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A new class of entropy solutions of the Buckley-
Leverett equation

ABSTRACT
We discuss an extension of the Buckley-Leverett (BL) equation describing two-phase flow in
porous media. This extension includes a third order mixed derivatives term and models the
dynamic effects in the pressure difference between the two phases. We derive existence
conditions for travelling wave solutions of the extended model. This leads to admissible shocks
for the original BL equation, which violate the Oleinik entropy condition and are therefore called
nonclassical. In this way we obtain non-monotone weak solutions of the BL problem consisting
of steady states separated by shocks, confirming results obtained experimentally.
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1 Introduction

We consider the first order initial-boundary value problem

(BL)



∂u

∂t
+
∂f(u)
∂x

= 0 in Q = {(x, t) : x > 0, t > 0},
u(x, 0) = 0 x > 0,
u(0, t) = uB t > 0,

(1.1)

where uB is a constant such that 0 ≤ uB ≤ 1. The nonlinearity f : R → R is given by

f(u) =
u2

u2 +M(1 − u)2
, if 0 ≤ u ≤ 1, (1.2)

and by f(u) = 0 if u < 0 and f(u) = 1 if u > 1. It is shown in Figure 1.

Equation (1.1), with the given function f , arises in two-phase flow in porous media and
Problem (BL) models oil recovery by water-drive in one-dimensional horizontal flow. In
this context, u : Q → [0, 1] denotes water saturation, f the water fractional flow function
and M the water/oil viscosity ratio. In petroleum engineering, equation (1.1) is known as
the Buckley-Leverett equation [3]. It is a prototype for first-order conservation laws with
convex-concave flux functions.

It is well known that first-order equations such as (1.1) may have solutions with dis-
continuities, or shocks. The value (u�) to the left of the shock, the value (ur) to the right,
and the speed s of the shock with trace x = x(t) are related through the Rankine-Hugoniot
condition,

(RH)
dx

dt
= s =

f(u�) − f(ur)
u� − ur

. (1.3)
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Figure 1: Nonlinear flux function for Buckley-Leverett (M = 2)

We will denote shocks by their values to the left and to the right: {u�, ur}.
If a function u is such that equation (1.1) is satisfied away from the shock curve, and

the Rankine-Hugoniot condition is satisfied across the curve, then u satisfies the identity∫
Q

{
u
∂ϕ

∂t
+ f(u)

∂ϕ

∂x

}
= 0 for all ϕ ∈ C∞

0 (Q). (1.4)

Functions u ∈ L∞(Q), which satisfy (1.4) are called weak solutions of equation (1.1).
Clearly, for any uB ∈ [0, 1], a weak solution of Problem (BL) is given by the shock wave

u(x, t) = S(x, t) def=

{
uB for x < st

0 for x > st
where s =

f(uB)
uB

. (1.5)

Equation (1.1) usually arises as the limit of a family of extended equations of the form

∂u

∂t
+
∂f(u)
∂x

= Aε(u), ε > 0, (1.6)

in which Aε(u) is a singular regularisation term involving higher order derivatives. It is
often referred to as a viscosity term. Weak solutions of Problem (BL) are called admissible
when they can be constructed as limits, as ε → 0, of solutions uε of equation (1.6), i.e.,
for which Aε(uε) → 0 as ε → 0 in some weak sense. We return to this limit in Section 6.
This raises the question which of the shock waves S(x, t) defined in (1.5) are admissible.
We shall see that this depends on the operator Aε. To obtain criteria for admissibility we
shall use families of travelling wave solutions.

A classical viscosity term is

Aε(u) = ε
∂2u

∂x2
,

and with this term, equation (1.6) becomes

∂u

∂t
+
∂f(u)
∂x

= ε
∂2u

∂x2
. (1.7)

Seeking a travelling wave solution, we put

u = u(η) with η =
x− st

ε
, (1.8)
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and we find that u(η) satisfies the following two-point boundary value problem:{
− su′ +

(
f(u)

)′ = u′′ in R

u(−∞) = u�, u(∞) = ur,

(1.9a)
(1.9b)

where primes denote differentiation with respect to η. An elementary analysis shows that
Problem (1.9) has a solution if and only if f and the limiting values u� and ur satisfy (i)
the Rankine-Hugoniot condition (1.3), and (ii) the Oleinik entropy condition [19]:

(E)
f(u�) − f(u)

u� − u
≥ f(u�) − f(ur)

u� − ur
for u between u� and ur (1.10)

Note that in the limit as ε→ 0+, travelling waves converge to the shock {u�, ur}.
Applying (RH) and (E) to the flux function (1.2) we find that the function S(x, t)

defined in (1.5) is an admissible shock wave if and only if

s =
f(uB)
uB

(RH) and uB ≤ α (E), (1.11)

where α is the unique root of the equation

f ′(u) =
f(u)
u

.

It is found to be given by

α =

√
M

M + 1
. (1.12)

Clearly, 0 < α < 1.

Remark. Shocks {u�, ur} which satisfy (E) are called classical shocks.

The characteristic speeds to the left and to the right of the shock are given by, respec-
tively, f ′(ul) and f ′(ur). It can be seen by inspection of the graph of f that

f ′(uB) > s > f ′(0) if 0 < uB < α

and
s > f ′(uB) ≥ f ′(0) if α < uB <∞.

Thus, if uB ∈ (0, α), then characteristics run into the shock from both sides, whilst if
uB > α, characteristics run into the shock at the front, but not at the back. We see
that in this example the admissibility condition (E) coincides with the Lax admissibility
condition for convex fluxes, which states that a shock is admissible if

(L) f ′(ul) > s > f ′(ur). (1.13)

One then speaks of a Lax discontinuity ([17], p. 119).

3



In recent years other choices for the viscosity term Aε have been investigated. We
mention the extension introduced in [17] (cf p. 18 and 53ff) which contains, besides a
diffusive term as in (1.7), also a dispersive term, and results in the equation

∂u

∂t
+
∂u3

∂x
= ε

∂2u

∂x2
+ ε2a

∂3u

∂x3
, a ∈ R+. (1.14)

and the work of Bertozzi, Münch and Shearer [4], [5] which involves a fourth order exten-
sion motivated by the Thin Film Equation:

∂u

∂t
+

∂

∂x
(u2 − u3) = −ε3 ∂

∂x

(
u3∂

3u

∂x3

)
. (1.15)

It is found that for certain combinations of the parameters involved, shock waves are
admissible for which the classical entropy condition (E) is violated. Specifically, in some
instances, shock waves may be undercompressive [17], which means that both conditions
(E) and (L) are violated in the sense that

s > f ′(ul) > f ′(ur). (1.16)

In this paper we discuss an extension which is motivated by the theory of two-phase flow
in porous media. In this context, the viscous term Aε models capillary effects between
the phases and builds upon an expression for the difference between the oil and water
pressure. In the classical approach, e.g. [3], this pressure difference is considered to be a
unique function of the water saturation, the so-called capillary pressure. Simplifying to
linear terms this yields the parabolic extension (1.7).

However, in the past decades it has been recognized that the pressure difference be-
tween the phases is not a unique function of the saturation [18], but involves hysteretic
and dynamic effects [20]. Theoretical studies [14], [15] based on thermodynamic consider-
ations, show the occurrence of the time derivative of the saturation as well as the capillary
pressure relation in the phase pressure difference. Restricting to linear terms, this leads
to the pseudo-parabolic equation

∂u

∂t
+
∂f(u)
∂x

= ε
∂2u

∂x2
+ ε2τ

∂3u

∂x2∂t
, τ ∈ R+. (1.17)

We derive existence conditions for traveling wave solutions of (1.17) and so obtain admis-
sibility conditions for shocks {u�, ur} of (1.1) which will be used to solve Problem (BL).
Specifically, we find fast undercompressive shocks for which (1.16) holds, and thus violates
condition (E), and we find weak solutions of Problem (BL), which consist of constant states
separated by shocks, which are not monotone. This confirms what is found in experiments
[10].

We derive admissibility conditions of shocks by analyzing the existence and the nonex-
istence of traveling wave solutions of equation (1.17) with appropriate limit values u� and
ur. For a given value of the constant M in f , the parameter τ will be seen to serve
as a bifurcation parameter: for small values of τ > 0 the situation will be much like in
the classical case (E), but when τ exceeds a critical value τ∗ > 0 the situation changes
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abruptly and new types of shock waves become admissible. In the following three theo-
rems we give conditions for the existence and nonexistence of traveling wave solutions of
equation (1.17) which form the basis of classical and nonclassical admissibility conditions
for equation (1.1). In the next section, they will be used to construct admissible weak
solutions of Problem (BL).

Substituting (1.8) into (1.17) we obtain the equation

−su′ + (
f(u)

)′ = u′′ − sτu′′′ in R.

When we integrate this equation over (η,∞), we obtain the second order boundary value
problem

(TW)

{
− s(u− ur) + {f(u) − f(ur)} = u′ − sτu′′ in R,

u(−∞) = u�, u(∞) = ur,

(1.18a)
(1.18b)

where s = s(u�, ur) is given by the Rankine-Hugoniot condition (1.3).

We consider two cases:

(I) ur = 0, u� > 0 and (II) ur > u� > 0.

Case I: ur = 0 We first establish an upper bound for u�.

Proposition 1.1 Let u be a solution of Problem (TW) such that ur = 0. Then, u� < β,
where β is the value of u for which the equal area rule holds:∫ β

0

{
f(u) − f(β)

β
u

}
du = 0. (1.20)

In Figure 2 we indicate the different critical values of u in a graph of f(u) when M = 2.
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Figure 2: Critical values of u when M = 2: α = 0.8164966... and β = 1.147745087...

Proof. When we put ur = 0 into (1.18a), multiply by u′ and integrate over R, we obtain
the inequality ∫ u�

0

{
f(u) − f(u�)

u�
u

}
du = −

∫
R

(u′)2(η) dη < 0,
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from which it readily follows that u� < β. �
Next, we turn to the questions of existence and uniqueness. Note that if u� ∈ (α, β),

then
s = s(u�, 0) =

f(u�)
u�

> f ′(u�) ≥ f ′(0) for u� > α,

and traveling waves – if they exist – lead to an admissibility condition for fast undercom-
pressive waves. For convenience we write s(u�, 0) = s(u�).

In the theorems below we fix M > 0. We first show that for each τ > 0, there exists a
unique value of u� ≥ α – denoted by u(τ) – for which there exists a solution of Problem
(TW) such that ur = 0.

Theorem 1.1 Let M > 0 be given. Then there exists a constant τ∗ > 0 such that:
(a) for every 0 ≤ τ ≤ τ∗, Problem (TW) has a unique solution with u� = α and ur = 0.
(b) for each τ > τ∗ there exists a unique constant u�(τ) ∈ (α, β) such that Problem (TW)
has a unique solution with u� = u�(τ) and ur = 0.
(c) the function u : [0,∞) → [α, β) defined by

u(τ) =

{
α for 0 ≤ τ ≤ τ∗
u�(τ) for τ > τ∗

(1.21)

is continuous, strictly increasing for τ ≥ τ∗, and u(∞) = β.
The solutions in Parts (a) and (b) are strictly decreasing.

We shall refer to u = u(τ) as the plateau value of u. In the sequel we shall often denote
the speed s(u) of the shock {u, 0} by s.

Next, suppose that u� �= u(τ). To deal with this case we need to introduce another
critical value of u, which we denote by u(τ).
− For τ ∈ [0, τ∗] we put u(τ) = α, and
− For τ > τ∗ we define u(τ) as the unique zero in the interval (0, u(τ)) of the equation

f(r) − f(u)
u

r = 0, 0 < r < u.

Plainly, if τ > τ∗, then

0 < u(τ) < α < u(τ) < β for τ > τ∗.

In Figure 3, we show graphs of the functions u(τ) and u(τ). Both graphs have been
computed numerically for M = 2 by applying a shooting technique to a first order problem
derived from (4.3), in which u is the independent variable.

The following theorem states that if ur = 0 and u� ∈ (0, u), then travelling waves exist
if and only if u� < u(τ).
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Theorem 1.2 Let M > 0 and τ > 0 be given, and let u = u(τ) and u = u(τ).
(a) For any u� ∈ (0, u), there exists a unique solution of Problem (TW) such that ur = 0.
We have s(u�) < s.
(b) Let τ > τ∗. Then for any u� ∈ (u, u), there exists no solution of Problem (TW) such
that ur = 0.

The solution in Part (a) may exhibit a damped oscillation as it tends to u�.

Case II: ur > 0 The results of Case I raise the question as to how to deal with solutions

of Problem (BL) when uB ∈ (u, u) and by Theorem 1.2 there is no travelling wave solution
with ur = 0. In this situation we use two travelling waves in succession: one from uB to
the plateau value u, and one from u down to u = 0. The existence of the latter has been
established in Theorem 1.1. In the next theorem we deal with the former, in which ur = u.

Theorem 1.3 Let M > 0 and τ > τ∗ be given, and let u = u(τ) and u = u(τ).
(a) For any u� ∈ (u, u), there exists a unique solution of Problem (TW) such that ur = u.
We have s(u�, u) < s.
(b) For any u� ∈ (0, u), there exists no solution of Problem (TW) such that ur = u.

The solution in Part (a) may exhibit a damped oscillation as it tends to u�.

In Section 2 we show how these theorems can be used to construct weak solutions
of Problem (BL), i.e. weak solutions, which are admissible within the context of the
regularization proposed in equation (1.17), and which involve shocks which may be either
classical or nonclassical. In Section 3 we solve the Cauchy Problem for equation (1.17)
numerically, starting from a smoothed step function, i.e., u(x, 0) = uBH̃(−x), where H̃(x)
is a regularized Heaviside function, and M = 2. We find that for different values of the
parameters uB , τ and ε the solution converges to solutions constructed in Section 2 as
t→ ∞. In Sections 4 and 5 we prove Theorems 1.1, 1.2 and 1.3. The proofs rely on phase
plane arguments. It is interesting to note that a similar phase plane structure was recently
discussed in [21] in the context of a second order model for highway traffic flow, which may
also lead to undercompressive waves. We also mention here a numerical study of traveling
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waves of the original, fully nonlinear, equations of the Hassanizadeh-Gray model [11, 12].
Finally, in Section 6 we discuss the dissipation of the entropy function u2/2 when u is the
solution of the Cauchy Problem for equation (1.17).

2 Entropy solutions of Problem (BL)

In this section we give a classification of admissible solutions of Problem (BL) based on
the ”extended viscosity model” (1.17), using the results about traveling wave solutions
formulated in Theorems 1.1, 1.2 and 1.3. Before doing that we make a few preliminary
observations, and we recall the construction based on the classical model (1.7).

Because equation (1.1) is a first order partial differential equation, and uB is a constant,
any solution of Problem (BL) only depends on the combination x/t, with shocks, constant
states and rarefaction waves as building blocks [19]. The latter are continuous solutions
of the form

u(x, t) = r(ζ) with ζ =
x

t
. (2.1)

After substitution into (1.1) this yields the equation

dr

dζ

(
−ζ +

df

du

(
r(ζ)

))
= 0. (2.2)

Hence, the function r(ζ) satisfies:

either r = constant or
df

du

(
r(ζ)

)
= ζ.

When solving Problem (BL), we will combine solutions of equation (2.2) with admissible
shocks, i.e. shocks {u�, ur} in which u� and ur are such that equation (1.6), with the a
priori selected and physically relevant viscous extension Aε has a traveling wave solution
u(η) such that u(η) → u� as η → −∞ and u(η) → ur as η → +∞.

In the discussion below we shall choose the constant M in the definition (1.2) of f to be
positive and fixed. Though in the physical context in which the viscous extension employed
in equation (1.17) was derived, 0 ≤ uB ≤ 1, here we shall require that 0 ≤ uB ≤ β. All
solution graphs shown in this section are numerically obtained solutions of equation (1.17).
They are expressed in terms of the independent variable ζ and t, i.e.

u(x, t) = w(ζ, t),

and considered for fixed ε > 0 (= 1) and for large times t. We return to the computational
aspects in Section 3.

Before discussing the implications of the viscous extension in (1.17), we recall the
construction of classical entropy solutions of Problem (BL). It uses (RH), and the entropy
condition (E) which was derived for the diffusive viscous extension used in (1.8). We
distinguish two cases:

(a) 0 ≤ uB ≤ α and (b) α < uB ≤ β.
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Case (a): 0 ≤ uB ≤ α. This case was discussed in the Introduction, where we found that
the entropy solution is given by the shock {uB , 0}.
Case (b): α < uB ≤ β. In the Introduction we saw that in this case, the shock {uB , 0}
is no longer a classical entropy solution. Instead, in this case the entropy solution is a
composition of three functions:

u(x, t) = v(ζ) =



uB for 0 ≤ ζ ≤ ζB

r(ζ) for ζB ≤ ζ ≤ ζ∗
0 for ζ∗ ≤ ζ <∞,

(2.3)

where ζB and ζ∗ are determined by

ζB =
df

du
(uB) and ζ∗ =

df

du
(α) =

f(α)
α

= s(α),

and r : [ζB , ζ∗] → [α, uB ] by the relation

df

du

(
r(ζ)

)
= ζ for ζB ≤ ζ ≤ ζ∗. (2.4)

Since f ′′(u) < 0 for u ∈ [α, uB ], equation (2.4) has a unique solution, and hence r(ζ) is
well defined. Note that if uB ≥ 1, then ζB = 0, because f ′(u) = 0 if u ≥ 1.

Solutions corresponding to Case (b) are shown in Figure 4.
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Figure 4: Case (b): Solution graph (left) and flux function with transitions from uB to α
and from α to 0 (right)

We now turn to the pseudo-parabolic equation (1.17) that arises in the context of the
two-phase flow model of Gray and Hassanizadeh [14], [15]. For this problem, we define a
class of non-classical entropy solutions in which shocks are admissible if Problem (TW)
has a travelling wave solution with the required limit conditions.

For given M > 0 and τ > 0, the relative values of uB and u(τ) and u(τ) are now
important for the type of solution we are going to get. It is easiest to represent them in
the (uB , τ)-plane. Specifically, we distinguish three regions in this plane:

A = {(uB , τ) : τ > 0, u(τ) ≤ uB < β},
B = {(uB , τ) : τ > τ∗, u(τ) < uB < u(τ)},
C = {(uB , τ) : τ > 0, 0 < uB < u(τ)},
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These three regions are shown in Figure 5.
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Figure 5: The regions A, B and C in the (uB , τ)-plane

Case I: (uB , τ) ∈ A
If 0 ≤ τ ≤ τ∗, i.e., (uB , τ) ∈ A1, the construction is as in the classical case described
above. After a plateau, where u = uB , and 0 ≤ ζ = x/t ≤ ζB, we find a rarefaction wave
r(ζ) from uB down to α followed by a classical shock connecting α to the initial state
u = 0.

If τ > τ∗, i.e., (uB , τ) ∈ A2, the solution starts out as before, with a plateau where u = uB

and 0 < ζ < ζB , and a rarefaction wave r(ζ) which now takes u down from uB to u > α.
This takes place over the interval ζB ≤ ζ ≤ ζ. By (2.2),

ζ =
df

du

(
u(τ)

)
.

Subsequently, u drops down to the initial state u = 0 through a shock, {u, 0}, which is
admissible by Theorem 1.1. By (RH) the shock moves with speed

s = s =
f(u)
u

>
df

du

(
u
)

= ζ,

because f is concave on (α,∞). Therefore, the shock outruns the rarefaction wave and
a second plateau develops between the rarefaction wave and the shock in which u = u.
Summarising, we find that the (non-classical) entropy solution has the form:

u(x, t) = v(ζ) =




uB for 0 ≤ ζ ≤ ζB

r(ζ) for ζB ≤ ζ ≤ ζ

u(τ) for ζ ≤ ζ ≤ s

0 for s ≤ ζ <∞.

(2.6)

A graph of v(ζ) is given in Figure 6. Note that if uB = 1, then ζB = 0, and that if
uB = u(τ), then the rarefaction wave disappears and the solution is given by the shock
{u(τ), 0}.
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Figure 6: Case I: Solution graph (left) and flux function (right), with transitions from
uB = 1 to u(τ) and from u(τ) to 0

Case II: (uB , τ) ∈ B
It follows from Theorem 1.2 that there are no traveling wave solutions with u� = uB and
ur = 0, so that the shock {uB , 0} is now not admissible. However, in Theorem 1.3 we have
shown that there does exist a traveling wave solution, and hence an admissible shock, with
u� = uB and ur = u(τ), and speed s = s(uB , u(τ)). This shock is then followed by a shock
from u = u(τ) down to u = 0, which is admissible because by Theorem 1.1, there does
exist a traveling wave solution which connects u and u = 0 with speed s > s(uB , u(τ)).
An example of this type of solution is shown in Figure 7. The undershoot in the solution
graph is due to oscillations which are also present in the travelling waves.
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Figure 7: Case II: Solution graph (left) and flux function (right), with transitions from
uB = 0.75 to u(τ) and from u(τ) to 0

Remark 2.1 It is readily seen that

s(uB , u(τ)) ↗ s as uB ↘ u,
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while the plateau level u remains the same. Thus, in this limit, the plateau{(
u,
x

t

)
: u = u(τ), s(uB, u(τ)) <

x

t
< s

}
becomes thinner and thinner and eventually disappears when uB = u.

Remark 2.2 If uB = 1 and u(τ) > 1, then the first shock degenerates in the sense that

s(uB, u(τ)) = 0 and u(x, t) = u(τ) for all 0 <
x

t
< s.

Case III: (uB , τ) ∈ C
We have seen in Theorem 1.2 that in this case there exists a traveling wave solution with
u� = uB and ur = 0. It may exhibit oscillatory behaviour near u = u�, and it leads to
the classical entropy shock solution {uB , 0}. An example of such a solution is shown in
Figure 8. Note the overshoot in the solution graph, reflecting oscillations also present in
the travelling waves.
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Figure 8: Case III: Solution graph (left) and flux function (right), with transition from
uB = 0.55 to 0

3 Numerical experiments for large times

In this section we report on numerical experiments carried out for the initial-value problem
for equation (1.17) in the domain S = R × R+:


∂u

∂t
+
∂f(u)
∂x

= ε
∂2u

∂x2
+ ε2τ

∂3u

∂x2∂t
in S,

u(x, 0) = uBH̃(−x) for x ∈ R,

(3.1a)
(3.1b)

Here H̃(x) is a smooth monotone approximation of the Heaviside function H. Following
[9], starting initially with uBH(−x) would cause a jump discontinuity in u at x = 0,
which persists for all t > 0. This would require an appropriate numerical approach to
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ensure the continuity in flux and pressure. By the above choice we avoid this unnecessary
complication.

For solving (3.1) numerically we use the forward Euler scheme. The terms involving ∂xx

are discretized by finite differences. To deal with the first order term we apply a minmod
slope limiter method that is based on first order upwinding and Richtmyer’s scheme. Even
though the scheme is explicit, we have to solve a linear system for each time step. This is
due to the time derivative in the last term in (3.1a). Details can be found in [7] (see also
[6], Chapter 3), where alternative schemes are discussed.

Important parameters in this problem are M , ε, τ > 0, and uB ∈ (0, 1]. The scaling

x→ x

ε
, t→ t

ε

removes the parameter ε from the equation (3.1a). Therefore, we fix ε = 1 and we show how
for different values of τ and uB the solution u(x, t) of Problem (3.1) converges as t → ∞
to qualitatively different final profiles. Throughout we take M = 2. Computationally we
found that (see also Figures 3 and 5)

τ∗ = 0.61.... (3.2)

In the figures below we show graphs of solutions at various times t, appropriately scaled
in space. Specifically, we show graphs of the function

w(ζ, t) = u(x, t) where ζ =
x

t
, (3.3)

so that a front with speed s will be located at ζ = s.

We begin with a simulation when (uB , τ) = (1, 0.2) ∈ A1. In Figure 9 we show the
resulting solution w(ζ, t) at time t = 1000. It is evident that w converges to the entropy
solution constructed in Section 2 for (uB , τ) ∈ A1.

0 0.2 0.4 0.6 0.8 1 1.2
0
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0.8

1

Figure 9: Graph of w(ζ, t) at t = 1000 when (uB , τ) = (1, 0.2) ∈ A1. In this case
u(τ) = 0.816 = α and s = 1.11

In the next simulation we raise τ to a value above τ∗: τ = 5. In the first of these
experiments, in which we keep uB = 1, we see that for large time the graph consists of
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(a) (uB , τ) = (1, 5) ∈ A2 (b) (uB , τ) = (0.9, 5) ∈ B
Figure 10: Graphs of w(ζ, t) at t = 1000 when (uB , τ) = (1, 5) ∈ A2 (left) and (uB , τ) =
(0.9, 5) ∈ B (right). Here u(τ) ≈ 0.98 and s = 1.02, while ζ� = 0.08 (left) and sB = 0.28
(right)

three pieces: one in which w gradually decreases from w = uB = 1 to the ”plateau” value
w = u, one in which w is constant and equal to u, and one in which it drops down to
u = 0, see Figure 10a. It is clear from the graph that u > α. The plateau value u ≈ 0.98
computed here is in good agreement with the one obtained numerically when determining
the graphs of u and u - see also Figures 3 and 5.

In the next experiment we keep τ = 5, but we set uB = 0.9. We are then in the region
B. For large times the solution w(ζ, t) develops two shocks, one where it jumps up from
uB to the plateau at u, and one where it jumps down from u to w = 0, see Figure 10(b).

In the next three experiments we decrease the value of uB to values around the value
u ≈ 0.68. The results are shown in Figure 11, where we have zoomed into the front. We
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Figure 11: Graphs of w(ζ, t) with τ = 5 at t = 1000 (dashed) and t = 2000 (solid); zoomed
view: 0.9 ≤ ζ ≤ 1.05. Here u(τ) ≈ 0.68, and uB approaches u(τ) from above through 0.70
(left), 0.69 (middle), and 0.68 (right). Then sB increases from 0.95 (left) to 0.98 (middle)
up to 1.02 (right). The other values are u(τ) ≈ 0.98 and s = 1.02

see that, as uB decreases and approaches the boundary between the regions B and C2 in
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Figure 5, the part of the graph where w ≈ uB grows at the expense of the part where
w ≈ u.

Finally, in Figure 12 we show the graph of w(ζ, t) when τ = 5 and uB is further reduced
to 0.55, so that we are now in C2. We find that the solution no longer jumps up to a higher
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Figure 12: Graphs of w(ζ, t) at t = 1000 (dashed) and t = 2000 (solid) when (uB , τ) =
(0.55, 5) ∈ C2; zoomed view: 0.75 ≤ ζ ≤ 0.8. Then s = 0.777

plateau, but instead jumps right down after a small oscillation.

Note that the oscillations in Figures 11 and 12 contract around the shock as time
progresses. This is due to the scaling, since we have plotted w(ζ, t) versus ζ = x/t for
different values of time t.

We conclude from these simulations that the entropy solutions constructed in Section
2 emerge as limiting solutions of the Cauchy Problem (3.1). This suggests that these
entropy solutions enjoy certain stability properties. It would be interesting to see whether
these same entropy solutions would emerge when the initial value were chosen differently.
We leave this question to a future study.

4 Proof of Theorem 1.1

In Theorem 1.1 we consider travelling wave solutions u(η) of equation (1.17) in which
the limiting conditions have been chosen so that u(−∞) = u� ≥ α and u(∞) = ur = 0.
Putting ur = 0 in (1.18) we find that they are solutions of the problem

(TW0)

{
sτu′′ − u′ − su+ f(u) = 0 for −∞ < η <∞,

u(−∞) = u�, u(+∞) = 0,
(4.1a)
(4.1b)

in which the speed s is a-priori determined by u� through

s = s(u�)
def=

f(u�)
u�

. (4.2)

The proof proceeds in a series of steps:
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Step 1: We choose u� ∈ (α, β) and prove that there exists a unique τ > 0 for which
Problem (TW0) has a solution, which is also unique. This defines a function τ = τ(u�) on
(α, β). We then show that τ(u�) is increasing, continuous and that

τ(u) → ∞ if u→ β.

Finally, we write
τ∗

def= lim
u→α+

τ(u).

Step 2: We show that for any τ ∈ (0, τ∗], Problem (TW0) has a solution with u� = α.

The proof is concluded by defining the function u�(τ) on (τ∗,∞) as the inverse of the
function τ(u�) on the interval (α, β). The resulting function u(τ), defined by (1.17) on
R+, then has all the properties required in Theorem 1.1.

4.1 The function τ(u)

As a first result we prove that τ(u) is well defined on the interval (α, β).

Lemma 4.1 For each u� ∈ (α, β) there exists a unique value of τ such that there exists a
solution of Problem (TW0). This solution is unique and decreasing.

Proof. It is convenient to write equation (4.1a) in a more conventional form, and introduce
the variables

ξ = −η/√sτ and u(ξ) = u(η).

In terms of these variables, Problem (TW0) becomes{
u′′ + cu′ − g(u) = 0 in −∞ < ξ <∞,

u(−∞) = 0, u(+∞) = u�,

(4.3a)
(4.3b)

where
c =

1√
sτ

and g(u) = su− f(u), (4.4)

and the overbars have been omitted. Graphs of g(u) for M = 2 and different values of s
are shown in Figure 13.

We study Problem (4.3) in the phase plane and write equation (4.3a) as the first order
system

P(c, s)

{
u′ = v,

v′ = −cv + g(u).
(4.5a)
(4.5b)

For u� ∈ (α, β) the function g(u) has three distinct zeros, which we denote by ui, i = 0, 1
and 2, where

u0 = 0 and α < u1 < u2 = u�.

Plainly the points (u, v) = (ui, 0), i = 0, 1, 2, are the equilibrium points of (4.5) with
associated eigenvalues

λ± = − c
2
± 1

2

√
c2 + 4g′(ui). (4.6)
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Figure 13: The function g(u) for M = 2, and s = 0.95 (left) and s = s(α) = 1.113 (right)

Since
g′(u0) > 0, g′(u1) < 0 and g′(u2) > 0,

the outer points, (u0, 0) and (u2, 0), are saddles and (u1, 0) is a stable node.
Since we are interested in a travelling wave with u(−∞) = 0 and u(+∞) = u�, we

need to investigate orbits which connect the points (0, 0) and (u�, 0). The existence of a
unique wave speed c for which there exists such a solution of the system P(c, s), which is
unique and decreasing, has been established in [16], see also [13]. This allows us to define
the function c = c(u�) for α < u� < β.

The sign of c(u�) can be determined by multiplying equation (4.3a) by u′ and integrat-
ing it over R. This yields

c

∫
R
{u′(ξ)}2 dξ =

∫
R
g(u(ξ))u′(ξ) dξ =

∫ u�

0
g(t) dt def= G(u�).

Since u� < β, it follows that G(u�) > 0, so that c(u�) > 0.
Finally, by (4.2) and (4.4), we find that τ is uniquely determined by u� through the

relation
τ(u�) =

1
s(u�)c2(u�)

. (4.7)

This completes the proof of Lemma 4.1. �
Lemma 4.1 allows us to define a function τ(u) on (α, β) such that if u� ∈ (α, β) then

Problem (TW0) has a unique solution u(η) if and only if τ = τ(u�). In the next lemma
we show that the function τ(u) is strictly increasing on (α, β).

Lemma 4.2 Let u�,i = γi for i = 1, 2, where γ1 ∈ (α, β), and let τ(γi) = τi. Then

γ1 < γ2 =⇒ τ1 < τ2.

Proof. For i = 1, 2 we write

si =
f(γi)
γi

and gi(u) = siu− f(u). (4.8)
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Since
d

du

(
f(u)
u

)
=

1
u

(
f ′(u) − f(u)

u

)
< 0 for α ≤ u < β,

it follows that

γ1 < γ2 =⇒ s1 > s2 and g1(u) > g2(u) for u > 0. (4.9)

To prove Lemma 4.2 we return to the formulation used in the proof of Lemma 4.1.
Traveling waves correspond to heteroclinic orbits in the (u, v)-plane. Those associated
with γ1 and γ2 we denote by Γ1 and Γ2. They connect the origin to respectively (γ1, 0)
and (γ2, 0).

We shall show that

γ1 < γ2 =⇒ c1 = c(γ1) > c(γ2) = c2. (4.10)

We can then conclude from (4.4) that

τ2s2 > τ1s1 =⇒ τ2 >
s1
s2
τ1 > τ1,

as asserted.
Thus, suppose to the contrary, that c1 ≤ c2. We claim that this implies that near the

origin the orbit Γ1 lies below Γ2. Orbits of the system P(c, s) leave the origin along the
unstable manifold under the angle θ given by

θ = θ(c, s) def=
1
2

{√
c2 + 4s − c

}
. (4.11)

An elementary computation shows that

∂θ

∂c
< 0 and

∂θ

∂s
> 0. (4.12)

Hence, since s1 > s2 and we assume that c1 ≤ c2, it follows that

θ1 = θ(c1, s1) > θ(c2, s2) = θ2,

and hence that the orbit Γ1 starts out above Γ2.
Since (γ2, 0) lies to the right of the point (γ1, 0) we conclude that Γ1 and Γ2 must

intersect. Let us denote the first point of intersection by P = (u0, v0). Then at P the
slope of Γ1 cannot exceed the slope of Γ2. The slopes at P are given by

dv

du

∣∣∣
Γi

= −ci +
gi(u0)
v0

, i = 1, 2.

Because g1(u) > g2(u) for u > 0 by (4.9), it follows that

dv

du

∣∣∣
Γ1

>
dv

du

∣∣∣
Γ2

at P,

so that, at P , the slope of Γ1 exceeds the slope of Γ2, a contradiction. Therefore we find
that c1 > c2, as asserted. �

In the next lemma we show that the function τ(u) is continuous.
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Lemma 4.3 The function τ : (α, β) → R+ is continuous.

Proof. Because the function s(γ) = γ−1f(γ) is continuous, it suffices to show that the
function c(γ) is continuous. Since we have shown in the proof of Lemma 4.2 that c(γ) is
decreasing (cf. (4.10)), we only need to show that it cannot have any jumps.

Suppose to the contrary that it has a jump at γ0, and let us write

lim inf
γ↘γ+

0

c(γ) = c+ and lim sup
γ↗γ−

0

c(γ) = c−.

Then, since c(γ) is decreasing, we may assume that c− > c+.
Thus, there exist sequences {γ−n } and {γ+

n } with corresponding heteroclinic orbits
(u±n , v±n ) and wave speeds c±n , such that

c+n ↘ c+ and c−n ↗ c− as n→ ∞.

Since the unstable manifold at (0, 0) and the stable manifold at (γ, 0) depend continuously
on c, it follows that the corresponding orbits also converge, i.e. that there exist orbits
(u+, v+) and (u−, v−) such that

(u±n , v
±
n )(ξ) → (u±, v±)(ξ) as n→ ∞,

uniformly on R. This argument yields two heteroclinic orbits, one with speed c+ and one
with speed c−, which both connect the origin to the point (γ0, 0). Since by Lemma 4.1
there exists only one such orbit, we have a contradiction.

It follows that c− = c+, and continuity of the function c(γ), and hence of τ(γ), has
been established. �.

In the following lemma we prove the final assertion made in Step 1, which involves the
behaviour of τ(u) as u→ β.

Lemma 4.4 We have
τ(γ) → ∞ as γ → β−.

Proof. In view of the definition (4.7) of τ , it suffices to show that c(γ) → 0 as γ → β.
Proceeding as in the proof of Lemma 4.3 we find that c(γ) and the orbit Γ(c(γ)) converge
to, say c0 and Γ(c0) = {(u0, v0)(t) : t ∈ R}, as γ → β. Note that

c(γ)
∫
R
v2(ξ; γ) dξ =

∫ γ

0
g(t; γ) dt,

where g(t; γ) = s(γ)t− f(t). If we let γ → β in this identity we obtain

c0

∫
R
v2
0(ξ) dξ =

∫ β

0
g(t;β) dt = 0. (4.13)

Because at the origin the unstable manifold points into the first quadrant when γ = β (cf.
(4.11)), it follows that v0 > 0 on R. Therefore, (4.13) implies that c0 = 0, as asserted. �
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4.2 Traveling waves with u� = α

In Lemmas 4.1 and 4.2 we have shown that τ(u) is an increasing function on (α, β). Since
τ(u) > 0 for all u ∈ (α, β), the limit

τ∗
def= lim

u→α+
τ(u)

exists. In the following lemmas we show that τ∗ > 0 and that for all τ ∈ (0, τ∗], Problem
(TW0) has a unique solution with u� = α.

Let S ∈ R+ denote the set of values of τ for which Problem (TW0) has a unique
solution with u� = α.

Lemma 4.5 There exists a constant τ0 > 0 such that (0, τ0) ⊂ S.

Proof. We shall show that there exists a wave speed c0 > 0 such that if c > c0, then
Problem (4.5) has a heteroclinic orbit connecting the origin to the point (α, 0). This then
yields Lemma 4.5 when we put

τ0 =
1

c20s(α)
.

In (4.6) we saw that the origin is a saddle and that the slope of the unstable manifold
is given by

θ(c) =
1
2

{√
c2 + 4s − c

}
.

Note that
θ(c) <

1
c
g′(0) =

s

c
.

Hence, near the origin the orbit lies below the isocline Iv = {(u, v) : v = c−1g(u), u ∈ R}.
Since u′ > 0 and v′ > 0 in the lens shaped region

L = {(u, v) : 0 < u < α, 0 < v < c−1g(u), u ∈ R},

the orbit will leave L again. To see what happens next, we consider the triangular region
Ωm bounded by the positive u- and v-axis, and the line

m
def= {(u, v) : v = m(α− u)}, m > 0.

On the axes the vector field points into Ωm, and on the line m it points inwards if

dv

du

∣∣∣
�m

= −c+
g(u)

m(α− u)
< −m. (4.14)

Let
m0 = inf {m > 0 : g(u) < m(α− u) on (0, α)} .

Then
−c+

g(u)
m(α− u)

≤ −c+
m0

m
,
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and (4.14) will hold for values of c and m which satisfy the inequality

−c+
m0

m
< −m,

or
c > m+

m0

m
.

To obtain the largest range of values of c for which the vector field points into Ωm we
choose m so that the right hand side of this inequality becomes smallest, i.e. we put
m =

√
m0. We thus find that for

c > c0
def= 2

√
m0

the region Ω√
m0

is invariant, and hence, that the orbit must tend to the point (α, 0). This
completes the proof of Lemma 4.5 �

The next lemma gives the structure of the set S.

Lemma 4.6 If τ0 ∈ S, then (0, τ0] ⊂ S.

Proof. As in earlier lemmas we prove a related result for Problem (4.5). Let S∗ be the
set of values of c for which there exists a heteroclinic orbit of Problem (4.5) from (0, 0) to
(α, 0). We show that if c0 ∈ S∗, then [c0,∞) ⊂ S∗. Plainly this implies Lemma 4.6 with
τ0 = 1/(c0s2).

As before, we denote the orbit emanating from the origin by Γ(c). Suppose that c > c0.
Then, since θ′(c) < 0 it follows that θ(c0) > θ(c), so that near the origin Γ(c0) lies above
Γ(c). We claim that Γ(c0) and Γ(c) will not intersect for u ∈ (0, α). Accepting this claim
for the moment, we conclude that since Γ(c0) tends to (α, 0), the orbit Γ(c) must converge
to (α, 0) as well.

It remains to prove the claim. Suppose that Γ(c0) and Γ(c) do intersect at some
u ∈ (0, α), and let (u0, v0) be the first point of intersection. Then

dv

du

∣∣∣
Γ(c)

≥ dv

du

∣∣∣
Γ(c0)

at (u0, v0). (4.16)

But, from the differential equations we deduce that

dv

du

∣∣∣
Γ(c)

= −c+
g(u0)
v0

< −c0 +
g(u0)
v0

=
dv

du

∣∣∣
Γ(c0)

at (u0, v0),

which contradicts (4.16). This proves the claim and so completes the proof of Lemma 4.6.
�

We conclude this section by showing that τ∗ ∈ S, and hence that S = (0, τ∗].

Lemma 4.7 We have S = (0, τ∗].
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Proof. It follows from Lemmas 4.1 and 4.2 that for every ε ∈ (0, β − α), there a exists a
τε = τ(α+ ε) > 0 such that Problem (TW0) has a unique traveling wave uε(η) with speed
sε = s(α+ ε), such that

uε(−∞) = α+ ε and uε(∞) = 0.

This wave corresponds to a heteroclinic orbit Γε = {(uε(ξ), vε(ξ)) : ξ ∈ R} of the system
P(cε, sε) where cε = 1/

√
sετε, which connects the points (0, 0) and (α + ε, 0). It leaves

the origin along the stable manifold under an angle θε = θ(cε, sε) and enters the point
(α+ ε, 0) along the stable manifold under the angle

ψε = ψ(cε, sε) =
1
2

{
−cε −

√
c2ε + 4g′(α+ ε)

}
→ −c0 = − 1√

s(α)τ∗
as ε→ 0.

Reversing time, i.e., replacing ξ by −ξ, we can view Γε as the unique orbit emanating
from the point (α+ ε, 0) into the first quadrant, and entering the origin as ξ → ∞. In the
limit, as ε→ 0, we find that

uε(ξ) → u0(ξ) and vε(ξ) → v0(ξ) as ε→ 0 for −∞ < ξ ≤ ξ0,

where ξ0 is any finite number. We claim that

u0(ξ) → 0 and v0(ξ) → 0 as ξ → ∞,

i.e., Γ0
def= {(u0(ξ), v0(ξ)) : ξ ∈ R} is a heteroclinic orbit, which connects (α, 0) and the

origin (0, 0).
Suppose to the contrary that Γ0 does not enter the origin as ξ → ∞, and possibly not

even exist for all ξ ∈ R. Then, since

dv

du
= −c0 +

g(u)
v

> −c0 if 0 < u < α, v > 0,

Γ0 must leave the first quadrant in finite time, either through the u-axis or through the
v-axis. This means by continuity that for ε small enough Γε must also leave the first
quadrant in finite time. Since Γε is known to enter the origin for every ε > 0, and hence
never to leave the first quadrant, we have a contradiction. This proves the claim that Γ0

is a heteroclinic orbit, which connects (α, 0) and (0, 0). �

5 Proof of Theorems 1.2 and 1.3

For the proofs of Theorems 1.2 and 1.3 we turn to the system P(c, s) defined in Section
4. For convenience we restate it here

P(c, s)

{
u′ = v,

v′ = −cv + gs(u),
(4.5a)
(4.5b)

where
c =

1√
sτ

and gs(u) = su− f(u).

Part (a) of Theorem 1.2 is readily seen to be a consequence of the following lemma:
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Lemma 5.1 Let τ > τ∗ be given. Then for every u� ∈ (0, u), there exists a unique
heteroclinic orbit of the system P(c, s) in which

s = s� =
f(u�)
u�

and c = c� =
1√
s�τ

,

which connects (0, 0) and (u�, 0).

Proof. Let Γ� and Γ denote the orbits of P(c�, s�) and P(c, s), which enter the first
quadrant from the origin. They do this under the angles θ(c�, s�) and θ(c, s), respectively.
Since c� > c and s� < s, it follows from (4.12) that

θ(c�, s�) < θ(c, s).

Hence, near the origin, Γ� lies below Γ. Thus, Γ� enters the region Ω enclosed between Γ
and the u-axis. Since

dv

du

∣∣∣
Γ�

= −c� +
s�u− f(u)

v
< −c+

su− f(u)
v

=
dv

du

∣∣∣
Γ
,

it follows that Γ� cannot leave Ω though its ”top” Γ. We define the following subsets of
the bottom of Ω:

S1 = {(u, v) : 0 < u < u�, v = 0},
S2 = {(u, v) : u = u�, v = 0},
S3 = {(u, v) : u� < u < u, v = 0}.

Inspection of the vector field show that orbits can only leave Ω through S3. Note that the
set S2 consists of an equilibrium point.

There are two possibilities: either Γ� never leaves Ω, or Γ� leaves Ω, necessarily through
the set S3. In the first case Γ� is a heteroclinic orbit from (0, 0) to (u�, 0), and the proof
is complete.

Thus, let us assume that Γ� leaves Ω at some point (u, v) = (u0, 0). Consider the
energy function

H(u, v) =
1
2
v2 −Gs�

(u).

and write H(x) = H(u(x), v(x)), when (u(x), v(x)) is an orbit. Then differentiation shows
that

H ′(x) = −c�v2(x) < 0.

Since H(0, 0) = 0, it follows that

H(u0, 0) = −Gs�
(u0) < 0.

and that
H(u(x), v(x)) =

1
2
v2 −Gs�

(u) < −Gs�
(u0) for x > x0.

This means that
Gs�

(u) > Gs�
(u0) > 0 for x > x0.
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Let
u1 = inf{s ∈ R : Gs�

(s) > Gs�
(u0) on (s, u0)}.

Since Gs�
(u0) > 0 it follows that u1 ∈ (0, u�). Therefore

0 < u1 < u(x) < u0

v2(x) < 2{Gs�
(u�) −Gs�

(u0)}

}
for x > x0.

From a simple energy argument we conclude that (u(x), v(x)) → (u�, 0) as x → ∞. This
completes the proof of Lemma 5.1. �

Part (b) follows from the following result.

Lemma 5.2 Let τ > τ∗ be given. For any u� ∈ (u(τ), u(τ)) there exists no solution of the
system P(c�, s�), with

s� =
f(u�)
u�

and c� =
1√
s�τ

,

which connects (0, 0) and (u�, 0).

Proof. Let Γ denote the orbit corresponding to c and s, which connects (0, 0) and the
point (u, 0), and let Γ� denote the orbit which corresponds to c� and s�. Observe that

s� > s and c� < c,

and hence
θ(c�, s�) > θ(c, s).

Therefore, near the origin, Γ� lies above Γ. Hence, to reach the point (u�, 0), the orbit Γ�

has to cross Γ somewhere, and at the first point of crossing we must have

dv

du

∣∣∣
Γ
≥ dv

du

∣∣∣
Γ�

.

However, by the equations, we have

dv

du

∣∣∣
Γ

= −c+
gs(u)
u

< −c� +
gs�

(u)
u

=
dv

du

∣∣∣
Γ�

,

so that we have a contradiction. �
This completes the proof of Theorem 1.2

The proof of Theorem 1.3 is entirely analogous to that of Theorem 1.2, and we omit
it.

24



6 Entropy dissipation

In this section we study the Cauchy Problem

(CP)

{
ut + (f(u))x = Aε(u) in S = R× R+,

u(·, 0) = u0(·) on R,

(6.1a)
(6.1b)

where
Aε(u) = εuxx + ε2τuxxt, (ε > 0). (6.2)

With this choice (6.1a) becomes the regularized Buckley-Leverett equation (1.17) for which
we obtained traveling wave solutions in the previous sections. In (6.1a) and (6.2) we
introduce subscripts to denote partial derivatives. Without further justification we assume
that Problem (CP) has a smooth, nonnegative and bounded solution uε for each ε > 0,
and that there exist a limit function u : S → [0,∞) such that for each (x, t) ∈ S,

uε(x, t) → u(x, t) as ε→ 0.

In addition we assume the following structural properties:

(i) For each fixed t > 0,

uε(x, t) → u� ∈ R+ as x→ −∞,

uε(x, t) → ur ∈ R+ as x→ +∞.

(ii) The partial derivatives of uε vanish as |x| → ∞.

(iii) Let U(s) = 1
2s

2 for s ≥ 0, U� = U(u�) and Ur = U(ur). Then there exists a smooth
function λε : [0,∞) → R which is uniformly bounded with respect to ε > 0 in any bounded
interval (0, T ), such that∫

R
{U(uε(x, t)) −Gε(x, t)} dx = 0 for all t > 0,

where Gε is the step function

Gε(x, t) = U� + (Ur − U�)H(x− λε(t)), (x, t) ∈ S

in which H denotes the Heaviside function.

Note that the traveling waves constructed in this paper all have these properties. The
main purpose of this section is to show that U(uε) is an entropy for equation (6.1a) (see
also [17]).

For completeness we recall some definitions. We say that the term Aε(u) is conservative
if

lim
ε→0+

∫
S
Aε(uε)ϕ = 0 for all ϕ ∈ C∞

0 (S) (6.3)

and we say that Aε(u) is entropy dissipative (for an entropy U) if

lim sup
ε→0+

∫
S
Aε(uε)U ′(uε)ϕ ≤ 0 for all ϕ ∈ C∞

0 (S), ϕ ≥ 0. (6.4)

We establish the following theorem:
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Theorem 6.1 Let uε be the solution of Problem (CP), and let uε satisfy (i), (ii) and
(iii). Then, the regularization Aε(u) defined in (6.2) has the following properties:
(a) Aε(u) is conservative.
(b) Aε(u) is entropy dissipative for the entropy U(u) = 1

2u
2.

Proof. Part (a). For any ϕ ∈ C∞
0 (S) we obtain after partial integration with respect to

x and t, ∫
S
Aε(uε)ϕ = ε

∫
S
uεϕxx − ε2τ

∫
S
uεϕxxt → 0 as ε→ 0.

Part (b). To simplify notation, we drop the superscript ε from uε. When we multiply
(6.1a) by u we obtain

∂tU(u) + ∂xF (u) = uAε(u) = εuuxx + ε2τuuxxt, (6.5)

where
F (u) =

∫ u

0
U ′(s)f ′(s) ds =

∫ u

0
sf ′(s) ds = uf(u) −

∫ u

0
f(s) ds. (6.6)

An elementary computation shows that

εuuxx = εUxx − εu2
x,

ε2τuuxxt = ε2τ

(
Uxxt − 1

2
(u2

x)t − (uxut)x

)
.

Hence ∫
S
Aε(u)uϕ = ε

∫
S
Uϕxx − ε

∫
S
u2

xϕ

− ε2τ

∫
S
Uϕxxt +

1
2
ε2τ

∫
S
u2

xϕt + ε2τ

∫
S
utuxϕx.

(6.7)

Plainly

ε

∫
S
Uϕxx → 0 and ε2τ

∫
S
Uϕxxt → 0 as ε→ 0.

Since ϕ ≥ 0, it remains to estimate the last two terms in the right hand side of (6.7).

For this purpose we establish the following two estimates:

Lemma 6.1 Let T > 0, and let ST = R × (0, T ]. Then there exists a constant C > 0
such that for all ε > 0,

ε

∫
ST

u2
x ≤ C (6.8)

and
ε

∫
ST

u2
t ≤ C. (6.9)
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Proof of (6.8). We write (6.5) as

∂tU(u) + ∂xF (u) = εUxx − εu2
x + ε2τ

{
Uxxt − 1

2
(u2

x)t − (utux)x

}
. (6.10)

Using properties (i)–(iii), and writing F� = F (u�), Fr = F (ur), we find that

d

dt

∫
R
{U(x, t) −Gε(x, t)} dx − dλε

dt
(Ur − U�)

+ (Fr − F�) + ε

∫
R
u2

x +
1
2
ε2τ

d

dt

∫
R
u2

x ≤ 0,

or, when we integrate over (0, T )

−{λε(t) − λε(0)}(Ur − U�) + (Fr − F�)t+ ε

∫
ST

u2
x +

1
2
ε2τ

∫
R
u2

x(t) ≤ 1
2
ε2τ

∫
R

(u′0)
2,

from which (6.8) immediately follows. �
Proof of (6.9). We multiply (6.1) by ut. This yields

u2
t + (f(u))xut = utAε(u) = εutuxx + ε2τutuxxt (6.11)

Using the identities

utuxx = (uxut)x − 1
2
(u2

x)t and utuxxt = (uxtut)x − (uxt)2,

we find that
u2

t +
ε

2
(u2

x)t ≤ −f ′(u)utux + ε(uxut)x + ε2τ(uxtut)x.

When we integrate over R and use Schwarz’s inequality and properties (i) and (ii), we
obtain ∫

R
u2

t +
ε

2
d

dt

∫
R
u2

x ≤ 1
2

∫
R
u2

t +
K2

2

∫
R
u2

x,

where K = max{|f ′(s)| : s > 0}. Hence, when we integrate over (0, t),∫
St

u2
t ≤ ε

∫
R

(u′0)
2 +K2

∫
St

u2
x.

In view of the first estimate this establishes (6.9), and completes the proof of Lemma 6.1.
�

We now return to the proof of Part (b) of Theorem 6.1. For each ϕ ∈ C∞
0 (S) we choose

T > 0 so that suppϕ ⊂ ST . Then (6.8) implies that

ε2
∫

ST

u2
xϕt ≤ ε2K1

∫
ST

u2
x ≤ εK1C with K1 = sup |ϕt|, (6.12)

and (6.8) and (6.9) together imply that

ε2
∫

ST

utuxϕx ≤ ε2K2

∫
ST

|ut||ux| ≤ εK2C with K2 = sup |ϕx|. (6.13)
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Using (6.12) and (6.13) in (6.7) we conclude that, writing u = uε again,

lim sup
ε↘0

∫
S
Aε(uε)uεϕ ≤ 0,

which is what was claimed in Theorem 6.1. �
It now follows from (6.5) that in the limit as ε→ 0,

∂tU(u) + ∂xF (u) ≤ 0 (6.14)

holds in a weak or distributional sense. This shows that (U,F ) is an entropy pair for
equation (1.1).

The inequality in (6.14) indicates entropy dissipation. Across shocks {u�, ur} it can be
computed explicitly. Let

u(x, t) =

{
u� for x < st,

ur for x > st.

Then (6.14) implies that
−s(Ur − U�) + (Fr − F�) ≤ 0.

Hence the entropy dissipation is given by

E(u�, ur)
def= −s(Ur − U�) + (Fr − F�). (6.15)

We conclude by observing that if u = u(η) is a travelling wave satisfying Problem (TW),
then (6.15) can be written as

E(u�, ur) =
∫
R

{−s(U(u))′ + (F (u))′
}
dη. (6.16)

Applying (6.6) and the definition of U gives

E(u�, ur) =
∫
R
u

(
−s+

df

du

)
u′ dη =

∫ ur

u�

u

(
−s+

df

du

)
du. (6.17)

Rewriting further

−s+
df

du
=

d

du

(−s(u− u�) + f(u) − f(u�)
)
,

integrating (6.17) by parts, and using the Rankine-Hugoniot condition yields

E(u�, ur) =
∫ u�

ur

{f(u) − f(u�) − s(u− u�)} du.

In the special case when ur = 0 we have s = f(u�)/u� and thus

E(u�, 0) =
∫ u�

0
{f(u) − su} du.

Returning to the proof of Proposition 1.1 we observe that the integral is negative
provided u� < β. Thus this condition acts as an entropy condition in the sense that
E(u�, 0) < 0 only if u� < β.
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