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1 Introduction 

The na!ve way to compute the continued fraction of a real number a > 1 is 
to find a very accurate numerical approximation to a, and then to iterate the 
well known truncate-and-invert step which computes the next partial quotient 
a = Lo:J and the next complete quotient a' = 1/(o: - a). We call this the 
basic method. In the course of this process precision is lost, and one has to 
take precautions to stop before the partial quotients become incorrect. Lehmer 
[7) gives a safe stopping criterion, and a trick to reduce the amount of multi
length arithmetic, leading to the so-called indirect method [14). Schonhage [13) 
describes an algorithm for computing the greatest common divisor of u and v, 
and the related continued fraction expansion of u/v, in O(n log2 n log logn) steps 
if neither u nor v exceed 2n. 

A disadvantage of the basic method is that if one wishes to extend the list 
of partial quotients computed from an initial approximation of a, one has to 
compute a more accurate initial approximation of a, compute the new complete 
quotient using this new approximation and the partial quotients already com
puted from the old approximation, and then extend the list of partial quotients 
using that new complete quotient (we notice that Shiu in [14, p.1312) slips in 
suggesting that all the previous calculations have to be repeated; of course the 
partial quotients already computed do not have to be recomputed). 

Bombieri and Van der Poorten [2], and Shiu [14], have recently recalled a 
remedy for this problem. They give a formula for computing a rational approxi
mation of the next complete convergent from the first n partial quotients. From 
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that complete convergent some n new partial quotients can be computed. So 

each step provides an approximate do{ibling of the number of partial quotients. 
Shiu calls this the direct method. To start the direct method, a few partial quo

tients are computed with the basic method. In [2] this approach is proposed for 

algebraic numbers (zeros of polynomials defined over Z) of degree 2?: 3, whereas 
Shiu also applies it to more general numbers, namely to transcendental numbers 

defined as zeros of functions for which the logarithmic derivative at some ratio
nal point can be computed with arbitrary precision. This includes numbers such 

as rr, log 71", and log 2. For each of thirteen different such numbers Shiu computes 

10 OOO partial quotients. Their frequency distributions are compared with the 
one which almost all numbers should obey according to the Khintchine-Levy 

theory (4, 8). No significant deviations from this theory are reported. 

Curiously, Shiu does not refer to what we will call the polynomial method for 

algebraic numbers [3, 6, 12] of degree 2?: 3, which computes the partial quotients 
of a using only the coefficients of its defining polynomial. Moreover, Shiu gives 

neither implementational details of his direct method, nor of the indirect method 

mentioned above (which he applies to four numbers which cannot be handled 

by the direct method). He concludes that his direct method is "superior in the 

sense that the computing times for a modest number of partial quotients using 

the indirect and the direct method are similar, whereas it becomes prohibitively 

long for the basic algorithm". 

This is not quite a reproducible conclusion. Moreover, the polynomial method 

is not included in Shiu's study. This motivated us to produce a more explicit 
comparison of the various methods. We have used the occasion to compute some 

200 OOO partial quotients of six different algebraic numbers and to test those 

collections of partial quotients against the expectation for the partial quotients 
of 'random' real numbers. 

A second motivation for the present study is the use of the continued frac

tion expansion of algebraic numbers in solution methods for certain diophantine 

inequalities. For example, in [11] the Diophantine inequality 

lx3 + x 2 y - 2xy2 -y31 :$ 200, 

known· to have just finitely many integral solution pairs (x,y), is solved for 

IYI :$ 10500 with the help of the computation of a (modest) number of partial 
quotients of the continued fraction expansion of one of the real roots of the third 
degree polynomial x3 + x2 - 2x - 1.1 

1 Recently, De Weger [16] ha.s determined the complete set of rational integers x, y that 

satisfy the inequality lx3 + x 2 y - 2xy2 - y3 1 S 106 (without an a priori bound on lvl). 
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2 Notation and Error Control 

2.1 Notation 

Let a be a real number > 1. The continued fraction expansion of a is defined by 

1 
a = ao + ------

1 
a1+---

l 
a2+--

where ai = la;J, a;+1=1/(ai-a;), i = 0,1, ... , with a 0 =a. The positive 
integers a0 , a 1 , . . . are called the partial quotients of a and the real numbers ai 
are referred to as its complete quotients. It is convenient to write 

where an+l = [an+1,an+2, ... ]. 
If a is rational, say a = u/v, then its continued fraction expansion terminates 

(with some ai = 0) and the basic method is nothing other than the Euclidean 
algorithm for computing the greatest common divisor of u and v. 

The rational approximation 

of a is called the n-th convergent of a. The numerators and denominators of 
these approximations are computed by the formulas 

where p0 = a0 , q0 = 1, P-l = 1, and q_ 1 = 0. In matrix notation, this is 

Pi) = (ao 
qi 1 

1) (ai+1 0 . . . 1 

which entails, on taking determinants, that 

(1) 

2.2 Error Control 

When one computes the partial quotients a0 , a 1 , ... from a numerical approxi
mation a of a, one loses precision. The error can be controlled with the help of the 
following two lemmas. Lemma 1 gives a sufficient condition for laJ = la::J to be 
true, and Lemma 2 gives an upper bound for the relative error in a 1 = 1/(a-laJ) 
as a function of a, the relative error in a, and a 1 • 
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Lemma 1 Let a > 0 be a numerical (rational) approximation of a > 0 with 

relative error bounded by 8, i.e., a= a:(l + €) with IEI < 8. If 

(2) (LaJ + 1) 8 <a - LaJ < 1 - (LaJ +I) c5, 

then LaJ = La:J. 

Proof. We show that LaJ < Cl! < LaJ + 1. Since a > o, it follows from (2) that 

8 < 1/2. 
Fiq;t, since 1 - c5 < 1/(1 + E) for c5 < 1, we have 

a 
a.(1 - c5) < - = a. 

l+E 

Furthermore, a 8 < (LaJ +1) c5 so that, by the left inequality in (2), a c5 <a- LaJ. 
With the above inequality this implies that LaJ < a(l - c5) < a. 

Second, since 1/(1+€)<1/(1- c5) for 8 < 1, we have 

a a 
a= -- < --. 

1+€ 1-8 

From the right inequality in (2), a< ( LaJ + 1)(1-0), so that a/(1-0) < LaJ +i. 
0 

Lemma 2 Suppose the conditions of Lemma 1 hold, and let 

I 1 
Cl!= ' 

a- LaJ 
-I 1 
Cl!=---

a- LaJ 

Then an upper bound for the relative error in a 1 with respect to a' is given by 

aa'5/(1- 8). 

Proof. We have, for 8 < 1/2, 

1 1 

a- LaJ a - LaJ 
1 

a - LaJ 

=a.a., j1- ~1=aa,1-€-1 < aa'-5-. o 
a l+E 1-0 

An additional way to control the computation is based on the following well

known and easily verified property of continued fractions. 

Lemma 3 If /30 //31 and 1oh1 are rational numbers such that 

/30 <a< lo 
/31 /1' 
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then, as long as the partial quotients of (30 / (31 and 'Yo/'Yi coincide, those partial 
quotients are the partial quotients of a. The first time the partial quotients do 
not coincide, they provide upper and lower bounds for the correct value. 

This result suggests Lehmer's method [7] for reducing the amount of multi
precision work. Assuming that we have a very accurate rational approximation 
u/v of the real number a> 1 with very large numbers u and v, we can form a 
suitable lower and upper bound for u/v just by taking the first ten {say) decimal 
digits of u and v: if r1og10 u l = k, take Uo = Lu/10k-lO J and Vo = Lv/1ok-lOJ 
and choose2 

f3o = uo, /31 = vo + 1, 'Yo = uo + 1, and 'Y1 =Vo. 

Now we compute partial quotients ao, ai, ... , ai0 of 'Yo/ 'Yl and hence of a as 
follows: 

{3) i = 0,1, ... 

Notice that we do not have to compute the partial quotients of f3o / f31 {contrary 
to what is suggested in [5, p.328]) since as long as 0 ~ /3i+2 < /3i+i• we are 
sure that ai is also the correct partial quotient of f3o/ f31. After (3) has stopped, 
we have to update the fraction u/v by acknowledging the computed partial 
quotients a0 , a1 ; .•• , aio. If i 0 = 0, using ao we replace u/v by v/(u - aov). In 
matrix notation, 

In general, using a0 , ... , aio we have 

The product of the 2 x 2 matrices in the right hand side is built up first, and 
next it is multiplied by the vector (u v)T, which is the only high-precision 
computation. 

2If vo = O, the first partial quotient of v./v is extremely large, and we have to increase the 
number of decimal digits in v.o and vo accordingly. 
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3 The Basic, Polynomial and Direct Methods 

In this section we describe the three methods considered in this study, namely 
the basic method, the polynomial method, and the direct method derived from 
Shiu's direct method. 

3.1 The Basic Method 

With the notation of Section 2.1, let ai be a rational approximation of O'.i with 
relative error bounded by c5i. The basic method for computing the continued 
fraction expansion of a = a 0 with safe error control (based on Lemmas 1 and 2) 
reads as follows. 

(4) 

ai =lad 
if ( ai + 1) c5i < ai - ai < 1 - ( ai + 1) c5i then 

l'ii+1 = 1/(ai - a;) 
Ji+l = ct;Qi+l c5if (1 - c5i) 

else 
stop 

endif 

i = 0, 1, ... 

Since the ai are rational numbers, we can use Lemma 3 and (3) to reduce the 
amount of multi-precision computations. The numbers (ai + 1) Di and Oi+l are 
computed in (floating-point) single precision. Since (3) works with low-precision 
approximations 'Yi/'Yi+i and /Ji/ /3i+ 1 of 'iii, some care has to be taken in the 
check of the inequalities in (4) and in the computation of Oi+l from c5; in (4). 
Here we can use that 

/32i < - < "/2i -- 0'.2i --, 
/32;+ 1 "/2i+l 

and 
/2i+l < - < .B2i+l -- a2i+1 --. 
/2i+2 f32i+2 

as long as a2; and a2i+l are the correct partial quotients of a2i and CTzi+i, 
respectively. Detailed information on how this method has been implemented 
can be obtained from the third author. 

From the metric theory of continued fractions it is known [10] that, for almost 
all a, one can compute p partial quotients of a from the first d decimal digits of 
its decimal representation, where 

l. !!. = 6 log 2 log 10 = 0 970 im d 2 • • ••. 
d--+oo 7f 

For example, Lochs [9] has computed 968 partial quotients of 7r from its first 1000 
decimals, and Brent and McMillan [l] have computed 29200 partial quotients of 
Euler's constant from 30100 decimals (with p/d = 0.970 ... ). 

A disadvantage of the basic method is that when we have computed as many 
partial quotients as possible from a given initial approximation of a and then 
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wish to compute more partial quotients, we must first compute a more accurate 
initial approximation, next use the known partial quotients to recompute to the 
new accuracy the last complete quotient already obtained, and from that extend 
the list of partial quotients. 

3.2 The Polynomial Method 

Let a > 1 be an an algebraic number of degree d > 2 with defining polynomial 
f(x) (with integral coefficients); that is j(a) = 0. Say f(x) is reduced if it has 
the three properties: 

(i) its leading coefficient is positive; 
(ii) it has a unique simple zero a> 1; 

(iii) its remaining zeros lie in the left half of the unit circle. 

The polynomial method [6] for computing the continued fraction expansion of a 
reads as follows. Set f0 (x) = f(x). 

(5) Ui(x) = fi(x + ai) i = 0, 1, ... 
ai = max{n EN, fi(n) < O}} 

fi+1(x) = -xdgi(l/x) 

It is easy to see that f 1 ( x) is reduced if / 0 ( x) is and that the unique positive 
root of Ji ( x) is given by 1 / (a - a0 ). It follows that the unique positive root 
of the polynomial fi(x) is the i-th complete quotient of the continued fraction 
expansion of a, and that this algorithm finds the corresponding partial quotients. 
The time-consuming work lies in the computation of the coefficients of fi+i (x) 
from those of fi(x) (which grow with i).The number ai can be computed quickly 
as follows. If we write f;(x) = c;,dxd +ci,d-ixd-l + ... ,then the sum of the roots 
of f;(x) is given by Si= -ci,d-i/ci,d· Since, for i ~ 1, the remaining d-1 roots of 
fi ( x) are all located in the left half of the unit circle, the number Si approximates 
ai with an error not greater than d - 1; the precise value of a; may be found 
from s; by trial and error (with an average of (d - 1)/2 trials). 

It is explained in [2] that (Vincent's Theorem) applying the algorithm to a 
zero of an arbitrary irreducible polynomial f(x) always rapidly yields a reduced 
polynomial f; ( x). 

In [6] it is suggested that the polynomial method may be accelerated as 
follows. From a low-precision approximation of the real root > 1 of fn(x), as 
many as possible (m, say) successive partial quotients are computed with the 
basic method (and error control). Next, one computes fn+m(x) from fn(x), using 
an, an+1, ... , an+m-i. with less computation than is needed to compute the 
coefficients of all the intermediate polynomials fn+i(x), ... , fn+m-1(x). In fact, 
the coefficients of fi+ 1 ( x) are related to those of fi ( x) by the transformation (for 
simplicity, we choose d = 3): 

a~ ai 
2ai 1 
1 0 
0 0 

1) (Ci,3) Q Ci,2 
Q Ci,l . 

0 Ci,O 
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By accumulating the product of the above 4 x 4 matrices which we get for an, 
an+i. ... , an+m-i. and multiplying the resulting matrix with the coefficients of 
f n(x), we obtain the coefficients off n+m(x) at the expense ofless arithmetic than 
when we explicitly compute the coefficients of all the intermediate polynomials. 

We have carried out some experiments with this acceleration of the polyno
mial method, but the resulting code is still slower than our implementation of 
the direct method described in Section 3.3. 

Nonetheless, an advantage of the polynomial method is that the computation 
can always be continued, without any recomputation, provided that we save the 
exact integral values of the coefficients of the last used polynomial fi(x). To 
illustrate the growth of these, for f(x) = f 0 (x) = x3 -8x-10, the four coefficients 
of / 100 (x) are integers of 68 decimal digits each, and the four coefficients of 
fiooo(x) are integers of 570, 571, 570, and 568 decimal digits, respectively. 

3.3 The Direct Method 

The direct method which we formulate here is based on ideas expressed in [2] and 
[14], combined with error control facilities described in Section 2. The aim is to 
compute a very good rational approximation of the complete quotient O.n+i when 
the partial quotients a0 , a1 , ••. , an are known, and from that approximation to 
compute some n partial quotients of O.n+i • This is done as follows. We have 

from which we find, using (1), that 

(-1)"+1 qn-1 
an+l = 

qn(pn - aqn) qn 

Now using the mean value theorem and f(a) = O, we replace the difference 
Pn/qn :.-. a by f(pn/qn)/ f'(pn/qn), and obtain the approximation 

(-1)"+1 f'(pn/qn) qn-1 
an+1 ~ 2 (p I ) - -. qn f n qn qn 

(6) 

The error in this approximation is approximately 

IJ"(a)I ,..., lf"(pn/qn)I 
q~l/'(a)I ,..., q~IJ'(pn/qn)I" 

From this ratfonal approximation of an+l, partial quotients an+ 1 , an+2, ... , 
an+m, ... can be computed as long as qn+m < bq;, for some small b = b(a) > 0. 
The direct method for computing N partial quotients of the continued fraction 
expansion of a now reads as follows. 

Step 1. Use the basic method (4) to compute a small number of partial quotients 
and the corresponding partial convergents of a, say up to an, Pn, qn. 
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Step 2. (Check) If PnQn-l - Pn-lqn f. (-l)n+l then stop. 
Compute the next rational approximation a' of Ci.n+I by 

1 (-l)n-l f'(pn/qn) Qn-l 
a= ---

q; f(pn/qn) qn . 
(7) 

Let B = bq;. for some suitable constant b = b(a). 
Compute the next partial quotients an+I, an+2 , ••• , an+m, ... with the basic 
method (4) (using Lemma 3 and (3)) as long as n + m :::; N and Qn+m <B. 

Step 3. Put n = n + m; if n < N go back to Step 2. 

The number of partial quotients which can be computed in Step 2 is roughly 
equal ton so that after the completion of Step 2, the number of partial quotients 
computed will roughly have doubled compared with before Step 2. Since (7) is 
very time-consuming, it is worthwhile to choose n in Step 1 such that the last 
time Step 2 is carried out it starts with a value of n which is slightly larger than 
N /2. In the beginning of the method the behaviour of Step 2 may be rather 
erratic; one should therefore compute sufficiently many partial quotients of a in 
Step 1 "to reach the "stable" behaviour phase of Step 2 (an approximate doubling 
of the number of partial quotients). In practice, this works for n ~ 100, but that 
may depend on the size of the first few partial quotients of the continued fraction 
of a. 

4 Experiments 

We have implemented the three methods described in Section 3 on a SUN work
station, partially in GP /PARI and partially in Magma. The first package is de
veloped by Henri Cohen and his co-workers at Universite Bordeaux I, the second 
comes from John Cannon and his group at the University of Sydney. Initially, 
we only worked with GP, but at a certain point in the direct method we ran 
into problems with the stack size, due to the enormous size of the integers in
volved in this method. Later we learned that these problems can be solved, for 
example, by programming PARI in Library Mode, but in the meantime we had 
learned about the Magma package at the University of Sydney and decided to 
experiment with that. With Magma we did not encounter any stack problems. 

In Table 1 we give some timings with Magma and GP for the basic, the 
polynomial, and the direct methods. Based on these results, we decided to run 
bigger experi:m,ents with our Magma implementation of the direct method. 

In Table 2 we give the frequency distributions of the first 200 001 partial quo
tients <?f the continued fraction of six algebraic numbers, computed by the direct 
method. For comparison, the last column gives the frequencies of occurrence of 
partial quotients j: 



44 

from the well-known Gauss-Kusmin Theorem. Let 

K( ) ( )1/(n+i} a, n = aoa1 ... an 

and 

L( a, n) = q~/(n+l). 

Then, for almost all a:, 

oo ( l ) log k/ log 2 
lim K(a,n) =IT 1 + ( ) = 2.68545 ... 

n-too k k + 2 
k=l 

and 

lira L(o:,n) =exp(~) = 3.27582 .... 
n-too 12 log 2 

The latter fact implies that for almost all a the number of decimal digits in qn 
is about n log10 L ~ 0.515n. Table 2 gives the values of K(a, 200000) for the 
six algebraic numbers which we consider. Table 2 also lists the largest partial 
quotient an found, and the corresponding index n. Only in case (A) is there 
an early occurrence of a large partial quotient (a121 = 16467250), but soon 
after that the expansion settles down and no further extremely large partial 
quotients occur. To illustrate this, Table 3 lists an for n = 0, ... , 200 and for 
n = 199901, ... , 200000. The "abnormal" initial behaviour is explained in [15). 

Table 4 presents, for some values of n, the number of decimal digits in 
qn and that number divided by n. The values of n in Table 4 are those for 
which the direct method computes a new rational approximation of an: it 
illustrates the approximate doubling of these n-values, especially for larger 
values of n. The last column shows good convergence to the expected value 
C1 = 7r2 / (12 log 2log10) = 0.51532 .... 

5 Conclusion 

We have compared three different methods (the basic, the polynomial, and the 
direct method) for computing the continued fraction expansion of algebraic num
bers, and observed that the direct method is the most efficient one in terms of 
CPU-time and memory, at least for our implementations (in GP /PARI and 
Magma). We have applied the direct method to the computation of 200,001 par
tial quotients of six different algebraic numbers, and found no apparent deviation 
from the theory of Khintchine and Levy, which holds for almost all real numbers. 
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