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Abstract 

The systems of first-order ordinary differential equations obtained by spatial discretization of the initial­
boundary value problems modeling phenomena in shallow water in three spatial dimensions have right-hand 
sides of the form f (t, y) := f 1 (t, y) + fi(t, y) + f 3(t, y) + f 4(t, y), where f 1, h and f3 contain the spatial 
derivative terms with respect to the x i, x2 and x3 directions, respectively, and f 4 represents the forcing terms 
and/or reaction terms. It is typical for shallow water applications that the function f 4 is nonstiff and that the 
function f 3 corresponding with the vertical spatial direction is much more stiff than the functions f 1 and f 2 
corresponding with the horizontal spatial directions. In order to solve the initial value problem for the system 
of ordinary differential equations numerically, we need a stiff solver. In a few earlier papers, we considered 
fully implicit Runge-Kutta methods and block-diagonally implicit methods. In the present paper, we analyze 
Rosenbrock type methods and the related DIRK methods (diagonally implicit Runge--Kutta methods) leading to 
block-triangularly implicit relations. In particular, we shall present a convergence analysis of various iterative 
methods based on approximate factorization for solving the triangularly implicit relations. Finally, the theoretical 
results are illustrated by a numerical experiment using a 3-dimensional shallow water transport model. © 2001 
IMACS. Published by Elsevier Science B.V. All rights reserved. 

Keywords: Numerical analysis; Shallow water applications; Iteration methods; Approximate factorization; 
Parallelism 

1. Introduction 

We consider initial-boundary value problems modeling phenomena in shallow water in three spatial 
dimensions. The systems of ordinary differential equations (ODEs) obtained by spatial discretization 
(method of lines) of the governing partial differential equations can be written in the form 

~U) N -=f(t,y(t)), f(t,y):=f1(t,y)+f2(t,y)+f3(t,y)+f4(t,y), y,fke!R., (1.1) 
dt 
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where f 1, f 2 and f 3 contain the spatial derivative terms with respect to the x1, x2 and X3 directions. 
respectively, f 4 represents the forcing terms and/or reaction terms, and N is a large integer proportional 
to the number of spatial grid points used for the spatial discretization. It is typical for shallow water 
applications that the function f 4 is nonstiff and that the function f 3 corresponding with the vertical 
spatial direction is much more stiff than the functions J 1 and f 2 corresponding with the horizontal 
spatial directions. As a consequence, the spectral radius of the Jacobian matrix a f 3 / a y is much larger 
than the spectral radius of a f I I a y and a f 2! a y. The reason is that in shallow seas the gridsize in the 
vertical direction is several orders of magnitude smaller than in the horizontal directions. 

In order to solve the initial value problem (IVP) for the system ( 1.1) numerically, we need a stiff 
IVP solver, because the Lipschitz constants with respect to y associated with the functions f 1, f 2 

and J 3 become increasingly large as the spatial resolution is refined. Stiff IVP solvers are necessarily 
implicit, requiring the solution of large systems of implicit relations. In a few earlier papers [3,8, 10. 
12], we considered the approximate factorization iteration of implicit Runge-Kutta methods leading 
to fully coupled, implicit systems whose dimension is a multiple of N, and of block-diagonally implicit 
methods in which the implicit relations can be decoupled into subsystems of dimension N (like backward 
differentiation formulas and block-diagonally implicit general linear methods). In these papers, it was 
shown that the spectral radius of the Runge-Kutta matrix, or of its equivalent in the case of block­
diagonally implicit methods, determines the maximal convergent timestep and that convergence is faster 
as the spectral radius is smaller. 

In the present paper, we analyze the approximate factorization iteration of Rosenbrock type methods 
and of the related DIRK methods (diagonally implicit Runge-Kutta methods) leading to block­
triangularly implicit relations (this is also the case for the DIRK methods, in spite of the terminology 
"diagonally implicit"). Rosenbrock type methods are quite popular in air pollution simulations (see, 
e.g., [7,13,14]). This motivated us to look whether Rosenbrock and the related DIRK methods can also 
be useful in shallow water modeling. 

First we show that in shallow water applications, where the eigenvalues of a f I I a y, a f 1! a y and 
af 3/oy are essentially purely imaginary, the so-called factorized Rosenbrock methods, which arise after 
performing just one approximate factorization iteration of the Rosenbrock method, are less suitable due to 
an extremely small imaginary stability boundary (see Section 2.3). However, continuing the approximate 
factorization iteration improves the stability considerably, because the convergence condition allows 
relatively large timesteps. Hence, if the underlying Rosenbrock method is unconditionally stable, the 
overall stability is largely determined by the convergence condition (see the numerical results in 
Section 5). A similar argument applies to the iterated DIRK methods. In fact, by an appropriate choice 
of the underlying Rosenbrock or DIRK method, the convergence region can be made much larger than 
in the case of the backward differentiation formulas (see Section 3.3.3). 

In the numerical experiments, we use a three-dimensional shallow water transport model with chemical 
interactions and we compare the convergence of an iterated Rosenbrock method with that of the iterated 
two-step backward differentiation method applied in [8]. Both methods are second-order accurate and 
L-stable, so that in the case of convergence, their accuracy and stability properties are comparable. It 
turns out that the maximal convergent stepsize of the iterated Rosenbrock method is larger than that of 
the iterated backward differentiation method by a factor of about 2. 
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2. Rosenbrock methods and their factorization 

We start with an example of a family of two-stage Rosenbrock methods: 

Yn+i = Y11 + bk1 + (1 - b)k2, 

(l-K16..tl)k1 = Atf(y11 ), (2.1) 

1j2-bK1 + (b- l)K' 
K; > 0, µ := - - V 1-b . 

Here,_ b, K_1 '. K1 and v ~e free parameters and J is an approximation to the Jacobian matrix a f /a y at t,,. 
For s1mphc1ty of notat10n, we assumed the ODE of autonomous fonn. The nonautonomous version can 
b: obtained ~y a?~lying \2.1) to the augmented system {y' = f (y0 , y). y(; = l}. The method (2. l) is 
tnangularly rmphc1t, that 1s, k 1 and k 2 can be computed by successively solvino- two linear svstems of 
dimension N. 0 

• 

If 1 =a f I a y(tn) + O(At), then the formulas (2.1) are all second-order accurate Rosenbrock methods. 
The stability function for (2.1) is given by 

R(z) = 1 + (1 - K1 - K1)z + (1/2)(1 - 2K 1 - 2K2 + 2K 1K2).::2 

(1 - K1Z)(I - K2Z) 
(2.2) 

From this expression it follows that the methods (2.1) are A-stable if* ~ K 1 + K2 ~ 2K1 K2 + * and L-stable 
. l - -
If KJ + K2 = K1K2 + ')· 

The first examples of Rosenbrock methods were given by Rosenbrock [ 6] in 1962 and are obtained by 
choosing in (2.1) 

b=O, v =0. (2.3) 

Of particular interest are the methods which remain second-order accurate if we choose an arbitrary 
matrix for J. Such methods are called Rosenbrock-W methods and were proposed by Steihaug and 
Woltbrandt [9]. If we choose in (2.1) Ki = K2 =Kand v = -K(l -b)- 1, then (2.1) becomes a W-method 
(see Dekker and Verwer [2, p. 233]). The special case 

h= ~, K1 =K2=K := 1 ± ~,J2, \J = -2K 

was used by Verwer et al. [14] for solving atmospheric transport problems. Note, however, that for 
stability reasons, J should be a reasonably close approximation to the true Jacobian a f I a y at t,,. 

2.1. General Rosenbrock methods 

More generally, we consider Rosenbrock methods of the form (cf. [4. p. 111]) 

Yn+I = y 11 + (bT @I)K, (/ - T 0 Atl)K = AtF(e ® y 11 + (L 0 l)K). (2.5) 

where b is an s-dimensional vector, K := (k T, ... , k '[) T, and T and L are lower and strictly lower 
triangular s-by-s matrices, respectively. This property of T and L implies that (2.5) is triangularly 
implicit, so that the components ki of K can be computed by successively solving s _linea: systems 
of dimension N with system matrices I - K; At J, where the K; denote the diagonal entnes ot T. If t~e 
order of the method (2.5) is independent of the choice of the Jacobian approximation I, then (2.5) is 

again called a Rosenbrock-W method. 
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If T is not diagonal (as in (2.4)), then for an actual implementation one often transforms the linear 
system for K by a Butcher similarity transformation U = (T ® l)K, where T is assumed invertible 
(cf. [4, p. 120]). Writing r- 1 = S + v- 1 with S strictly lower triangular and D = diag(T), (2.5) becomes 

Yn+I = Yn + (bTy-I ® /)U, 

(I - D ®flt J)U = At(D ® l)F(e ® Yn + (LT- 1 ® l)U) - (DS ® l)U. (2.6) 

As in (2.5) the components ui of U can be computed by again successively solving s linear systems of 
dimension N. As an example of a transformed Rosenbrock method, we give the transformation of the 
method (2.4): 

Yn+l = Yn + 1K-I (3u1 + U2), 

(I - K At J)u 1 = K At f (y 11 ), K = 1±1.J2, (2.4') 

(/ - K AtJ)u2 = K Mf(Yn + K- 1u1) -2u1. 

Note that unlike (2.5), no Jacobian multiplications are involved in transformed Rosenbrock methods. In 
general, this is considered as an advantage because such Jacobian multiplications can be quite expensive. 
However, it should be remarked that in the case of shallow water applications the matrix J is extremely 
sparse, so that Jacobian multiplications are not so costly. 

2.2. Factorized Rosenbrock methods 

In order to further reduce the linear algebra costs in the method (2.4), Sandu [7] and Verwer et al. [13] 
applied to the system matrix I - K At J the technique of approximate factorization based on some splitting 
I: Jk of the Jacobian J. This leads to the factorized Rosenbrock method. 

This technique goes back to Peaceman and Rachford [5] who used it for approximately solving the 
linear systems originating from a finite difference discretization of two-dimensional parabolic problems. 
In such problems, the system matrix is of the form I - ! At J, where J is the discretization of the 

Laplace operator 32 /3xr + 32 /Bxi. By writing J = 11 +Ji, where 11 and J2 correspond with 32 /Bxf 
and 32 / 3xi, respectively, Peaceman and Rachford replaced I -1 At J by the approximate factorization 

(/ -1Atl1)(/- 4At]z). 
The same approximate factorization technique can be applied to the matrix I - T ® At J in (2.5) or 

to the matrix I - D ® flt J in (2.6). We shall illustrate this for the case (2.6). Since we are concerned 
with shallow water applications, we use the splitting J = J 1 + ]z + h, where the matrices Jk denote the 
Jacobian matrices of the terms f k at t11 occurring in the right-hand side function fin (1.1) and where the 
nonstiff interaction terms are ignored. This leads to the factorized method 

Yn+I = Yn + (bTy-l ® /) V, 

llV = At(D ® l)F(e ® Yn + (LT- 1 ® I)V) - (DS ® l)V, 

where n is defined by 

ll := (/ - D ®flt 11)(/ - D ®At 12)(/ - D ®At h), D = diag(T). 

(2.7) 

(2.8) 

Each step of the factorized Rosenbrock method (2. 7) requires the solution of 3s one-dimensional, 
linear systems. The three LU-decompositions needed in (2.8) can be computed in parallel, but the 3s 
forward-backward substitutions have to be done sequentially. 
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We may interpret the factorized method as the original Rosenbrock method with a perturbed matrix J. 
In the space spanned by the nonstiff eigenvectors of J, we even have n =I - D@ f:lt J + 0((2'.!) 2). 
showing only an order !:lt perturbation of the matrix J. Hence, factorization will not affect the order of 
Rosenbrock-W methods. Furthermore, any factorized Rosenbrock method has at least order two if the 
original Rosenbrock method also has at least order two. 

2.3. Stability 

Next, we define the stability region § for the factorized versions of the methods (2.5) and (2.6). We first 
define the stability function by applying them to the test equation y' = (11 + h + h)y. Assuming that 
the matrices Jk commute and ignoring the interaction terms in F, the factorized versions of the methods 
(2.5) and (2.6) will reduce to recursions of the form 

Yn+I = R(!:J..tl1, llt]i, llth)Yn, 

where R (z 1, z2, z3) is a rational function of its arguments. Using the identities 

1+ TM- 1 =det(M+qpT) det(M+S)=det(M), 
p q det(M) 

where M is a square, nonsingular matrix, S a square ~rictly lower triangular matrix, and p and q are 
vectors of the same dimension as the matrices M and S (the proof of the first identity can be found in, 
e.g., [l, p. 475]), we find that the stability functions corresponding to the factorized versions of (2.5) and 
(2.6) can be respectively expressed as 

det(P + z(ebT - L)) 
R(z1' Z2, Z3) = det(P) ' 

det(P + DS + zD(ebT - L)T- 1) 
R(z1,Z2,Z3)= det(P) ' P:=(/--;,,D)(/-:2D)(/-:~D).(2.HJl 

where z := z1 + z2 + Z3. 
For the test equation defined above, the stability region is defined by the region§ in the (:1. ::2. ::.< 1-

space where IR(z1, z2, z 3)1~1. The method (2.7) is called stable if all eigenvalue ~riplets !C.tA~J1 J, 
!:J..t >.. ( h), b..t >.. ( h)) are in §. Since in shallow water applications, many of the eigenvalues ot Ji,, 
k = 1, 2, 3, are close to the imaginary axis, we are particularly interested in the most critical c.ase w?ere 
the eigenvalues of Jk are purely imaginary, i.e., Zk = iyk with Yk real-valued. Let us introd~ce tor a given 
value of y 3 the stability boundary f3(y3 ). This boundary is defined such that the method 1s stable at the 
points (y1, y2, y3) with y3 E IR and (y1, Y2) in the region 

S(y3):={(y,,y2): IYkl~f3(y3), k=l,2}. (2.11) 
Since the spectral radius of f:lt J1 and M h is much smaller than that of M f:,, we like to have stability 
independent of the value of y3• This is the case if I Yk I ~ min"J f3 (y3) fork = l, 2. 

The corresponding time step condition is given by 

f3 f3 . {3( ) (2.12) !:J..t ~ , :=mm y3 . 
max{p(J1), p(h)} Y3 

Let us consider the stability of the factorized versions of (2.3) and (2.4'). It is easily verified that their 
stability functions respectively take the form 
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Z (1/2)(1 - 2K)z2 

R1(Z1,Z1,Z3) := 1 + + ? '(1 )2' - (1- KZ1)(l - KZ2)(1 - KZ3) (1- KZ1)-(l - KZ2)- - KZ3 
(2.13) 

2z (l/2)z2 - z 
R1(Zi,Z1,Z3):=l+ + '1 )2(1 )' - ~ (1- KZ1)(1- KZ2)(l - KZ3) (1- KZ1)-( - KZ2 - KZ3 -

(2.14) 

and that \R 1 (0, 0, iy3)\ < 1, \R2(0, 0, iy3)\ < 1 for y3 =/= 0. Hence, we have a nonzero stability boundary {3. 
However, a numerical calculation reveals that f3 is quite small (less than to). Hence, the factorized 
versions of (2.3), (2.4) and (2.4') are less suitable in shallow water applications where the Jacobians 
J1, ]z and h have purely imaginary eigenvalues. 

Although in practice spatially discretized shallow water problems in general do not lead to ODE 
systems of the model form y' = (11 + 12 + iJ)y with commuting lb the stability results based on the 
model problem are at least indicative for actual shallow water simulations (see Section 5). 

3. Approximate factorization iteration 

In this section, we will improve the quite poor stability properties of the factorized Rosenbrock 
methods along the imaginary axes. Here, the aim is to really solve the Rosenbrock method, for which we 
need an iteration method. One possibility would be to use a Krylov-type iterative solver (e.g., GMRES). 
This approach, however, requires a problem-dependent preconditioner to be efficient. 

As an alternative, we analyze in this paper an iteration method based on the approximate factorization 
technique as described in the preceding section. Evidently, if this iteration process converges, then 
we retain the properties (like accuracy and stability) of the underlying method (henceforth called the 
corrector). Thus, if we restrict our considerations to A-stable (or even L-stable) correctors, then the 
stability region of the iteration method is the same as its convergence region. 

Apart from the Rosenbrock corrector, we shall also study the iterative solution of the related implicit 
methods 

Y11+1 = Y11 + D..t(bT ® l)F(X), X - D..t(A ® I)F(X) = e ® y11 , (3.1) 

where A is a lower triangular matrix. In [4, p. 97] these methods are called DIRK methods (diagonally 
implicit Runge-Kutta methods). Like Rosenbrock methods, DIRK methods are triangularly implicit (in 
spite of the terminology "diagonally implicit" now commonly accepted in the literature). 

In the following sections we will discuss the iterative solution of Rosenbrock and DIRK correctors 
by means of approximate factorization and we will see that this approach leads to acceptably large 
convergence regions. 

3.1. Iterative solution of the Rosenbrock equations 

We consider two iterative approximate factorization approaches for actually solving the implicit 
Rosenbrock relations. The first approach solves the components ui from (2.6) one after another by 
repeated application of a linear system solver, the second approach solves all components ki from 
(2.5) simultaneously by a nonlinear system solver. We shall refer to these iteration methods as repeated 
and simultaneous approximate factorization iteration of the Rosenbrock method, briefly, the RAF­
Rosenbrock and SAF-Rosenbrock processes, respectively. 

I 

~ 
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3.1.1. The RAF-Rosenbrock process 
The s linear systems in (2.6) have the form 

g; := (e'f ® 1) (b.t(D ® l)F(e ® Yn + (LT- 1 ® !)U) - (DS ® l)U), 
(3.2) 

where K; is the ith diagonal entry of T. Since Land Sare strictly lower triangular, theses systems can 
be solved successively. We solve the ith linear system by the linear solver 

(er,. '°' I)n(u,U) - u,~j-lJ) = g,. - (I - K,· AtJ)u,~J-I), · 1 2 · 1 '<)/ u J=, , ... ,m, z= , ... ,s, (3.3) 

where n is defined in (2.8). In this RAF-Rosenbrock process the initial iterates uj0> should be provided 
by some predictor formula and the number of iterations m is assumed to be determined by some iteration 
strategy such that ujm> is sufficiently close to the solution u; of (3.2). In our numerical experiments in 

Section 4, we used the predictor uj0l = 0, i = 1, ... , s. The effect of this choice is that the first iterate 
u j 1) is identical with the result of the factorized Rosenbrock method (2. 7). Hence, this method can be 
considered as a predictor for the iterative approach. 

If the iterates uj1) converge, then they can only converge to the solution u; of (3.2). Each iteration 
in (3.3) requires the solution of 3 linear systems with system matrices I - K; .6..t Jk> k = 1, 2, 3, each of 
order N. Note that the three LU-decompositions of these system matrices can again be done in parallel. 
These LU-decompositions and the corresponding forward-backward substitutions are relatively cheap, 
because the matrices h each correspond with a one-dimensional differential operator. 

The convergence is determined by the error recursion satisfied by the iteration error vector s(j): 

(j) ·- ( {j) (j) ) 8 .- U l - U 1, .•• , Us - Us , 

sUl = z1su- 1i, 2 1 :=1 -n- 1u - D ® b.tl), j = 1,2, ... ,m. 

(3.4) 

(3.5) 

Before analyzing the matrix Z 1, we first derive the error recursion for the other iterative approaches. 

3.1.2. The SAF-Rosenbrock process 
Instead of solving the linear systems in the Rosenbrock method (2.6) successively for the components 

u; of U, we may iterate them simultaneously. Since in such an approach it is more convenient to go back 
to the untransformed method (2.5), we shall solve the components k; of K simultaneously from (2.5). 
Consider the SAF-Rosenbrock process 

ll(KUJ - K<i-ll) = -((/ - T ® b.tJ)K<J-l> - .6..t F(e ® y 11 + (L ® /)KU-ll)), 

j = 1, 2, .. . m, (3.6) 

where n is again defined by (2.8). Note that this method is a nonlinear system solver. 
Evidently, if the iterates KU> converge and if (2.5) has a unique solution K, then they can only 

converge to this solution K. Each SAF-Rosenbrock iteration requires the solution of three linear systems 
with system matrices I - D ® b.t Jk. k = 1, 2, 3, each of order sN. The 3s LU-decompositions and the s 
forward-backward substitutions corresponding with each matrix I - D ® .6..t Jk can be done in parallel. 
Again, the LU-decompositions and the forward-backward substitutions are relatively cheap, because h 
corresponds with a one-dimensional differential operator. A drawback is the matrix-vector multiplication 
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in the right-hand side of (3.6). Note that applying the SAF-Rosenbrock iteration process to (2.6) instead 
of (2.5) does not avoid such a matrix-vector multiplication. 

Let us consider the iteration error eUl := KCil - K. From (2.5) and (3.6) it follows that 

eUl = Z2eU-Il + b,.tll- 1G(eU-ll), 

Z 2 :=I - n- 1 (I - (T + L) 0 b,.t J), j = 1, 2,. . ., m, (3.7) 

G(e) := F(e 0 y11 + (L 0 l)(K +e)) - F(e 0 Yn + (L 0 l)K) - (L 0 J)e. 

Since G(e) has a small Lipschitz constant in the neighbourhood of the origin, the error recursion (3.7) 
essentially behaves as the linearized recursion 

j=l,2, ... ,m. (3.8) 

3.2. Iterative solution of DIRK equations 

As for Rosenbrock methods, we may consider repeated and simultaneous approximate factorization 
iteration of the DIRK method (3.1). These processes are respectively given by 

(e! 0 l)n (xjJl - x;J-ll) = gi, j = 1, 2,. . ., m, i = 1, .. ., s, 
(3.9) 

and 

ll(XU1 -xU-tl) = -(xU-tl - M(A 0 l)F(XU-tl) - (e ® l)y 11 ), j = 1, 2, ... , m, (3.10) 

where n is again defined by (2.8) with D := diag(A). They will be referred to as the RAF-DIRK and 
SAP-DIRK processes. A comparison with (3.3) and (3.6) shows that we have the same iteration costs 
except for the Jacobian multiplication. 

Defining the iteration error eU> := XCil - X, we can write down the linearized error recursions. We 
find that the Iinearized error recursions associated with the RAF-DIRK method (3.9) and the SAP-DIRK 
method (3.10) are respectively given by 

eUi = Z3eU-tl, Z3 := Zi, 

eU 1 ~ Z4eU-Il, Z4 :=I - n-1(1-A 0 b,.tJ), 

3.3. Convergence 

j = 1, 2, ... ,m 

j=1,2,. . .,m. 

(3.11) 

(3.12) 

The convergence of the iterated Rosenbrock methods (3.2) and (3.6), and of the iterated DIRK methods 
(3.9) and (3.10) is determined by the amplification matrices 

Zi :=I - n- 1u - D 0 b,.tJ), Z2 :=I - n- 1 (I - (T + L) 0 b,.tJ), 

Z3=Z1, Z4:=I-n- 1(1-A®b,.J), 

occurring in the error recursions (3.5), (3.8), (3.11) and (3.12), respectively. They only differ by the matrix 
in front of b,.tJ (we recall that D = diag(T) = diag(A)). In the following subsections we respectively 
discuss the region of convergence where p (Z,) < 1, the rate of convergence of the nonstiff iteration error 
components, and the stability of the iterated methods. 
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3.3.1. The region of convergence 
The matrices Zr are lower triangular block matrices with the same diagonal blocks 

I - (I - K j flt 11 )- 1 (1 - Kj flt h)- 1 (1 - Kj flt h)- 1 (1 - Kj M J), j = l, ... 's' 

for all r. Here, the K; denote the diagonal entries of D. Hence, the eigenvalues of the matrices z, are 
identical. They act as amplification factors for the eigenvalue components of the iteration error. For the 
test problem also used in the stability analysis (see Section 2.3), they are given by 

l -X1 - Xz - X3 
<XJ =C(KJZ1,KJZ2,KJZ3), C(x1,x2,X3) := 1- , (3.13) 

(1- X1)(1 - Xz)(l - X3) 

where j = 1, ... , s and where Zk runs through the eigenvalues of bt h. Evidently, we have convergence 
if la JI < l, j = 1, ... , s. We consider the most critical case where the eigenvalues of Jk are purely 
imaginary, that is we consider the values of la i I = IC(i KJ y,, iKJY2· iKJ )'3) I. Recalling that the spectral 
radius of flt 11 and bt h is much smaller than that of bt iJ, we are interested in convergence regions of 
the form (cf. (2.11)) 

{ y(y3) } 
C(y3) := (y1, Y2): IYkl ~ p(D), k = 1, 2 , IY3I ~ oo. 

Theorem 3.1. Let the function g(x) be defined by the relation 

4xg 3 +2(x2 - l)g2 -x 2 - 1 =0. 

Then, the convergence boundary y (y3) in (3 .14) is given by 

( ) (D) . g(KJiy31) 
Y y3 =p mm 

J Kj 

and the minimal value <~f y (y3) is given by the positive root of the equation 4y 4(y 2 + 1) = 1. 

(3.14) 

(3.15) 

(3.16) 

Proof. Using Maple, we verified that for given values of y3, IC (i K J Y1, i K J Y2, i K1 y3) I increases most 
rapidly along the line y 1 = y2 (the length of the formulas prevents us from writing out the various 
derivative expressions), so that we may restrict our considerations to the values of 

?11 4 4 1 1' 
• . . 1 (Y\(K/Y}+l)+ Y1Y3+ Y3) -

ia1 i = \C(1Kjy1,1K;Y1.1K 1Y-i)\ =KjlY1I (1 +K7YT)2(1 +K7Y?) 

If we set la j I = 1, x = Kj y3 and y = KJ y1, then we find the relation 

4xy3 +2(x2 - l)y2-x2 - l =0. 
This relation determines a real-valued function y = g(x). Hence, for given values of K; and }';. i.e., of x, 
we have I a i I :::;; 1 provided that both K J I y 1 I and K,; I Y2 I are bounded by g ~K; I y3_J). T?is proves (3 .16! · 

In order to find the minimal value of y(y-,) we look at the plot of the function g(x) (see Fig. I). 
Let x 1 (y) and x 2 (y) denote the two solutions. o'f the equation 4x y3 + 2(x2 - 1 ~ y2 - x 2 - l = 0. Then, 
the minimal value of g(x) is determined by the relation x 1(y) = x2()'). This leads to the equation 
4y4(y2 + 1) = 1 whose only positive root determines the minimal value of y(y3). D 

Since the positive root of the equation 4y 4 (y 2 + 1) = 1 is given by Y = 0.647 ... we derive from this 
theorem the following convergence condition: 
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Fig. I. The function g(x) defined by (3.15). 

Theorem 3.2. Let A.(h). k = 1, 2, 3, be purely imaginary. Then, a sufficient condition for convergence 
of the iterated Rosenbrock methods (3.3) and (3.6), and of the iterated DIRK methods (3.9) and (3.10) 
is given by 

y 
b.t ~ ' y = 0.647 .... 

p(D) max{p(J1). p(J2)} 

3.3.2. The rate of convergence of the nonstiff error components 
The rate of convergence of the nonstiff error components can be studied by the behaviour of the 

nonstiff amplification factors, that is, the eigenvalues of Zr corresponding with small values of .6..t A.(Jk). 
From (3 .13) it can be deduced that 

a,;=K}(z1z2+z1z3+z1z3)+0((t>.t)3), Zk=b.tA.(Jk), )=1, ... ,s. 

Hence. after m iterations the amplification factors behave as O((b.t)2m) for all m and irrespective the 
value of r. However, this is not true for the amplification matrices Z~'. 

Theorem 3.3. The amplification matrices Zr satisfy the relations 

r=l,3: z;1 =0((6t) 2111 ) forallm, 

r =2,4: {z:11 =0((M)'11) form~s-1, 
Z~' =0((!:>.t) 2111+1-s) form ;::s. 

Proof. The relation Z1 = Z3 = 0((6t)2) immediately follows from the definition of Z 1 and Z3 in (3.5) 
and (3.11). For Z2 and Z4 it follows from (3.8) and (3.12) that 
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Z2 =I - (/ + D ® ~tJ)(I - (T + L) ® ~tJ) +O((~t)2 ) = (T + L - D) ®Ml +0((~!)2). 

Z4 = l-(I+D®~tJ)(I-A®MJ)+O((~t)2)=(A-D)@~tJ+O((M)2 ). 

Hence, we certainly have Z~' = O((~t)"') for r = 2, 4. However, writing Zr = Ar + Br with A2 := 
(T + L - D) ® ~t J and A4 := (A - D) ® ~t J, and observing that A2 and A4 are strictly lower block 
triangular, so that A~ and A~ vanish for j ~ s, we obtain form ~ s 

z~n = ( m )A;-1s;i-s+I + ··· + (m)B"', r=2,4. 
m-s+I m r 

Since Ar= O(~t) and B,. = 0((~t)2 ), we find that 

z~n = 0( (~t)2m-s+I), r = 2, 4. 0 

From this theorem it follows that in all four approaches the nonstiff error components are rapidly 
removed from the iteration error. However, we may expect that the RAF processes (3.5) and (3.9) damp 
these nonstiff components stronger than the SAP processes (3.8) and (3.12). 

3.3.3. The region of stability 
Evidently, if the iteration process converges, then the stability of the iterated method is determined by 

the stability of the underlying integration method. Hence, with respect to the stability test equation, the 
stability region of the iterated method converges to the intersection of the convergence region and the 
stability region of the integration method, that is, to 

§:=§onC, 
."3 

where § 0 is the stability region of the integration method and C(y3) is defined by (3.14). For A-stable 
integration methods, the stability region § equals the convergence region C, so that the stability condition 
is given by the stepsize condition in Theorem 3.2. Thus, for iterated, A-stable integration methods we 
may define the stability boundary f3 : = y p- 1 ( D). 

For example, if the Rosenbrock methods (2.3) and (2.4) (with K = 1 - ~,Ji) are iterated using the 

iteration matrix n, then we find in both cases the stability boundary f3 ~ 2.20. If we choose K1 = K2 = ± 
in (2.1), then (2.1) is still A-stable with a slightly larger stability boundary f3 ~ 2.59. As a comparison, 
we mention that the second-order backward differentiation formula used in [8] has f3 ~ 0.97. 

4. Explicit treatment of the horizontal terms 

The modest values of the stability boundary f3 raises the question whether it is necessary to treat 
the horizontal terms fully implicitly. Afterall, when applying the standard, explicit, fourth-order Runge­
Kutta method, we have an imaginary stability boundary of comparable size, viz. f3 = 2,Ji. 

Let us define, in addition to the iteration matrix n, the matrices 

ll3 :=I - D ® ~tl3, 

ll13 :=(I - D ® ~tl1)(1- D ® ~th), (4.1) 

ll23 :=(I - D ® ~t]i)(l - D ® ~th). 
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Table I 
Main characteristics of the iteration strategies 

Process n ll3 ll3ll fl3fl 2 fl13fl23 

y ":;:; 0.65 0.5 0.72 0.75 2.19 

ai 0( ( L'.lr)2) O(L'.lt) 0( (~t)3/2) 0((~t)5/3) O(M) 

FBS per step 3 ms 1 ms 2 ms 7 ms/3 2ms 

Once again. consider the iteration methods (3.3), (3.6), (3.9) and (3.10), and let us replace the 

iteration matrix n with the matrix n3 (the fl3 process) or altematingly with the iteration matrices 

n,. n. n,. n. ... (then.in process). or with fl3, n, n, fl3, n, n, ... (the fl3ll 2 process), or with fl13 

and fl23 (the fl1.,fl:..< process), etc. (the iteration strategy described in the preceding sections will be 

called the n process). In each iteration of these processes, the vertical direction is treated implicitly, 

but not all horizontal directions are treated implicitly. After each update of the Jacobian, the fl3 process 

requires only 1 LU-decomposition, whereas all other variants need 3 LU-decompositions. The number 

of forward/backward substitutions (FBSs) for the various approaches is given in Table 1. 

In the institute report version of the present paper [ 11] the main properties of iteration processes 

of this type were analyzed. Here. we only summarize a few results. Table 1 lists for a number of 

iteration strategies (i) the convergence boundary y in the timestep condition in Theorem 3.2, (ii) the 

order behaviour of the amplification factors ai as b..t ~ 0 (i.e., the eigenvalues of the analogues of the 

matrices Z1 as 6.t ~ 0, see Section 3.3.2). and (iii) the number forward/backward substitutions (FBS) 

after m iterations. This table reveals that the fl 13 Th3 process allows much larger convergent timesteps 

than the other strategies. However, if we look at the behaviour of the amplification factors a1 as a function 

of the eigenvalues of 6.t h, then it turns out that for the n, 3fl23 process the averaged amplification factor 

(averaged over the eigenvalue region) is considerably larger than for, e.g., the equally expensive n3n 
process. ln [ 11] amplification factor profiles are given which indicate that on the basis of these profiles 

the ll.ifl process is quite promising. A numerical comparison of the various iteration strategies will be 

subject of future research. In this paper, we only give numerical results for the RAF-Rosenbrock process 
(3.3) using the iteration matrix n. 

5. Numerical results 

For our numerical experiments we chose a transport model for two interacting species of the form 

as used in [8]. This problem consists of two PDEs (for the concentrations c1 and c2) in three spatial 
dimensions, 

OC1 
-.:;-- + Y.Vc 1 = Eb..c1 - k1c1c,, 
ut -

ac, 
-- + V·Y'c» = Eb..c, - k1c1 + b(l - co) ar - - - - · 

(5.1) 

defined on IDl := ~(x,. X2, x3): 0 ~ x,, x2 ~ L1i, -Lv ~ x3 ~ O}, 0 ~ t ~ T, with L1i, Lv, and T specified 

below. Here, V is the three-dimensional gradient operator, V = (u, v, w)T denotes a divergence free 
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velocity field, e is a diffusion constant, and k1, k2 are reaction constants. For V we took the same velocity 
field as in [8]: 

u(t, x1, x2, x3) = {.X2 + 3(.X3 + t) [(.X1 - t) 2 + (.X2 - !) 2 - p 2] }, 

V(t, X1, X2, X3) = { - X1+3(x3 + !) [(x1 - t) 2 + (x2 - !) 2 - p2] }, 

w(t, X], X2, X3) = -3Lvi3 (x3 +I){ (.X1 - !)!Lh + (.X2 - !}!Lh }, 
(5.2) 

where p is a given constant, .X1, .X2, X3 are the scaled co-ordinates x1 := x 1/ Lh, x2 := x2/ Lh, x3 := x3/ Lv. 
The boundary conditions are given by c1 =c2 =0 on the vertical boundaries and aci1ax3 = ac2/ax3 = O 
at the surface and at the bottom. The initial condition is of the form 

- ') ? 

Cj(t=O,x1,X2,X3)=exp{~3 -Yi[(.x1-~r + (.x2-~rJ}. i=I.2. (5.3) 

In our experiments, we take the following values for the various parameters (mks units): 

8=0.5, 

- _!_ P- ID' YI =80, 

Lh =20000, 

Y2 = 20. 

Lv = 100, T =36000, 
(5.4) 

The above test problem was discretized on a spatial grid with N1 = 51, N2 = 51 and N3 = 11 grid points 
in the x1 -, x2- and x3-direction, respectively, using symmetric finite differences for the diffusion terms 
and upwind discretizations for the convection terms (for details we refer to (8)). The resulting ODE 
system is of the form (1.1) with N ~ 57000. 

5.1. Convergence test 

In order to show that block-triangularly implicit methods like Rosenbrock methods can be made 
convergent for larger timesteps than block-diagonally implicit methods like the backward differentiation 
formulas, we compared the convergence behaviour of the RAF-Rosenbrock method {(2.4'), (3.3), K = 
1 - !.J2}, denoted by RAF-ROS, with that of approximate factorization iteration applied to the two-step 
backward differentiation formula (AF-BDF2) used in [8]. For RAF-ROS we used the predictor formula 
u<0l = 0. Recall that by this predictor, the first iteration result of RAF-ROS is identical with the factorized 
Rosenbrock method {(2.4'), (2.7)}. For AF-BDF2 we used the last-step-value predictor. 

Table 2 
Values of r(m) for AF-BDFl in the first step 

~t m=l m=lO m=50 m= 100 m=200 

900 0.56 0.0040 0.00082 0.0013 0.00094 

950 0.59 0.0047 0.0016 0.0034 0.0039 

1000 O.o3 0.0057 0.0026 0.0078 0.015 

1500 0.94 0.045 0.055 0.81 25.l 

2400 1.50 0.32 2.1 10.7 840 

I 
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Table 3 
Values of r(m) for RAF-ROS in the first step 

l:!.t m= 1 m=lO m=50 m =100 m=200 

2400 0.44 0.0069 0.00018 0.00005 0.00001 

3000 0.55 0.019 0.004 0.0053 0.0028 

3400 0.65 0.037 0.038 0.048 0.078 

3500 0.69 0.074 0.079 0.11 0.15 

4000 1.52 1.39 1.60 2.42 7.06 

Table 4 
Values of r(m )for AF-BDF2 in the second step 

l:!.t m=l m=lO m=50 m= 100 m =200 

1470 12.3 8.6 2.4 0.76 0.45 

1500 15.9 11.4 3.4 1.11 0.78 

1600 34.1 26.3 10.4 3.73 3.15 

1650 47.3 37.7 16.5 7.1 6.3 

Table 5 
Values of r(m) for RAF-ROS in the second step 

6.t m= 1 m = 10 m =50 m= 100 m =200 

2400 0.44 0.0046 0.00012 0.000033 0.0000059 

3000 0.57 0.012 0.0088 0.0091 0.0058 

3400 0.66 0.39 0.32 0.43 0.32 

3500 1.04 0.81 0.70 0.95 0.63 

4000 69.3 70.8 59.8 27.4 73.0 

The BDF2 itself can only be applied in the second and subsequent integration steps. In the first step, 
we applied the one-step BDF or implicit Euler rule (AF-BDFl). Tables 2 and 3 list values of the maximal 
absolute difference between two successive iterates after m iterations, denoted by r(m), for AF-BDFI 
and RAF-ROS in the first integration step. These results show that AF-BDFl converges for timesteps 
smaller than 950, whereas RAF-ROS converges for f:,,t < 3000. Tables 4 and 5 present convergence 
results for the second integration step. Now, the critical stepsizes are roughly t:,,t = 1470 for AF-BDF2 
and again 6.t = 3000 for RAF-ROS. In this connection, we recall that the convergence boundaries for 
these methods are f3 ~ 0.97 and f3 ~ 2.20, respectively (see Section 3.3.3). Hence, the theory predicts a 
factor 2.2 larger convergent steps, whereas the practical gain factor is about a factor 2.0. 
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Table 6 
Values of cd and iii (in brackets) for RAF-ROS 

!::i.t m1=m2=l TOL= 10- 1 TOL= 10-2 TOL= 10-3 TOL= 10-4 

1200 * 1.7 (2.6) 2.5 (4.2) 2.0 (7.2) 2.1 (10.9) 

900 * 1.8 ( 1.9) 2.7 (2.7) 2.7 (3.3) 2.7 (5.0) 

720 * 1.8 (1.3) 2.7 (1.9) 3.0 (2.5) 3.0 (3.6) 

600 * 1.8 (1.1) 2.9 (1.6) 3.3 (2.2) 3.3 (3.0) 

500 2.6 2.6 (1.0) 3.6 (1.6) 3.6 (2.0) 3.6 (2.7) 

5.2. Dynamic iteration strategy 

We conclude this paper with experiments showing that a dynamic iteration strategy based on 
approximate factorization improves the robustness of the integration process. We illustrate this by 
applying the two-stage RAF-ROS method {(2.4'), (3.3), K = 1- ~J2} with a stopping strategy based on 
the criterion r; (m;) ~ TOL, where TOL is a given tolerance and r; (m;) is the maximal absolute difference 
between two successive iterates after m; iterations in the ith stage of the RAF-ROS method. Table 6 lists 
the number of correct digits in the end point t = T, i.e., the value of 

cd := minimum(- 10 log( absolute end point error)), 

taken over all grid points and over both species, and in brackets the averaged number of iterations m (over 
all steps and both stages) needed in the integration process. In order to illustrate the stabilizing effect of 
approximate factorization iteration, we also list the results obtained by the factorized Rosenbrock method, 
that is, the results obtained for m 1 = m2 = 1. Negative cd-values are indicated by *. Table 6 clearly 
shows that the instabilities produced by factorized Rosenbrock can be removed if the dynamic iteration 
strategy is applied. We remark that the stable behaviour of factorized Rosenbrock for still reasonably large 
stepsizes is due to the diffusion terms and the upwind discretizations which introduce negative real parts 
in the eigenvalues of the Jacobians Jk. In general, stable results are already obtained for the values of m 
between 1 and 3. Taking into account that in transport problems with a time-dependent velocity field 
the LU-decompositions need regular updating, we may conclude that the total iteration costs per step 
increase sublinearly with m. Hence, the introduction of a dynamic iteration strategy is quite effective, 
provided that the tolerance parameter TOL is appropriately chosen. In fact, this parameter should be 
related to a tolerance parameter which controls the local truncation error as is done in implementations 
of ODE solvers. Such more sophisticated implementations of the methods proposed in this paper will be 
subject of future research. 
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