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Factorization in Block-Tnangulary
Implicit Methods for Shallow Water
Applications

P.J. van der Houwen & B.P. Sommeijer
Cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

The systems of first-order ordinary differential equations obtained by spatial discretization of the initial-
boundary value problems modelling phenomena in shallow water in 3 spatial dimensions have righthand
sides of the fornf(t,y) :=f1(t,y) + fa(t,y) + f3(t,y) + f4(t,y), wherefq, f> andfg contain the spatial
derivative terms with respect to the x, y and z directions, respectively, ampresents the forcing terms
and/or reaction terms. The number N of componentsisfusually extremely large. It is typical for
shallow water applications that the functiaris nonstiff and that the functidg corresponding with the

vertical spatial direction is much more stiff than the functiarendf; corresponding with the horizontal

spatial directions. The reason is that in shallow seas the gridsize in the vertical direction is several orders
of magnitude smaller than in the horizontal directions. In order to solve the initial value problem for the
system of ordinary differential equations numerically, we need a stiff solver. Stiff IVP solvers are
necessarily implicit, requiring the solution of large systems of implicit relations. In a few earlier papers,
we considered implicit Runge-Kutta methods leadinfylly coupled implicit systems whose dimension

is a multiple of N, andlock-diagonallyimplicit methods in which the implicit relations can be
decoupled into subsystems of dimension N. In the present paper, we analyse Rosenbrock type methods
and the related DIRK methods (diagonally implicit Runge-Kutta methods) leadiigciotriangularly

implicit relations. In particular, we shall present a convergence analysis of various iterative methods based
on approximate factorization for solving the triangularly implicit relations.

1991 Mathematics Subject ClassificatioB5L06

Keywords and Phrasestumerical analysis, shallow water applications, iteration methods, approximate
factorization, parallelism.

Note.The investigations reported in this paper were partly supported by the Dutch HPCN Program.

1. Introduction

We consider initial-boundary value problems modelling phenomena in shallow water in 3 spatial
dimensions. The systems of ordinary differential equations (ODES) obtained by spatial discretization
(method of lines) of the governing partial differential equations can be written in the form

@y YO =1y), fty) =aty) + falty) +faty) +falty), Y, fo RN,

wherefy, f2 andf3 contain the spatial derivative terms with respect to the x, y and z directions,
respectively,f4 represents the forcing terms and/or reaction terms, and N is a large integer
proportional to the number of spatial grid points used for the spatial discretization. It is typical for
shallow water applications that the functians nonstiff and that the functidg corresponding with

the vertical spatial direction is much more stiff than the functipsdf, corresponding with the
horizontal spatial directions. As a consequence, the spectral radius of the Jacobiadf ghayrig

much larger than the spectral radiusobf/dy anddf,/dy. The reason is that in shallow seas the
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gridsize in the vertical direction is several orders of magnitude smaller than in the horizontal
directions.

In order to solve the initial value problem (IVP) for the system (1.1) numerically, we need a stiff IVP
solver, because the Lipschitz constants with respgctigsociated with the functiomg fo andfs

become increasingly large as the spatial resolution is refined. Stiff IVP solvers are necessarily
implicit, requiring the solution of large systems of implicit relations. In a few earlier papers, we
considered implicit Runge-Kutta methods leadinfutly coupled implicit systems whose dimension

is a multiple of N (cf. [3], [5] and [10]), analock-diagonallyimplicit methods in which the implicit
relations can be decoupled into subsystems of dimension N (cf. [6]). In the present paper, we analyse
Rosenbrock type methods and the related DIRK methods (diagonally implicit Runge-Kutta methods)
leading toblock-triangularlyimplicit relations (this is also the case for the DIRK methods, in spite of

the terminology 'diagonally implicit’). Rosenbrock type methods, and in particular factorized versions
of these methods, are quite popular in air pollution simulations (see e.g. [9], [12], and [13]). This
motivated us to look whether Rosenbrock and the related DIRK methods can also be useful in shallow
water modelling. First we show that in shallow water applications, factorized Rosenbrock methods
are less suitable. However, iteration of Rosenbrock and DIRK methods using approximate
factorization looks quite promising. This paper will focus on the convergence analysis of approximate
factorization iteration of the triangularly implicit Rosenbrock and DIRK relations.

2. Rosenbrock methods and their factorization
We start with an example of a family of two-stage Rosenbrock methods:

Yn+1=Yn *+ bk1 + (1-bkz,

(2.1) (I - k1Atd)k1 = At f(yp),
T bKy + (b-1k2

(I - k2Atd)ko = At f(yn + pk1) +VAtK1, Ki>0, pi= 1-b -V

Here, bK1, K2 andv are free parameters and J is an approximation to the Jacobiandiiayrit ..

For simplicity of notation, we assumed the ODE of autonomous form. The nonautonomous version
can be obtained by applying (2.1) to the augmented sysgemf{yo, ¥), Yo' = 1}. The method

(2.1) is triangularly implicit, that i1 andk, can be computed by successively solving 2 linear
systems of dimension N.

If J =0of/oy(tn) + OL), then the formulas (2.1) are all second-order accurate Rosenbrock methods.
The stability function for (2.1) is given by

1+ (1-K1-Kp)z+ %(1 - 2K1 - 2K2 + 2K1K2)Z2

(2.2) R(z) = (1 -K12)(1 -K2Z)



From this expression it follows that the methods (2.1) are A-staélesikl + Ko< 2K1K2 + % and

L-stable ifkq + Ko = K1K2 + % .
The first examples of Rosenbrock methods were given by Rosenbrock [8] in 1962 and are obtained

by choosing in (2.1)
(2.3) b=0, K] =Kp=K = 11%?/2, v =0.

Of particular interest are the methods which remain second-order accurate if we choose an arbitrary
matrix for J. Such methods are called Rosenbrock-W methods and were proposed by Steihaug and
Wolfbrandt [11]. If we choose in (2.8, =Ko =K andv = -k(1-b)1, then (2.1) becomes a W-

method (see Dekker and Verwer [2, p. 233]). The special case
_1 e — 1 — 15 -
(2.4) b=, Ki=Kz=K:= 1% 5\/2, = - X

was used by Verwer et al. [12] for solving atmospheric transport problems. Note, however, that for
stability reasons, J should be a reasonably close approximation to the true Jefcdypiar,.

2.1. General Rosenbrock methods
More generally, we consider Rosenbrock methods of the form (cf. [4, p. 111])

(2.5) Yn+1=Yn + OTONK, (I - TOAL)K = At F(edyn + (LONK),

whereb is an s-dimensional vectd, := (k1T, ... ,ks")T, and T and L are lower and strictly lower
triangular s-by-s matrices, respectively. This property of T and L implies that (2.5) is triangularly
implicit, so that the componerits of K can be computed by successively solving s linear systems of
dimension N with system matrices kjAtJ, where th&; denote the diagonal entries of T. If the order
of the method (2.5) is independent of the choice of the Jacobian approximation J, then (2.5) is called a
Rosenbrock-W method.
If T is not diagonal (as in (2.4)), then for an actual implementation one often transforms the linear
system forK by a Butcher similarity transformatiah= (TOl)K, where T is assumed invertible (cf.
[4, p. 120]). Writing TL = S + D1 with S strictly lower triangular and D = diag(T), (2.5) becomes
Yn+1=Yyn + (0TT-1ONU,
(2.6)
(I - DoAtJ)U = At (DOl)F(edy, + (LT-101)U) - (DSTI)U.

As in (2.5) the components of U can be computed by again successively solving s linear systems
of dimension N. As an example of a transformed Rosenbrock method, we give the transformation of
the method (2.4):

Yn+1=Ynt %K'1(3U1 +up),
(2.4)  (1-xAt)ur=kAtf(yn), k= 1% V2,
(I - kAtI)u2 = KAt f(yn + Kk 1ug) - 2u3.
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Note that unlike (2.5), no Jacobian multiplications are involved in transformed Rosenbrock methods.
In general, this is considered as an advantage because such Jacobian multiplications can be quite
expensive. However, it should be remarked that in the case of shallow water applications the matrix J
is extremely sparse, so that Jacobian multiplications are not so costly.

2.2. Factorized Rosenbrock methods
In order to further reduce the linear algebra costs in the method (2.4), Sandu [9] and Verwer et al.
[13] applied to the system matrix kAtJ the technique @&pproximate factorizatiobased on some
splitting 2 J of the Jacobian J. This leads to thetorized Rosenbrock method
This technique goes back to Peaceman and Rachford [7] who used it for approximately solving the
linear systems originating from a finite difference discretization of two-dimensional parabolic
problems. In such problems, the system matrix is of the fo%mt\}, where J is the discretization of
the Laplace operat@?/0x2 + 02/dy2. By writing J = 3 + b, where J and 3 correspond witld2/dx2
andd?/dy?, respectively, Peaceman and Rachford replac%dkt\} by the approximate factorization
(1-3At3) (1 -3 AL)).
The same approximate factorization technique can be applied to the matriatl-iit (2.5) or to the
matrix | - DOAtJ in (2.6). We shall illustrate this for the case (2.6). Since we are concerned with
shallow water applications, we use the splitting 3 = b + k%, where the matriceg dlenote the
Jacobian matrices of the terffigsat t, occurring in theighthand side functiofhin (1.1) and where the
nonstiff interaction terms are ignored. This leads to the factorized method

Yn+1=yn+ OTTIONV,
(2.7)

NV = At (Dol)F(enyy, + (LT-101)V) - (DSON)V,

where[lis defined by
2.8)  n:=(-boaty)(i- boaty)() - Doaty), D = diag(T).

Each step of the factorized Rosenbrock method (2.7) requires the solution of 3s one-dimensional,
linear systems. All LU-decompositions can be computed in parallel, but the 3s forward-backward
substitutions have to be done sequentially.

Sincell = | - DOAtJ + Q(At)2), we can interpret the factorized method as the original Rosenbrock
method with an Qft)-perturbed matrix J. Hence, factorization will not affect the order of
Rosenbrock-W methods. Furthermore, any factorized Rosenbrock method has at least order two if the
original Rosenbrock method has at least order two.

2.3. Stability

Next, we define the stability regicfor the factorized versions of the methods (2.5) and (2.6). We
first define the stability function by applying them to the test equatien(} + b + k)y. Assuming

that the matricesckcommute and ignoring the interaction term$-jrthe factorized versions of the
methods (2.5) and (2.6) will reduce to recursions of the form



Yn+1 = R(AtI,At AtIz)yn,

where R(Z,22,23) is a rational function of its arguments. Using the identity

det(M + gpT)
det(M)

1+p™™-ig=

which holds for any m-by-m matrix M and any two m-dimensional ve@ansdq (cf. [1, p. 475]),
we find that the stability functions corresponding to the factorized versions of (2.5) and (2.6) can be
respectively expressed as

detf(P + ZebT - L))

(2.9) R(z,22,23) = detP)

P :=(1- z1T)(I - zoT)(I - z3T),

detf(P + DS + z[{ebT - L)T-1)
det(P)

(2.10) R(z,22,23) = P :=(1 - z1D)(I - zoD)(I - z3D).

wherez =71+ 2 + z.

The stability regionis defined by the regio8in the (z, 2o, z3)-space wheréR(z;,22,z3)[0< 1. The
method (2.7) is calledtableif all eigenvalue triplegAtA(Jy), AtA(J2), AtA(J3)) are inS. Since in
shallow water applications, many of the eigenvaluegok & 1, 2, 3, are close to the imaginary
axis, we are particularly interested in the most critical case where the eigenvalyeseopdrely

imaginary, i.e. g = iyk with yi real-valued. Let us introduce for a given value gthe stability
boundaryf3(y3) which is such that the method is stable in a region of the form

(211)  Sys) :={(yny2): |yx|sB(ya), k=1, 3,

where thestability boundary(ys) is not too small. Since the spectral radiuAtdf andAt, is much
smaller than that ofitJs, we would like stability in all regionS(ys), |ys| < c. The corresponding
timestep condition is given by

B i
2.12 At < , = )
e Y 2 R

Let us consider the stability of the factorized versions of (2.3) and (2.4"). It is easily verified that their
stability functions respectively take the form

, %(1 - 2K)z2
(2.13) R(zzo29) =1+ (1-kz1)(1-Kz2)(1-Kz3) ’ (1-Kz1)2(1-K2z2)2(1-Kz3)2 '
12_
25 22 VA

(2.14) R(z1,22,23) =1 +

(1-Kz)(1-kz2)(L-Kz3)  (1- Kkzp)X(L - Kz2)2(L - Kz3)?



and that(0R1(0,0,iy3)0 < 1,[0R>(0,0,iy3)[0 < 1 for y3 # 0. Hence, we have a nonzero stability
boundaryB. However, a numerical calculation reveals fh& quite small (less than 1/10). Hence,
the factorized versions of (2.3), (2.4) and (2.4") are of no use in shallow water applications.

3. Approximate factorization iteration

The quite poor stability properties of the factorized Rosenbrock methods can be explained by
observing that the vector {11)V defined by the factorized-Rosenbrock method (2.7) is too far away
from the vectoK = (T-10I)U defined by the Rosenbrock method (2.5). In this section, we improve
the stability by really solving the implicit relations in the underlying Rosenbrock method by an
iteration process. We shall also study the iterative solution of the related implicit methods

(3.1) Vel =Yn + AOTONF(X), X - A(ADNF(X) = edyp,

where A is a lower triangular matrix. In [4, p.97] these methods are called DIRK methods (diagonally
implicit Runge-Kutta methods). Like Rosenbrock methods, DIRK methods are triangularly implicit
(in spite of the terminology 'diagonally implicit' now commonly accepted in the literature).

An advantage of the iterative approach is that we can rely on the stability of the underlying integration
method. Thus, by choosing an A-stable integration method, we only have to deal with the region of
convergencef the iteration method. The iteration processes considered below are based on the
approximate factorization technique used in the preceding section and lead to acceptably large
convergence regions.

3.1. lterative solution of the Rosenbrock equations

We consider two iterative approximate factorization approaches for actually solving the implicit
Rosenbrock relations. The first approach solves the componeritsm (2.6) one by one by
repeatedapplication of a linear system solver, the second approach solves all compgrienmts

(2.5) simultaneouslyby a nonlinear system solver. We shall refer to these iteration methods as
repeated and simultaneous approximate factorization iteration of the Rosenbrock method, briefly, the
RAF-Rosenbrock and SAF-Rosenbrock processes, respectively.

3.1.1. The RAF-Rosenbrock processThe s linear systems in (2.6) have the form
(I-kiatduj =gj, i=1, ..,5s,

(3.2)
gi := @&Ton (At (DOlF(ey, + (LT-101)U) - (DSTNU),

wherek; is the ith diagonal entry of T. Since L and S are strictly lower triangular, these s systems can
be solved successively. We solve the ith linear system by the linear solver

(3.3) &Tonn (ui(J) - ui(J'l)) = gi- (I-kA)u0D, j=1,2,...,m, i=1,..,s,



where[ is defined in (2.8). In this RAF-Rosenbrock process the initial itard® should be
provided by some predictor formula and the number of iterations m is assumed to be determined by
some iteration strategy such thigf") may be considered as the solutipof (3.2).

If the iteratesuj() converge, then they can only converge to this solutjo&ach iteration in (3.3)
requires the solution of 3 linear systems with system matrice@t, k = 1, 2, 3, each of order N.

Note that the three LU-decompositions of these system matrices can be done in parallel. These LU-
decompositionand the corresponding forward-backward substitutions are relatively cheap, because
the matricesiJeach correspond with a one-dimensional differential operator.

The convergence is determined by the error recursion satisfied by the iteratiaferror

(3.4) e0) := i) - y;
(3.5) el) = z€G-1), z:=1-1-1(1- DOALY), j=1,2, ..., m.

Before analysing the matrix;Zwe first derive the error recursion for the other iterative approaches.

3.1.2. The SAF-Rosenbrock processnstead of solving the linear systems in the Rosenbrock
method (2.6) successively for the componentsf U, we may iterate them simultaneously. Since in

such an approach it is more convenient to go back to the untransformed method (2.5), we shall solve
the componentk; of K simultaneously from (2.5). Consider the SAF-Rosenbrock process

(3.6) N(K®-kGED) = -((1 - ToALYK G-D) - At F(enyn + (LONK D)), j=1, 2, ..., m.

Note that this method isrenlinearsystem solver.

Evidently, if the iterate () converge and if (2.5) has a unique solutionthen they can only
converge to this solutiok. Each SAF-Rosenbrock iteration requires the solution of 3 linear systems
with system matrices | - MAtJy, k = 1, 2, 3, each of order sN. The 3s LU-decompositions and the s
forward-backward substitutions corresponding with each matrixdAtlk can be done in parallel.
Again, the LU-decompositiorand the forward-backward substitutions are relatively cheap, because
Jk corresponds with a one-dimensional differential operator. A drawback is the matrix-vector
multiplication in the righthand side of (3.6). Note that applying the SAF-Rosenbrock iteration process
to (2.6) instead of (2.5) does not avoid such a matrix-vector multiplication.

Let us consider the iteration ergb := K() - K. From (2.5) and (3.6) it follows that

el) = ZpelD) + At M-1G(e(-D), Zo:=1-0Y(1 - (T+L)oAL), j=1,2, .., m,

(3.7)
G(g) :=F(enyp + (LON(K +¢)) - F(enyn + (LONK) - (LOJ.

SinceG(g) has a small Lipschitz constant in the neighbourhood of the origin, the error recursion (3.7)
essentially behaves as the linearized recursion

(3.8) e) = 2, e(0-D), Z:=1-M1( - (T+L)oAtd), j=1,2, ..., m.



3.2. lterative solution of DIRK equations
As for Rosenbrock methods, we may consider repeated and simultaneous approximate factorization
iteration of the DIRK method (3.1). These processes are respectively given by

@Tonn (x0 -xD) =g, j=1,2,....,m, i=1,..,s,

(3.9)
gi := &Tol) ((enl)yn- XG-D) + AtADNF(X (D)),
and
(3.10) N (X0 -x6D) = - (X6 - AATF(XED) - @@alyn), j=1,2, ..., m,

where[] is again defined by (2.8) with D := diag(A). They will be referred to as the RAF-DIRK and
SAF-DIRK processes. A comparison with (3.3) and (3.6) shows that we have the same iteration
costs except for the Jacobian multiplication.

Defining the iteration errcg() := X(0) - X, we can write down the linearized error recursions. We find
that the linearized error recursions associated with the RAF-DIRK method (3.9) and the SAF-DIRK
method (3.10) are respectively given by

(3.11) el) = z3el-D), Z:=271, j=1,2,..,m,

(3.12) el) = 2, €(D), Z4:=1-0Y(1- AoAtd), j=1,2, ..., m.

3.3. Convergence
The convergence of iterated Rosenbrock methods (3.2) and (3.6), and of the iterated DIRK methods
(3.9) and (3.10) is determined by the amplification matrices

Z1:=1-MY1- DOAL), Zo:=1-01(I - (T+L)oAtd),
Z3= 274, Z4 =1 -1 - AoAt)),

occurring in the error recursions (3.5), (3.8), (3.11) and (3.12), respectively. They only differ by the
matrix in front of AtJ (we recall that D = diag(T) = diag(A)). In the following subsections we
respectively discuss the region of convergence wpéze) < 1, the rate of convergence of the

nonstiff iteration error components, and the stability of the iterated methods.
3.3.1. The region of convergencelhe matrices Zare lower triangular block matrices with
the same diagonal blocks

|- (I - kjAtd)- (1 - KAL) (1 - KAL) 1(1 - KAL), j=1, ...,

for all r. Here, thej denote the diagonal entries of D. Hence, the eigenvalues of the matrares Z
identical. They act as amplification factors for the eigenvalue components of the iteration error and
are given by



1-X1-X2-X3
(1-x)(21-x)(1 - xq)

(3.13) aj = CKjz1, Kjz2, Kjz3), C(x1, X2, X3) = 1- :
where j = 1, ... , s and wherg zuns through the eigenvalues atJc. Evidently, we have
convergence ifd jl0<1,j=1, ..., s. We consider the most critical case where the eigenvalyes of J
are purely imaginary, that is we consider the valuest f] = IC(ikjy1, iKjy2, iKjy3)L. Recalling

that the spectral radius @ttJ; andAtJ, is much smaller than that éftJ;, we are interested in
convergence regions of the form (cf. (2.11))

y(y3)

(3.14) Clya) ={(yny2): |yk|< o(D)

k=12, |y3|< .

.54
(LB
0BT

(LEE]

(L5

1t aﬂHaﬂ Eiy] 1]

Figure 3.1.The function g(x) defined by (3.15).
Theorem 3.1.Let the function g(x) be defined by the relation
(3.15) AX@ + 2(x2- 1)g2-x2-1=0.

Then, the convergence boundgfys) in (3.14) is given by

(316)  Yy9=p(D) min 9k ysh)
Kj

and the minimal value ofy3) is given by the positive root of the equatiod(¥2 + 1) = 1.

Proof. We verified that for given values 0§y IC(iKjy1, iKjy2, iKjy3)increases most rapidly along
the line yi = y», so that we may restrict our considerations to the values of

2(Kj2y32+1) + dyrys + 4y32) 172

e . . oo — .2 Y1
(@ j0=UC(iKjy1,iKjy1,iKjy3) = K; Dy1D( (L2 12)2(14k2y)
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If we setlaj[1=1, x =kjy3 and y =jy1, then we find the relation
4xy3 + 2Ax2- Dy2-x2-1=0.

This relation determines a real-valued function y = g(x). Hence, for given valygaraf y, i.e. of

x, we havellaj[] < 1 provided that botk;y1[] andk;lly>U] are bounded by(g; Uy3sL]). This
proves (3.16).

In order to find the minimal value gfy3), we look at the plot of the function g(x) (see Figure 3.1).
Let x1(y) and »(y) denote the two solutions of the equation34%y2(x2 - 1)y2 - x2 - 1 = 0. Then,
the minimal value of g(x) is determined by the relatiafyx= x2(y). This leads to the equation
4y4(y2 + 1) = 1 whose only positive root determines the minimal valyéygf.¢

Since the positive root of the equatiop#@?2 + 1) = 1 is given by = 0.647... we derive from this
theorem the following convergence condition:

Theorem 3.2.LetA(J), k = 1, 2, 3, be purely imaginary. Then, a sufficient condition for
convergence of the iterated Rosenbrock methods (3.3) and (3.6), and of the iterated DIRK methods
(3.9) and (3.10) is given by

< y
p(D) max{ p(31),p(R2)}

, y=0.647...

3.3.2. The rate of convergence of the nonstiff error componentsThe rate of
convergence of thaonstiff error components can be studied by the behaviour of the nonstiff
amplification factors, that is, the eigenvalues p€@responding with small values&fA(Jy). From

(3.13) it can be deduced that
0j =KjA(z2122 + 2123 + 2p73) + O((AD)3), A =AtA(K), j=1,..,s.

Hence, after m iterations the amplification factoetiave as (§At)2M) for all m and irrespective the
value of r. However, this is not true for the amplification matrig&€s Z

Theorem 3.3.The amplification matrices,&atisfy the relations
r=1,3: Zm =0O((an2m)  for all m,

f=2 4 zm = 0o((ay)m)  form< s-1
T Zm = 0O((At)2m+1-9 form=s

Proof. The relation Z = Z3 = O((At)2) immediately follows from the definition of1Zand 2 in

(3.5) and (3.11). For2Zand % it follows from (3.8) and (3.12) that

Zo=1-(1+ DOA)(I - (T+L)OAL) + O((A)2) = (T + L - DAL + Q(A1)2).
Z4=1-(1+DoAt)(I - ADAt)) + O((At)2) = (A - D)DALI + Q((At)2).
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Hence, we certainly have,Z = O((At)™M) for r = 2, 4. However, writing Z= A; + By with
A= (T +L-DYAtd and A := (A - D)OAtJd, and observing thatyfand Aq are strictly lower block
triangular, so that A and Ad vanish for j> s, we obtain for re s

Zm= (m_rz.,_]) As-1Bm-stly +(m) BM, r =24

Since A = O(At) and B = O((At)2), we find that

ZM =O((At)2M-s+) =2, 44

From this theorem it follows that in all four approachk®s nonstiff error components are rapidly
removed from the iteration error. However, we may expect that the RAF processes (3.5) and (3.9)
damp these nonstiff components stronger than the SAF processes (3.8) and (3.12).

3.3.3. The region of stability.Evidently, if the iteration process converges, then the stability of
the iterated method is determined by the stability of the underlying integration method. Hence, with
respect to the stability test equation, the stability region of the iterated method converges to the
intersection of the convergence region and the stability region of the integration method, that is, to

S=5nC, C :=§1 C(ya), |ys|s o,
3

whereSpis the stability region of the integration method &fgs) is defined by (3.14). For A-stable
integration methods, the stability regiGnequals the convergence regionso that the stability
condition is given by the stepsize condition in Theorem 3.2. Thus, for iterated, A-stable integration
methods we may define the stability boundary ypl(D).

For example, if the Rosenbrock methods (2.3) and (2.4) are iterated using the iteratiofi nti@dnx

we find in both cases the stability bound@ry 2.20. If we choos&; = K> :%1 in (2.1), then (2.1)

is still A-stable with a slightly greater stability bound@ry 2.59.

4. Explicit treatment of the horizontal terms

The modest values of the stability bound@maises the question whether it is necessary to treat the
horizontal terms implicitly. Afterall, when applying the standard, explicit, fourth-order Runge-Kutta
method, we have an imaginary stability boundary of comparable sizB,vi2/2.

4.1. Fully explicit treatment of the horizontal terms

We once again consider the iteration methods (3.3), (3.6), (3.9) and (3.10), but we replace the
iteration matrix/1 by the matriX13 := | - DOAtJs. As a consequence, the amplification factors are now
given by (cf. (3.13))
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1-X1-X2-X3
1-x3

(4.1) aj = C3(Kjz1, Kjz2, Kjza), C3(X1, X2, X3) :=1 -

Hence,[IC3(ikjy1, iKjy2, ikjy3)[? = kj2(y1 + y2)2(1 + kj2y32) 1, so that we have convergence in
regions of the form (3.14) with

(4.2) Yy3) =5 V1 +y3202(D) , |y3|< co.

Thus, the convergence boundayyin the timestep condition in Theorem 3.2 changes from
y = 0.647 toy :%. Since the iterations in (3.3), (3.6), (3.9) and (3.10) witreplaced byi13 are
cheaper, the modest reduction of the convergence boundary seems to be a small price. Moreover, the
convergence boundary (4.2) quickly increases fyijy whereas (3.16) approaches a constant value
y(0) = 0.7 (see Figure 3.1). Hence, stdf error components will be more strongly damped when
using the matrix13. On the other hand, if we look at the behaviour of the amplification fagts

At - 0, then we findxj™M = O((at)M), so that theonstiffiteration error components are expected to
require more iterations to be removed from the iteration error (see Theorem 3.3).

Thus, the iteration processes wittand[13 both have advantages. This suggests a combination of the
two iteration methods, for example, by iterating successively with iteration malgcBslz, 1, ...

(the M3l process) or witls, 1, 1, N3, M, I, ... (thel3MN?2 process). Evidently, in such combined
processes, the averaged iteration costs are still slightly higher than[ir grecess and slightly
lower than in thé] process.

4.1.1. Convergence boundaries of th@ 3 and 312 processes.Let us first consider the
M3l process more closely. After each two iterations, the corresponding amplification matrikeZ
linearized error recursion has diagonal blocks of the form

(- (gTonna) 20 - katd)) (1 - (gTonN) (I - Katd), j=1,2, ...,
irrespective the value of r. Hence, the amplification factors for two iterations are given by
(4.3) aj2 = Ca(Kjza, Kjz2, Kjz3) C(Kjz1, KjZ2, Kjz3),

where C and gare defined in (3.13) and (4.1). Again, we restrictaimaginary values jyand
again it turns out that for given values afthe amplification factofd jZD increases most rapidly
along the line y= y». Along the lines of the proof of Theorem 3.1 it can be shown that the
convergence boundayys) in (3.14) is given by (3.16) where the function g(x) is defined by

(4.4) 402 + 1) + 16xXcP - (x4 - 142 + 1)ft - 2(@ + 1Pg2 - (x2 + 12 = 0.

Figure 4.1 presents a plot of g(x). It is easily seen that=g§>o§ as Xx- oo, so that the combined
iteration process has the property that the convergence bowfggrincreases with yto infinity
(compare (4.2)). In order to find the minimal valuef g(x), we write (4.4) as F(g,x) = 0. Thens
determined by (4.4) and by the equation



13

(4.5) %ﬂ"‘) = a(2xP + 4¢P - X( - T)cf - 2x(2 + 1)@ - x(2 + 1)) = 0.

Solving (4.4) and (4.5) yields the minimal valge 0.72. This is even slightly greater than the value
y= 0.65 given in Theorem 3.2 for tiigprocess.
Similarly, we find for thg312 process a still greater valye 0.75.

Figure 4.1. The function g(x) defined by (4.4).

4.1.2. The rate of convergencelhe size of the convergence region is not the only issue to be
considered. Theate of convergence, that is, the magnitude of the amplification factors, is equally
important. We consider the behaviour of the amplification factors for small vallgs\¢lc) and

their overall behaviour. For thés[1 process it can be deduced from (4.3) thatMor. O

0j2 =Kj3(z122 + 2123 + 2023) (21 + ) + O((A)Y), Z =AtAD), j=1,..,5,

so that after an even number of m iterations the amplification famtbisve as (At)3M/2),
irrespective the value of r. Similarly, we have for fhg12 processg;m = O((At)>™/3), where m is
assumed to be a multiple of 3. Recalling that thand[13 processes yield after m iterations
amplification bya;™ = O((At)2M) anda;™ = O((At)™), respectively, we see that with respect to
damping of the nonstiff error components, the order of preferem;dlig12, M3, andlls.
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Figure 4.2b. Details near the origin afaye(x) for thels, Mall, M3M2 and[ processes.

As to the overall convergence, we compare the averaged amplification per iteration in the(gegion
defined in (3.14), that is, the averaged values of the fundfiégs, OCL, [OC3C[Y/2 andJC3C2[1/3

in C(y3), with C and @ defined by (3.13) and (4.1). Writing x k5y3 and denoting these averaged
values byaayei(X), we computetaye(x) in the squard Ckjy10< v, Kjy20< v}, wherey = 0.50,
0.65, 0.72, 0.75 in thB3, I, N3 and3MN2 processes, respectively. In Figure 4.2a, the function
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OavefX) is plotted for (< x < 15. Details in the interval § x < 2 are given by Figure 4.2b. In these

plots, the left and right end point values of the graphs respectively decrease and increasgsfor the
M3, M3M2 andl processes. Thus, tiik and[] processes clearly are extreme cases|f@rocess

being superior for larger values of x, thieprocess for small values of x. Thes and13[12
processes are good compromises. Moreover, they possess substantially larger convergence
boundaries respectively allowing about 45% and 10% larger stepsizes thrathd{] processes.

4.2. Partially explicit treatment of the horizontal terms

Instead of inserting iterations that are fully explicit with respect to the horizontal terms, one may
consider the use of iterations with iteration matri¢ess := (I - DOAtJ1)(I - DOAtJ3) and

M23:= (I - DOAtk)(l - DOAtJs). Since in shallow water applications, the two horizontal directions
introduce a comparable degree of stiffness, we shall alternate these two iteration matrices. It should be
remarked that we already used the iteration matfiagsand[12>3in [6] in another type of iteration
methods for use in shallow water computations.

4.2.1. Convergence boundary of thef113M23process. After each two iterations, the
corresponding amplification matrix i the linearized error recursion has diagonal blocks of the form

(- (gTonn12) 20 - KAL) ) (1 - (§TohN29)2( - KAL), j=1,2,...,s,
irrespective the value of r. Defining the functions

1-X1-X2-X3

(4.6) Cka(X1, X2, x3) == 1 - , k=12,
(1 -x)(1 - xa)

the amplification factors for two iterations are given by

(4.7) aj2 = C3(Kjz1, Kjz2, Kjz3) Co3(Kjz1, KjZ2, KjZ3).

Restricting g to imaginary values gy we obtain

(4.8) M2 = ( (k1212 + Kj4y32y22) (K222 + Kj4y 32y 1?) )1,2 |
j (1 +Kj2y12) (1 + Kj2y22) (1 + Kj2y32)2

We verified that for given values ﬂ§2y32 > 0.01 the amplification factdn jZD increases most
rapidly along the linesiy= 0 and y = 0. ForKj2y32 < 0.01, we found numerically thgtys) = 10.
Hence, proceeding as in the proof of Theorem 3.1, it can be shown thgtafi> 0.1 the
convergence boundayys) in (3.14) is given by (3.16) where the function g(x) is defined by

(4.9) Xgh- (x2+ 1Pg2- (x2+ 12 =0, x=0.1.
A comparison of the plot of this function in Figure 4.3 with Figure 4.1 shows that the convergence

boundaryy(y3s) is considerably larger than that of fiigl1 process. This also results in a much larger
value fory. To see this, we again write the implicit equation for g as F(g,x) = 0 andysiobra the
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equations F{x) = 0 andF(y,x)/dx = 0 to obtainy=v2 + 2V 2= 2.19 which compares favourably
with the valuey = 0.65 of Theorem 3.2.

1 i3 = 4 i
"

Figure 4.3. The function g(x) defined by (4.9).

4.2.2. The rate of convergenceAs to the behaviour of the amplification factors for small
values ofAt A(Jy), it is immediate from (4.6) and (4.7) thaf™ = O((At)™). Thus, thel113M23

process damps the nonstiff error components with the same odteasil3, but less strongly than

M, N3M andr3M2. Next, we look for a given value of x K5y3 at the averaged valweyye(X) of
00C13C23/2 in the squard OKjy10< Y, OKjy20< y} withy = 2.19, and we compare this function

with that obtained for thg3[1 with y = 0.72. The lowest and highest graph in the Figures 4.4a and
4.4b presents§lz[1 and[113M23, respectively.Hence, we may conclude that the three times larger
convergence boundary of the proc€ksllo3 is paid by a considerably worse convergence rate.
Nevertheless, the question remains which iteration method is most efficient. To answer this question,
we may either count thrd@ 3123 iterations for one iteration, that is, we defoge(x) by means of
[0C13C23P/2, or we applyi113M23 with the same convergence boundary as used iR4fAgrocess,

l.e.y = 0.72. The middle graphs in the Figures 4.4a and 4.4b present these cases, where the lowest
middle one corresponds with thies 0.72 approach. Thus, our final conclusion is that on the basis of
the aave(X) profiles and the damping of the nonstiff error componentdjshkeis the most efficient
iteration strategy.

5. Conclusions
In this paper we analysed the convergence of iterative solution methods for the linear systems arising
in Rosenbrock integration methods and the nonlinear systems arising in DIRK integration methods. In
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Figure 4.4b.Details near the origin afaye(X) for the[1al1 and[113123 processes.

particular, we focused on the integration of ODESs originating from shallow water applications, where
the ODE system contains a highly stiff part corresponding with the vertical derivative terms and a
moderately stiff part corresponding with the horizontal derivative terms. We considered iteration
methods based on the approximate factorizations of the system matrix associated with the application
of modified Newton. The resulting convergence boundayiae given by
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Process [ M3 M3l N3N2  MN13M23
= 0.65 0.5 0.72 0.75 2.19

The best convergence characteristics were obtained fprafh@rocess where alternatingly only the
vertical direction and all coordinate directions are treated implicitly.
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