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Factorization in Block-Triangularly
Implicit Methods for Shallow Water

Applications

P.J. van der Houwen & B.P. Sommeijer
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT
The systems of first-order ordinary differential equations obtained by spatial discretization of the initial-
boundary value problems modelling phenomena in shallow water in 3 spatial dimensions have righthand
sides of the form f(t,y) := f1(t,y) + f2(t,y) + f3(t,y) + f4(t,y), where f1, f2 and f3 contain the spatial
derivative terms with respect to the x, y and z directions, respectively, and f4 represents the forcing terms
and/or reaction terms. The number N of components of f is usually extremely large. It is typical for
shallow water applications that the function f4 is nonstiff and that the function f3 corresponding with the
vertical spatial direction is much more stiff than the functions f1 and f2 corresponding with the horizontal
spatial directions. The reason is that in shallow seas the gridsize in the vertical direction is several orders
of magnitude smaller than in the horizontal directions. In order to solve the initial value problem for the
system of ordinary differential equations numerically, we need a stiff solver. Stiff IVP solvers are
necessarily implicit, requiring the solution of large systems of implicit relations. In a few earlier papers,
we considered implicit Runge-Kutta methods leading to fully coupled, implicit systems whose dimension
is a multiple of N, and block-diagonally implicit methods in which the implicit relations can be
decoupled into subsystems of dimension N. In the present paper, we analyse Rosenbrock type methods
and the related DIRK methods (diagonally implicit Runge-Kutta methods) leading to block-triangularly
implicit relations. In particular, we shall present a convergence analysis of various iterative methods based
on approximate factorization for solving the triangularly implicit relations.

1991 Mathematics Subject Classification:  65L06
Keywords and Phrases: numerical analysis, shallow water applications, iteration methods, approximate
factorization, parallelism.
Note. The investigations reported in this paper were partly supported by the Dutch HPCN Program.

1. Introduction

We consider initial-boundary value problems modelling phenomena in shallow water in 3 spatial

dimensions. The systems of ordinary differential equations (ODEs) obtained by spatial discretization

(method of lines) of the governing partial differential equations can be written in the form

(1.1)
dy(t)

dt   = f(t,y(t)),  f(t,y) := f1(t,y) + f2(t,y) + f3(t,y) + f4(t,y),     y, fk ∈  RN,

where f1, f2 and f3 contain the spatial derivative terms with respect to the x, y and z directions,

respectively, f4 represents the forcing terms and/or reaction terms, and N is a large integer

proportional to the number of spatial grid points used for the spatial discretization. It is typical for

shallow water applications that the function f4 is nonstiff and that the function f3 corresponding with

the vertical spatial direction is much more stiff than the functions f1 and f2 corresponding with the

horizontal spatial directions. As a consequence, the spectral radius of the Jacobian matrix ∂f3/∂y is

much larger than the spectral radius of ∂f1/∂y and ∂f2/∂y. The reason is that in shallow seas the
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gridsize in the vertical direction is several orders of magnitude smaller than in the horizontal

directions.

In order to solve the initial value problem (IVP) for the system (1.1) numerically, we need a stiff IVP

solver, because the Lipschitz constants with respect to y associated with the functions f1, f2 and f3
become increasingly large as the spatial resolution is refined. Stiff IVP solvers are necessarily

implicit, requiring the solution of large systems of implicit relations. In a few earlier papers, we

considered implicit Runge-Kutta methods leading to fully coupled, implicit systems whose dimension

is a multiple of N (cf. [3], [5] and [10]), and block-diagonally implicit methods in which the implicit

relations can be decoupled into subsystems of dimension N (cf. [6]). In the present paper, we analyse

Rosenbrock type methods and the related DIRK methods (diagonally implicit Runge-Kutta methods)

leading to block-triangularly implicit relations (this is also the case for the DIRK methods, in spite of

the terminology 'diagonally implicit'). Rosenbrock type methods, and in particular factorized versions

of these methods, are quite popular in air pollution simulations (see e.g. [9], [12], and [13]). This

motivated us to look whether Rosenbrock and the related DIRK methods can also be useful in shallow

water modelling. First we show that in shallow water applications, factorized Rosenbrock methods

are less suitable. However, iteration of Rosenbrock and DIRK methods using approximate

factorization looks quite promising. This paper will focus on the convergence analysis of approximate

factorization iteration of the triangularly implicit Rosenbrock and DIRK relations.

2. Rosenbrock methods and their factorization

We start with an example of a family of two-stage Rosenbrock methods:

yn+1 = yn + bk1 + (1-b)k2,

(2.1) (I - κ1∆tJ)k1 = ∆t f(yn),

(I - κ2∆tJ)k2 = ∆t f(yn + µk1) + ν∆tJk1,   κ i > 0,   µ :=  

1
2
 - bκ 1 + (b-1)κ 2

1 − b
   -  ν.

Here, b, κ1, κ2 and ν are free parameters and J is an approximation to the Jacobian matrix ∂f/∂y at tn.

For simplicity of notation, we assumed the ODE of autonomous form. The nonautonomous version

can be obtained by applying (2.1) to the augmented system {y' = f(y0, y), y0' = 1}. The method

(2.1) is triangularly implicit, that is, k1 and k2 can be computed by successively solving 2 linear

systems of dimension N.

If J = ∂f/∂y(tn) + O(∆t), then the formulas (2.1) are all second-order accurate Rosenbrock methods.

The stability function for (2.1) is given by

(2.2) R(z) =  
1 + (1 - κ 1 - κ 2)z + 1

2
 (1 - 2κ 1 - 2κ 2 + 2κ 1κ 2)z2

(1 - κ 1z)(1 - κ 2z)
 .
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From this expression it follows that the methods (2.1) are A-stable if  1
2
  ≤ κ1 + κ2 ≤  2κ1κ2 +  1

2
  and

L-stable if κ1 + κ2 = κ1κ2 +  1
2
 .

The first examples of Rosenbrock methods were given by Rosenbrock [8] in 1962 and are obtained

by choosing in (2.1)

(2.3) b = 0,    κ1 = κ2 = κ :=  1 ±  1
2
 √ 2 ,   ν = 0.

Of particular interest are the methods which remain second-order accurate if we choose an arbitrary

matrix for J. Such methods are called Rosenbrock-W methods and were proposed by Steihaug and

Wolfbrandt [11]. If we choose in (2.1) κ1 = κ2 = κ and ν = - κ(1-b)-1, then (2.1) becomes a W-

method (see Dekker and Verwer [2, p. 233]). The special case

(2.4) b = 1
2
 ,    κ1 = κ2 = κ :=  1 ±  1

2
 √ 2 ,   ν =  - 2κ

was used by Verwer et al. [12] for solving atmospheric transport problems. Note, however, that for

stability reasons, J should be a reasonably close approximation to the true Jacobian ∂f/∂y at tn.

2.1. General Rosenbrock methods

More generally, we consider Rosenbrock methods of the form (cf. [4, p. 111])

(2.5) yn+1 = yn + (bT⊗ I)K ,    (I - T⊗ ∆tJ)K  = ∆t F(e⊗ yn + (L⊗ I)K ),

where b is an s-dimensional vector, K  := (k1T, ... , ksT)T, and T and L are lower and strictly lower

triangular s-by-s matrices, respectively. This property of T and L implies that (2.5) is triangularly

implicit, so that the components k i of K  can be computed by successively solving s linear systems of

dimension N with system matrices I - κi∆tJ, where the κi denote the diagonal entries of T. If the order

of the method (2.5) is independent of the choice of the Jacobian approximation J, then (2.5) is called a

Rosenbrock-W method.

If T is not diagonal (as in (2.4)), then for an actual implementation one often transforms the linear

system for K  by a Butcher similarity transformation U = (T⊗ I)K , where T is assumed invertible (cf.

[4, p. 120]). Writing T-1 = S + D-1 with S strictly lower triangular and D = diag(T), (2.5) becomes

yn+1 = yn + (bTT-1⊗ I)U,
(2.6)

(I - D⊗ ∆tJ)U = ∆t (D⊗ I)F(e⊗ yn + (LT-1⊗ I)U) - (DS⊗ I)U.

As in (2.5) the components ui of U can be computed by again successively solving s linear systems

of dimension N. As an example of a transformed Rosenbrock method, we give the transformation of

the method (2.4):

yn+1 = yn +  1
2
 κ-1(3u1 + u2),

(2.4') (I - κ∆tJ)u1 = κ∆t f(yn),   κ =  1 ±  1
2
 √ 2 ,

(I - κ∆tJ)u2 = κ∆t f(yn + κ-1u1) - 2u1.
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Note that unlike (2.5), no Jacobian multiplications are involved in transformed Rosenbrock methods.

In general, this is considered as an advantage because such Jacobian multiplications can be quite

expensive. However, it should be remarked that in the case of shallow water applications the matrix J

is extremely sparse, so that Jacobian multiplications are not so costly.

2.2. Factorized Rosenbrock methods

In order to further reduce the linear algebra costs in the method (2.4), Sandu [9] and Verwer et al.

[13] applied to the system matrix I - κ∆tJ the technique of approximate factorization based on some

splitting Σ Jk of the Jacobian J. This leads to the factorized Rosenbrock method.

This technique goes back to Peaceman and Rachford [7] who used it for approximately solving the

linear systems originating from a finite difference discretization of two-dimensional parabolic

problems. In such problems, the system matrix is of the form I - 1
2
 ∆tJ, where J is the discretization of

the Laplace operator ∂2/∂x2 + ∂2/∂y2. By writing J = J1 + J2, where J1 and J2 correspond with ∂2/∂x2

and ∂2/∂y2, respectively, Peaceman and Rachford replaced I - 1
2
 ∆tJ by the approximate factorization

(I - 1
2
 ∆tJ1) (I - 

1
2
 ∆tJ2).

The same approximate factorization technique can be applied to the matrix I - T⊗ ∆tJ in (2.5) or to the

matrix I - D⊗ ∆tJ in (2.6). We shall illustrate this for the case (2.6). Since we are concerned with

shallow water applications, we use the splitting J = J1 + J2 + J3, where the matrices Jk denote the

Jacobian matrices of the terms fk at tn occurring in the righthand side function f in (1.1) and where the

nonstiff interaction terms are ignored. This leads to the factorized method

yn+1 = yn + (bTT-1⊗ I)V,
(2.7)

∏V = ∆t (D⊗ I)F(e⊗ yn + (LT-1⊗ I)V) - (DS⊗ I)V,

where ∏ is defined by

(2.8) ∏ := (I - D⊗ ∆tJ1)(I - D⊗ ∆tJ2)(I - D⊗ ∆tJ3),  D = diag(T).
 

Each step of the factorized Rosenbrock method (2.7) requires the solution of 3s one-dimensional,

linear systems. All LU-decompositions can be computed in parallel, but the 3s forward-backward

substitutions have to be done sequentially.

Since ∏ = I - D⊗ ∆tJ + O((∆t)2), we can interpret the factorized method as the original Rosenbrock

method with an O(∆t)-perturbed matrix J. Hence, factorization will not affect the order of

Rosenbrock-W methods. Furthermore, any factorized Rosenbrock method has at least order two if the

original Rosenbrock method has at least order two.

2.3. Stability

Next, we define the stability region S for the factorized versions of the methods (2.5) and (2.6). We

first define the stability function by applying them to the test equation y' = (J1 + J2 + J3)y. Assuming

that the matrices Jk commute and ignoring the interaction terms in F, the factorized versions of the

methods (2.5) and (2.6) will reduce to recursions of the form
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yn+1 = R(∆tJ1,∆tJ2,∆tJ3)yn,

where R(z1,z2,z3) is a rational function of its arguments. Using the identity

1 + pTM-1q =  
det (M + qpT)

det (M)
  ,

which holds for any m-by-m matrix M and any two m-dimensional vectors p and q (cf. [1, p. 475]),

we find that the stability functions corresponding to the factorized versions of (2.5) and (2.6) can be

respectively expressed as

(2.9) R(z1,z2,z3) =   
det(P + z(ebT - L))

det (P)
  ,  P := (I - z1T)(I - z2T)(I - z3T),

(2.10) R(z1,z2,z3) =   
det(P + DS + zD(ebT - L)T-1)

det (P)
  ,  P := (I - z1D)(I - z2D)(I - z3D).

where z := z1 + z2 + z3.

The stability region is defined by the region S in the (z1, z2, z3)-space where  R(z1,z2,z3)  ≤ 1. The

method (2.7) is called stable if all eigenvalue triples (∆tλ(J1), ∆tλ(J2), ∆tλ(J3)) are in S. Since in

shallow water applications, many of the eigenvalues of Jk, k = 1, 2, 3, are close to the imaginary

axis, we are particularly interested in the most critical case where the eigenvalues of Jk are purely

imaginary, i.e. zk = iyk with yk real-valued. Let us introduce for a given value of y3 the stability

boundary β(y3) which is such that the method is stable in a region of the form

(2.11) S(y3) := { (y1,y2): | yk|   ≤ β(y3),  k = 1, 2} ,

where the stability boundary β(y3) is not too small. Since the spectral radius of ∆tJ1 and ∆tJ2 is much

smaller than that of ∆tJ3, we would like stability in all regions S(y3), | y3|   ≤ ∞. The corresponding

timestep condition is given by

(2.12) ∆t ≤   
β

max { ρ(J1),ρ(J2)}
 ,   β := min

y3
 β(y3).

Let us consider the stability of the factorized versions of (2.3) and (2.4'). It is easily verified that their

stability functions respectively take the form

(2.13) R1(z1,z2,z3) := 1 +  
z

(1 − κz1)(1 − κz2)(1 − κz3)
  +  

1
2
 (1 − 2κ )z2

(1 − κz1)2(1 − κz2)2(1 − κz3)2
 ,

(2.14) R2(z1,z2,z3) := 1 +  
2z

(1 − κz1)(1 − κz2)(1 − κz3)
   +  

1
2
 z2 −  z

(1 − κz1)2(1 − κz2)2(1 − κz3)2
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and that  R1(0,0,iy3)  < 1,  R2(0,0,iy3)  < 1 for y3 ≠ 0. Hence, we have a nonzero stability

boundary β. However, a numerical calculation reveals that β is quite small (less than 1/10). Hence,

the factorized versions of (2.3), (2.4) and (2.4') are of no use in shallow water applications.

3. Approximate factorization iteration

The quite poor stability properties of the factorized Rosenbrock methods can be explained by

observing that the vector (T-1⊗ I)V defined by the factorized-Rosenbrock method (2.7) is too far away

from the vector K  = (T-1⊗ I)U defined by the Rosenbrock method (2.5). In this section, we improve

the stability by really solving the implicit relations in the underlying Rosenbrock method by an

iteration process. We shall also study the iterative solution of the related implicit methods

(3.1) yn+1 = yn + ∆t(bT⊗ I)F(X),    X  - ∆t(A⊗ I)F(X) = e⊗ yn,

where A is a lower triangular matrix. In [4, p.97] these methods are called DIRK methods (diagonally

implicit Runge-Kutta methods). Like Rosenbrock methods, DIRK methods are triangularly implicit

(in spite of the terminology 'diagonally implicit' now commonly accepted in the literature).

An advantage of the iterative approach is that we can rely on the stability of the underlying integration

method. Thus, by choosing an A-stable integration method, we only have to deal with the region of

convergence of the iteration method. The iteration processes considered below are based on the

approximate factorization technique used in the preceding section and lead to acceptably large

convergence regions.

3.1. Iterative solution of the Rosenbrock equations

We consider two iterative approximate factorization approaches for actually solving the implicit

Rosenbrock relations. The first approach solves the components ui from (2.6) one by one by

repeated application of a linear system solver, the second approach solves all components k i from

(2.5) simultaneously by a nonlinear system solver. We shall refer to these iteration methods as

repeated and simultaneous approximate factorization iteration of the Rosenbrock method, briefly, the

RAF-Rosenbrock and SAF-Rosenbrock processes, respectively.

3.1.1. The RAF-Rosenbrock process. The s linear systems in (2.6) have the form

(I - κ i∆tJ)ui = gi,  i = 1, ... , s,
(3.2)

gi := (eiT⊗ I)(∆t (D⊗ I)F(e⊗ yn + (LT-1⊗ I)U) - (DS⊗ I)U),

where κi is the ith diagonal entry of T. Since L and S are strictly lower triangular, these s systems can

be solved successively. We solve the ith linear system by the linear solver

(3.3) (eiT⊗ I)∏ (ui(j) - ui(j-1)) =  gi - (I - κ i∆tJ)ui(j-1),    j = 1, 2, ... , m,   i = 1, ... , s,
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where ∏ is defined in (2.8). In this RAF-Rosenbrock process the initial iterate ui(0) should be

provided by some predictor formula and the number of iterations m is assumed to be determined by

some iteration strategy such that ui(m) may be considered as the solution ui of (3.2).

If the iterates ui(j) converge, then they can only converge to this solution ui. Each iteration in (3.3)

requires the solution of 3 linear systems with system matrices I - κi∆tJk, k = 1, 2, 3, each of order N.

Note that the three LU-decompositions of these system matrices can be done in parallel. These LU-

decompositions and the corresponding forward-backward substitutions are relatively cheap, because

the matrices Jk each correspond with a one-dimensional differential operator.

The convergence is determined by the error recursion satisfied by the iteration error ε(j):

(3.4) ε(j) := ui(j) - ui

(3.5) ε(j) = Z1ε(j-1),    Z1 := I - ∏-1(I - D⊗ ∆tJ),   j = 1, 2, ... , m.

Before analysing the matrix Z1, we first derive the error recursion for the other iterative approaches.

3.1.2. The SAF-Rosenbrock process. Instead of solving the linear systems in the Rosenbrock

method (2.6) successively for the components ui of U, we may iterate them simultaneously. Since in

such an approach it is more convenient to go back to the untransformed method (2.5), we shall solve

the components k i of K  simultaneously from (2.5). Consider the SAF-Rosenbrock process

(3.6) ∏ (K (j) - K (j-1)) =  - ((I - T⊗ ∆tJ)K (j-1) - ∆t F(e⊗ yn + (L⊗ I)K (j-1))), j = 1, 2, ..., m.

Note that this method is a nonlinear system solver.

Evidently, if the iterates K (j) converge and if (2.5) has a unique solution K , then they can only

converge to this solution K . Each SAF-Rosenbrock iteration requires the solution of 3 linear systems

with system matrices I - D⊗ ∆tJk, k = 1, 2, 3, each of order sN. The 3s LU-decompositions and the s

forward-backward substitutions corresponding with each matrix I - D⊗ ∆tJk can be done in parallel.

Again, the LU-decompositions and the forward-backward substitutions are relatively cheap, because

Jk corresponds with a one-dimensional differential operator. A drawback is the matrix-vector

multiplication in the righthand side of (3.6). Note that applying the SAF-Rosenbrock iteration process

to (2.6) instead of (2.5) does not avoid such a matrix-vector multiplication.

Let us consider the iteration error ε(j) := K (j) - K . From (2.5) and (3.6) it follows that

ε(j)  =  Z2ε(j-1) + ∆t ∏-1G(ε(j-1)),   Z2 := I - ∏-1(I - (T+L)⊗ ∆tJ),  j = 1, 2, ... , m,
(3.7)

G(ε) := F(e⊗ yn + (L⊗ I)(K  + ε)) - F(e⊗ yn + (L⊗ I)K ) - (L⊗ J)ε.

Since G(ε) has a small Lipschitz constant in the neighbourhood of the origin, the error recursion (3.7)

essentially behaves as the linearized recursion

(3.8) ε(j) ≈ Z2 ε(j-1),    Z2 := I - ∏-1(I - (T+L)⊗ ∆tJ),  j = 1, 2, ... , m.
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3.2. Iterative solution of DIRK equations

As for Rosenbrock methods, we may consider repeated and simultaneous approximate factorization

iteration of the DIRK method (3.1). These processes are respectively given by

(eiT⊗ I)∏ (xi(j) - xi(j-1)) =  gi,   j = 1, 2, ... , m,   i = 1, ... , s,
(3.9)

gi := (eiT⊗ I)((e⊗ I)yn - X(j-1) + ∆t(A⊗ I)F(X(j-1))),
and

(3.10) ∏ (X(j) - X(j-1)) =  - (X(j-1) - ∆t(A⊗ I)F(X(j-1)) - (e⊗ I)yn),    j = 1, 2, ... , m,

where ∏ is again defined by (2.8) with D := diag(A). They will be referred to as the RAF-DIRK and

SAF-DIRK processes. A comparison with (3.3) and (3.6) shows that we have the same iteration

costs except for the Jacobian multiplication.

Defining the iteration error ε(j) := X(j) - X, we can write down the linearized error recursions. We find

that the linearized error recursions associated with the RAF-DIRK method (3.9) and the SAF-DIRK

method (3.10) are respectively given by

(3.11) ε(j) = Z3ε(j-1),    Z3 := Z1,   j = 1, 2, ... , m,

(3.12) ε(j) ≈ Z4 ε(j-1),   Z4 := I - ∏-1(I - A⊗ ∆tJ),  j = 1, 2, ... , m.

3.3. Convergence

The convergence of iterated Rosenbrock methods (3.2) and (3.6), and of the iterated DIRK methods

(3.9) and (3.10) is determined by the amplification matrices

Z1 := I - ∏-1(I - D⊗ ∆tJ), Z2 := I - ∏-1(I - (T+L)⊗ ∆tJ),
Z3 = Z1, Z4 := I - ∏-1(I - A⊗ ∆tJ),

occurring in the error recursions (3.5), (3.8), (3.11) and (3.12), respectively. They only differ by the

matrix in front of ∆tJ (we recall that D = diag(T) = diag(A)). In the following subsections we

respectively discuss the region of convergence where ρ(Zr) < 1, the rate of convergence of the

nonstiff iteration error components, and the stability of the iterated methods.

3.3.1. The region of convergence. The matrices Zr are lower triangular block matrices with

the same diagonal blocks

I - (I - κ j∆tJ1)-1(I - κ j∆tJ2)-1(I - κ j∆tJ3)-1(I - κ j∆tJ),   j = 1, ... , s,

for all r. Here, the κi denote the diagonal entries of D. Hence, the eigenvalues of the matrices Zr are

identical.  They act as amplification factors for the eigenvalue components of the iteration error and

are given by
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(3.13) α j = C(κ jz1, κ jz2, κ jz3),   C(x1, x2, x3) := 1 − 
1 -  x1 - x2 - x3

(1 - x1)(1 - x2)(1 - x3)
   ,

where j = 1, ... , s and where zk runs through the eigenvalues of ∆tJk. Evidently, we have

convergence if α j  < 1, j = 1, ... , s. We consider the most critical case where the eigenvalues of Jk

are purely imaginary, that is we consider the values of α j  =  C(iκ jy1, iκ jy2, iκ jy3) . Recalling

that the spectral radius of ∆tJ1 and ∆tJ2 is much smaller than that of ∆tJ3, we are interested in

convergence regions of the form (cf. (2.11))

(3.14) C(y3) := { (y1,y2):   | yk|   ≤ 
γ(y3)

ρ(D)
,  k = 1, 2} ,  | y3|   ≤ ∞.

 
 Figure 3.1. The function g(x) defined by (3.15).

Theorem 3.1. Let the function g(x) be defined by the relation

(3.15) 4xg3 + 2(x2 - 1)g2 - x2 - 1 = 0.

Then, the convergence boundary γ(y3) in (3.14) is given by

(3.16) γ(y3) = ρ(D) min
j

  
g(κj y3 )

κ j

and the minimal value of γ(y3) is given by the positive root of the equation 4γ4(γ2 + 1) = 1.

Proof. We verified that for given values of y3,  C(iκjy1, iκjy2, iκjy3) increases most rapidly along

the line y1 = y2, so that we may restrict our considerations to the values of

α j  =  C(iκ jy1,iκ jy1,iκ jy3)  = κ j2 y1 (  
y12(κ j2y32+1) + 4y1y3 + 4y32

(1+κ j2y12)2(1+κ j2y32)
)1/2

.
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If we set  αj  = 1,  x = κjy3 and y = κjy1, then we find the relation

4xy3 + 2(x2 - 1)y2 - x2 - 1 = 0.

This relation determines a real-valued function y = g(x). Hence, for given values of κj and y3, i.e. of

x, we have  α j  ≤ 1 provided that both κ j y1  and κ j y2  are bounded by g(κ j  y3 ). This

proves (3.16).

In order to find the minimal value of γ(y3), we look at the plot of the function g(x) (see Figure 3.1).

Let x1(y) and x2(y) denote the two solutions of the equation 4xy3 + 2(x2 - 1)y2 - x2 - 1 = 0.  Then,

the minimal value of g(x) is determined by the relation x1(y) = x2(y). This leads to the equation

4y4(y2 + 1) = 1 whose only positive root determines the minimal value of γ(y3).♦

Since the positive root of the equation 4γ4(γ2 + 1) = 1 is given by γ = 0.647...  we derive from this

theorem the following convergence condition:

Theorem 3.2. Let λ(Jk), k = 1, 2, 3, be purely imaginary. Then, a sufficient condition for

convergence of the iterated Rosenbrock methods (3.3) and (3.6), and of the iterated DIRK methods

(3.9) and (3.10) is given by

∆t ≤   
γ

ρ(D) max { ρ(J1),ρ(J2)}
 ,   γ = 0.647... . ♦

3.3.2. The rate of convergence of the nonstiff error components. The rate of

convergence of the nonstiff error components can be studied by the behaviour of the nonstiff

amplification factors, that is, the eigenvalues of Zr corresponding with small values of ∆t λ(Jk). From

(3.13) it can be deduced that

α j = κ j2(z1z2 + z1z3 + z2z3) + O((∆t)3),   zk = ∆t λ(Jk),   j = 1, ... , s.

Hence, after m iterations the amplification factors behave as O((∆t)2m) for all m and irrespective the

value of r. However, this is not true for the amplification matrices Zrm.

Theorem 3.3. The amplification matrices Zr satisfy the relations

r = 1, 3:    Zrm   = O((∆t)2m)  for all m,

r = 2, 4: { Zrm = O((∆t)m)     for m ≤  s-1
Zrm = O((∆t)2m+1-s)  fo r  m ≥  s   

.

Proof. The relation Z1 = Z3 = O((∆t)2) immediately follows from the definition of Z1 and Z3 in

(3.5) and (3.11). For Z2 and Z4 it follows from (3.8) and (3.12) that

Z2 = I - (I + D⊗ ∆tJ)(I - (T+L)⊗ ∆tJ) + O((∆t)2) = (T + L - D)⊗ ∆tJ + O((∆t)2).
Z4 = I - (I + D⊗ ∆tJ)(I - A⊗ ∆tJ) + O((∆t)2) = (A - D)⊗ ∆tJ + O((∆t)2).
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Hence, we certainly have Zrm = O((∆t)m) for r = 2, 4. However, writing Zr = Ar + Br with

A2 := (T + L - D)⊗ ∆tJ and A4 := (A - D)⊗ ∆tJ, and observing that A2 and A4 are strictly lower block

triangular, so that  A2j and A4j vanish for j ≥ s, we obtain for m ≥ s

Zrm = ( )m
m-s+1  Ars-1Brm-s+1 + ... + ( )m

m  Brm,   r  = 2, 4.

Since Ar = O(∆t) and Br = O((∆t)2), we find that

Zrm =O((∆t)2m-s+1),   r = 2, 4. ♦

From this theorem it follows that in all four approaches the nonstiff error components are rapidly

removed from the iteration error. However, we may expect that the RAF processes (3.5) and (3.9)

damp these nonstiff components stronger than the SAF processes (3.8) and (3.12).

3.3.3. The region of stability. Evidently, if the iteration process converges, then the stability of

the iterated method is determined by the stability of the underlying integration method. Hence, with

respect to the stability test equation, the stability region of the iterated method converges to the

intersection of the convergence region and the stability region of the integration method, that is, to

S := S0 ∩ C,    C := ∩
y3

 C(y3),  | y3|   ≤ ∞,

where S0 is the stability region of the integration method and C(y3) is defined by (3.14). For A-stable

integration methods, the stability region S equals the convergence region C, so that the stability

condition is given by the stepsize condition in Theorem 3.2. Thus, for iterated, A-stable integration

methods we may define the stability boundary β := γρ-1(D).

For example, if the Rosenbrock methods (2.3) and (2.4) are iterated using the iteration matrix ∏, then

we find in both cases the stability boundary β ≈ 2.20. If we choose κ1 = κ2 = 1
4
  in (2.1), then (2.1)

is still A-stable with a slightly greater stability boundary β ≈ 2.59.

4. Explicit treatment of the horizontal terms

The modest values of the stability boundary β raises the question whether it is necessary to treat the

horizontal terms implicitly. Afterall, when applying the standard, explicit, fourth-order Runge-Kutta

method, we have an imaginary stability boundary of comparable size, viz. β = 2√ 2.

4.1. Fully explicit treatment of the horizontal terms

We once again consider the iteration methods (3.3), (3.6), (3.9) and (3.10), but we replace the

iteration matrix ∏ by the matrix ∏3 := I - D⊗ ∆tJ3. As a consequence, the amplification factors are now

given by (cf. (3.13))
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(4.1) α j = C3(κ jz1, κ jz2, κ jz3),   C3(x1, x2, x3) := 1   −     1 - x1 - x2 - x3
1 - x3

  .

Hence,  C3(iκ jy1, iκ jy2, iκ jy3) 2 = κ j2(y1 + y2)2(1 + κ j2y32)-1, so that we have convergence in

regions of the form (3.14) with

(4.2) γ(y3) = 1
2
 √1 + y32ρ2(D) ,  | y3|   ≤ ∞.

Thus, the convergence boundary γ in the timestep condition in Theorem 3.2 changes from

γ ≈ 0.647 to γ = 1
2
 . Since the iterations in (3.3), (3.6), (3.9) and (3.10) with ∏ replaced by ∏3 are

cheaper, the modest reduction of the convergence boundary seems to be a small price. Moreover, the

convergence boundary (4.2) quickly increases with | y3|, whereas (3.16) approaches a constant value

γ(∞) ≈ 0.7 (see Figure 3.1). Hence, the stiff error components will be more strongly damped when

using the matrix ∏3. On the other hand, if we look at the behaviour of the amplification factor α j as

∆t → 0, then we find αjm = O((∆t)m), so that the nonstiff iteration error components are expected to

require more iterations to be removed from the iteration error (see Theorem 3.3).

Thus, the iteration processes with ∏ and ∏3 both have advantages. This suggests a combination of the

two iteration methods, for example, by iterating successively with iteration matrices ∏3, ∏, ∏3, ∏, ...

(the ∏3∏ process) or with ∏3, ∏, ∏, ∏3, ∏, ∏, ... (the ∏3∏2 process). Evidently, in such combined

processes, the averaged iteration costs are still slightly higher than in the ∏3 process and slightly

lower than in the ∏ process.

4.1.1. Convergence boundaries of the ∏3∏ and ∏3∏2 processes. Let us first consider the

∏3∏ process more closely. After each two iterations, the corresponding amplification matrix Zr in the

linearized error recursion has diagonal blocks of the form

 (I - ((ejT⊗ I)∏3)-1(I - κ j∆tJ))(I - ((ejT⊗ I)∏)-1(I - κ j∆tJ)),   j = 1, 2, ... , s,

irrespective the value of r. Hence, the amplification factors for two iterations are given by

(4.3) α j2 = C3(κ jz1, κ jz2, κ jz3) C(κ jz1, κ jz2, κ jz3),

where C and C3 are defined in (3.13) and (4.1). Again, we restrict zk to imaginary values iyk and

again it turns out that for given values of y3 the amplification factor α j2  increases most rapidly

along the line y1 = y2. Along the lines of the proof of Theorem 3.1 it can be shown that the

convergence boundary γ(y3) in (3.14) is given by (3.16) where the function g(x) is defined by

(4.4) 4(x2 + 1)g6 + 16xg5 - (x4 - 14x2 + 1)g4 - 2(x2 + 1)2g2 - (x2 + 1)2 = 0.

Figure 4.1 presents a plot of g(x). It is easily seen that g(x) ≈ 1
2
 x  as x → ∞, so that the combined

iteration process has the property that the convergence boundary γ(y3) increases with y3 to infinity

(compare (4.2)). In order to find the minimal value γ of g(x), we write (4.4) as F(g,x) = 0. Then, γ is
determined by (4.4) and by the equation
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(4.5)
∂F(g,x)

∂x   = 4(2xg6 + 4g5 - x(x2 - 7)g4 - 2x(x2 + 1)g2 - x(x2 + 1)) = 0.

Solving (4.4) and (4.5) yields the minimal value γ ≈ 0.72. This is even slightly greater than the value

γ ≈ 0.65  given in Theorem 3.2 for the ∏ process.

Similarly, we find for the ∏3∏2 process a still greater value γ ≈ 0.75.

 Figure 4.1. The function g(x) defined by (4.4).

4.1.2. The rate of convergence. The size of the convergence region is not the only issue to be

considered. The rate of convergence, that is, the magnitude of the amplification factors, is equally

important. We consider the behaviour of the amplification factors for small values of ∆t λ(Jk) and

their overall behaviour. For the ∏3∏ process it can be deduced from (4.3) that for ∆t → 0

α j2 = κ j3(z1z2 + z1z3 + z2z3)(z1 + z2) + O((∆t)4),   zk = ∆t λ(Jk),   j = 1, ... , s,

so that after an even number of m iterations the amplification factors behave as O((∆t)3m/2),
irrespective the value of r. Similarly, we have for the ∏3∏2 process, α jm = O((∆t)5m/3), where m is

assumed to be a multiple of 3. Recalling that the ∏ and ∏3 processes yield after m iterations

amplification by α jm = O((∆t)2m) and α jm = O((∆t)m), respectively, we see that with respect to

damping of the nonstiff error components, the order of preference is ∏, ∏3∏2, ∏3∏, and ∏3.
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Figure 4.2a. The functions αaver(x) for the ∏3, ∏3∏, ∏3∏2 and ∏ processes.

 
Figure 4.2b. Details near the origin of αaver(x) for the ∏3, ∏3∏, ∏3∏2 and ∏ processes.

As to the overall convergence, we compare the averaged amplification per iteration in the region C(y3)

defined in (3.14), that is, the averaged values of the functions  C3 ,  C ,  C3C 1/2 and  C3C2 1/3

in C(y3), with C and C3 defined by (3.13) and (4.1). Writing x := κ jy3 and denoting these averaged

values by αaver(x), we compute αaver(x) in the square {  κ jy1  ≤ γ,  κ jy2  ≤ γ} , where γ ≈ 0.50,

0.65, 0.72, 0.75 in the ∏3, ∏, ∏3∏ and ∏3∏2 processes, respectively. In Figure 4.2a, the function
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αaver(x) is plotted for 0 ≤ x ≤ 15. Details in the interval 0 ≤ x ≤ 2 are given by Figure 4.2b. In these

plots, the left and right end point values of the graphs respectively decrease and increase for the ∏3,

∏3∏, ∏3∏2 and ∏ processes. Thus, the ∏3 and ∏ processes clearly are extreme cases, the ∏3 process

being superior for larger values of x, the ∏ process for small values of x. The ∏3∏ and ∏3∏2

processes are good compromises. Moreover, they possess substantially larger convergence

boundaries respectively allowing about 45% and 10% larger stepsizes than the ∏3 and ∏ processes.

4.2. Partially explicit treatment of the horizontal terms

Instead of inserting iterations that are fully explicit with respect to the horizontal terms, one may

consider the use of iterations with iteration matrices ∏13 := (I - D⊗ ∆tJ1)(I - D⊗ ∆tJ3) and

∏23 := (I - D⊗ ∆tJ2)(I - D⊗ ∆tJ3). Since in shallow water applications, the two horizontal directions

introduce a comparable degree of stiffness, we shall alternate these two iteration matrices. It should be

remarked that we already used the iteration matrices ∏13 and ∏23 in [6] in another type of iteration

methods for use in shallow water computations.

4.2.1. Convergence boundary of the ∏ 13∏ 23 process. After each two iterations, the

corresponding amplification matrix Zr in the linearized error recursion has diagonal blocks of the form

 (I - ((ejT⊗ I)∏13)-1(I - κ j∆tJ))(I - ((ejT⊗ I)∏23)-1(I - κ j∆tJ)),   j = 1, 2, ... , s,

irrespective the value of r. Defining the functions

(4.6) Ck3(x1, x2, x3) := 1  −    1 - x1 - x2 - x3

(1 - xk)(1 - x3)
   ,   k = 1, 2,

the amplification factors for two iterations are given by

(4.7) α j2 = C13(κ jz1, κ jz2, κ jz3) C23(κ jz1, κ jz2, κ jz3).

Restricting zk to imaginary values iyk, we obtain

(4.8)  α j2  =  ( 
(κ j2y12 + κ j4y32y22)(κ j2y22 + κ j4y32y12)
(1 + κ j2y12)(1 + κ j2y22)(1 + κ j2y32)2

  )1/2
 .

We verified that for given values of κ j2y32 ≥ 0.01 the amplification factor α j2  increases most

rapidly along the lines y1 = 0 and y2 = 0. For κ j2y32 < 0.01, we found numerically that γ(y3) ≥ 10.

Hence, proceeding as in the proof of Theorem 3.1, it can be shown that for κ j y3  ≥ 0.1 the

convergence boundary γ(y3) in (3.14) is given by (3.16) where the function g(x) is defined by

(4.9) x2g4 - (x2 + 1)2g2 - (x2 + 1)2 = 0,   x ≥ 0.1.

A comparison of the plot of this function in Figure 4.3 with Figure 4.1 shows that the convergence

boundary γ(y3) is considerably larger than that of the ∏3∏ process. This also results in a much larger

value for γ. To see this, we again write the implicit equation for g as F(g,x) = 0 and solve γ from the
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equations F(γ,x) = 0 and ∂F(γ,x)/∂x = 0 to obtain  γ = √2 + 2√ 2 ≈ 2.19 which compares favourably

with the value γ ≈ 0.65 of Theorem 3.2.

 Figure 4.3. The function g(x) defined by (4.9).

4.2.2. The rate of convergence. As to the behaviour of the amplification factors for small

values of ∆t λ(Jk), it is immediate from (4.6) and (4.7) that α jm = O((∆t)m). Thus, the ∏13∏23

process damps the nonstiff error components with the same order in ∆t as ∏3, but less strongly than

∏, ∏3∏ and ∏3∏2. Next, we look for a given value of x := κ jy3 at the averaged value αaver(x) of

 C13C23 1/2 in the square {  κ jy1  ≤ γ,  κ jy2  ≤ γ}  with γ = 2.19, and we compare this function

with that obtained for the ∏3∏ with γ = 0.72. The lowest and highest graph in the Figures 4.4a and

4.4b presents ∏3∏ and ∏13∏23, respectively.  Hence, we may conclude that the three times larger

convergence boundary of the process ∏13∏23 is paid by a considerably worse convergence rate.

Nevertheless, the question remains which iteration method is most efficient. To answer this question,

we may either count three ∏13∏23 iterations for one iteration, that is, we define αaver(x) by means of

 C13C23 3/2, or we apply ∏13∏23 with the same convergence boundary as used in the ∏3∏ process,

i.e. γ = 0.72. The middle graphs in the Figures 4.4a and 4.4b present these cases, where the lowest

middle one corresponds with the γ = 0.72 approach. Thus, our final conclusion is that on the basis of

the αaver(x) profiles and the damping of the nonstiff error components, the ∏3∏ is the most efficient

iteration strategy.

5. Conclusions

In this paper we analysed the convergence of iterative solution methods for the linear systems arising

in Rosenbrock integration methods and the nonlinear systems arising in DIRK integration methods. In
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 Figure 4.4a. The functions αaver(x) for the ∏3∏ and ∏13∏23 processes.

 Figure 4.4b. Details near the origin of αaver(x) for the ∏3∏ and ∏13∏23 processes.

particular, we focused on the integration of ODEs originating from shallow water applications, where

the ODE system contains a highly stiff part corresponding with the vertical derivative terms and a

moderately stiff part corresponding with the horizontal derivative terms. We considered iteration

methods based on the approximate factorizations of the system matrix associated with the application

of modified Newton. The resulting convergence boundaries  γ are given by
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--------------------------------------------------------------------
Process ∏ ∏3 ∏3∏ ∏3∏2 ∏13∏23

γ ≈ 0.65 0.5 0.72 0.75 2.19
--------------------------------------------------------------------

The best convergence characteristics were obtained for the ∏3∏ process where alternatingly only the

vertical direction and all coordinate directions are treated implicitly.
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