N(O, k (I+K )(I: 0r: )) 

J J (Ih= 1 bhphj) p J J 

which is, as can easily be seen, asymptotically independent of the 

estimators phj' µhj' h = 1, ••. ,k. Hence 

l 
N2 

P1j-p lj 

µ lj-µ lj . 

pkj-pkj 

µkj-µkj 

vec(E: 1)-vec(r: 1) 
J J 

L 
+ N(O,V). 

where Vis a block-diagonal matrix with on the diagonal the blocks 

(7. 1) 

I 1 1 
{ (bph . ( 1-ph . ) 'b bI . ) h = 1 , ••• , k} ' 

h J J h hj J 

k 
(Ih=lbhphj) 

-1 -I 
(I+K XL ©L ) • 

p J J 

For the partial derivatives of the estimator for the Mahalanobis 

19 

2 A A-1 
squared distance ~x·h· with respect to µt. and vec(I. ) for h,t = 1, •.. ,k 

. _ ' J TJ -1 T J 
in the point n -(p 1 .,µ 1., .•• ,pk.'µk.,vec (I. )) we get 

. J .J J J J 
a~2 . 

x;hJ() = 2I-1( )o a- n - J. x-µhJ. ht 
µtj 

-2 a~ .. 
x;hJ (n) = 

clvec(r: 1) 
J 

(x-µhj)®(x-µhj) 
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where oht is de KRonecker delta notation. 

Again applying the a-method gives: 

Where 

and 

I pk3"-pk3' 
N2 

~
2 .-rl . 
x; I J x; lJ 

r = - 1 
p .(1-p .) 

p;tt bt tJ tJ 

r = o t '/: s p;ts 

r = -~- b.2 . + ___ 2 ___ b.4 . 
b.;tt b pt. x;tJ ( k b ) x;tJ 

t J Eh=l hphj 

2 T -1 2 r = _k ____ {(x-µ .) L (x-µ .)} 
/:!.;ts tJ J SJ 

(Eh=lbhphj) 

and r0 = Q_. 

Now, note that fort = 1, •.• ,k 

k ,. , ,.2 
Eh lphph.exp(-zb. h.) = J x; J 

and 

k ( 1 2 ) Eh lphph.exp -zb. h' = J x; J 

We have the following partial derivatives: 

t "f s 



and 

clRtl(x,j) (n) =_!_p (1 ) ".... I c · ) -pt I ex, J. ) optj ptj t X,J 

clRtl(x,j) (n) -I 
clp . = ;-:- Ps! (x,j) Ptl (x,j) 

SJ SJ 

clRt I (x,j) (n) = 

a~2 • 
x;sJ 

s ::/- t 

s ::/- t 

So we obtain 

I 
N~(R -p ) •I (x,j) •I (x,j) 

L 
+ N(O,'l'A'l'). 

where'¥ is defined in the previous section and A is defined by 

(7. 2) 

Att = 4 (1-ptJ') + b 4 tl . + k 2 /). 4 . 
btptJ' tptJ' x; tJ O:: b ) x; tJ 

h=l hphj 

2 T -1 2 
k {(x-µt.) r. (x-µ .)} 

( b ) J J SJ 
rh=l hphj 

A = t,s t ::/- s 

8. CASE III. ASSUMPTION r 11 = 

In this section we assume that the variance-covariance matrices for 

each population and for each possible outcome of the discrete random 

variable are the same, namely r. 

As estimator for r we use 

21 
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d 

where Ihl is defined in section 2. Write ~h = l~l phlihl and so 

A 

E = 

T A 

For the partial derivatives of phs and vec (~h) with respect to pht and 

vec(Iht) in nh =(ph 1, ••. ,phd'vecT(E))T we obtain 

3Phs 
0st op (ns) = 

ht 

T ,., 
ovec (~h) 

(nh) 
T 

3Phs 
= vec (Ehs) 

Application of the theorem and lennna of 

3Phs 
(nh) 0 

ovec(iht) 
= 

T,., 
ovec (~h) 

(~) ovec(z:hs) 
= Ph I 2• s p 

section 5 gives 

0 

_l_z: 
Phs 

0 

: ]). 
(l+K )(E@E) 

p 

~ and ;-I we obta~n ~nan For the asymptotic distributions dealing with~ ~ i i 

easy way 

l ,., 
N2 (vec(E)-vec(E)) + N 2(0,(I+K )(E@E)) 

p p 

and 

l ,.,-1 -1 l -1 
N2 (vec(E )-vec(E )) + N 2(0,(I+K )(E- ®E )), 

p p 

where we have used the lennna of section 7 for the last transition. 

So we obtain 



p Ij-p I j 

-µ 1 .-µI. 
J J . 

! 
N2 -

L 
+ N(O,W) 

Pkj-pkj 

µkj-µkj 

vec(I- 1)-vec(I-l) 

where Wis a block-diagonal matrix with on the diagonal the blocks 

Note that we have now obtained a formula similar to formula (7.1). Since 

from this point on the computation are the same we can directly use 
k 

formula (7.2) by replacing Ij by I and Ih=l bhphj by 1. 

Hence 

N½ (R ) !;. N(O ,'l'TA'l') ·I (x,j)-p •I (x,j) 

where 'l' is defined in section 6 and A by 

A t,t 

A t,s 

9G CASE IV. ASSUMPTION ~hl = 

Here we have 

= 

b.2 • + 2b.4 • 
x;tJ x;tJ 

t -1- s. 

defined in section 8. 

23 
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A A 

Therefore we can use the result of expression 8 if we replace ¥h by Eh: 

phs(l-phs) 0 

0 _l_E 
phs h 

0 0 

If we now look back to the beginning of section 6 we see that the partial 

derivatives presented in formula (6.1) are also valid for the case of 

this section if we replace Ehj by Eh. 

In similar way as in lemma 6. 1 we obtain that 

i N ( 0 ' { Ph . (I -ph . ) + ½ ph2 . ( p+ A 4 h . ) + 
J J J x; J 

2 2 
+ Ph. ( 1-ph.) b. h. }fh. (x)) 

J J x; J J 

and hence 

N½(R ) i N(O,"'TA111 ) I ( . )-p I ( . ) T T • x,J • x,J 

where¥ is defined in formula (6.2) and A is diagonal with 
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