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Stability of Approximate Factorization with �-Methods

Willem Hundsdorfer

CWI

P.O.Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

Approximate factorization seems for certain problems a viable alternative to time

splitting. Since a splitting error is avoided, accuracy will in general be favourable

compared to time splitting methods. However, it is not clear to what extent stabil-

ity is a�ected by factorization. Therefore we study here the e�ects of factorization

on a simple, low order method, namely the �-method. For this simple method it

is possible to obtain rather precise results, showing limitations of the approximate

factorization approach.

1991 Mathematics Subject Classi�cation: 65L20, 65M12, 65M20

Keywords and Phrases: Numerical analysis, splitting methods, approximate fac-

torizations.

Note: Background research for the project LOTOS in the TASC Project HPCN

for Environmental Applications. Work carried out under project MAS 1.4 "Ex-

ploratory research: Discretization of Initial Value Problems".

1. Introduction

Space discretization of multi-dimensional advection-di�usion-reaction equations leads to very

large ODE systems

u0(t) = F (u(t)); (1.1)

where F contains reaction terms and discretized spatial operators in the various directions.

With standard implicit methods one has to solve at each time step a nonlinear system involving

the whole function F . This may be troublesome with respect to computing time and memory.

Often this function F can be decomposed into simpler components,

F (u) = F0(u) + F1(u) + � � �+ Fs(u): (1.2)

For example, the individual Fj may contain discretized spatial derivatives in one direction,

or a speci�c operation, such as chemistry. Fractional step (time splitting) and approximate

factorization methods employ this decomposition by solving subsequently subproblems that

involve only one of the components Fj in an implicit manner. In this paper it will be assumed

that the term F0 is nonsti�, or mildly sti�, so that this term can be treated explicitly. The

other terms will be treated implicitly, in an approximate factorized fashion. Here, the e�ect

of such an approximate factorization procedure on stability will be discussed.
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As starting point we consider the so-called �-method

un+1 = un + (1� �)�F (un) + ��F (un+1); (1.3)

where � � 1

2
is a parameter. Here un � u(tn) and � = tn+1 � tn > 0. The method is A-stable

for any � � 1

2
. It has order 2 if � = 1

2
, and 1 otherwise. We will mainly look at the well known

cases � = 1

2
, the trapezoidal rule, and � = 1, the implicit Euler method.

Linearization of (1.3) leads to the �-Rosenbrock method

un+1 = un + (I � ��A)�1�F (un) (1.4)

with A = A(un) � F 0(un). This method has order 2 if � = 1

2
and (A(u)�F 0(u))F (u) = O(�).

Otherwise the order is 1. The linear stability properties of this Rosenbrock method are the

same as those of the original �-method; if F (u) = Au then (1.3) and (1.4) are identical.

We consider the form where in the Jacobian approximation the nonsti� term is omitted

and the rest is factorized in approximate fashion, that is

un+1 = un +
� sY
j=1

(I � ��Aj)
��1

�F (un) (1.5)

with Aj � F 0

j(wn). The order of this approximate factorization method is 1 in general. For

second order we need � = 1

2
and F0 = 0. (For second order methods of this type with F0 6= 0

see [8].) Implementation of (1.5) only requires the solution of linear systems involving matrices

I���Aj. Since, in general, there will be much decoupling, this makes such schemes attractive

candidates for parallel computations.

In the following stability of this method will be analyzed for the scalar test equation where

Fj(w) = �jw; Aj = �j : (1.6)

In applications for PDEs these �j will represent eigenvalues for the various components, found

by inserting Fourier modes. Let zj = ��j . Applied to this test equation method (1.5) yields

un+1 = Run with ampli�cation factor R given by

R = 1 +
� sY
j=1

(1� �zj)
��1

(z0 + z) with z =

sX
j=1

zj : (1.7)

In this paper conditions on the zj will be given to ensure that jR j � 1. Note that due to A-

stability of method (1.4), it is su�cient for that method to have all zj in the left half complex

plane. As we shall see, for the factorized method (1.5) additional constraints in the zj have

to be imposed. We shall consider constraints of the type jarg(�zj)j � � with angle � � 1

2
�.

In the purely parabolic case it is su�cient to consider � = 0, but with advection-di�usion

problems we need � > 0. The larger the angle �, the more advection is allowed to dominate.

Remark. Stabilty results for the scalar test equation can be easily generalized to linear

systems if the matrices Aj commute. For linear PDE problems with constant coe�cients, if

the Aj contain discretized spatial derivatives in di�erent directions, these matrices Aj may
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indeed be assumed to commute. Some results for noncommuting negative de�nite matrices

were given in [2], but under very restrictive step size conditions.

Approximate factorization methods were introduced by Beam and Warming [1]. The

computational e�ort in such methods is comparable to time splitting methods, or fractional

step methods, where subproblems v0(t) = Fj(v(t)) are solved sequentially on each time interval

[tn; tn+1]. Such a fractional step approach introduces an additional error, the so called splitting

error. This error is already present for stationary problems and may give rise, for example, to

unphysical steady state solutions. This is avoided in the approximate factorization approach,

but we will see that there stability may be a�ected.

Related methods can also be derived in the ADI approach of Douglas and Gunn [2]. For

linear problems with F0 = 0, method (1.5) with � = 1

2
reduces to the ADI method of Brian

and Douglas, whereas for � = 1 we reobtain the ADI Douglas-Rachford method, see [2, 5, 6].

In fact, the results presented here are extensions of results in [4] for the Douglas scheme.

In this paper we shall restrict ourselves to the one-stage, one-step �-method as underlying

scheme. Approximate factorization methods based on multi-step schemes were derived by

Warming and Beam [9]. In that paper it was shown that unconditional stability may be lost

with s � 3 if all eigenvalues are on the imaginary axis. In Verwer et al. [8] a similar approach

was tested with a two-stage, second order Rosenbrock method for atmospheric transport-

chemistry. A precise stability analysis for such, more sophisticated methods is di�cult. The

results in this paper may serve as a guideline for such methods, in the sense that we will show

limitations of the factorized approximation approach that are already present for the simple

�-method with � = 1 or 1

2
.

Method (1.5) results if one Newton step with approximate factorization is applied to the

�-method. Another possibility is to solve the implicit relation in the �-method (1.3) iteratively

with such a modi�ed Newton process (where the arising Newton Jacobian is factorized in ap-

proximate fashion). When applied to the test equation this iteration process has a convergence

factor, see [3],

S = 1� (

sY
j=1

(1� �zj))
�1(1� �(z0 + z)) with z =

sX
j=1

zj ; (1.8)

and for the iteration to converge we need jS j < 1. As we shall see, for the linear test

problem the stability results for the factorized Rosenbrock methods have close counterparts

for the convergence of this iteration process. An analysis of such factorized iterations for more

general methods, of multi-step or Runge-Kutta type, has been given by Eichler-Liebenow, van

der Houwen and Sommeijer [3].

2. Stability of the factorized Rosenbrock method

For notation, put w =
Qs

j=1(1 � �zj). Then the ampli�cation factor (1.7) of the factorized

Rosenbrock method can be written as

R = 1 + w�1(z0 + z): (2.1)

Here z0 corresponds to a term that is treated explicitly. For this term we consider the

choices z0 = 0 and j1 + z0j � 1. The other zj will be assumed to belong to the wedge

3



W� = f� 2 jC : jarg(��)j � �g in the left half-plane. In the following it will always be tacitly

assumed that � � 1

2
�.

If there is no explicit term, that is z0 = 0, then the statement jR j � 1 is equivalent with

j1 + w�1zj � 1, or

jz + wj � jwj: (2.2)

Theorem 2.1. Let z0 = 0 and � � 1

2
. We have

jR j � 1 for all zj 2W� () � � 1

s� 1

�

2
:

Proof. For � = 1

2
the result was proven in [4]. Let �j = 2�zj, � = 2�z. Since

1 +
zQ

j(1� �zj)
= (1� 1

2�
) +

1

2�

�
1 +

�Q
j(1� 1

2
�j)

�
;

it follows that zj 2W� is also su�cient for having jR j � 1 with � > 1

2
.

Necessity can be shown as in [3, 4]. Here we give a slightly simpler proof. Note that

Re R > 1 () Re
�
�z
Q

j(1� �zj)
�
> 0:

Now take zj = �t ei� with t > 0 large. Then �z = �s t e�i� and

Re
�
�z
Q

j(1� �zj)
�
= �Re

�
s t e�i�(�stsesi� +O(ts�1)

�
= �s�sts+1 cos((s� 1)�) +O(ts):

Thus we see that the real part of R can be larger than 1, and consequently also jR j > 1, if

(s� 1)� > 1

2
�. 2

In this theorem we get the same result for � = 1

2
or 1. This is somewhat surprising since

the underlying �-method is merely A-stable for � = 1

2
, whereas it is L-stable for � = 1. The

fact that we get the same angles is caused by large values of the zj . Near the origin the case

� = 1 allows room for improvement. This will be shown in the following by considering z0 6= 0,

j1+ z0j � 1. This condition on z0 corresponds to the stability requirement in case all other zj
are zero.

By observing that R can be written as R = w�1((1 + z0) + (w + z � 1)) it is easily seen

that jR j � 1 for all j1 + z0j � 1 i� it holds that

1 + jw + z � 1j � jwj: (2.3)

Theorem 2.2. Suppose � = 1

2
. Then jR j � 1 for all zj 2W� and j1 + z0j � 1 i�

� = 0:

Proof. If s = 1, then condition (2.3) reads

1 +
1

2
jzj � j1� 1

2
zj;
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which can only hold if z is real and negative. So, already for s = 1 we get � = 0 as necessary

condition.

On the other hand, for arbitrary s, if all zj are real and negative, then z � 0, w � 1� 1

2
z,

and from this it easily follows that (2.3) is ful�lled. 2

Theorem 2.3. Suppose � = 1 and s � 3. Then jR j � 1 for all zj 2W� and j1 + z0j � 1 i�

� � 1

s� 1

�

2
:

Proof. Necessity of the bound on � follows from Theorem 2.1. As for su�ciency, we have to

show that inequality (2.3) holds for all zj 2W� with (s� 1)� � 1

2
�. Since we are looking for

the maximum of jR j, the maximum modulus theorem may be employed, so that we only have

to verify the inequality for zj = �tje�i� with tj � 0.

First, consider s = 2. Then w = 1� z + z1z2, and thus (2.3) reads

1 + jz1z2j � j1� z1jj1� z2j:

It is easily veri�ed that this holds for arbitrary zj = �itj on the imaginary axis.

Now let s = 3, and denote 
 = cos�. It has to be shown that (2.3) holds with � = 1

4
�,

that is 
 = 1

2

p
2. We have

jwj =
3Y

j=1

j1� zj j =
� 3Y
j=1

(1 + 2
tj + t2j)
�1=2

:

By a straightforward calculation we get

jwj =
p
1 + � + � (2.4)

where

� = 2

X
j

tj +
X
j

t2j + 4
2
X
j<k

tjtk + 2

�
t1(t

2
2 + t23) + t2(t

2
1 + t23) + t3(t

2
1 + t22)

�
+ 8
3t1t2t3;

� =
X
j<k

t2j t
2
k + 4
2(

X
j

tj)t1t2t3 + 2
(
X
j<k

tjtk)t1t2t3 + (t1t2t3)
2;

with all summations from 1 to s. Since 
2 = 1

2
this last term can be written as

� = (
X
j<k

tjtk)
2 + 2
(

X
j<k

tjtk)t1t2t3 + (t1t2t3)
2: (2.5)

Further we have

� � 2
�X
j<k

tjtk + t1t2t3

�
: (2.6)

To estimate jw + z � 1j we consider two cases separately: case (I) where zj = �tjei�
(j = 1; 2; 3), and case (II) where zj = �tjei� (j = 1; 2), z3 = �t3e�i�. These two cases cover

in essence all possibilities zj = �tje�i�.
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Case (I): We have

w + z � 1 = e2i�
�X
j<k

tjtk + ei�t1t2t3

�
; jw + z � 1j =

p
�:

From (2.5),(2.6) it easily follows that 4� � �2. Hence

1 +
p
� �
p
1 + � + �;

and the inequality (2.3) follows.

Case (II): Here we have

w + z � 1 = t1t3 + t2t3 + ei�t1t2t3 + e2i�t1t2:

For arbitrary real p; q; r > 0 it holds that

jp+ ei�q + e2i�rj � jp+ r + ei�qj;

since arg(p+ei�q) will be closer to arg(r) than to arg(e2i�r). Thus it is seen that jw+z�1j �p
�. Hence (2.3) follows in the same way as in the previous case, which concludes the proof

for s = 3. 2

Note. Some numerical calculations suggest that the result of the above theorem is also valid

for s > 3, but a proof of this is lacking.

Similar as in [4], we can also consider the case where we assume a priori that several zj
are real, negative. Then one may hope that for the other, complex zj a wider angle � will be

allowed.

Theorem 2.4. Let 1 � r < s. Assume either f� � 1

2
; z0 = 0g or f� = 1; j1 + z0j � 1; s � 3g.

Further assume z1; � � � ; zs�r 2W� and zs�r+1; � � � ; zs � 0. We have jR j � 1 for all such zj i�

� � 1

s� r

�

2
:

Proof. To begin with, suppose that zs � 0. If we consider �xed z0; z1; � � � ; zs�1 then R is

fractional linear in zs with real denominator,

R = (1� �zs)
�1(� � ��zs);

where �; � correspond to the values of R for zs = 0;1, respectively. If zs � 0 this is a convex

combination of � and �, and thus jR j � 1 for all zs � 0 i� this holds for zs = 0 and zs = �1.

In case zs = 0 we get a same inequality as before, only with s replaced by s� 1. For zs = �1
we have to verify whether

j1� 1

�

s�1Y
j=1

(1� �zj)
�1j � 1:
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Continuing in this fashion, assuming that r of the terms zj are real and negative, it is seen

that jR j � 1 for all zs; zs�1; � � � ; zs�r+1 � 0 i�

j1 +
�s�rY
j=1

(1� �zj)
��1

(z0 +

s�rX
j=1

zj)j � 1 and j1� 1

�

s�rY
j=1

(1� �zj)
�1j � 1:

The �rst inequality is of the same form as considered before, only with s replaced by s � r.

As in [4, Sect. 2.2] the latter inequality is easily shown to hold for all z1; � � � ; zs�r 2 W� i�

� � �=(2(s � r)). So, combining this with the results of the Theorems 2.1, 2.3, the proof

follows. 2

Note that for r = 1 we have the same result as for r = 0. To get a wider angle for

the complex eigenvalues we need at least two negative, real zj . Another consequence is the

following: if s � 3, z1; :::; zs�1 2 W� with � � �=(2(s � 2)) then we have stability in case

zs = 0, but letting zs < 0 requires the tighter bound � � �=(2(s� 1)). In other words, adding

a purely di�usive term may destroy stability.

3. Convergence of factorized iterations

By denoting again w =
Qs

j=1(1 � �zj), the convergence factor (1.8) of the Newton iteration

with approximate factorization can be written as

S = 1� w�1(1� �z0 � �z): (3.1)

First we consider the case where z0 = 0, that is, the explicit term is absent.

Theorem 3.1. Let z0 = 0 and � � 1

2
. We have

jS j � 1 for all zj 2W� () � � 1

s� 1

�

2
:

Further, if 1 � r < s we have

jS j � 1 for all z1; � � � ; zs�r 2W�; zs�r+1; � � � ; zs � 0 () � � 1

s� r

�

2
:

Proof. Without loss of generality, we may take � = 1. The results for r � 1 follow from those

for r = 0 as in Theorem 2.4, so we consider here only r = 0. In the following, all summations

are from 1 to s, unless indicated otherwise.

We have S = 1 + w�1(z � 1). Thus jS j � 1 i� jw + z � 1j2 � jwj2, that is

Re Q � 0 with Q = �(�z � 1)(2w + z � 1): (3.2)

This last form will be used here to show su�ciency. Note that according to the maximummod-

ulus theorem it is only necessary to consider zj = �tje�i� with tj � 0. By some calculations

we get

Q = (1� �z)(1� z + 2
X
j<k

zjzk � 2
X

j<k<l

zjzkzl + � � �+ 2(�1)sz1z2:::zs):
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First, assume that zj = �tjei� for all j. Let

q1 =
X
j

tj; q2 =
X
j<k

tjtk; q3 =
X

j<k<l

tjtktl; : : : ; qs = t1t2:::ts:

Then

Re Q = Re (1 + e�i�q1)(1 + ei�q1 + 2e2i�q2 + 2e3i�q3 + � � �+ 2esi�qs) =

= cos� q1 + 1 + q21 + cos�(q1 + 2q1q2) + 2

s�1X
j=2

cos(j�)(qj + q1qj+1) + 2 cos(s�)qs:

If (s� 1)� � 1

2
� then cos(j�) � 0 for 1 � j � s� 1 and cos((s� 2)�) � j cos(s�)j. Further,

q1qs�1 � qs, and so it follows that Re Q � 0.

Next, consider the case where some zj are �tjei� and some are �tje�i�. Then it easily

follows that Re (2w + 2z � 1) will be a sum of cos(j�) terms with positive coe�cients and

with 0 � j � s � 1. Hence Re (2w + 2z � 1) � 0. Further, since jw + zj � jwj, see Theorem
2.1 and (2.2), we also know that Re �z(2w + z) � 0. Therefore, by writing

Re Q = Re
�
(2w + z � 1) + �z � �z(2w + z)

�
= Re

�
(2w + 2z � 1)� �z(2w + z)

�
;

it again follows that Re Q � 0.

Finally we note that necessity of the bound (s� 1)� � 1

2
� follows as in proof of Theorem

2.1 by considering the inequality Re S > 1. 2

The result in the above theorem for the �-method is a generalization of Lemma 2.1 and

Theorem 2.6 in [3], where su�ciency of the bound on � was shown for s = 3, r = 0, and

necessity for s � 2, r = 0. In [3] more general ODE methods were considered.

From the Figures 1, 2 it can be seen that the estimations with wedges in the theorems are

in fact quite close. In these �gures, with � = 1 and � = 1

2
, respectively, the boundaries of the

stability region jR j � 1 and convergence region jS j � 1 are plotted for the special case with

s = 3 and all zj equal. Left and right pictures are on di�erent scales. Also included in the

plots, as dotted curved lines, are contour lines for jS j at 0:1; 0:2; � � � ; 0:9. From this it is seen

that we will have fast convergence of the factorized iteration only relatively close to the origin.

(To accelerate convergence some kind of smoothing seems necessary, see also Verwer [7].)

Similar pictures with s > 3 for the special case where all zj are equal also show that away

from the origin there is a tight �t with the wedges of the above theorem.

The fact that we get approximately the same region of convergence jS j � 1 and stability

jR j � 1 is somewhat disappointing for the factorized iteration approach: roughly spoken, if

the iteration converges then the cheaper method (1.5) is stable. On the other hand, if the

iteration converges then it yields the A-stable method (1.3) and to verify whether an iteration

converges is easier than detecting instability.

We now take z0 6= 0. As condition on z0 we consider j�z0j � 1. Note that for such z0 we

just have jS j � 1 if the other zj are zero, so this is the case were the explicit term is taken as

large as possible.

Theorem 3.2. The results of Theorem 3.1 remain valid if j�z0j � 1, s � 3.
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Proof. Again, without loss of generality, we may take � = 1. Let ~z0 = z0�1. Then j1+~z0j � 1

and S = 1 + w�1(~z0 + z), the same form as considered in the previous section. Therefore we

may apply the Theorems 2.3 and 2.4. 2

As with Theorem 2.3, this result will probably also be valid for s > 3, but a proof of this

is lacking.
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Figure 1. Regions of stability (solid) and convergence (dashed) for s = 3, � = 1

with special choice z1 = z2 = z3.
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Figure 2. Regions of stability (solid) and convergence (dashed) for s = 3, � = 1

2

with special choice z1 = z2 = z3.

4. General remarks and conclusions

Similar as for jS j, see the contour lines in Figure 1 and 2, also jR j will often assume values

close to 1 for zj in the stability region. If two of the zj tend to �1 then R! 1, so there will
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be no damping. Such lack of damping might manifest itself as inaccuracy for solutions with

discontinuities or steep wave fronts.

To see whether this leads to an additional step size restriction for nonsmooth problems,

some numerical tests were performed on the parabolic equation

ut =
1

�
(uxx + uyy) + �u2(1� u); 0 � x; y � 1; 0 � t � 1;

with solution u(x; y; t) = (1 + exp(1
2
�(x + y � t)))�1. This is a traveling wave that crosses

the region diagonally. If � becomes large the wave becomes steeper, and one might expect

the lack of damping to become visible. However, in the experiments the schemes (1.5) did

produce good results for those step sizes for which the ODE ut = �u2(1� u) could be solved

with reasonable accuracy. For large �, solution of the ODE part gives here a far more severe

step size restriction than the lack of damping.

A related, but potentially more dangerous phenomenon is the fact that for many zj outside

the stability regions the value of jR j will only be slightly larger than 1. Then the scheme is

unstable but this instability will be di�cult to detect. A numerical example is given in [4] for

a 2D advection problem with a sti� chemistry term. The advection term gives z1; z2 close to

the imaginary axis and the chemistry term gives rise to z3 << 0. According to Theorem 2.4

we can expect instability. Experiments in [4] showed that these instabilities sometimes build

up very slowly and may only become visible on long time intervals.

There are some practical conclusions that can be drawn from the results presented in this

paper:

� For purely parabolic problems (zj � 0, 1 � j � s), the schemes (1.5) are stable for

� � 1

2
, also with an explicit term. (With z0 = 0 this is a well known result, see [2, 5, 6],

for instance.)

� For more general problems (zj in the left half plane), there will be a substantial loss of

stability if s � 3, even without explicit term. If an explicit term is included, the loss of

stability may occur with � = 1

2
already for s = 1. The scheme with � = 1 seems rather

insensitive to the inclusion of an explicit term.

� Instabilities may be slow and di�cult to detect. In situations where these might occur,

the factorized iteration approach will be more robust, but there slow convergence must

be expected for solutions that are not very smooth.

Based on this, it seems that approximate factorizations are only suited for restricted classes

of problems, where characteristics of the solution are more or less known in advance, so

that stability can be well predicted. Within a general purpose environment, the factorized

Rosenbrock schemes (1.5) are not su�ciently robust and the factorized iteration approach

will often be too slow. On the other hand, for restricted classes of problems, the Rosenbrock

schemes with approximate factorization will lead to codes that are easy to program, very

e�cient and potentially well suited for parallel computations.

Acknowledgement. The author thanks J.G. Blom and J.G. Verwer for helpful discussions

on the relevance of the theoretical results.
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Appendix

(not for publication)

In this appendix some details and �gures are given concerning the numerical results mentioned

in Section 4 on the loss of damping and the slow onset of instabilities.

As for lack of damping, in the following �gure the values of R are plotted for zj = �x,
all equal on the negative axis for s = 1; 2; 3. Near the origin, R approximates e�sx, but for

larger values of x we see that R tends to 1 if s � 2. Note that with � = 1 the damping is more

quickly lost if s > 1 than with � = 1

2
.
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−1
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1.5
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1.5

Figure A.1. Values of R for s=1(solid), s=2(dash-dot) and s = 3(dashed)

with negative zj = �x, 1 � j � s. Left picture � = 1, right picture � = 1

2
.

The lack of damping might lead to inaccurate results for discontinuous solutions or steep

wave fronts, since high frequency Fourier modes may be poorly treated. To verify the relevance

of this, several numerical tests were performed for the parabolic equation

ut =
1

�
(uxx + uyy) + �u2(1� u); (x; y) 2 [0; 1]2; 0 � t � 1; (A.1)

with solution u(x; y; t) = (1 + exp(1
2
�(x + y � t)))�1. If � > 0 becomes large the traveling

wave becomes steeper, and one might expect the lack of damping to become visible.

Numerical solutions at t = 1 with � = 100 are given in Figure A.2 for � = 1

2
and Figure

A.3 for � = 1. The solutions are computed on a 40 � 40 grid with step size � = 1=40.

Space discretization is done with second order central di�erences, and at the boundaries

Dirichlet conditions are prescribed. We consider splitting with F1; F2 de�ned by the �nite

di�erence operators for di�usion in the x and y direction, respectively, and with F3 de�ned

by the nonlinear source term. The lay-out in these �gures is as follows: left top picture exact

solution, right top picture numerical solution, left bottom picture contour lines (dotted for

exact solution) and bottom right picture the cross section for x = y.

The results for � = 1

2
are good, but for � = 1 we have a wrong propagation speed of the

wave. Note that the wave travels too fast, whereas lack of damping could be expected to give

a wave speed that is too slow.
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Figure A.2. Numerical solutions reaction-di�usion problem (A.1) for � = 100 and � = 1

2
.

0

0.5

1 0
0.5

1

0

0.5

1

0

0.5

1 0
0.5

1

0

0.5

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure A.3. Numerical solutions reaction-di�usion problem (A.1) for � = 100 and � = 1.
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Indeed the results in Figure A.3 are not caused by lack of damping, but by inaccuracy in

the ODE part

ut = �u2(1� u):

Numerical solutions with � = 100 and � = 1=40; 1=80 with the Rosenbrock method (1.4) are

presented in Figure A.4. We see that the numerical results for � = 1 tend much too fast to

the stable steady state solution u = 1. For accurate solution of the ODE part we need smaller

step sizes, and with smaller step sizes also the results for equation (A.1) become correct. The

same was also observed with larger values of �.
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Figure A.4. Numerical solutions of ut = 100u2(1� u); u(0) = 0:1 with � = 1

2
(solid),

� = 1 (dashed) and exact solution (dotted). Left picture � = 1=40, right picture � = 1=80.

As an illustration of the slow onset of instability, we repeated an experiment of [4] on the

following advection equation with a simple linear reaction term,

ut = aux + buy +Gu; (x; y) 2 [0; 1]2; 0 � t: (A.2)

The velocities are given by a(x; y; t) = 2�(y � 1

2
), b(x; y; t)) = 2�(1

2
� x). Further,

u = u(x; y; t) =

�
u1(x; y; t)

u2(x; y; t)

�
; G =

�
�k1 k2
k1 �k2

�
:

We take k1 = 1. The second reaction constant k2 can be used to vary the sti�ness of the

reaction term, and is taken here as 2000. Note that the matrix G has eigenvalues 0 and

�(k1 + k2), and we have a chemical equilibrium if u1=u2 = k2=k1.

The initial condition is chosen as

u1(x; y; 0) = c; u2(x; y; 0) = (1� c) + 100 k�12 exp(�80((x� 1

2
)2 � 80(y � 3

4
)2);

with c = k2=(k1 + k2). After the short transient phase, where most of the Gaussian pulse is

transfered from u2 to u1, this is purely an advection problem, and the velocity �eld gives a
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rotation around the center of the domain. At t = 1 one rotation is completed. The exact

solution is easily found by superimposing the solution of the reaction term onto the rotation

caused by the advection terms, see [4].

Dirichlet conditions are prescribed at the in
ow boundaries. At the out
ow boundaries we

use standard upwind discretization, in the interior second order central di�erences are used.

We consider splitting with F1; F2 the �nite di�erence operators for advection in the x and y

direction, respectively, and with F3 de�ned by the linear reaction term. The corresponding

eigenvalues �1; �2 will be close to the imaginary axis whereas �3 = 0 or �(k1 + k2). The test

has been performed on a �xed 80� 80 grid, and with � = 1=160.

The numerical solution of the �rst component u1 for the scheme with � = 1

2
is given in in

Figure A.5 at time t = 1 (top left), t = 2 (top right), t = 3 (bottom left) and t = 4 (bottom

right). There are some smooth oscillations in the wake of the Gaussian pulse, but these are

caused by the spatial discretization with central di�erences. The instabilities occur near the

corners where both advection speeds, in x and y direction, are large. The build up of the

instabilities is very slow, and therefore it will be di�cult to detect this with error estimators.
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Figure A.5. Numerical solutions advection-reaction problem (A.2) at t = 1; 2; 3; 4.
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