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On absolute convergence of Jacobl series

1. Introduction

This report answers a question concerning the expansion of functions

in an absolutely convergent series of Jacobi polynomials. The Jacobi

polynomials Pﬁa’s)(x) are the polynomials which are orthogonal on the
interval [}1,1] with respect to the weight function

(1-x)% (1+x)6 . (0 > =1, B> =1),

They satisfy the relation

B (a,B)(x)

n
! 1 (@ qyymre

n+8}
’

(1.1)  (1=x)% (1+x) 1+x )

(see Szegd [5], section 4.3), usually called Rodrigues' formula. The

orthogonality property is given by

1

(1.2) P(“’S)(x) P(“’B)(x) (1=x)% (1+x)® ax = h_(a,8) ¢

J n m n m,n
-1
with
(1.3) h (0,8) = 22" r(nvar1) T(nter1)
' n' (en+o+B+1)n! T'(n+o+B+1) °?
S =0 if m#n and § =1 if m = n.
m,n m,n

With a function f(x) we can associate a series

(1.4) £(x) ~

Il o~ 8
)
J
Q
w
™

where

(a,B)

P ) (0 (140 ax

(1.5) & = (n_(,8)7" J1 £(x) P
=1

provided that the integral in (1.5) exists for all k.

The coefficients a, are then called the Fourier coefficients associated

with £(x).

We now define the class of functions A(a,B).



Definition

A function f(x) is said to be in the class A(a,B) if £(x) = ) akPiu’B)(x)
k=0

and its Fourier coefficients a _, defined by (1.5), have the property

(=2

that the series kzo |ak| |P£

0L’B)(x)i converges uniformly on the interval

=T <x <1,

It is a well-known fact, (see Szegd Ei], section T.32), that the Jacobi
polynomials reach their maximum in absolute value on the interval [—1,{1
at x = 1, provided that o > B and a > = % . Since we have

(o,B) _ I(k+a+1) a

B ) = i ey = O
it follows that a necessary and sufficient condition for f(x)&€A(a,B)
1y .

(@ > B, a2 =7%) is

(1.6) § la, | k% < =,
k=0 =

The question studied here is the following: for which values of y and

§ does the relation

(A) f(x)eA(a,B) implies f(x)e A(y,S)

hold if o > B and a > - 1 .

n

In the following it will always be assumed that o > max (B8, - %), B > =1,

2. Theorems

There is a unique way of expressing the polynomials Pia’s)(x) in terms
of the polynomials PgY’s)(x), J=1,2,...,k,
k
$
(2.1) P;u’B)(x) = z cjk(a,s;y,é) PgY’ )(x).
j=0 J

The coefficients c.k(a,s;y,é) are defined to be 0 if j > k. Rivlin and

Wilson [}] have proved the following theorem.
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Theorem 1. If y > 6 and y > = %-and the expression (2.1) is such that
cjk(a,Bgy,G) > 0 for all j and k, then relation (A) holds.

Proof. We take a function f(x)€ A(a,B). Thus

3‘0 la ] P(o’-sﬁ)(.]) < o,
k=0 k k

where the coefficients a, are given by (1.5).

We now consider the expansion

Then

1 <)
(h.(y,8))"" j 07 a BBy U8y (1e)Y (14x0)® ax
J k= k J

k
-1 =0
- T e ((nly,e))] f L8 (x) {8 (2) (1) (1420)% ax)
= Lo ak 3 Y, K X i X X x) dx

= z. 8, cjk (a,B3Y7,8)

The term-by-term integration is justified by the uniform convergence.

Since y > § and y > - % we know that

=-1<x<1

Thus it remains to show that the sequence

m
Fm=2

b, | p{¥28) (4,
is bounded.

Using the fact that c.

Jk(a,s;y,d) > 0 for all j and k we obtain

If v,8) IQZo |
F = P (1) a_c. (a,B3v,68)
m 520 J Kk=j k gk
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o0y T layl egylaine)
<jZO J K= ak cjk ayB3Y,
o m

< 1 e Pl(;a’B)U) <,
k=0
It is known, (see Askey [1]), that the positivity condition for

cjk(a,B;y,d) is satisfied in the following cases: (see fig. 1)

(i) B=3 and a > v,y > §,
(ii) a =8, y=98 and a >y,
(iii) o =Y, B =38 -n, npositive integer, y > §.
$
(a, B+ 1)
_l (OL: B)
2
0
/
-1
fig. 1.

We shall prove now, that relation (A) holds in the following cases:

P

He

S~—"
Q
I

Y, B <8, v 26,

—
.
e

~~
Q

[}

Y+ U, B=8+ u, »>0, Y >max (S, -‘%).6 > =1,
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Theorem 2. If y = o and § = 8 + u, where y > O and y > 6, then relation
(A) holds.

Proof. Following the proof of theorem 1, it remains to show that the

sequence
F = ? p{¥>8) (1) | E a c. (a,B837,8)]
= . . sPsY
moy=0 d k= K
is bounded.
We now have
T (v,8)
Fm___ z P ) z |akl ] (o BsYs )l
j=o0 Y =j
o] m )
< 1 |ak] L e 1 (4sB3Y, | Bi"2%0 (1)
=0 j:o
As
k
BB () = T e, (a,830,8+m) PGB (5,
k 520 Jk J

it follows from the identity

p{®8)(x) = (-1)% B{B2%) (), (see Szeqs [5], section b.1),

that

(B+U, )(X).

k k=7
X) = Z (-1) J ch(a’B’a B+U~) P

(B,a) _

Py (x) =
I (k+a+1) % T(k+j+o+B+1)T (k=j=p) I (j+o+B+u+1) (2j+a+B+u+1) P(8+u;a)( )
T(=u)T (kto+B+1) & T (k+j+o+B+u+2)T (k=j+1)r(j+a+1) J S

j=0

Hence

Z la | Z rgk+a+1 )T (k+j+o+B+1 )T (k=3=u) T (j+a+B+u+1) (2j+a+BR+u+1) |P(a,6+u)(1)
T(=p)T (k+o+B+1)T (k+j+o+B+u+2) T (k-j+1)T( j+a+1) B ’

I'(k+a)

k) - 0(k%) it is possible to estimate the order of magnitude

Because
of F .
m
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© k
Foce [ ola |k ] ()™ )™ 0
k=0 j=0
° gyt D2l k i
co I e | &L T e, KR ) ™)
=0 j=0 j=[k/2]+1

Zlec Z |a | k% < e,
k=0 k

Theorem 3. If y = a - pand § = B - u, where p > 0 and y > max (§,=- %),

'§ > =1, then relation (A) holds.

Proof. It suffices to show that

% (o=p,B=n) o
) |cjk(a,8;a-u,6-u)| P ’ (1) = o(k™).
j=0

Substituting the values of cj (o,B30=u,R=u) we obtain

k

k
(a=p,B=u) ‘ -1 (] - am - -
L P (1) (g (o=, b)) ‘|j P98 (4 )plamia B () () B 7H (1) BV gy |

Jj=0 k J
-1

o} Dlirorpodurt)(ajtatg=puri).
& T(a=p+1)T(j+B=u+1)

] )
I{ P}({a,s)(cose )Pgu u,B8 U)(COS 6)(sin _92_)20L 2U+1(cos %)26"2“4‘1(16'.
0

We will take the liberty of omitting lower order terms in k when they

are inessential.

We shall only consider the integration in the interval [b,ﬂq. The interval
E% ’ n] can be handled by the same argument.
It suffices to show that

E ja-u+1
j=0 '
s
2
I[ (sin %)2u 2U+1(cos %)26 2u+1P}({a’s)(cos e)Pga_u’B_u)(cos g)ae| = o(x%).

J
0
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We shall need some estimates for Jacobi polynomials and Bessel functions:

(2.2) |Pga’8)(cos 8)] <an® , 0<o 5;% , i

(2.3) |Pia’6)(cos o) <an" /2 g2 <ol (szegd [5], (7.32.6)),
(2.4) |9, (x)] <ax™, 0<x<1, (Szegd [5], (1.71.10)),

(2.5) |7 (x)] a2 x5, (Szegd [5], (1.71.11)),

(2.6) 3 (x) = (B2 cos(x = a T = 1) + 0(x"33), (szegs [5], (1.71.7)).

We shall also need the Sonine integral

© J (at)J (bt) 2_y 2 yu-v-1
oy (B T e ),
b

vtu-v-1
section 13.L6)

0

and Hilb's formula

(2.8) (sin'%)a(cos*%)BPéa’B)(cos 8) = N F(ztu+1) (sig 6)1/2 Ja(Ne)

61/20(n_3/2) if e <6 < m=e,

+ -
6%*20(n%) if0<6 <ecn !,

+8+1 . o, .
where N = n + otprl ; ¢ and ¢ are fixed positive numbers, (Szegd Eﬂ,

2
(8.21.17)).

We follow the same method as used in the paper of Askey and Wainger Ef[

and therefore we want to replace

21/2 (sin %)a-u+1/2 (cos %)B-u+1/2 Pga_u’B-U)(cos )

1/2 J (Je) , J = j + Q+B-2]J+1

by 0 - > R

using Hilb's formula (2.8).



We must then consider

T
k 2
o=t .8 o=t -
I ) Ja ! 1|J (sin -Q-)OL " 1/2(cos %)B U+1/2Pl(ca’e)(cos 6)
J=0 0
0 \o=u+ -u+ - -
{21/2(s1n'§)a H 1/2(c05'%)6 s 1/2Pga HoB 11)(cos 8) -
=o.+u .
_J T(j+a=u+1) e1/2 7 (70)
r(j+1) o=y
Setting I = I1 + 12, where in I1 the range of integration is E; . g
and in 12 the range of integration is LO, —ﬂ and using some of the
estimates mentioned above we get
Tl'
% Lo=p+1 2 -1/2”'—a-1/2" -3/2 u-p+1/2
I, = o('Z ] 3 X ' dae)
J=0 B Vi
o= ,§. 1=u
= o(x* ¥ J o' " as)
1/k
= 0(x% (e + "2 4 s , 1og k)
9
= 0(x™).
ko gmprt (V5 o 2372 ampr1/2
I, =0(]} k™ 6k 8 ae)
J=0 0
ampt1/2 [V gmpa3/e
= 0(k 6 )
0
= O(ka—2)

The process of replacing the other Jacobi polynomial by the appropriate

Bessel function is similar.



Thus we are led to investigate
m

X a=p+1 2 9\— 0\~
L= ) %" |I (sin =) M(cos 2) " 6 3 _ (J8) J (Ke) as]
et 2 2 o=y o
J=0 0
where K = k + Qigil .

™ (cos %)-u by 6 ". It is easily seen that

(sin %)-u (cos -9—)-u . (-e-)_u G(6), where G(0) = 1, G(6) is bounded and

We want to replace (sin 9,

2 2
1-g(8) = 0(62). Thus we must consider
™
k Lo=ut+1 2 1=u
E= ) j [l e " (1=G(s)) Ja_u(Je) J (ke) aef .
J=0 0

We split up E in E = E, + E2, where in E1 the range of integration is
1 . 1
I:O’-lﬂ and in E2 E{"E] .

Applying some of the estimates mentioned above we get

1/k
.omutl 1=
. !J o "(1-c(e)) J__ (J0) J (Ke) ao

J 0

&=
I~

(1/k
.—+'— -+—
= of Ja u+1 Ja u .o J e2a u+3 Ha
0

J

6)

| iy

1

= o(x*7?).

Using the asymptotic formula for Bessel functions and the error term

we obtain for p < 1

X a=p+1 m/2 1=
E,= ) T o H(1-a(e)) J__ (J8) J (Ke) de|
.=O o=u (¢}
J 1/k
k m/2  _ .
= o(x~ /2 P semer1/2) 6™ (1-c(0)) 1 (THKI® 4o1)
J=0 1/k
k m/2 _
so(x 32y gemHmV/R (7 0™ ae)

J=0 1/k
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k
- R - + - - -
= ok~ /2 y 1/2 3%3) + o(x* T 4 078
j=0 =
_ - -1/2 Lk/2] jot-u+1/2 -1/2 k joc-1,l+1/.2
= 0(k ) + 0(k Z ———k—_':]:——-+k z 3 -——k-_'_—"——)
: j=0 j:[—l-;-lﬂ J
= 0(x*™) + ox®™) + o(x® ™ 10g k)
= 0(x%).
The case p > 1 is easily handled.
ko et (T2 3oy —12 -1/2 -1
E, =0( ] | 8~ " j k 6  ael)
=1 1/k
— + -
o(x* ™! (er"3)) W# 3
= L
-2
o(k log k) =3
= 0(x%)

Finally we want to replace the range of integration [b,gﬂ by [Q,w).
Therefore we must investigate

LOo=ut1 ® 1=
3T

H =
0 Ju_u(Je) J,(Ke) as| A+ A,

Il o~

3=0 T/2

by using (2.6). A, contains the main terms and A, all the error terms.

1

k ® .
A = ok 1/2 7o u+1/2| oM i(KxT)E as|)
J=0 /2
-1/2 X .a=u+1/2 =1
= 0(k Yo (k+3) )
J=0

= o(x*¥ 10g k).
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- K gmu=1/2 [° - -
A, = Olk /27 semwmt/2 gm0y 2 o(k®H),
=0 /2

Up to an error term that we have estimated, we may write for L

g amptl [0 1w
L || o Mg _(J8) J (ke) ds].
J 0

Then, using Sonine's integral (2.7), this leads to

% samutT ol 7H JOTH (g2 52y
=0 K" T(u)
- X 20=2u+1 u=1 u~=1
=0(k ) (k+j) (k=3)° )
J=0
x/2] k :
-a+u=1 S 20=2u+1 LU= .2a=2u+1 U=
=o(k “TTL T YT M (k=) ) FETT e=)P T
1=0 Tk
J =[5+
= 0(x%)

Combining all the estimates we have shown that

I D

o5y (58301 ,8=1) | Pga'“’s'“)(T) = o(x™)
J=0 ‘

which proves theorem 3.
3. Results

Combination of the theorems 1, 2 and 3 leads to the following result.

(see fig. 2).
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fig. 2

For all (y,8) in the shaded region it has been proved that relation (A)
holds. We shall show now by means of examples that the complete region
where relation (A) is valid has been obtained (y > - %).

)U

The first function we study is (1+x)", u > 0.

The Fourier coefficients become

1
= =1 (a,8) _\G B+u
oy = Bylea) ™ | RS0 (1m0 (1B
-1
Using Rodrigues' formula (1.1) and integration by parts, it follows that

(_1)n 1 a

a = —— (1+x)¥ (&=)2 {(1_x)n+u (1+x)n+8} dx
B 2% (a,B) dx
n -1
1
) rut) J (1=x)"% (14x) B gk
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I (n+a+B8+1)T (n=u)

)n+1
T (n+a+B+u+2)T (n+p+1)

U
= (=1 g; I(u+1)sin um T(B+u+1)(2nt+a+B+1)

-g-2u~1
Thus Ian| = o(n BTEMY),
Tt follows that (1+x)"¢ A(a,8) if 0B < 2u.

From (3.1) it is easily derived that the function (1+x)" with

a;B <u < Iéé and U not an integer is an example of a function, which
belongs to A(a,B) but not to A(y,S).

Thus we have found a function for which relation (A) fails in region II
of fig. 2.

In the same way we can calculate the Fourier coefficients of the function

(1-x)" and we obtain

|an| = O(n-a—Zu-1).

It follows that (1-x)Y¢ A(a,B) if u > O.

But if § > y the maximum in absolute value of the Jacobi polynomials is
at x = =1 and PiY’é)(—1) = O(ns). If § > y the function (1-x)" with

0 <yuc< Qél and u not an integer is an example of a function, which is
a member of A(o,B) but not of A(y,§). Relation (A) is not valid in

region I of fig. 2.

In order to decide whether relation (A) holds in region III we study the

function IXIU. We investigate the Fourier coefficients.

o
]

1
(hn(a,B))_1 j Elks Pia’s)(x) (1-x)%(14x)® ax

1
=

1
(a,B))_1{J quia’B)(x)(1-x)a(1+x)8dx +
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If Reu > n=1 we can use Rodrigues' formula and integration by parts. We

obtain

»

(2on+a+R+1)T (u+1)I (nto+B+1)

F. (u=n+1,=B=-nja+u+2;=1) +
+o,+B+
SPHOHBH T L gt T (atpt2)

21

(3.2) a_ =

n (2n+o+B+1)T (u+1)T(n+a+p+1)
2n+u+8+1f(n+a+1)P(B+p+2)

F. (u-n+1,=0-n;B+p+2;-1).

(1) 2" 1

The hypergeometric function oF (a,bjc3=1) is an absolutely convergent
series if Re(a+b=c) < 0 which means here —a=f=-2n-1 < 0. This is always

satisfied. In this case 2F1(a,b;c;—1) is an analytic function of the

parameters a, b and c. As for Reu > n-1 a, is given by (3.2), it follows
by analytic continuation that (3.2) holds for all u with Rep > =1.

Using the simple relation

-b -b
) )" _F.(c-a,bjci—r)

z
F. (b,cmajc;—) = (1-z oF p—

F. (a,bje3z) = (1-2 o4 71

271
(see Luke [3], section 3.8 (L)), & can be written in the following way:

= (2n+a+8+1)F(u+1)F(n+a+6+1) 2F1 (u+n+1,-B—n;u+u+2;%

+
2u 1P(

n+B+1)T (a+u+2)

b (=1)" (on+a+B+1)T (u+1)T (n+o+B+1)

B+1 F (B+n+1,-a-n;6+u+2;%).
2”7 I'(n+o+1)T(R+u+2) :

21

The asymptotic expansion of the hypergeometric function in this case for
large n has been given by Watson Eﬂ.

The leading term is

a+b"1P(1—b+n)F(c)(1+e_czifa_b—1/2
(nw)1/21“(c-b+n)(1-e-c)c-1/2

1=z, 2
2F1(a+n,b-n;c; 2Z)~

(n=b)t (n+a)c}

. 1 -
x {e + exp]:j-_ in(ec - —2-)] e .
where ¢ is defined by z = cosh ¢ and Re ¢ > 0, =7 < Im ¢ < 7. The upper

(lower) sign is taken if Im z > (<) 0. In the case in which z=-1 is real
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and negative it is supposed that z attains its value by a limiting
process which then determines if arg(z=1) is 7 or =m. The discontinuity
in the formula is only apparent; if z crosses the real axis between +1,
account has to be taken of the discontinuity in the value of Im Z.

Therefore

a+1 B+1
n  I'(n+B+1) + - I'(n+a+1) )= 0(n U 1/2)

n1/2P(n+a+B+u+2) n1/2F(

(3.3) Ian[ = 0
n+o+BR+u+2)

Thus in the case that p > o + %-the function |x|" belongs to A(a,B).
In the ultraspherical case (a = B) the Fourier coefficients can easily

be calculated. We have to consider

a = (hn(a,a))-1 J1 [x|" Péa’a)(x) (1-x2)% ax.

=1
Because |x.|u is an even function the Fourier coefficients vanish for
0dd n. Application of a well-known formula for ultraspherical poly-
nomials (see Szegd [5], (k.1.5)) yields
u=1

V) (-y)%(1+y) 2 ay

1
on!T(2n+o+1) (a,=1/2)
(3.4) &on hgn(u,a)(2n)!F(n+u+1) J Pn (

0

(=1)"(4n+20+1)I (2n+20+1)T (u1)singn T(n= 3)

+u+
o2 Lo e+ 1) T (ot % + %)n1/2

From (3.3) and (3.4) it follows that if Y > o the function |x|" with

a + % <u <y + % and u not an even integer is an example of a function
which belongs to A(o,B) but not to A(Y,y). Combined with theorem 2 this
leads to the conclusion that relation (A) cannot be true in region III
of fig. 2.

Thus the shaded region in fig. 2 is the complete region (y > =1/2)
where relation (A) holds.

{oa8) () = (=107 2(Bs0)

By using P -x) similar results can be obtained

when o < B.
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