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On the Zeros of the Riemann Zeta Function 
in the Critical Strip. II 

By R. P. Brent, J. van de Lune, H.J. J. te Riele and D. T. Winter 

Abstract. We describe extensive computations which show that Riemann's zeta function ;en 
has exactly 200,000,00 I zeros of the form a + it in the region 0 < r < 81, 702, l 30. I 9: all these 

zeros are simple and lie on the line a = j. (This extends a similar result for the first 81.000,00 I 

zeros, established by Brent in Math. Comp., v. 33, 1979, pp. 1361-1372.) Counts of the 

numbers of Gram blocks of various types and the failures of "'Rosser's rule" are given. 

1. Introduction. Riemann's zeta function is the meromorphic function r C \ {I} 

C, which, for Re(s) > 1, may be represented explicitly by 
00 

(s=a+it). 

It is well known (see Titchmarsh [16, Chapters II and X]) that 

Hs): = h(s - l)w-s/2 f(s/2Ws) 

is an entire function of order 1, satisfying the functional equation ~(s) = ~(l - s), 

so that 

:=:( z) : = H ! + iz) (z EC), 

being an even entire function of order 1, has an infinity of zeros. The Riemann 

Hypothesis is the statement that all zeros of :3:( z) are real, or, equivalently. that all 

nonreal zeros of 5(s) lie on the "critical" line a = ! . Since t(.f) = ~( s ), we may 

restrict ourselves to the half plane t > 0. To this day, Riemann's Hypothesis has 

neither been proved nor disproved. 

Numerical investigations related to this unsolved problem were initiated by 

Riemann himself and later on continued more systematically by the writers listed 

below (including their progress). 

Investigator Year The first n complex zeros of t( s) 

are simple and lie on a = 1 

Gram [6] 1903 n = 15 

Backlund [ l] 1914 n = 79 

Hutchinson [7] 1925 n = 138 

Ti tchmarsh [ 15] 1935 /6 n = 1,041 
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Those listed above utilized the Euler-Maclaurin summation formula and performed 
their computations by hand or desk calculator. whereas those listed below applied 
the Riemann-Siegel formula in conjunction with electronic computing devices. 

Lehmer [ 10], [ 11] 
Meller [13] 
Lehman [9] 
Rosser, Yohe & Schoenfeld [14] 
Brent [2] 

1956 
1958 
1966 
1968 
1979 

n = 25,000 
n = 35,337 
n = 250,000 
n = 3,500,000 
n = 81,000,001 

An excellent explanatory account of most of these computations may be found in 
Edwards [4]. 

In this paper, which should be considered as a continuation of Brent [2]*. we 
report on extensive computations by which the first named author has extended his 
former result ton = 156,800,001 and by which the remaining three authors (L R & 
W, for short) have extended this bound ton= 200,000,001. Details of the last result, 
together with a full program listing, are given in van de Lune, te Riele and Winter 
[ 12]. Independently of Brent, L R & W have also checked the range [ g8 1.ooo.000 , 

g 120,000,000 ). 

In practice, the numerical verification of the Riemann hypothesis in a given range 
consists of separating the zeros of the well-known real function Z( t) (see formula 
(2.6) of Brent [2]), or, equivalently, of finding sufficiently many sign changes of Z( t ). 
Our programs (aiming at a fast separation of these zeros) are based, essentially, on 
the modification of Lehmer's [ 11] method introduced by Rosser et al. [ 14]. L R & W 
have developed a more efficient strategy of searching for sign changes of Z( t) in 
Gram blocks of length L ;;;;. 2. Brent's average number of Z-evaluations, needed to 
separate a zero from its predecessor, amounts to about 1.41 (compare Brent [2]), 
whereas L R & W have brought this figure down to about 1.21. It may be noted here 
that in the most recent version of the program of L R & W this figure has been 
reduced further to about 1.185. From the statistics in Section 4, it follows that in the 
range [ g 156,800,000 , g200.000,000 ) this average number of Z-evaluations could not have 
been reduced below 1.135 by any program which evaluated Z(t) at all Gram points. 
We also note that about 98 percent of the running time of the L R & W-program 
was spent on evaluating Z(t ). This program was executed on a CDC CYBER 175 
computer and ran about ten times as fast as the UNIV AC 1100 / 42 program of 
Brent. This is roughly what could be expected, given the relative speeds of the 
different machines. 

2. The Strategy for Finding the Required Number of Sign Changes of Z( t) in a 
Gram Block of Length L ;;;;. 2. The strategy of Brent for finding the required number 
of sign changes of Z(t) is exactly as described in Section 4 of Brent [2]. L R & W 
refined this strategy in order to reduce the number of Z-evaluations as much as they 
could. This will be described here in some detail. 

*We take the opportunity to make the following corrections in Brent [2]: on p. 1361, line 9 i , replace 
"H(JO)" by "H(l5)"; on p. 1362, Eq. (2.3), replace "B2k" by "I B2 k j ". 
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In order to reduce the number of Z-evaluations as much as possible, we first 
observe that after having determined a Gram block B1 of length L ~ 2, we already 
have implicitly detected L - 2 sign changes of Z( t ). Hence, the problem reduces to 
finding the "missing two" sign changes. Next we observe that these missing two (if 
existing) must both lie in one and the same Gram interval of the block B1. Some 
preliminary experiments with the L R & W-program revealed that in the majority of 
cases the missing two are situated in one of the outer Gram intervals of B. 

J 
Therefore, we first search in (g1, g1+ 1) or (gJ+L-I' gJ+L) according to which of 
abs( Z(g) + Z(g1+ 1)) and abs(Z( gJ+L- i) + Z( g1+L)) is the smallest. In the selected 
interval an efficient parabolic interpolation search routine is invoked. (Here is the 
main improvement over Brent's method, which used random search rather than 
parabolic interpolation.) If this routine terminates without having found the missing 
two sign changes, the other outer Gram interval of the block is treated in the same 
manner. In case the missing two are still not found, another search routine is called, 
depending on the length L of the block B1 = [ g1, g1+L). 

If L = 2, the interval (g1, g1+ 2 ) is scanned again, and if L > 2, we continue to 
search in the interval (g1+ 1, gJ+L-· 1). In both cases, the search is performed by 
means of a refinement of a search routine described by Lehman [9]. For more details 
we refer the reader to the source text of the L R & W-program in (12]. 

If at some instant one of the search routines has detected the missing two, a new 
Gram block is set up, and we continue as described above. In the opposite case the 
program prints a message and a "plot" of Z( t) corresponding to the whole Gram 
block under investigation and proceeds by pretending (!) that the missing two were 
found indeed. These plots of Z(t) were inspected afterwards (if necessary) "by 
hand". So far, the missing two were always easily found either in the Gram block 
under consideration or in an adjacent Gram block; compare Brent [2, Section 4]. 

After having covered the range [g 156,800,000 , g200_000,000 ), we ran the computation a 
little further and found 4 Gram blocks in [ g200_000,000 , g200,000,004 ), all of them 
satisfying Rosser's rule. By applying Theorem 3.2 of Brent [2], we completed the 
proof of our claim that the first n = 200,000,00 l zeros of n s) are simple and lie on 
a=!. 

We (L R & W) intend to extend our computations in the near future. 

3. Computation of Z(t) and Error Analysis. In principle, Brent's and L R & W's 
methods of computing Z( t) and error analysis are exactly as described in Section 5 
of Brent [2]. We shall only mention here the differences between L R & W's 
computations and error analysis and Brent's. Details are given in [12]. 

The L R & W-computations were carried out on a CDC CYBER 175 computer 
having a 60-bit word, and single-precision and double-precision floating point 
arithmetic using 48- and 96-bit binary fractions, respectively. The function Z( t) was 
computed (in both methods A and B) using the Riemann-Siegel formula with two 
terms in its asymptotic expansion. Gabcke's error bound (see [5]) I R 1( t) I< 
0.053r 514 , fort;;;., 200, was used. The same bound is also given as a special case of 
more general bounds in Brent and Schoenfeld [3]. For method A, a precomputed 
table of 8194 cosine-values, and a precomputed table of 8193 corresponding dif 
ferences of cosine-values, was used in the linear interpolation formula for the 
cosine-approximation. The main loop in method A was programmed in machine 
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language (COMPASS), and one cycle of this loop executed in about 2.1 µsec. The 
error analysis, accounting for all possible errors in the machine computation of Z( t ), 
was carried out for any tin the interval (3.5 X 107, 3.72 X 10 8 ). This interval covers 
the range of zero #81,000,000 till zero # l,000,000,000 of s(s) in the critical strip, 
which L R & W originally planned to investigate. The following bounds for the error 
in the computed value Z(t) of Z(t) were derived: 

{ 
3 X 10- 1'T 114 for method A ** 

li(t) - Z(t)i.;;; (5.4 x 10- 3r- 3! 2 + 3.1 x l~- 16 + 4.1x10- 24'T- 112 

+5 X 10- 26Tln(r))'T 114 formethodB, 

for any t (= 27T'T) in the interval (3.5 X 107, 3.72 X 10 8 ). In this interval, a safe 
upper bound for the error is 2.7 X 10- 5 , respectively 2.0 X 10- 11 . In the L R & 
W-program, the extremely conservative fixed bounds 10-4 (and sometimes even 
2 X 10- 4 ) respectively 2.5 X 10- 6 were used. Nevertheless, until now not a singlet 
was met for which method B could not determine the sign of Z(t) rigorously. 

4. Statistics. The L R & W-program was organized in such a way that in case the 
value of Z( t ), obtained with method A, was too small for a rigorous sign determina
tion, a few small shifts of the argument were tried before method B was invoked. 
Therefore, the L R & W-program uses, in relatively few cases, an approximation to 
the Gram point g1 instead of g1 itself. (In a run of 2,500,000 zeros, with error bound 
10- 4 for method A, the total number of shifts was always less than 370. Most of 
them were made when separating the zeros inside the Gram blocks. Only a few of 
them were made in Gram points. Also see the text introducing Table 3.) Conse
quently, the statistics found by L R & W cannot, strictly speaking, be accumulated 
to those found by Brent. Nevertheless, just for convenience, we have put together all 
results. This should be kept in mind when reading the tables. 

In Table I we present a list of 104 exceptions to Rosser's rule up to g200,ooo,ooo 
found by Brent and L R & W, including the 15 exceptions up to g75,ooo,ooo from [2], 
for completeness. Moreover, the types are given in parentheses, followed by the local 
extreme values of S(t) near Bn- It is possible that for n;;;. 156,800,000 the L R & 
W-program has not detected all exceptions to Rosser's rule, due to possible shifts in 
Gram points. For instance, an exception of type 2 (see Table 2) may have been 
detected as a Gram block of length 3 with "2 I O" zero-pattern. It may be noted, 
however, that in the range [ g81 ,000,000 , g120,000,000 ) L R & W have found exactly the 
same exceptions to Rosser's rule as Brent. 

In addition to the types 1, 2, and 3 introduced by Brent [2], we have defined the 
types 4, 5, and 6, the meaning of which should be clear from Table 2. This table also 
gives the frequencies of the occurrences of the various types in [ g _ 1, g200,ooo.ooo ). 
Note that an exception of type 4 has not yet been found, so that at the time of 
writing we still know only one Gram interval with four zeros, viz. G61 ,331 ,768 , found 
by Brent [2]. 

**In [ 12] a four-term bound was given for method A. A closer look at the error analysis led us to the 
simpler bound given here. 
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TABLE 1 
(extension of Table 3 of Brent [2]) 

104 exceptions to Rosser 's rule up to g200,ooo,ooo 

Notation: n (type) extreme S( t) where n is the index 
of the Gram block Bn containing no zeros. 

11,999,525(1) -2.0041 100,788,444(1) -2.0230 146,130,246(2) 2.0005 173,737,614(2) 2.0221 

30,783,329(1) -2.0026 106,236,172(1) -2.0184 147,059,770(1) -2.0498 174,102,513(1) -2.0180 

30,930,927(2) 2.0506 106,941,328(2) 2.1559 147,896,100(2) 2.0391 174,284,990(1) -2.0181 

37,592,215(1) -2.0764 107,287,955(1) -2.0786 151,097,113(1) -2.0043 174,500,513(1) -2.0125 

40,870,156(1) -2.0038 107,5)2,017(2) 2.0728 152,539,438(1) -2.0026 175,710,609(1) -2.0193 

43,628,107(1) -2.0242 

46,082,042(1) -2.0311 

46,875,667(1) -2.0046 

49,624,541 (2) 2.0018 

50,799,238(1) -2.0288 

55,221,454(2) 2.0242 

56,948,780(2) 2.0177 

60,515,663(1) -2.0081 

61,331,766(3) -2.0543 

69,784,844(2) 2.0637 

75,052, 114 (1) -2.0045 

79,545,241 (2) 2.0113 

79,652,248(2) 2.0066 

83,088,043(1) -2. 1328 

83,689,523(2) 2.0775 

85,348,958(1) -2.0095 

86,513,820(1) -2.0154 

110,571 ,044(1) -2.0458 

111,885,254(2) 2.0247 

113,239,783(1) -2.0306 

120,159,903(1) -2.0589 

121,424,392(2) 2.0515 

121,692,932(2) 2.0616 

121,934,171(2) 2.1719 

122,612,849(2) 2.0072 

126, 116,567(1) -2.0106 

127,936,513(1) -2. 1105 

128,710,278(2) 2.0444 

129,398,903(2) 2.0431 

130,461,097(2) 2.0963 

131,331,948(2) 2.0047 

137,334,072(2) 2.0239 

137,832,603(1) -2.0134 

138,799,472(2) 2.0135 

152,863,169(2) 2.0459 

153,522,727(2) 2.0027 

155, 171 ,525(2) 2.0437 

155,366,607(1) -2.0277 

157,260,687(2) 2.0363 

157,269,224(1) -2.0329 

157,755,123(1) -2.0205 

158,298,485(2) 2.0273 

160,369,051 (2) 2.0071 

162,962,787(1) -2.0115 

163,724,709(1) -2.0163 

164, 198,114(2) 2.0235 

164,689,301 (1) -2.1579 

164,880,229(2) 2.0308 

166,201,932(1) -2.0024 

168,573,836(1) -2.0159 

169, 750,763(1) -2.1036 

176,870,844(2) 2.0125 

177,332,733(2) 2.0146 

177,902,862(2) 2.0223 

179,979,095(1) -2.0182 

181,233,727(2) 2.1018 

181 ,625,435 (I) -2.0401 

182,105,257(6) 2.0084 

182,223,560(2) 2.0156 

191,116,405(2) 2.0195 

191,165,600(2) 2.0283 

191,297,535(5) -2. 1490 

192,485,616(1) -2.0416 

193,264,636(6) 2.0055 

194,696,968(1) -2.0664 

195,876,805(1) -2.0143 

195,916,549(2) 2.0546 

196,395, 161 (2) 2.0326 

87,947,597(2) 2.0523 139,027,791(1) -2.0031 170,375,507(1) -2.0009 196,676,303(1) -2.0135 

88,600,095(1) -2.1394 141,617,806(1) -2.1253 170,704,880(2) 2.0249 197,889,883(2) 2.0034 

93,681,183(1) -2.0165 144,454,931(1) -2.0380 172,000,993(2) 2.0608 

100,316,552(2) 2.0233 145,402,380(2) 2.0012 173,289,941 (1) -2.0378 

TABLE 2 

198,014,122(1~ -2.0333 

199,235,289(1) -2.0205 

Various types of exceptions to Rosser 's rule and their 

frequencies in [ g _ 1, g200,ooo,ooo ). 

3 

0 4 

2 2 

Gram block of 
length 2 Yithout 
any zeros 

gn 
\! 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

4 0 

2 2 

type 

1 

2 

3 

4 

5 

6 

frequency 

53 

47 

I 

0 

I 

2 
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Very recently, Karkoschka and Werner [8] have developed a method for detecting 
exceptions to Rosser's rule with relatively small computational effort, i.e., by 
searching in certain selected small ranges of a given t-interval. A comparison of their 
results with Table 1 shows the power of their method: in [ g3,500,000 , g50,000,000 ) they 
found all 9 exceptions to Rosser's rule, and in [ gIOo,ooo.ooo' g 120,000,000 ) they found 6 of 
the 9 exceptions. 

Table 3 is a continuation of Table 1 of Brent [2]. Six Gram blocks of length 8 were 
found. The average block length up to n = 200,000,000 is l.1951. We have compared 
the results of L R & W with those of Brent in the range [ g 110,000.000 , g 120,000,002 ). The 
observed differences were extremely small. Brent's program counted 7,011,482 Gram 
blocks of length 1, 1,055,511 of length 2 and 230,234 of length 3. The corresponding 
figures obtained by L R & W were 7,011,494, 1,055,508 and 230,232, respectively. 
The numbers of Gram blocks of length ;;:;., 4 were the same for both programs. 

TABLE 3 

(continuation of Table 1 of Brent [2]) 
Number of Gram blocks of given length 

----~--

n J(I ,n) J (2, n) J(3,n) J(4,n) J(5,n) J (6 ,n) J(7, n) J(8,n) 

80,000,000 56,942,025 .8, 386,072 1,714,271 260,637 18,807 1,033 34 

90,000,000 63,977 ,026 9,439,917 I, 941 ,455 299,932 22,257 I ,240 46 

100,000,000 71,004,697 10,493,487 2,169,610 340,360 25,813 I ,436 54 

110,000,000 78,023,506 11,547,936 2,399, 154 381'216 29,601 I ,644 61 

120,000,000 85,034,988 12,603,447 2,629,388 422,721 33,500 I,841 74 
130,000,000 92,041,326 13,659,023 2,860,087 464,955 37,495 2,070 92 

140,000,000 99,041,526 14,713,754 3,092,451 507,686 41, 631 2,332 102 

150,000,000 106,038,874 15,768,532 3,325,400 550,630 45,795 2,591 114 3 
156,800,000 110,793,769 16,486,479 3,484,026 579,999 48,731 2,780 120 3 

200,000,000 140,956,084 21,047,520 4,497,856 771,607 68,631 4,031 213 6 

TABLE 4 

(continuation of Table 2 of Brent [ 2]) 

Number of Gram intervals containing exactly m zeros 

n m = 0 m = I m = 2 m = 3 m • 4 

80,000,000 10,513,316 59, 105,832 10,248,390 '132,461 

90,000,000 11,854 ,362 66,440,792 11,555,331 149,514 

100,000,000 13, 197 ,331 73,771,910 12;864,188 166,570 

iI0,000,000 14,543,760 81,096,629 14,175,463 184,147 

120,000,000 15,892,224 88,416,806 15,489,718 201,251 

130,000,000 17,242,449 95,733,829 16,804,996 218,725 

140,000,000 18,594,089 103,047,955 18, 121'824 236, 131 

150,000,000 19,946,624 110,360,313 19,439,504 253,558 

156,800,000 20,867,682 115,330, 181 20,336,593 265,543 

200,000,000 26,731,720 146,878,417 26,048,007 341,855 
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Table 4 is a continuation of Table 2 of Brent [2]. The percentages of the numbers 
of Gram intervals up to n = 200,000,000 containing exactly m zeros are 13.4, 73.4, 
13.0, and 0.2 for m = 0, 1, 2, and 3, respectively. No new Gram intervals with 
exactly four zeros were found. 

Table 5 continues Table 4 of Brent [2]. As yet, no Gram block of type (7, 1) was 
found. Due to the shifts, we may have missed earlier occurrences of blocks of types 
(7, 7), (8, 3) and (8, 7), although we consider this unlikely. 

+ j 

TABLE 5 

(continuation of Table 4 of Brent [2]) 
First occurrences of Gram blocks of various types 

k n 

7 7 195,610,937 (L R & W) 

8 2 112,154,948 (BRENT) 

8 3 175,330,804 (LR & W) 

8 6 145,659,BID (BRENT) 

8 7 165, 152,519 (LR & W) 

TABLE 6 

NumberofGramblocksoftype(j,k), 1~)~8,1 ~k~j, 

in the interval [ g 156 ,800 ,000 , g2oo.ooo,ooo) 

------~-- -~----

k+ 
I 2 3 4 5 6 7 8 

30, 162,315 

2 2,279,942 2,281,053 43 blocks with 0 0 zero-pattern 
(SO) (50) 3 blocks with 2 2 zero-pattern 

3 479, 720 53,497 480,613 
(4 7) (5) (47) 

4 87,367 8,592 8,499 87, I 50 
(46) (4) (4) (45) 

5 7,581 I ,811 948 I, 882 7,678 
(38) (9) (5) (9) (39) 

6 156 337 119 126 366 147 
( 1 2) (27) ( 1 0) ( 10) (29) (12) 

7 0 29 17 3 17 26 1 

8 0 0 l*) 0 0 I*) I*) 0 

*)viz. Bn, for n 175,330,804, 181,390, 731 and 165, 152,519. 

total 

30, 162,315 

4,561,041 

I ,013,830 

I 91, 608 

19,900 

I, 25 I 

93 

3 

In Table 6 we list the number of Gram blocks of type ( j, k ), 1 ~ j ~ 8, 1 ,,,;;; k ~ j, 
in the interval [g 156,800,000 , g200,000,000 ), as they were actually counted by the L R & 
W-program. On the line withj = 2 we also mention the numbers of Gram blocks of 
length 2 with zero-pattern "O O" and those with pattern "2 2" which could, of 
course, neither be classified as type (2, 1) nor as (2, 2). The 43 blocks with "O O"
pattern correspond to the exceptions to Rosser' s rule in [ g 156,800,000 , g20o,ooo,ooo) and 
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the 3 blocks with "2 2"-pattern correspond to the exceptions of types 5 and 6 (cf. 
Table 2). The entries in parentheses give the approximate percentages with respect to 
the total number of blocks of length}, given in the final column. 

Our main purpose in presenting this table is to render support to the L R & 
W-strategy of dealing with Gram blocks of length};;;;.. 2. The table shows that this 
strategy is successful for 2 ,,;;;; j,,;;;; 5. However, for j ;;;. 6 the missing two zeros show 
an increasing tendency to lie either in (gn+l' gn+ 2 ) or in (gn+J- 2 , gn+J- 1). Only one 
of the 93 blocks of length}= 7 has its missing two zeros in one of the outer Gram 
intervals! 
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