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Summary. Strong numerical evidence is presented for a new lower bound for 
the so-called de Bruijn-Newman constant. This constant is related to the Rie
mann hypothesis. The new bound, - 5, is suggested by high-precision floating
point computations, with a mantissa of 250 decimal digits, of i) the coefficients 
of a so-called Jensen polynomial of degree 406, ii) the so-called Sturm sequence 
corresponding to this polynomial which implies that it has two complex zeros, 
and iii) the two complex zeros of this polynomial. A proof of the new bound 
could be given if one would repeat the computations i) and iii) with a floating
point accuracy of at least 2600 decimal digits. 

Subject classification: AMS(MOS): 65E05, 30DXX, 11M26; CR: Gl.5. 

1 Introduction 

Recently, Csordas et al. [2] have introduced the so-called de Bruijn-Newman 
constant A as follows. Let the function H,_(x), AE9f', be defined by 

"' 
(1) H,_(x):= J eAl2 cJi(t) cos(xt)dt, 

0 

where 

"' (2) tl>(t)= L (2n4 n2 e9 t-3n2 ne 5 ') exp(-n2 ne4 r). 
n=l 

The function <P satisfies the following properties: 
i) tl>(z) is analytic in the strip -n/8<'Xz<n/8; 

ii) '1>(t)='1>(-t), and '1>(t)>O(tE9£>); 
iii) for any t:>O, lim <t><n>(t) exp[(n-c:) e4 i]=0, for each n=O, 1, ... 

t~oo 
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The function H ,_ is an entire function of order one, and H ,,(x) is real for real 
x. From results of de Bruijn [1] it follows that if the Riemann hypothesis is 
true, then H;.(x) must possess only real zeros for any ).~0. C.M. Newman 
has shown [6] that there exists a real number A, -oo <A ~-t, such that 

i) H,.(x) has only real zeros when A.~A, and 
ii) H,.(x) has some non-real zeros when ).<A. 

This number A was baptized the de Bruijn-Newman constant in [2]. The truth 
of the Riemann hypothesis would imply that A~ 0, whereas Newman [6] conjec
tures that A~O. In [2] it was proved that A> -50. 

In this note we will describe high-precision computations which provide 
strong numerical evidence for the new bound A> - 5. Moreover, our computa
tions show that trying to prove this result, or improve upon it, would be a 
formidable task, unless the algorithm used could be improved substantially. 

The computations were carried out on the CDC Cyber 995 (about 2 h CPU 
time for testing), and on the CDC Cyber 205 (about 30 h CPU time for 'produc
tion') of SARA (The Academic Computer Centre Amsterdam). Brent's MP pack
age was an indispensable tool for the high-precision floating-point computations. 
Since this package has not been vectorized, we used the Cyber 205 just as 
an extremely fast scalar machine. 

This note will rely heavily on [2]. We assume the reader to have a copy 
of [2] at hand (slight change: in the present paper we write bm and /Jm instead 
of 6m and Pm)· 

2 Algorithm and results 

If we expand the cosine in (1) in its Taylor series, we obtain 

(3) H ( )= ~ (- lrbm(A.) x 2 m 
;. X L.., (2 ) I ' 

m=O m · 

where 
00 

bm(A.) = J t2 meM2 <P(t) d t, 
0 

m=O, 1, ... ; AElR. The n-th degree Jensen polynomial Gn(t; A.) associated with 
H ,_ is defined by 

(4) G ( . A.)•=~ (n) k!bk(A.) k 
n t, k:--0 k (2k)! t ' 

and it is shown in [2] that if there exists a positive integer m and a real number 
X such that Gm(t; X) possesses a non-real zero, then X<A. The problem is to 
find m, given X. 

In [2] a lower bound for A was constructively obtained as follows. For 
A.= -50 and n= 16 the moments bk(A.), k=O, ... , n were computed with a known 
precision, by means of Romberg quadrature. The approximate Jensen polyno-
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mial which we obtain by using this numerical approximation of bk().) in (4) 
is denoted by gn(t; A). The so-called Jenkins algorithm was used to compute 
all the zeros of gn (including one complex zero and its complex conjugate). 
A theorem of Ostrowski was then invoked to find an upper bound for the 
distance of each of these zeros to the corresponding zeros of Gn. This error 
bound was small enough to guarantee that the complex zero of g 11,(t; -50) 
found by high-precision computation indeed is an approximation of a complex 
zero of the Jensen polynomial G16 (t; -50). 

The sensitivity of the zeros of polynomials to errors in their coefficients 
required that the computations were performed in very high precision. Csordas 
et al. [2] used 110 digits of precision for their proof that - 50 <A. As a partial 
check, we repeated their computations in double precision on a CDC Cyber 
995 (which means an accuracy of about 28 decimal digits) and could reproduce 
the complex zero of g16 (t; -50) with an accuracy of about 20 decimal digits. 
This illustrates the large amount of extra work needed to provide a proof of 
the existence of complex zeros of the Jensen polynomial Gn(t; Jc). 

In order to improve the result of Csordas et al., we realized that the degree 
of the Jensen polynomial Gn(t; },) which possesses complex zeros, might grow 
very fast with A. Consequently, finding all the zeros of G"' 11= 1, 2, ... (in order 
to prove the existence of complex ones) might become very expensive. Therefore, 
we decided to use so-called Sturm sequences [ 4] to get an indication of the 
existence of any complex zeros of the given Jensen polynomial. The computation 
of a Sturm sequence is much simpler than computing all the zeros of a given 
polynomial. 

A Sturm sequence associated with a given polynomial p0 (x) of degree m 
is a sequence of polynomials p0 (x), p1 (x), ... of strictly decreasing degree which 
can be defined as follows: 

P1 (x)==p~(x), 

Pi- i(x) ==qi(x) Pi(x)-Pi+ 1 (x), i = 1, 2, .. ., 

where qi(x) is found by the Euclidean algorithm, such that the degree of P; + 1 (x) 
is less than the degree of P;(x). If p0 (x) has only simple zeros, P;(x) has degree 
m-i, and the Sturm sequence consists of m+ 1 polynomials p0 (x), .. ., Pm(x). 
Let v(a) be the number of sign changes in the sequence {p;(a)}i=o (where zero 
values are skipped). Then v(a)-v(b) is the number of real zeros of the polynomial 
p0 (x) on the interval [a, b]. Note that v(± co) can be determined by inspection 
of the signs of the highest degree coefficients of the polynomials in the Sturm 
sequence. 

Our algorithm now works as follows. Suppose we know Ao and m=m().0 ), 

which is the smallest value for which gm(t; ),0 ) has complex zeros (to start with, 
we take Ao= - 50 and m = 16 from [2]). Then for a new value of }, which is 
somewhat larger than Ao we compute /J;(J,), i=O, 1, .. ., and for each new /3; 
we compute the coefficients of the associated Jensen polynomial, and by means 
of the associated Sturm sequence, its number of real zeros on the interval 
(- oo, 0]. This is continued until we have found 11 for which gn(t; A) should 
have complex zeros. Then we try to compute a complex zero of this polynomial 
by means of the Newton process, where the starting value is chosen as follows. 
Let z = z(Ao) be the known complex zero of gm(t; ).0 ). We tabulate the values 
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Table I. Minimal degrees m(i.) of Jensen polynomials with complex zeros 

}. m().) Complex zeros of gm(t; ).) Accuracy used 

9i ±'! 

-50 16 -220.9191117 7.092565255 28D 
-49 16 -217.9076244 5.773253615 28D 
-48 16 -214.9084360 4.111013736 28D 
-47 16 -211.9217860 1.006843660 28D 
-46 17 -202.21965S3 5.677704348 28D 
-45 17 -199.3211883 3.991036911 28D 
-44 17 - 196.4360833 0.462709708 28D 
-43 18 -187.4386728 4.830351149 28D 
-42 18 -184.6425759 2.749091911 28D 
-41 19 -176.228937S 4.96997S476 28D 
-40 19 -173.5216696 3.024436421 28D and 40D 
-30 27 -116.8258164 2.400S95686 28D and SOD 
-20 41 - 111.0654985 1.322239430 SOD 
-10 97 -45.53019819 0.156978360 75D 
-5 406 - 24.34071458 0.031926616 250D 

of g.(t; ).) and its derivative, for some real values of t around ~(z), and we 
look for a local positive minimum, or a local negative maximum. In our experience, 
such a minimum, or maximum, is easy to find if A. is not too far away from 
),0• Then we take c+di as starting value for the Newton process where c is 
the value oft for which g.(t; A.) assumes its local minimum or maximum, and 
where d = J:(z). 

In this way we found complex zeros of g.(t; A.) for A.= - 50(1) -40, - 30, 
- 20, -10, - 5. Table 1 presents the values for which we have determined the 
polynomial g.(t; ),) of smallest degree with complex zeros by means of the asso
ciated Sturm sequence. This degree is denoted by m=m(A.). In all cases this 
Jensen polynomial has m(A.)- 2 real zeros. Table 1 also lists the complex zeros 
found, truncated to 10 decimal digits, and the accuracy used. For A. close to 
- 50, the degree of the Jensen polynomial with complex zeros does not increase 
too quickly with A.. However, from A.~ - 20 this pattern changes drastically, 
as Table 1 shows. As ). increases, the imaginary parts of the complex zeros 
found seem to tend to zero. 

Our computations do not provide a mathematical proof of the existence 
of complex zeros of G.(t; A.), although there is strong numerical evidence. A 
proof of the new bound - 5 <A along the lines of Csordas et al. would require 
an extension of the accuracy we used (250 decimal digits) to at least 2600 decimal 
digits. 

The following simple error analysis, carried out for the case A.= - 5, may 
406 

help to convince the reader. If we define g406 (t; - 5)=: I ak t 406 -\ then, since 
k=O 

the ak are numerical approximations of the coefficients of G406 , computed with 
an accuracy of 250 decimal digits, we may write 

G 406 (t) = g406 (t) + e h(t), 
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406 
where c=l0- 250 and h(t)= L 6kakt406 -k with 16kl<l. If 0 is a simple zero 

k=O 

of g4o6' and 0, the corresponding zero of G406 , then we have, as an approxima
tion of the first order in r, ( cf. [7, formula ( 5.8.1)]): 

Hence, 

h(O) 
o, = o- 8 -,-(O). 

g406 

IO -OI <c lh(O)I < g4o6(101) 
' I g~o6 (OJI 8 I g~o6 ( 0)1 ' 

since the coefficients of g406 are positive. For 0= -24.3407 ... +0.03192 ... i 
we found g406 (i01)=4.837 ... x10 12 and lg~06 (0)1=7.824 ... x10- 17, so that 
10, - 01<10- 221 and 8, is indeed a complex zero of G406 (t; - 5). 

3 Computational details 

In this section we shall explain the main details of how we computed fim(),) 
and the Sturm sequences of gn(t; A.). 

We write bm(A.) as the sum 

a co 

(5) bm(A)= Jt 2 me)·'2 <P(t)dt+ J t 2 rneM'<P(t)dt 
0 a 

(Csordas et al. used a= 1). An upper bound for the second integral of (5) is 
found as follows. The function t 2 me''2 has maximum value 

(for t=(-m/A.)t), so that 

I t2 me.<i'<P(t)dt<exp [m (-1-log _:1,i.)] ! <P(t) dt 

<;exp [ m (-1 +log _:1)J+5a-ne4a] 

(cf. [3], in. (3.7)). This bound is used, for given ), and m, to choose a such 
that the contribution of the second integral in (5) to the value of bm(A.) is negligi
ble, in view of the precision used. E.g. for A.= - 5, we chose a= 1.65. Form= 406, 
this yields an upper bound of 10-4oo on the value of the second integral in 
(5). The smallest bm(-5) we computed is b344(-5)=1.46822 ... x10- 73 . Since 
we worked with a precision of 250 decimal digits, it follows that the contribution 
of the second integral in (5) to { bm ( - 5) }!~60 is indeed negligible. 

Let <PN(t) denote the sum of the first N terms of (2); then we have (cf. 
[3], eq. (4.6)) 

0 < <P(t)- <PN(t) < nN3 exp(5t-nN 2 e4') (0 ~ t <co). 
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Given t, the number N is chosen such that the right hand side is less than 
10-A where A is the number of decimal digits of precision employed in the 
computations plus{ -log10 (first term of cJ>(t))} (since this first term determines 
the size of cP(t)). Since the N in the exp is dominating, it is suffi~ient (most 
of the time) to choose N to be the smallest integer larger than 
i/(e- 4 r(A log 10+5t)/rr). 

Using the same notation as in [2], we now have to compute the integral 

(6) 
a 

b;,;l(A.)= J t 2 me-lr2 <PN(t) dt 
0 

to sufficient accuracy. In [2] this was done by Romberg quadrature. However, 
by inspecting the Romberg table for b~>(A_), we noticed that when going from 
left to right, i.e., when comparing T;j with T;,j+ 1, the accuracy did decrease 
(rather than increase, as one would expect: cf., e.g., [7, p. 141]). Moreover, the 
most accurate results were found in the first column of the Romberg table 
(just the trapezoidal rule results for step a, a/2, a/4, ... ), and the convergence 
in this column was much faster than quadratic. An explanation is given by 
the fact that the integrand in bm(A.) is an even function, and under certain condi
tions given in Theorem 2.2 of [5] the convergence of the trapezoidal rule for 
such functions is exponential. The integrand bm(A.) happens to satisfy these condi
tions. Therefore, it is unnecessary to apply Romberg quadrature. We just applied 
the composite trapezoidal rule with step a, a/2, a/4, ... , until a sufficiently small 
correction was obtained. For the computation of /Jm( - 5) we never needed to 
work with a step less than a/1024. Before applying the trapezoidal rule, a table 
of values of e"'r2 <P(t) was precomputed for t = j a/1024, j = 0, ... , 1024, since (a 
selection of) these values are needed for each /Jm(A.). In the final steps, we always 
observed an approximate doubling of the number of correct digits upon halving 
the step. 

The Sturm sequence associated with the polynomial gm(t; A.) was computed 
as follows. Let p0 (x)==gm(x; A.) and let 

m-i 
( ) '\' m-i-j Pi x == L, c;j x , i=O, ... , m. 

j=O 

The coefficients c0 j of p0 (x) are computed by means of the relation (which 
follows from (4)): 

ml 
Coj= j!(2 (m~j))l /Jm-j(A), j=O, ... , m. 

Since p1 (x)=p~(x) we have clj=(m-j) c0 j,j=O, ... , m-1. Let qi(x)==qi 0 x+q;1, 

i = 1, .. ., m - 1. Then, by applying the definition of a Sturm sequence given in 
§ 2, we find qio and q; 1, i= 1, ... , m-l, from, 

qio ciO -ci-1.0 =0, 

qio Ci1 +qi1ciO-ci-1,1 =0, 
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and C;+ 1,i,j=O, ... , m-i-2 from 

and Ci+l,m-i-l from 

C;+ l,m-i-1 =qil Ci,m-i-Ci- J,m-i+ 1· 

The number of negative real zeros of gm(t; J.) is just the number of sign 
changes in the sequence {(-1r-ic; 0 }f= 0 minus the number of sign changes 
in the sequence {c;,m-Ji'=o· In some instances, when going from gm to gm+l• 

this difference dropped down from m sharply. It turned out that this was caused 
always by insufficient precision used in the computation of the Sturm sequence 
associated with gm+ 1. The normal pattern (i.e., finding v ( - ro )-v (0) = m + 1, 
or m-1) could be restored easily, by increasing the accuracy. 

We have used the Sturm sequence technique to get an easy numerical indica
tion for the existence of complex zeros of gm(t; J.). The actual computation of 
these complex zeros by means of the Newton process provides the numerical 
evidence for their existence. The error analysis given at the end of§ 2 is meant 
to convince the reader who would rightly notice that these numerical computa
tions do not provide a rigorous mathematical proof. 
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