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ABSTRACT
In this article, we analyse the convergence of multigrid (MG) iteration for solving the algebraic
equations arising from a space-time discontinuous Galerkin (DG) discretization of the advection-
diffusion equation. To keep the MG method fully explicit, we consider Runge-Kutta smoothers
that solve the algebraic equations by marching in pseudo-time to steady state. Depending on
the Péclet number, we find multigrid convergence factors between 0.50 and 0.74 with Fourier
two-level analysis. We illustrate the analysis with a numerical example.
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Abstract

In this article, we analyse the convergence of multigrid (MG) it-
eration for solving the algebraic equations arising from a space-time
discontinuous Galerkin (DG) discretization of the advection-diffusion
equation. To keep the MG method fully explicit, we consider Runge-
Kutta smoothers that solve the algebraic equations by marching in
pseudo-time to steady state. Depending on the Péclet number, we
find multigrid convergence factors between 0.50 and 0.74 with Fourier
two-level analysis. We illustrate the analysis with a numerical exam-
ple.

1 Introduction
In this analysis we study the convergence of multigrid (MG) iteration for
solving a time-dependent advection-diffusion equation that is discretized by
a second order accurate discontinuous Galerkin (DG) method both in the
spatial direction and in the time direction. In this technique we discretize
the time variable as a spatial variable and hence decoupling in space and time
is avoided. A consequence of such a space-time approach is that the resulting
methods can handle problems with moving and/or deforming meshes [8, 16].
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The Netherlands

†University of Twente, Department of Applied Mathematics, P.O. Box 217, 7500 AE
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Moreover, the space-time approach applied to the incompressible Navier-
Stokes equations does not suffer from the second order barrier in time as is
the case in the classical pressure-correction methods. In theory, solutions of
arbitrary order of accuracy can be computed. In this framework and with in
mind the flexibility in mesh (h) refinement techniques and flexibility of poly-
nomial order (p) adaptation of the approximation, we study the application
of the DG method where the second order term is based on the method by
Brezzi e.a [2, 14].

Discontinuous Galerkin methods, although originally developed for hyper-
bolic equations, are nowadays becoming the methods of interest for solving
second order partial differential equations. These were unified and analysed
for the Laplace equation by Arnold e.a. [1] and, among the techniques which
proved consistent, adjoint consistent and stable with optimal error bounds is
the internal penalty method and the method by Brezzi e.a [2]. The advan-
tage of the latter is that the penalty term does not need a grid-dependent
parameter as is the case for the internal penalty method. This is important
for non-uniform grids. Its disadvantage is that the penalty term requires
expensive lifting operators.

For solving the underlying system of algebraic equation we want to rely on
multigrid iteration because of its expected optimal efficiency [15, 18]. How-
ever, in contrast to the block iterative schemes considered in [5, 7, 4], we study
the application of explicit Runge-Kutta smoothing. For computationally de-
manding boundary value problems, the use of explicit multigrid schemes is
preferable, in order to minimise the amount of data storage. To compute the
MG convergence rates we introduce a similar two-level local mode Fourier
analysis as described in [5, 17]. The difference in this analysis is that we
avoid the cell-staggering problem of transferring cell data from coarse to fine
cells, by associating the data in a cell with a nodal point. The resulting
analysis can be used for arbitrary polynomial basis and is directly extend-
able to higher-dimensional problems by the tensor product principle [6]. For
various cell Péclet numbers we compute MG convergence rates and we find
that explicit Runge-Kutta iteration is efficient for solving time-dependent
advection-diffusion equation.

The outline of this paper is as follows. In Section 2, we will describe
the space-time DG discretization of the advection-diffusion equation by giv-
ing the weak form, the system of algebraic equations and the Runge-Kutta
smoothers for the multigrid algorithm. In Section 3, we present the Fourier
analysis needed to determine the convergence behaviour of the multigrid al-
gorithm and we show the results for various situations in Section 4.
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2 Space-time discontinuous Galerkin method

2.1 Weak form

In this section we introduce the space-time discretization for which we study
multigrid convergence. For that purpose we introduce the open space-time
domain

Ω =
{
(x, t) | x ∈ R, t ∈ R+

}
,

with boundary ∂Ω = {(x, t) | t = 0, x ∈ R} and consider the advection-
diffusion equation in generic form

−∇ · A∇u + b · ∇u = 0, in Ω, u = u0 on ∂Ω, (1)

where
∇ =

[
∂x ∂t

]T
, b =

[
a 1

]
, A =

[
d 0
0 0

]
, (2)

with a > 0 and d > 0. Next, to arrive at a DG discretization, we partition
the domain Ω in regular rectangular cells of identical shape

Ωn
j = {(x, t) | jh < x < (j + 1)h, n∆t < t < (n + 1)∆t} , (3)

with h > 0, ∆t > 0, j ∈ Z and n ∈ {0, N}. Then Ωn =
⋃

j∈Z
Ωn

j is a space-
time slab. To find the discrete algebraic equations we introduce the discrete
function space

Sn
h =

{
vn

h ∈ L2(Ω)
∣∣∣ vn

h |Ωn
j
∈ Pk(Ωn

j ), ∀j ∈ Z, n ∈ N

}
, (4)

the space of piecewise polynomials of degree at most k in the coordinate
directions. Then the discrete weak DG form of (1) reads [2, 9, 12]: find
un

h ∈ Sn
h such that

B(un
h, vn

h) = 0, ∀vh ∈ Sn
h , ∀n ∈ N, (5)

with
B(un

h, v
n
h) =∑

j∈Z

∫
Ωn

j

(A∇un
h) · ∇vn

h dΩ −
∑
j∈Z

∫
Γn

j

〈A∇un
h〉 · [vn

h ] ds

−
∑
j∈Z

∫
Γn

j

〈A∇vn
h〉 · [un

h] ds +
∑
e∈Z

∑
j∈Z

∫
Ωn

j

ηe(re(u
n
h) A) · re(v

n
h) dΩ

−
∑
j∈Z

∫
Ωn

j

∇vn
h · b un

h dΩ +
∑
j∈Z

∫
Γn

j
−

un
h
−nj · b vn

h
+ ds

+
∑
j∈Z

∫
Γn

j
+

un
h
+nj · b vn

h
+ ds,

(6)
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and A and b defined in (2). Here, the first four terms in the righthand side are
associated with the diffusion part of (1), where the term with stabilisation
parameter ηe > 0 prevents the discrete system of being indefinite. In the
next section, we show how to compute this stabilisation term. For a complete
overview of DG methods for elliptic problems we refer to [1]. The common
cell interface between two adjacent cells Ωn

j−1 and Ωn
j in the time slab Ωn is

Γn
j = ∂Ωn

j−1 ∩ ∂Ωn
j . On this interface the jump operator [ · ] and the average

operator 〈 · 〉 are defined by

[un
h(x, t)] = un

h(x, t)|∂Ωn
j−1

nj−1 + un
h(x, t)|∂Ωn

j
nj , for un

h ∈ Sn
h ,

〈τn
h (x, t)〉 =

1

2

(
τn
h (x, t)|∂Ωn

j−1
+ τn

h (x, t)|∂Ωn
j

)
, for τn

h ∈ [Sn
h ]2 ,

(7)

with x ∈ Γn
j and with nj the unit outward normal of cell Ωn

j . Furthermore
we distinguish between inflow and outflow boundaries of ∂Ωn

j = Γn
j
− ∪ Γn

j
+.

With Γn
j
− we denote the inflow boundary part. Here is nj · b < 0. The

outflow boundary is denoted by Γn
j

+, i.e., nj · b ≥ 0. The traces un
h
± at ∂Ωn

j

are defined by
un

h
± = lim

ε↑0
un

h(x ± εnx, t ± εnt), (8)

with nj =
[
nx nt

]T . Notice that, because of the causality in time, u0
h
−|∂Ω =

u0 and that un
h
−(x, n∆t) = un−1

h (x, n∆t). So for each time slab Ωn we have
to solve a system of algebraic equations. To explicitly describe the iterative
methods studied in this paper, in the next section, we provide Sn

h with a
polynomial space and we give the discrete stencils associated with (6).

2.2 Discrete system

Here, we describe the linear system that must be solved for each time slab.
For sake of clarity, in this presentation we restrict ourselves to a second
order discretization although the analysis can be extended to higher order
and multiple dimensions.

On the unit square (ξ, η) ∈ (0, 1)× (0, 1) we take the following polyno-
mial space

φ0(ξ, η) = 1, φ1(ξ, η) = 2ξ − 1, φ2(ξ, η) = 2(η − 1), (9)

yielding the approximation

un
h =

∑
j∈Z

2∑
k=0

cn
j,kφ

n
j,k(x, t) ≡

∑
j∈Z

2∑
k=0

cn
j,kφk

(
x − jh

h
,
t − n∆t

∆t

)
. (10)
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This polynomial basis is of interest because of two reasons: the basis functions
are chosen such that the test and trial function can be split into an element
mean ūh at t = tn+1 and a fluctuating part ũh [16]:

uh(x, t) = ūh + ũh(x, t), ∀x, t ∈ Ωn
j

with ūh = cj,0 and ∫
x∈Ωn

j

ũh(x, tn+1) dx = 0.

As a consequence the relation between DG and finite volume discretizations
is exposed: the equations for the element mean in the space-time DG dis-
cretization are the same as those of a finite volume discretization. The second
reason is that it suits the definition of the artificial dissipation operator used
in [16] as an alternative for slope limiters to guarantee monotone solutions
around discontinuities and sharp gradients.

To compute the penalty term in (6), we consider its definition in varia-
tional form [2]: find re(v

n
h) ∈ [Sn

h ]2 such that∑
j∈Z

∫
Ωj

re(v
n
h) · τn

h dΩ =

∫
Γn

e

[vn
h ] · 〈τn

h 〉 ds, ∀τn
h ∈ [Sn

h ]2 , e ∈ Z. (11)

Since [Sn
h ]2 =

[
Span

{
φn

j,k

}]2 and because re =
[
(re)x (re)t

]T is a polynomial
expansion we take

(re)∗ =
∑
j∈Z

2∑
k=0

(
an

j,k

)
∗ φn

j,k , ∗ = x, t, (12)

with 2 × 3Z unknowns
(
an

j,k

)
∗. Taking the same number of test functions

τn
h ∈

{[
φn

j,k

0

]
,

[
0

φn
j,k

]}
, j ∈ Z, 0 ≤ k ≤ 2, (13)

we find re(φ
n
j̃,k̃

) and hence re(u
n
h) by solving the small linear system for the

unknowns
(
an

j,k

)
x

e∑
j=e−1

2∑
k=0

(
an

j,k

)
x

∫
Ωj

φn
j,kφ

n
j,l dΩ =

∫
Γn

e

[
φn

j̃,k̃

]
·
〈[

φn
j,k

0

]〉
ds, (14)

with j̃ ∈ {e − 1, e} and l, k̃ ∈ {0, 1, 2}, while (an
j,k)x = 0 for all j ∈ Z/{e−1, e}

and (an
j,k)t = 0 for all j ∈ Z. So with the approximation (10) and with the
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definition of the lifting functions (12) and (14), the discrete system (5) is
3Z block-Toeplitz. The corresponding operator is given by the associated
stencils

Ln
dh

∼=
d∆t

h

⎡⎣ −2η 1 − 2η 2η
−1 + 2η −2 + 2η 1 − 2η

2η −1 + 2η − 13
6 η

∣∣∣∣∣∣
4η 0 −4η
0 4η 0

−4η 0 13
3 η

∣∣∣∣∣∣
−2η −1 + 2η 2η

1 − 2η −2 + 2η −1 + 2η
2η 1 − 2η − 13

6 η

⎤⎦ (15)

for the diffusion part with ηe = η. The space-time advection stencil is given
by

Ln
ah

∼=
⎡⎣−σ −σ σ

σ σ −σ
σ σ −4

3
σ

∣∣∣∣∣∣
σ + h σ −σ
−σ σ + 1

3
h σ

−σ − 2h −σ 4
3
σ + 2h

∣∣∣∣∣∣
0 0 0
0 0 0
0 0 0

⎤⎦ . (16)

with σ = a∆t. The stencil containing data of the previous time slab is given
by

Ln−1
ah

∼=
⎡⎣0 0 0

0 0 0
0 0 0

∣∣∣∣∣∣
−h 0 0
0 −1

3
h 0

2h 0 0

∣∣∣∣∣∣
0 0 0
0 0 0
0 0 0

⎤⎦ . (17)

With Ln
h = Ln

dh
+Ln

ah
and fn

h = Ln−1
ah

un−1
h we have to solve for each time slab

Ωn the 3Z × 3Z linear system

Ln
hun

h = fn
h . (18)

This system will be solved by multigrid iteration combined with Runge-Kutta
smoothers and the resulting convergence behaviour will be analysed.

2.3 Runge-Kutta smoothers

In order to reduce the computational costs when handling complex higher
dimensional problems, we are interested in fully explicit iterative solvers. For
that purpose, we write the system of equations (18) as a system of ordinary
differential equations that we want to iterate towards steady state. Hence
we consider the problem

dcn
h

dτ
= fn

h − An
hcn

h, (19)

for expansion coefficients cn
h of un

h with An
h the 3Z×3Z block-Toeplitz matrix

associated with the operator Ln
h in (18). The first Runge-Kutta method used

for this purpose is

Algorithm 1 (EXI). Explicit Runge-Kutta method for inviscid flow with
Melson [11] correction and pseudo-time step ∆τ .

6



1. Set (cn
h)k

0 = (cn
h)k.

2. For all stages s = 1 to 5 compute (cn
h)k

s as

(cn
h)

k
s =

1

1 + αs∆τ

(
(cn

h)k
0 + αs∆τ

(
(cn

h)
k
s−1 + fn

h − An
h(cn

h)k
s−1

))
.

3. Return (cn
h)k+1 = (cn

h)k
5.

Here the Runge-Kutta coefficients are α1 = 0.0791451, α2 = 0.163551,
α3 = 0.283663, α4 = 0.5 and α5 = 1.0. In [8], the performance of the EXI
method was analysed for the space-time DG discretization of the advection-
diffusion equation. When diffusion dominates, the stability condition proved
quite restrictive. To alleviate this restriction, a member of a family of Runge-
Kutta methods proposed by Kleb e.a. [10] was used. It has a stability do-
main which stretches much further along the negative real axis than classical
Runge-Kutta schemes, making it ideal for diffusion dominated flow problems.
The method is given by:

Algorithm 2 (EXV). Explicit Runge-Kutta method for viscous flows with
pseudo-time step ∆τ .

1. Set (cn
h)k

0 = (cn
h)k.

2. For all stages s = 1 to 4 compute (cn
h)k

s as

(cn
h)k

s = (cn
h)k

0 + αs∆τ
(
fn

h − An
h(cn

h)
k
s−1

)
.

3. Return (cn
h)k+1 = (cn

h)k
4.

For this iteration scheme the Runge-Kutta coefficients are α1 = 0.0178571,
α2 = 0.0568106, α3 = 0.1745130, α4 = 1.0. In [8], the EXI and EXV method
were combined based on the cell Reynolds number: the EXV method is
used for elements with low cell Reynolds numbers (i.e. boundary layers) and
the EXI method for high cell Reynolds numbers (i.e. the far-field). This
approach proved very effective for the 3D compressible Navier-Stokes equa-
tions. Therefore, we study the smoothing properties of these two explicit
Runge-Kutta methods. The error amplification operators associated with
these Runge-Kutta methods are needed to assess the smoothing property.
These operators for the error (en

h)k+1 ≡ (cn
h)k+1 − (cn

h)k are given by:

MEXI
h =

Ih

1 + α5∆τ
+

α5∆τ (Ih − An
h)

(1 + α4∆τ) (1 + α5∆τ)
+ · · ·

+
α2α3 · · ·α5 (∆τ (Ih − An

h))4

(1 + α1∆τ) (· · · ) (1 + α5∆τ)
+

α1α2 · · ·α5 (∆τ (Ih − An
h))5

(1 + α1∆τ) (· · · ) (1 + α5∆τ)
.

(20)
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and

MEXV
h = Ih − α4∆τAn

h + α3α4 (∆τAn
h)2 − · · · + α1α2α3α4 (∆τAn

h)4 . (21)

2.4 Multigrid

At the core of any multigrid algorithm is the two-level scheme. Multilevel
algorithms are obtained by recursively applying the two-level scheme in, for
example, a V-cycle. Therefore, we study the error amplification operator of
the two-level algorithm MTLA

h , which is given by [5, 17]:

MTLA
h = MCGC

h MREL
h ,

with MREL
h the error amplification operator associated with either the EXV or

the EXI scheme, given in (21) and (20). The coarse grid correction operator
is defined as

MCGC
h = Ih − PhH (Ln

H)−1 RHhLn
h, (22)

with Ln
H the system obtained by the space-time DG discretization for the time

slab Ωn on the coarse grid with H = 2h. The prolongation and restriction
operators PhH and RHh are based on the embedding of the spaces Sn

H ⊂ Sn
h

and will be given in the next section.
Remark. Contrary to the internal penalty method, the discretization of the
second order term (based on the method by Brezzi e.a. [1, 2]) only satisfies
the Galerkin property (LH = RHhLhPhH) if the stabilisation parameter ηe on
the coarse mesh is a factor H/h larger than on the fine mesh (3). In general
this property does not hold, e.g., on non-uniform meshes. Therefore we take
the same stabilisation parameter on the fine and coarse mesh. For stability
of the discretization we take ηe = 2; equal to the number of spatial faces per
cell [14].

The convergence behaviour of the two-level algorithm for the space-time
DG discretization is given by the spectral radius of the error amplification
operator ρ

(
MTLA

h

)
which represents the expected convergence factor per

iteration. In the next section, we will apply Fourier analysis to compute the
eigenvalue spectra of the two-level algorithm.

3 Fourier analysis

3.1 Grid functions and the space-time block Toeplitz
operator

To study the convergence of the various iterative methods we introduce two-
level Fourier analysis tools for the unknowns in the cells Ωn

j . The key part
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in this analysis is to associate the coefficients
{
cn
j,0, c

n
j,1, c

n
j,2

}
j∈Z

of the ap-
proximation (10) in the system (18) with the nodal points jh. In this way
we avoid the staggering problem of transferring cell data from coarse to fine
cells [5, 17], while we keep the data in cell wise ordering. Hence, we intro-
duce an elementary mode eh(ω) = eijhω, with ω ∈ Th = [−π/h, π/h) on the
space-time grid

Zn
h = {(jh, n∆t) | j ∈ Z, n ∈ N, h > 0, ∆t > 0} . (23)

If we decompose Ln
h into a strict block-lower, a block-diagonal and a strict

block-upper matrix, where

Ln
h
∼= [

Ln
h Dn

h Un
h

]
, (24)

we compute the Fourier transform by

L̂n
h(ω) = Ln

he−iωh + Dn
h + Un

h e+iωh. (25)

Then, following [5, 17], we find in the eigenvalue-eigenvector decomposition

L̂n
h(ω)v = vΛn

h(ω), ω ∈ Th , (26)

that Λn
h(ω) is a 3 × 3 diagonal matrix with the eigenvalues λi(ω) of Ln

h as
function of ω ∈ Th. The columns of v = [v0, v1, v2] are the coefficients of the
eigenvector vie

ijhω of Ln
h. We see that this eigenvector is a three-valued grid

function on the grid (23) in the coefficient ordering
{
cn
j,0, c

n
j,1, c

n
j,2

}
j∈Z

.
In the next section we introduce the grid transfer operators that are

needed to construct the two-level algorithm.

3.2 Prolongation and restriction

Important ingredients in the two-level analysis are the flat prolongation and
the flat restriction operator. Any constant coefficient grid transfer operator
is a combination of a Toeplitz and a flat grid transfer operator. In this section
we introduce the grid transfer operators and the Fourier transforms for grid
functions

{
cn
j,0, c

n
j,1, c

n
j,2

}
j∈Z

that are needed in the two-level analysis.
To avoid the data staggering problem related to the grid transfer operators

acting on cell-wise data [5], it is necessary for this analysis to associate the
cell data with the nodal points xj . In this way, we can obtain vector valued
grid functions un

h(jh) =
{
cn
j,0, c

n
j,1, c

n
j,2

}
j∈Z

in the Hilbert space [l2(Zn
h)]

3 for
which the grid transfer operators are easily defined. For such a grid function
the flat prolongation P 0

hH : [l2(Zn
H)]

3 → [l2(Zn
h)]

3 is defined by

P 0
hHun

H(jH) =

{
un

H( j
2
H) if j even,

0 if j odd.
(27)

9



The flat restriction operator R0
hH : [l2(Zn

h)]
3 → [l2(Zn

H)]
3 is defined by

(R0
Hhu

n
h)(jH) = un

h(2jh). (28)

Then the prolongation PhH : Sn
H → Sn

h so that PhHun
H(x) = un

H(x) for all
x ∈ R \ Zn

h is uniquely defined by PhH = PhP
0
hH , where

Ph
∼=
⎡⎣1 1

2
0

0 1
2

0
0 0 1

∣∣∣∣∣∣
1 −1

2
0

0 1
2

0
0 0 1

∣∣∣∣∣∣
0 0 0
0 0 0
0 0 0

⎤⎦ . (29)

Another unique operator that is needed in the two-level analysis is the re-
striction on the residual. It is the adjoint of the prolongation operator and
is given by

RHh = R0
HhP

T
h . (30)

Then the Fourier transforms are computed from [5, 17]

P̂hHun
H(ω) =

(
̂PhP 0

hHun
H

)
(ω) =

1

2

[
P̂h (ω)

P̂h

(
ω + π

h

)] ûn
H(ω), (31)

and with Rh = P T
h

R̂Hhun
h(ω) = ̂R0

HhRhun
h(ω)

=
[
R̂h (ω) R̂h

(
ω + π

h

)] [ ûn
h (ω)

ûn
h

(
ω + π

h

)] ,
(32)

with ω ∈ TH = [−π/H, π/H) and

ûn
h(ω) =

h√
2π

∑
j∈Z

e−ijhωun
h(jh).

A sketch of the basic two-level set up is shown in Figure 1. Here we see
the grid function un

h(jh) on the space-time grid; a part of the coarse grid
and pictorially the action of the grid transfer operators. With these tools we
construct the Runge-Kutta two-level analysis in the next section.

3.3 Two-level algorithm

The eigenvalue spectra of the two-level algorithm MTLA
h is shown [17] to be

{λi(ω)} with i = 1, . . . , 6 and λi(ω) the eigenvalues of the Fourier transform
M̂TLA

h for ω ∈ TH . The Fourier transform of the two-level operator reads:

M̂TLA
h (ω) = M̂CGC

h M̂REL
h (ω),

10
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Figure 1: A sketch of the grid function un
h(jh) on the space-time grid (23) and

a part of the coarse mesh. Pictorially the action (31) of the flat prolongation
and the flat restriction (32) is shown.

with M̂REL
h the Fourier transform of the EXI (or EXV) Runge-Kutta method

and M̂CGC
h of the coarse grid correction. For the operator L̂n

h (see (25)), the
Fourier transforms of the EXI and EXV error amplification operators are

M̂EXI
h (ω) =

Ih

1 + α5∆τ
+

α5∆τ
(
Ih − L̂n

h(ω)
)

(1 + α4∆τ) (1 + α5∆τ)
+ · · ·

+
α2α3 · · ·α5

(
∆τ

(
Ih − L̂n

h(ω)
))4

(1 + α1∆τ) (· · · ) (1 + α5∆τ)
+

α1α2 · · ·α5

(
∆τ

(
Ih − L̂n

h(ω)
))5

(1 + α1∆τ) (· · · ) (1 + α5∆τ)
,

and

M̂EXV
h (ω) = Ih−α4∆τ L̂n

h(ω)+α3α4

(
∆τ L̂n

h(ω)
)2

−· · ·+α1α2α3α4

(
∆τ L̂n

h(ω)
)4

,

with ω ∈ Th. Using the Fourier transform of the block Toeplitz operator
and of the prolongation and restriction operators the Fourier transform of
the two-level error amplification operator is given by (see (22))

M̂TLA
h (ω) =

[
Ih 0
0 Ih

]
−
[

P̂h (ω)

P̂h

(
ω + π

h

)] [L̂H(ω)−1
]

[
R̂h (ω) R̂h

(
ω + π

h

)] [L̂h(ω) 0

0 L̂h(ω + π
h
)

][
M̂REL

h (ω) 0

0 M̂REL
h (ω + π

h
)

]
,

with Ih the 3 × 3 identity matrix and ω ∈ TH .
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Table 1: TLA convergence with EXI smoothing is preferable in the advection
dominated case (denoted by ∗).

physics stability convergence
C∆t Peh ∆τ/∆t ρ

(
MEXI

h

)
ρ
(
MTLA

h

)
100 100 1.8 · 10−4 0.991 0.623∗

100 0.01 1.0 · 10−7 0.999 0.959
1 100 1.6 0.796 0.479∗

1 0.01 1.0 · 10−3 0.999 0.957

Table 2: TLA convergence with EXV smoothing is preferable in the diffusion
dominated case (denoted by ∗).

physics stability convergence
C∆t Peh ∆τ/∆t ρ

(
MEXV

h

)
ρ
(
MTLA

h

)
100.0 100.0 2.0 · 10−5 0.999 0.914
100.0 0.01 8.0 · 10−7 0.999 0.744∗

1.0 100.0 1.0 0.924 0.660
1.0 0.01 8.0 · 10−3 0.993 0.744∗

4 Results

4.1 Convergence of the two-level algorithm

In this section, the eigenvalue spectra and radii of the two-level algorithm are
given for various situations, described by the Courant and Péclet numbers:

C∆t =
a∆t

h
and Peh =

ah

d
.

The Courant number expresses the time-accuracy of the discretization and
the Péclet number the importance of diffusion relative to advection. Since
the space-time DG discretization is implicit in physical time, the method
is unconditionally stable [14] for any physical time step. This allows us to
take the Courant number C∆t = 100 for steady-state cases and C∆t = 1
for time-dependent cases. We will consider Péclet numbers Peh = 0.01 and
Peh = 100, which represent the diffusion and advection dominated cases,
respectively. This defines the following four flow regimes:

• steady, advection dominated: C∆t = 100, Peh = 100

• steady, diffusion dominated: C∆t = 100, Peh = 0.01

• unsteady, advection dominated: C∆t = 1, Peh = 100

12



• unsteady, diffusion dominated: C∆t = 1, Peh = 0.01

The Runge-Kutta methods are explicit in pseudo time and their stability is
governed by the ratio between the pseudo and physical time step ∆τ/∆t.

In Tables 1 and 2, we give the spectral radii of the smoothers and the two-
level algorithm for these cases. Both the EXI and EXV smoother are stable
but hardly converge (except in the unsteady advection dominated case) which
shows the necessity of multigrid iteration. With the two-level algorithm, the
situation is considerably improved. Clearly, the EXI method is preferable in
the advection dominated case. We find convergence factors of 0.62 and 0.48
for the steady and unsteady case respectively (Table 1). The EXV method is
preferable in the diffusion dominated case, where we find convergence factors
of 0.74 both in the steady and unsteady situation (Table 2).

In Figures 2, 3, 4 and 5, we show the eigenvalue spectra of the preferable
smoother and the two-level algorithm for each case. For the smoothers we
have plotted the eigenvalues corresponding to a discrete series of low fre-
quencies ωi = −π/2h,−0.96π/2h, . . . , π/2h and associated high frequencies
ωi +π/h. The eigenvalues corresponding to low frequencies are denoted by ◦;
those corresponding to high frequencies by +. The eigenvalue spectra of two-
level algorithms are plotted for ωi = −π/H,−0.96π/H, . . . , π/H . Here we do
not distinguish between low and high frequencies. The two-level algorithm
must damp all frequencies.

Moreover, from these figures we see that the Runge-Kutta methods have
the smoothing property, i.e., the high frequencies are damped. The observed
smoothing factor of approximately 0.8 (which is often used as an estimate
for the multigrid convergence [3]) is rather inaccurate in comparison to the
true smoothing factor obtained with two-level analysis.

4.2 Numerical illustration

To illustrate the results of the multigrid analysis, we consider the space-
time discretization of the scalar advection-diffusion equation for the following
simple initial boundary value problem:⎧⎪⎨⎪⎩

ut + aux = duxx, x ∈ (0, 1), t ∈ R+,

u(0, t) = 1, u(1, t) = 0, t ∈ R+,

u(x, 0) = 1 − x, x ∈ (0, 1).

The exact (steady state) solution is given by:

u(x) =
ea/d − eax/d

ea/d − 1
,

13
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Figure 2: Eigenvalue spectra of the EXI smoother and two-level algorithm
in the steady advection dominated case (C∆τ = 100 and Peh = 100).
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Figure 3: Eigenvalue spectra of the EXV smoother and two-level algorithm
in the steady diffusion dominated case (C∆τ = 100 and Peh = 0.01).
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Figure 4: Eigenvalue spectra of the EXI smoother and two-level algorithm
in the unsteady advection dominated case (C∆τ = 1 and Peh = 100).
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Figure 5: Eigenvalue spectra of the EXV smoother and two-level algorithm
in the unsteady diffusion dominated case (C∆τ = 1 and Peh = 0.01).
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and features an exponential boundary layer near x = 1. Such a case is best
solved on a so-called Shishkin mesh [13]. With N elements, this mesh is
piecewise equidistant with nodes xj given by:

xj =

{
2(1 − c)j/N for j = 0, 1, . . . , N/2,
1 − c + 2c/N(j − N/2) for j = N/2, N/2 + 1, . . . , N ,

where c = (2/a)d ln(N). For our example, we take a = 1, d = 0.025 and
N = 32. Advection dominates in the first part, so we use the EXI scheme
there and the EXV scheme in the second part. We use three level multigrid
in a V-cycle with two pre- and post-relaxations. The coarse grid problem is
solved approximately with four relaxations, which is more realistic in view of
applications to complex problems where the exact coarse grid solution cannot
be attained.

The problem can be solved in two ways: time accurate with ∆t = 0.05
which corresponds to C∆t ≈ O(1) or directly steady-state with ∆t = 5 which
corresponds to C∆t ≈ O(100). In Figure 6, the space-time solution and the
convergence in pseudo-time for a few physical time steps are shown. With
eight orders of convergence in fifty cycles, an effective damping factor of 0.7 is
achieved. In Figure 7, the steady-state solution is shown. With a single time
step the convergence in pseudo-time is ten orders in one hundred and fifty
cycles which corresponds to a damping factor of 0.85. Despite the presence of
boundary conditions and the inaccurate solution of the coarse grid problem,
these convergence rates are in agreement with the rate obtained from the
analysis. The latter being 0.74 when diffusion is dominating (Table 2), which
is the case in the boundary layer.

These results show that the EXI and EXV methods can indeed be com-
bined to form a cheap local smoother for a full multigrid setting as expected
from the analysis.

5 Conclusion
In this paper, we have studied the convergence of Runge-Kutta multigrid
iteration for solving the system of algebraic equations resulting from the
space-time DG discretization of the scalar advection-diffusion equation. In
this local mode analysis we avoid the cell-staggering problem of transferring
cell data from coarse to fine cells, by associating the data in a cell with a
nodal point.

The analysis shows that explicit Runge-Kutta methods can be applied
as smoothers in a multigrid setting. Depending on the case under consid-
eration, two-level convergence factors between 0.48 and 0.74 are obtained.
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Figure 6: The space-time solution of the advection-diffusion equation (a = 1,
d = 0.025) on a Shishkin mesh with 32 elements and the convergence in
pseudo-time of the MG algorithm for a few physical time steps ∆t = 0.05.

17



x

u
(x
)

0 0.5 1

0

0.2

0.4

0.6

0.8

1

approx
exact

(a) Solution

MG cycles

re
si
du
al
s
(L
2
-n
or
m
)

50 100 150 200
10-12

10-10

10-8

10-6

10-4

10-2

(b) Convergence

Figure 7: The steady-state solution of the advection-diffusion equation (a =
1, d = 0.025) on a Shishkin mesh with 32 elements and the convergence in
pseudo-time of the MG algorithm for a single physical time step ∆t = 5.
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With a numerical illustration we show the multigrid convergence behaviour
in practice and we find multigrid convergence factors that are in agreement
with the convergence factors obtained from the analysis.

The advantage of using Runge-Kutta smoothing is that it results in a
fully explicit approach, which can be extended to complex multidimensional
problems where implicit smoothing may be too costly.

Acknowledgements
The research of Marc van Raalte has been supported by the Computational
Life Science programme of the Netherlands Organisation of Scientific Re-
search (NWO) (C-pump project).

The research of Christiaan M. Klaij has been conducted in the STW
project TWI.5541, entitled Advanced simulation techniques for vortex dom-
inated flows in aerodynamics. The financial support from STW and the
National Aerospace Laboratory NLR is gratefully acknowledged.

We thank Ben Sommeijer, Jaap van der Vegt, Harmen van der Ven and
the members of the C-pump project for their good suggestions and discus-
sions.

References
[1] D. Arnold, F. Brezzi, B. Cockburn, and D. Marini. Unified analysis of

discontinuous Galerkin methods for elliptic problems. SIAM J. Numer.
Anal., 39:1749–1779, 2002.

[2] F. Brezzi, G. Manzini, D. Marini, P. Pietra, and A. Russo. Discontin-
uous Galerkin methods for elliptic problems. Numer. Methods Partial
Differential Eq., 16:365–278, 2000.

[3] W.L. Briggs, Van Emden Henson, and S.F. McCormick. A Multigrid
tutorial. SIAM, 2000.

[4] J. Gopalakrishan and G. Kanschat. A multilevel discontinuous Galerkin
method. Numerische Mathematic, 95:527–550, 2003.

[5] P.W. Hemker, W. Hoffmann, and M.H. van Raalte. Two-level Fourier
Analysis of a multigrid Approach for Discontinuous Galerkin Discreti-
sation. SIAM Journal on Scientific Computing, 25:1018–1041, 2004.

19



[6] P.W. Hemker and M.H. van Raalte. Fourier two-level analysis for higher
dimensional discontinuous Galerkin discretisation. Computing and Vi-
sualization in Science, 7:159–172, 2004.

[7] K. Johannsen. Multigrid Methods for NIPG. Technical Report ICES
05-32, University of Texas, 2005.

[8] C.M. Klaij, J.J.W. van der Vegt, and H. van der Ven. Pseudo-time step-
ping methods for space-time discontinuous Galerkin discretizations of
the compressible Navier-Stokes equations. J. Comput. Phys. (in press),
2006.

[9] C.M. Klaij, J.J.W. van der Vegt, and H. van der Ven. Space-time discon-
tinuous Galerkin method for the compressible Navier-Stokes equations.
J. Comput. Phys. (in press), 2006.

[10] W.L. Kleb, W.A. Wood, and B. van Leer. Efficient Multi-Stage Time
Marching for Viscous Flows via Local Preconditioning. AIAA J., 99-
3267:181–194, 1999.

[11] N.D. Melson, M.D. Sanetrik, and H.L. Atkins. Time-accurate Navier-
Stokes calculations with multigrid acceleration. In Proc. 6th Copper
Mountain Confer. on Multigrid Methods, 1993.

[12] W. Reed and T. Hill. Triangular mesh methods for the neutron transport
equation. Technical Report LA-UR 73-479, LANL, 1973.

[13] M. Stynes and E. O’Riordan. A Uniformly Convergent Galerkin Method
on a Shishkin Mesh for Convection-Diffusion Problem. J. Math. Anal.
Appl., 214:36–54, 1997.

[14] J.J. Sudirham, J.J.W. van der Vegt, and R.M.J. van Damme. Space-time
discontinuous Galerkin method for advection-diffusion problems. Appli-
cation to wet-chemical etching processes. Appl. Numer. Mathematics
(in press), 2006.

[15] U. Trottenberg, C.W. Oosterlee, and A. Schüller. Multigrid. Academic
Press, London, 2001.

[16] J.J.W. van der Vegt and H. van der Ven. Space-time discontinuous
Galerkin finite element method with dynamic grid motion for inviscid
compressible flows. I. General formulation. J. Comput. Phys, 182:546–
585, 2002.

20



[17] M. H. van Raalte. Multigrid Analysis and Embedded Boundary Condi-
tions for Discontinuous Galerkin Discretization. PhD thesis, Korteweg-
de Vries institute, University of Amsterdam, 2004.

[18] P. Wesseling. A robust and efficient multigrid method. In W. Hack-
bush and U. Trottenberg, editors, Multigrid Methods, pages 614–630.
Springer-Verlag, New York, 1982.

21


