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Abstract. In a recent article [6] a new method was proposed for com­
puting internal eigenvalues of symmetric matrices. In the present paper 
we extend these ideas to non-hermitian eigenvalue problems and apply 
them to a practical example· from the field of magnetohydrodynamics 
(MHD). The method is very suitable for an efficient parallel implemen­
tation. We give some results for the time-consuming kernels of the un­
derlying orthogonalization process, the Arnoldi method, obtained for an 
MHD problem on a distributed memory multiprocessor. 

1 Introduction 

The numerical solution of large-scale eigenvalue problems has many applications 
in both science and engineering. For a recent overview of some application areas, 
see [9]. In the field oflinear magnetohydrodynamics (MHD), which concerns the 
study of the interaction of an ionized gas, a so-called plasma, with a magnetic 
field, the finite element discretization of the partial differential MHD equations 
gives rise to a generalized non-hermitian eigenvalue problem (see e.g. [l]). Over 
the last years the demand for solving increasingly larger eigenvalue problems 
in MHD is growing. Meanwhile considerable progress has been made in the 
techniques to implement numerical algorithms for large eigenvalue problems on 
parallel computers. For a recent review in this area, see [2]. 

The most commonly used algorithms to solve non-hermitian eigenvalue prob­
lems are referred to as Arnoldi algorithms. The basic idea is to reduce a general 
non-hermitian large matrix A to upper Hessenberg form H, after which the eigen­
values are determined for the much smaller projected matrix H. The eigenvalues 
of this matrix tend to converge to the dominant eigenvalues of the original matrix 
A. For obvious reasons the method is usually applied in an iterative way. The 
basis upon which the upper Hessenberg matrix is built is the so-called Krylov 
subspace basis. The eigenvalues of H are the Ritz values of A with respect to the 
Krylov subspace. The orthogonal projection method of the original matrix onto 
the subspace is known as the Arnoldi method. The Arnoldi method is the most 
time-consuming part in the Arnoldi-based algorithms for solving non-hermitian 
eigenproblems. It should be noted that the Arnoldi method is also applied as 
the orthogonalization scheme in the well-known GMRES algorithm [8] for solv­
ing general nonsymmetric large linear systems of equations. 
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In many applications one is not particularly interested in the dominant part 
of the eigenvalue spectrum, but only in an internal branch. A commonly followed 
procedure [9] is to shift the original matrix by a value close to the eigenvalues in 
the interesting part of the spectrum, invert the shifted matrix in order to make 
the desired eigenspectrum dominant and perform the standard Arnoldi algorithm 
for the inverted matrix. In MHD the interesting part of the spectrum is the so­
called Alfven branch. In [5] this part of the spectrum was computed applying 
the implicitly restarted Arnoldi method [10] with a complex shift and invert 
strategy. The most expensive part in the shift-and-invert Arnoldi method [9] is 
inverting the shifted matrix: first one has to perform an LU-decomposition of 
the shifted matrix, followed by solving lower and upper triangular systems of 
equations. Furthermore, the latter operations make this method unfavourable 
for an efficient implementation on a distributed memory computer [2]. 

In a recent paper [6] Paige, Parlett and Van der Vorst demonstrated that the 
zeros of the iteration polynomial associated with the minimum residual approx­
imation to the solution of a symmetric indefinite system of equations converge 
slowly, but monotonically to eigenvalues of the coefficient matrix close to the 
origin. The computation of these eigenvalue approximations, introduced by the 
authors of [6] as the harmonic Ritz values, offers new possibilities for the de­
termination of internal eigenvalues. In the present paper we have investigated 
whether these ideas could be extended to the non-hermitian case. In the next sec­
tion we briefly discuss the method and illustrate it with an example from MHD. 
In the final section we describe the implementation of the time-consuming ker­
nels of the Arnoldi method on a distributed memory machine for the MHD-type 
matrices. Also timing results are presented. 

2 Arnoldi Method for Internal Eigenvalues 

If we perform i steps of the standard Arnoldi process [3, 9] with a general n x n 
matrix A and a unit two-norm starting vector v1 , we obtain an orthonormal set 
of basis vectors v1 , v2 , .•. , v;, Vi+i · The first i vectors span the Krylov subspace 
K;(A;v1 ). Define then x j matrix Vj = [v1 , .. . ,v;]. Then from the Arnoldi 
process the following relation can be derived [9]: 

(1) 

with H; an (i+ 1) x i upper Hessenberg matrix, whose upper ix i part we denote 
as H;. Using the orthonormality of the basis, we obtain: 

(2) 

From this equation we see that the columns of AV;M;- 1 form an orthonormal 
basis for AI<;(A; v1), since we have 

with I; the i x i identity matrix. Using this basis and the relation 

TTHATT. - TTHTT. H". - H· Vi Vi - Vi Vi+l i - • 

(3) 

(4) 
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it is straightforward to obtain the orthogonal projection of A- 1 onto AK; (A; v1 ) 

(see also [ 6]): 
M;- 1(AVi)HA- 1AV;M;- 1 = M;- 1Hf M;- 1 · (5) 

Solving the eigenvalue problem for the projected matrix M;- 1 Hf M;- 1 , or, 
which is similar for the matrix M:- 2 H!l, gives the Ritz values of A- 1 with 

' ' ' respect to AK;(A; v1). These Ritz values should be good approximations for the 
extreme eigenvalues of A- 1 . Their reciprocals are the harmonic Ritz values and 
should therefore be good approximations for the eigenvalues of A closest t0 the 
origin. 

Note that the procedure described above enables us to compute approxima­
tions for eigenvalues close to any point in the spectrum of A, simply by perform­
ing the method with a shifted matrix A - (J' I. Also note that we avoid explicit 
inverting of a matrix, which makes the method more appropriate for an efficient 
parallel implementation than the shift-and-invert method. 

We have tested the method for a small problem from MHD (order 416) 
taken from [5]. We used subspace iteration, restarting at each step with a linear 
combination of four eigenvectors associated with the four eigenvalues closest to 
the shift. We were able to reproduce the spectrum obtained in [5]. However, the 
Krylov dimension had to be set at 125 and convergence turned out to be very 
slow as displayed in fig. 1. A similar behavior was observed in the symmetric 
case [6], apart from the fact that the convergence is far from monotonic in the 
present example. 
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Fig. 1. Typical convergence behavior for a harmonic Ritz value, computed with the 
present Arnoldi method. 

3 Parallel Implementation 

We have implemented the basic operations of the Arnoldi method on a par­
allel distributed memory system. Results are given for the application to the 
MHD-type matrices, which are of block-tridiagonal shape (with rather dense 
blocks). The numerical experiments were carried out on a Parsytec GCe1 (lo­
cated at SARA, the Academic Computer Center Amsterdam), a distributed 
memory machine consisting of 512 nodes, each having 4 Mbytes local memory. 
The processors were configured in a 2d-grid topology. 

The blocks in the MHD matrices are of the order l6Np, with Np the number 
of Fourier modes, see also [7]. Let Na denote the number of grid points in the 
finite element discretization of the MHD equations, which is the number of rows 
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Fig. 2. Data layout on the processors. 

of blocks in the matrices. Then the order of the matrices is given by N = 
l6NpNc. We store an equal number of rows of blocks on each processor and for 
vectors x we assign the corresponding segment to the processors. We choose the 
problem size such that the number of processors divides Na exactly. An example 
of the data layout is given in fig. 2 with Ne = 9 and a 3 x 3 processor grid. 

The time-consuming kernels in the Arnoldi method consist of matrix-vector 
products, inner products and vector updates. The parallel implementation of the 
matrix-vector products for the MHD-type of matrices does not pose any serious 
problems, since a strong data locality can be preserved and each processor only 
has to perform nearest neighbor communication. Therefore, a pipeline has to be 
embedded in the 2d-grid topology. Only four communication steps have to be 
performed to evaluate the matrix-vector product, independent of the number of 
processors. 

In the evaluation of the vector updates no communication is involved and 
thus the implementation of this kernel is optimal. 

However, for the inner products the situation is entirely different. Inner prod­
ucts are needed on all processors. Each processor has to evaluate its local part, 
after which the local inner products have to be accumulated on one processor 
for instance and the global inner product has to be broadcasted again to all 
processors. Therefore, when going to larger processor grids, the inner products 
can be a serious bottleneck and a considerable degradation of the performance of 
the algorithm can occur, as we shall illustrate below. The accumulation of local 
inner products on a p x p grid requires p communication steps when p is even and 
p + 1 steps when p is odd. This is shown in fig. 3 for a 5 x 5 grid. Broadcasting 
of the global inner product requires the same number of communication steps. 
This can be illustrated by reversing the direction of the arrows in fig. 3. 

In table 1 we present the execution times for the matrix-vector product (MV) 
and the inner product (IP) obtained for three fairly large MHD problems (N = 
20480, N = 40960 and N = 81920) on different processor grids. These problems 
could not be dealt with on smaller grids than the ones shown, because this 
would exceed the local processor memory. Also the execution rates (in Mflops) 
are given. The number of floating point operations for the matrix-vector product 
equals 4 x 2 x (16Np) 2 (3Na - 2) and for the inner product 4 x 2 x 16NpNa. 
The factor 4 is due to the (double) complex arithmetic, which we use. 
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Fig. 3. Accumulation of local inner products on a 2d-grid topology. 

Table 1. Timing results for the matrix-vector product (MV) and the inner product 

(IP) for different MHD problems on a p1 x p2 processor grid. 

MV IP 
NF Na P1 x p2 time[ms] Mfl.ops time[ms] Mfl.ops 

5 256 8x4 4111 9.5 7.46 22.0 

8 x 8 2061 19.0 5.39 30.4 

16 x 8 1036 37.9 5.42 30.2 

16 x 16 522 75.l 6.15 26.6 

5 512 8x8 4111 19.l 8.16 40.l 

16 x 8 2061 38.l 6.81 48.1 

16 x 16 1036 75.8 6.84 47.9 

32 x 16 519 151.3 9.00 36.4 

10 512 16 x 16 4077 77.1 8.23 79.6 

32 x 16 2048 153.4 9.69 67.6 

From the table we clearly see that the execution time for the MV product 

scales almost perfectly linear with Na and N'j. if we keep the number of proces­

sors fixed. If we compare the performances of the MV product for a fixed problem 

size (Np = 5, Na = 512) we observe an almost ideal relative speed-up of 7.92 

in going from 64 to 512 processors. For the largest problem size we obtained a 

maximum performance of 153.4 Mfiops for the MV product, which corresponds 

to 38% of the peak performance of the Parsytec. 

For the inner products the performance is much worse as can be seen from 

the last two columns in the table. If we increase the number of processors for 

a fixed problem, the execution time decreases initially. However, at a certain 

stage the communication starts to dominate the computation in the evaluation 

of the inner product and the execution time increases again. Note that for small 

processor grids the performance of the IP is better than for the MV product, 

because only the BLAS level I library is available on the Parsytec at the moment. 
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As we illustrated in section two, the dimension of the Krylov subspace in 
the Arnoldi algorithm for computing internal eigenvalues has to be rather high. 
This means that for the construction of the last basis vectors a large number of 
inner products (and vector updates) have to be evaluated corresponding to only 
one matrix-vector product. Consider for instance the largest MHD problem in 
table 1 and the construction of a Krylov subspace basis of the order 100. From 
the timings of the matrix-vector product and the inner product on the largest 
processor grid (last row of the table) we observe that the evaluation of the inner 
products for constructing the last vector of the basis amounts to roughly half 
the time of the matrix-vector product. This would certainly lead to a serious 
degradation of the algorithm. A way to get around this difficulty is to create a 
Krylov subspace basis first and orthogonalize the basis afterwards, see e.g. (2). 
A similar procedure has been applied in the s-step Arnoldi algorithm described 
by Kim and Chronopoulos [4). The number of global communications due to the 
inner products is brought down from 0( i2 ) to 0( i), i being the Krylov dimension. 
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