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Abstract. In this work we revisit the SPDZ multiparty computation
protocol by Damg̊ard et al. for securely computing a function in the
presence of an unbounded number of dishonest parties. The SPDZ pro-
tocol is distinguished by its fast performance. A downside of the SPDZ
protocol is that one single dishonest party can enforce the computation
to fail, meaning that the honest parties have to abort the computation
without learning the outcome, whereas the cheating party may actually
learn it. Furthermore, the dishonest party can launch such an attack
without being identified to be the cheater. This is a serious obstacle
for practical deployment: there are various reasons for why a party may
want the computation to fail, and without cheater detection there is lit-
tle incentive for such a party not to cheat. As such, in many cases, the
protocol will actually fail to do its job.

In this work, we enhance the SPDZ protocol to allow for cheater detec-
tion: a dishonest party that enforces the protocol to fail will be identified
as being the cheater. As a consequence, in typical real-life scenarios, par-
ties will actually have little incentive to cheat, and if cheating still takes
place, the cheater can be identified and discarded and the computation
can possibly be re-done, until it succeeds.

The challenge lies in adding this cheater detection feature to the orig-
inal protocol without increasing its complexity significantly. In case no
cheating takes place, our new protocol is as efficient as the original SPDZ
protocol which has no cheater detection. In case cheating does take place,
there may be some additional overhead, which is still reasonable in size
though, and since the cheater knows he will be caught, this is actually
unlikely to occur in typical real-life scenarios.

1 Introduction

The SPDZ MPC Protocol. Since the initial theoretical possibility results for mul-
tiparty computation (MPC) in the late eighties [2,5,8,10], much effort has been
put into reducing the (communication and computation) complexity of MPC,
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and we are now at a stage where MPC is at the verge of being practical. One
of the currently known protocols that is (close to) efficient enough for practi-
cal deployment is the so-called SPDZ protocol by Damg̊ard et al. [7], and its
variations from [6]. The efficiency of the SPDZ protocol is due to a clever mix
of cryptographic operations, which can mostly be pushed into a preprocessing
phase, and very efficient information-theoretic techniques.

The SPDZ MPC protocol offers security against a dishonest majority, i.e.,
there is no bound on the number of corrupt parties the protocol can tolerate:
even if all but one of the parties are corrupt, that one single party is still pro-
tected. A downside of such protocols with security against a dishonest majority
is that they are inherently susceptible to a “denial-of-service” attack: even one
single dishonest party can enforce the protocol to fail, meaning that the honest
parties have to abort the computation without learning the outcome, whereas
the cheating party may actually learn it. Furthermore, the SPDZ MPC protocol
is such that the cheating party who launches the attack remains covert: the (hon-
est) parties know that there is a cheater among them that caused the protocol
to fail, but they have no way to identify the culprit. As such, with little effort
and with nothing to fear, a single party can prevent the SPDZ protocol from
doing its job.

Identifiable vs Non-identifiable Abort. We feel that such an non-identifiable
abort, where the honest parties cannot identify the cheating party that caused
the abort, is a serious drawback for practical deployment. In real-life scenarios,
there are many reasons for why a party may be tempted to enforce the protocol
to fail: he may know or suspect that he is not going to like the outcome, he
may gain an advantage by learning the outcome but preventing the others from
learning it, he may want to sabotage the computation out of malevolence, etc.
And of course, if that party does not have to fear any consequence because he
knows that he will not be caught, there is little incentive for him not to cheat.
As such, in real-life scenarios, it is not unlikely that such an abort will actually
take place. Furthermore, once such an abort does take place, the affected hon-
est parties are stuck — there is nothing they can do: they cannot call anyone to
account, and re-trying the computation is (almost) useless, because the cheating
party can just re-do the attack.

In contrast to this is the concept of identifiable abort, where we require that,
as a consequence of launching a denial-of-service attack, the cheating party will
be identified as being the culprit. Obviously, for a protocol that offers identifiable
abort, there is much less incentive for a party to cheat and enforce the protocol
to fail, because he knows that he will be caught and have to deal with the
consequences. Thus, if there is some severe enough punishment, an abort is
unlikely to occur. Furthermore, even if an abort does occur, the affected honest
parties have room for further actions: not only can they call the cheating party
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to account, they can also re-do the computation with the culprit excluded, and
this way they can still obtain the outcome of the computation eventually.1

We point out that non-identifiable abort is no issue in case of two-party
computation: if the protocol fails then it is clear to the honest party that the
other party must be cheating.

Our Results. We propose a new version of the SPDZ protocol that supports
identifiable abort: if the protocol aborts then at least one dishonest party will
be identified as having cheated. We emphasize that the challenge lies in adding
identifiability to SPDZ without increasing its complexity too much; in particular,
we want the protocol to run (almost) as fast as the original version in case parties
do not misbehave (too much). This is what our protocol achieves.

– In case no cheating takes place, i.e., all the players behave honesty, our protocol
is essentially as efficient as the original SPDZ protocol: namely, it has an
asymptotic communication complexity of O(n) point-to-point communications
per gate and an asymptotical computational cost of O(n) field operations per
gate.
We perform extra broadcasts compared to the original SPDZ protocol, but
since their number is independent of the circuit size, this can be neglected for
large enough circuits.

– In case cheating does take place, but to an extent that the protocol can handle
it and does not abort, our protocol is slower by a factor at most 2, hence still
with an asymptotic complexity of O(n) per gate for both communication and
computation.
Again, the extra broadcasts can be neglected.

– In case cheating takes place and the protocol does abort (with identification),
we distinguish between the following two cases (which case occurs depends on
the kind of cheating):

• Identification with no agreement: Every honest player has identified at
least one player as a cheater, but there may not be agreement among the
honest players about the list of cheaters.2 In this case, our protocol is
slower still by a factor 2 only.

• Identification with agreement: There is common agreement among the
honest players about at least one player being a cheater. In this case, our
protocol may take substantially longer to identify the cheater, namely in
this case the number of cryptographic operations to be performed grows
with the size of the circuit.

Thus, the only case when our version is significantly slower than the original
SPDZ protocol is when a dishonest player cheats so bluntly that he is publicly

1 One has to be careful with this “solution” though: collaborating dishonest parties
that remained passive during the first run may now adjust their inputs, given that
they have learned the output from the first (failed) run.

2 But every player that is identified by an honest player to be a cheater is a cheater;
thus, this case can only occur if there is more than one cheater.
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recongnized as being a cheater. However, in many practical scenarios, there seems
to be little gain for a dishonest player in slowing down the protocol at the cost
of being publicly caught as a cheater, and thus having to face the consequences.
Therefore, in typical scenarios, our protocol is similarly efficient as the original
SPDZ protocol but, in contrast to the original version, it discourages dishonest
players from enforcing the protocol to abort.

Related Work. Cheater detection is achieved by early MPC protocols such as [8],
and by other protocols that are based on the paradigm that players prove in zero-
knowledge that they followed the protocol instructions honestly. However, the
high communication complexity of these protocols make them unsuitable for
practical deployment.

On the other hand, recent MPC protocols (in a so-called offline/online model)
are designed to have very high efficiency, like the protocols from the SPDZ fam-
ily [6,7], which feature a very attractive asymptotic communication and com-
putational complexity of O(n) per multiplication gate (for the online phase).
However, these protocols do not offer cheater detection. An earlier protocol by
Bendlin et al. [3] offers a very weak form of cheater detection: namely, at least one
honest player will identify a dishonest one, but other honest players may have
no clue on the identity of cheating parties; the protocol has a computational
complexity of O(n2) per multiplication gate.

The work by Ishai et al. [9] is the first to rigorously define and discuss the
notion of cheater detection (in the universal-composability model of Canetti [4]);
the article presents a general compiler that adds cheater detection to any semi-
honest MPC protocol in the preprocessing model.

A very recent protocol, due to Baum et al. [1], builds up on the Bendlin
et al. approach and achieves full cheater detection with a communication and
computational complexity of O(n2) per multiplication gate; this also improves
on the best protocol obtained by means of the techniques by Ishai et al.

The goal of our work is to develop a MPC protocol that is “strictly stronger”
than SPDZ, in that when not under attack it has the same running time than
SPDZ, and when under attack it either gives away cheaters or the protocol
can handle the attack and still has the same (asymptotic) running time than
SPDZ. This is achieved by our protocol, but is not achieved by any of the above.
Indeed, in case no severe cheating takes place, our protocol is at most a fac-
tor 2 slower than SPDZ, hence achieving a communication and computation
complexity of O(n) per multiplication gate. If cheating does take place to the
extent that the protocol aborts, than either we obtain a weaker notion of cheater
detection (“identification with no agreement”) at the same cost, or we obtain
the same notion (“identification with agreement”), but with a overhead in local
computations.



Cheater Detection in SPDZ Multiparty Computation 155

2 The Original SPDZ Protocol

2.1 The Setting

SPDZ allows n players P1, · · · , Pn holding private inputs over a finite field Fq to
securely evaluate an arithmetic circuit C on their inputs. We assume a synchro-
nous point-to-point communication network that allows for perfectly private and
reliable communication between any two players. We also consider a broadcast
channel, though this one may have to be implemented using the point-to-point
channels (and cryptographic techniques).

2.2 Ingredients

SPDZ follows the standard paradigm and computes the circuit C on shared
values. At the core are additive sharings, for which the following nota-
tion/terminology is used.

– A [·]-sharing of a value z ∈ Fq is an additive sharing of z, meaning that each
player Pi holds a random share zi ∈ Fq subject to

∑
i zi = z. This is denoted

by [z] = (z1, · · · , zn).

Furthermore, to ensure correctness, every shared value is accompanied by a
sharing of an authentication tag for the shared value. This is formalized as
follows.

– For an arbitrary but fixed α ∈ Fq, a 〈·〉α-sharing of z consists of [·]-sharings
of z and of α · z, i.e., 〈z〉α =

(
[z], [α · z]

)
. The element α is called the global

key, and αz is called the tag of z and usually denoted by γ(z). If α is clear
from the context, we may write 〈·〉 instead of 〈·〉α.

We say that a sharing [z] or a sharing 〈z〉α =
(
[z], [γ(z)]

)
is privately opened

to a player Pi if each player Pj sends his share zj to Pi via a point-to-point and
Pi computes z :=

∑
j zj . We say that a sharing is publicly opened if it is privately

opened to a designated “king player” Pk, and then Pk sends the reconstructed
value z to all the players via point-to-point channels.3

Note that (for a fixed global key α) a 〈·〉α-sharing is linear, in the sense that
linear combinations can be computed on the shares:

〈z + w〉 = 〈z〉 + 〈w〉 :=
(
[zi + wi]i=1,··· ,n, [γ(z)i + γ(w)i]i=1,··· ,n

)

〈λz〉 = λ · 〈z〉 :=
(
[λzi]i=1,··· ,n, [λγ(z)i]i=1,··· ,n

)
.

Furthermore, if α is [·]-shared then the same holds for addition with a con-
stant:

〈λ + z〉 = λ + 〈z〉 :=
(
[λ + z1, z2, · · · , zn], [λα1 + γ(z)1, · · · , λαn + γ(z)n]

)
.

Finally, a triple
(〈a〉α, 〈b〉α, 〈c〉α

)
is called a multiplication triplet if it consists

of three 〈·〉α-shared random values a, b, c subject to ab = c.
3 We emphasize that, by definition, these private and public openings do not involve

any checking of the correctness of z by means of its tag; this will have to be done
on top.
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2.3 Outline of the SPDZ Protocol

SPDZ is divided into a offline (or pre-processing) phase, and an online phase.
The idea is to push most of the (somewhat) expensive cryptographic techniques
into the offline phase (which can be executed before the inputs to the computa-
tion — or even the actual computation — are known), and rely mainly on very
efficient information-theoretic techniques in the online phase.

More concretely, in the offline phase the players make use of an additive-
homomorphic and somehwhat multiplicative-homomorphic encryption scheme
Enc to produce

– a [·]-sharing [α] of a random and unknown global key α,
– a list of 〈·〉α-sharings 〈r〉α of random and unknown values r, and
– a list of multiplication triplets

(〈a〉α, 〈b〉α, 〈c〉α

)
with random and unknown

a, b, c = ab.

Additionally, sort of as a “side product” of the generation of all these sharings
with the help of the encryption scheme Enc, the following is given at the end of
the offline phase for every [·]-sharing [z] = (z1, . . . , zn) that occurs as (first or sec-
ond) component of a 〈·〉α-sharing (as well as for the [·]-sharing [α]). Every player
Pi is committed to his share zi by means of an encryption ezi

:= Enc(zi, ρzi
) of zi

that is publicly known, and player Pi knows the corresponding randomness ρzi
.

Recall that Enc is additively-homomorphic, so that linear combinations (and
addition with constants) can be computed on the commitments.

The actual computation takes place in the online phase. By using the sharings
produced in the offline phase as a resource, the online phase can be executed
to a large extent by means of very efficient information-theoretic techniques —
the number of cryptographic operations needed is independent of the circit size.
Concretely, the online phase is composed of the following gadgets.

– Input sharing: For each input x held by a player Pi, a fresh (meaning: yet
unused) sharing 〈r〉α from the offline phase is selected and privately opened
to Pi. Pi then sends ε := x − r to all the players, and altogether the players
can then compute a sharing of x as 〈x〉α = ε + 〈r〉α.

– Distributed addition (and multiplication/addition with constants): For each
addition gate in the circuit with shared inputs 〈z〉α and 〈y〉α, a sharing of z+y
is computed (non-interactively) as 〈z + y〉α = 〈z〉α + 〈y〉α. Correspondingly
for multiplication/addition with a constant.

– Distributed multiplication: For each multiplication gate in the circuit with
shared inputs 〈z〉α and 〈y〉α, a sharing of z · y is computed (interactively)
by means of the multiplication subprotocol below, which consumes one fresh
multiplication triple from the offline phase.

– Output reconstruction: For each shared output value 〈z〉α, the players publicly
reconstruct z.



Cheater Detection in SPDZ Multiparty Computation 157

– Tag checking: For a shared value 〈z〉α = ([z], [γ(z)]) that has been publicly
opened, the players can check the correcntess of z as follows. Every player Pi

computes yi := γ(z)i−z·αi and broadcasts a commitment of yi, and then every
player opens the commitment and the players compute y :=

∑
i yi = γ(z)−z·α.

If y = 0 then z is declared to be correct; otherwise, it is declared incorrect
and the protocol is immediately aborted.

We do not detail how these gadgets are put together, in particular how/when
exactly the tag checking is used, as this is not very relevant to us. However, let
us emphasize that a single dishonest player can easily enforce the protocol to
abort, e.g., by submitting an incorrect share for a sharing 〈z〉α that is publicly
opened and then checked; the check will recognize (with high probability) that
the reconstructed value z is incorrect, and so the protocol will abort, but there
is no way for the honest players to find out who submitted an incorrect shares.
Hence, any such dishonest player gets away with it, and hence there is no incen-
tive for a dishonest player not to cheat, should it give him any advantage or
satisfaction whatsoever.

Multiplication subprotocol
A fresh multiplication triplet

(〈a〉, 〈b〉, 〈c〉) is selected, and the following is
performed.

1. The players compute 〈ε〉 := 〈z − a〉 and 〈δ〉 := 〈y − b〉.
2. The sharings 〈ε〉 and 〈δ〉 are publicly opened:

– 〈ε〉 and 〈δ〉 are privately opened to a designated king player Pk, and
– Pk sends ε and δ to the others player via the point-to-point channels.

3. The players compute 〈z · y〉 := 〈c〉 + ε〈b〉 + δ〈a〉 + εδ.

3 Our Protocol

3.1 An Overview of Our Protocol

We explain on a high level how our protocol works. First, notice that there are
three distinct ways for dishonest players to disrupt the protocol execution (and
enforce an abort in the original SPDZ protocol):

– During the input sharing phase, dishonest players could send incorrect shares
of r to Pi, or Pi could send inconsistent values ε to the players.4

– During the multiplication step, dishonest players could send incorrect shares
of ε and δ to the king player.

4 Note that there is no issue of ε being incorrect since any ε corresponds to a possible
input for Pi.
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– During the multiplication step, a dishonest king player could send false and/or
inconsistent values for ε and δ.

– In the output reconstruction phase, dishonest players could announce false
shares of the output.

We will focus on the two possible attacks in the multiplication step, since our
techniques to deal with those can easily be used to also deal with the attacks in
the input sharing and output reconstruction phases.

As pointed out above, the players have two “checking mechanisms” available
in order to verify the correctness of a reconstructed value z:

– they can use the tag γ(z) of z to check the correctness of z, and
– they can use the commitments to check the correctness of the shares zi.

The former technique is very efficient but cannot be used to identify who
submitted a false share in case of an incorrect z; this can be done by the latter,
but that one is computationally more expensive, and so we want to avoid it as
much as possible and use it only as a “last resort”.

Now, a first and straightforward approach to achieve cheater detection but
use the computationally expensive techniques only as a last resort, seems as
follows: first, use the “cheap” tag checks to verify the correctness of every recon-
structed value (as in the original SPDZ protocol), and then resort to the com-
mitments if and only if an error is detected, in order to find out who claimed an
incorrect value.

Unfortunately, this does not work. The reason is that only the king player
knows the shares of, say, ε. As such, if ε claimed by the king player turns out
to be incorrect, there is no way for an honest player to distinguish the case of a
dishonest player Pi who has sent an incorrect share εi to the king player, from
the case of a dishonest king player who pretends that he has received an incorrect
share εi from Pi. There is no way such a dispute can be resolved, even with the
help of the commitments — except if these shares are broadcast from the start,
but that would greatly increase the complexity of the protocol.

To deal with such a situation, we use an idea from dispute control: we re-do
(part of) the computation in such a way that this particular dispute cannot
occur anymore (essentially by choosing a fresh king player). Since the number
of disputes is bounded, this means that there is a limit on how often something
needs to be re-done, and setting the parameters right ensures that this merely
gives a factor-2 blowup.

On the other hand, if a dishonest player Pi keeps on claiming an incorrect
share for, say, ε, even when the players are asked to broadcast their shares because
a fault was detected, then the players can use the (computationally expensive)
commitments to find the incorrect share, and the honest players will unanimously
identify Pi as cheater.

The overall structure of (the computation phase of) our protocol is thus as
follows.
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Set-up: The circuit C is divided into consecutive blocks, each comprising
ca. |C|/n gates (where “consecutive” here means that C can be evalu-
ated in a block-by-block manner). Furthermore, a list Lsuspects of suspect
players is initialized as the empty set.
Computation: Sequentially, for each block the following is done:
I. A king player Pk /∈ Lsuspects is selected, and the computation is

done as in the normal SPDZ protocol by repeatedly invoking the
multiplication sub-protocol and doing local computations.

II. Once the block has been processed, a checking protocol BlockCheck is
invoked that verifies the correctness of the computation. BlockCheck
has three possible outcomes:

• Success: The block has been correctly processed. In this case, the
players simply move to the next block.

• Fail with Conflict: The block has not been correctly processed,
and Pk accuses some player(s) of faulty behaviour. In this case,
Pk and all accused players are added to Lsuspects, and the players
go back to step I. and re-do the computation with a “fresh” Pk �∈
Lsuspects. Should Lsuspects now consist of all players then the
protocol stops; in this case, every honest player has identified at
least one dishonest player.

• Fail with Agreement: The block has not been correctly processed,
and it is guaranteed that some player has broadcast an incorrect
share during the run of BlockCheck. In this case, the players
make use of the commitments to unanimously identify the cheat-
ing player.

3.2 The Checking Protocol BlockCheck

We will now provide a more precise discussion of the check-phase mentioned in
the previous section. What it will do is check the correctness and consistency
of all the ε’s and δ’s that were announced by the king player during the multi-
plication subprotocols in the block to be checked. Let us write 〈z(1)〉, · · · , 〈z(t)〉
for the sharings of these ε’s and δ’s. This means that each player Pi has com-
municated his share z

(j)
i to Pk, who in turn has computed z(j) =

∑
i z

(j)
i and

communicated it to all other players. In the following discussion, we will denote
by z̃

(j)
i the actual share communicated by Pi to Pk (so that if Pi is dishonest,

it may be the case that z̃
(j)
i �= z

(j)
i ), and by z̃(j) the value that Pk has commu-

nicated to the other players. However, we emphasize that that Pk is dishonest
then he may be inconsistent with the value of z̃(j), different players may receive
different values for z̃(j).
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The subprotocol Block Check now works as follows. As a first step, as check-
ing each value individually is too expensive, a quasi-random linear combination
of the 〈z(j)〉’s is computed:

Step 1: The players run a subroutine Rand to produce a random element
e, and they compute the linear combination 〈z〉 :=

∑
h eh〈z(h)〉.

Let z̃i and z̃ be the respective linear combinations of z̃
(1)
i , · · · , z̃

(t)
i and of

z̃(1), · · · , z̃(t). The correctness of z̃ is then verified as follows.

Step 2: Public Reconstruction. Each player broadcasts his share of 〈z〉,
upon which the king player Pk broadcasts a list of players that he accuses
of inconsistent behaviour; if he does so, BlockCheck outputs the message
“Fail with Conflict” and the list of accused players.

If Pk has not accused anybody, then each player can broadcast an accu-
sation against Pk, stating that the value z̃ that he received is different from
z (which is now public, since its shares have been broadcast). If that is the
case, then once again we are in the “Fail-with-Conflict” case: BlockCheck
outputs the corresponding error message and the list of players accusing Pk.

Now if no accusations have been produced, the next step consists in checking
the tag of the now-public value z̃:

Step 3: Tag Checking. If no accusations have been produced in Step 2,
then players check the tags of 〈z〉 = ([z], [γ(z)]); this is done running a
subroutine ZeroTest on [γ(z)] − z̃[α], which outputs � if it is a sharing of
0, and ⊥ if it is not (except with small probability).

BlockCheck outputs the message “Success” if the tag check succeeds,
and “Fail with Agreement” if it fails.

Note that in step 3 above, the players cannot just do a public reconstruction
of the sharing [γ(z)]−z̃[α] to check whether it is a sharing of zero, because in case
it is not, the value of γ(z) − z̃α reveals information on α. That is why a slightly
more involved subroutine ZeroTest is invoked, which publicly reconstructs a
random multiple of [γ(z)] − z̃[α].

If the tag check in step 3 above fails, then this means that a dishonest player
Pi must have broadcast a false share zi during step 2, or (as we will see) he
has broadcast some false share as part of the execution of ZeroTest; in either
case, he has broadcast a linear combination (with coefficients that may depend
on the z̃(i)) of values he is committed to, by means of the commitments from
the preprocessing phase and by the linearity of all computations. Pi can and
will now be publicly identified as cheater by means of a protocol CommitCheck,
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which simply asks the players to open the commitments to the claimed and
broadcast values. We note that CommitCheck causes a significant overhead to
the efficiency of the protocol because the players need to perform computations
on a large number of commitments, proportional to the size of the circuit; in
return, however, it publicly identifies a cheating player.

Note that due to space contstraints, the details of the subroutines Rand,
CommitCheck and ZeroTest are given in the appendix, but they are pretty much
as expected (except for the issue mentioned above regarding ZeroTest).

3.3 Security of Our Protocol

In this section we argue security of our protocol. We focus on the actual compu-
tation phase; similar techniques allow us to secure the input-sharing and output-
reconstruction phases as well.

The security of the protocol clearly relies on the secrecy of the global key α,
which we measure as follows. Let v denote the adversary’s view at a given point
in the online protocol.5 Then, the adversary’s (average) guessing probability of
the global key α is given by

pguess(α|v) :=
∑

v̂

p(v = v̂) · max
α̂

p(α = α̂|v = v̂) .

In AppendixA we will prove the following security properties for the checking
protocol BlockCheck. Recall, the purpose of BlockCheck is to verify the correct-
ness and consistency6 of z̃(1), · · · , z̃(t), which is the collection of values that Pk

announces as the reconstructed values for 〈ε〉 and 〈δ〉 for each invocation of the
multiplication subprotocol in the checked block.

Proposition 1. BlockCheck satisfies the following:

– Correctness of BlockCheck: if all players behave honestly and hence all z̃(h) are
correct and consistently announced by Pk, then BlockCheck outputs “Success”
with probability 1.

– Soundness of BlockCheck: if at least one of the z̃(h) is incorrect, i.e. �= z(h), or
inconsistently announced by Pk, then the following holds except with probability
at most

δ = (2|C|/n + 1)/q + pguess(α|v) ,

where v is the adversary’s view before the execution of BlockCheck.
BlockCheck outputs a “Fail”; furthermore, if it outputs “Fail with Conflict”,

5 Here and below, when we make information-theoretic statements, we understand
v to not include the encryptions/commitments of the honest parties shares etc.
that were produced during the preprocessing phase. Adding these elements to the
adverary’s view of course renders the information-theoretic statements invalid, but
has a negligible effect with respect to a computationally bounded adversary.

6 Recall that dishonest Pk may send different values for z̃(i) to different players.
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then either the king player Pk or all of the accusing players are dishonest
(or both), and if it outputs “Fail with Agreement”, then all z̃(h) have been
consistently announced by Pk, and a dishonest player has broadcast as part
of BlockCheck an incorrect version of a value to which he is committed by
means of a linear combination (depending on the z̃(h)’s) of the commitments
produced in the preprocessing phase.

Notice that for the above soundness error to be small, we need to bound
pguess(α|v). Clearly, at the beginning of the online phase it is 1/q, but it may
increase during the course of the protocol. We have the following upper bound,
which will be proved in AppendixA:

Proposition 2. Throughout the entire protocol, the adversary’s guessing prob-
ability of α is bounded by

pguess(α|v) ≤ 1
q − 2n

+
2n

q
.

Finally, for completeness, we state here that CommitCheck, which will be
invoked if BlockCheck results in “Fail with Agreement”, does the job and iden-
tifies a dishonest player. Crucial for CommitCheck to work properly is that the
z̃(h) have been consistently announced by Pk (so that there is agreement on the
linear combination to be computed on the commitments), but this is ensured by
the soundness of BlockCheck.

Proposition 3. Under the binding property of the underlying commitment
scheme, if a dishonest player has broadcast as part of BlockCheck an incorrect
value, then this player will be publicly identified by CommitCheck. Furthermore,
no honest player will incorrectly be identified as being dishonest.

The security of the protocol is now straightforward: as a worst-case scenario,
we will assume that the adversary controls all but one of the players. First notice
that if the adversary decides to behave (semi)-honestly, then by the correctness
of BlockCheck the protocol will reach the end of the circuit and CommitCheck
will not be executed.

On the other hand, if the adversary misbehaves in (at least) one of the
invocations of the multiplication subprotocol in one of the blocks, either by
sending an incorrect share of 〈ε〉 or 〈δ〉 to Pk, or by having dishonest Pk announce
inconsistent values (or both), then this will be detected by BlockCheck that
will announce “Fail with Conflict” or “Fail with Agreement”, depending on the
adversary’s precise behavior.

In the case of a “Fail with Conflict”, the incorrect data is dismissed and
the block is rebooted with a fresh king player that is not in the list Lsuspects

of suspect players. Since every re-boot adds a new player to Lsuspects, namely
the previous king player, we can have at most n such reboots in total before the
protocol produces the correct output or before Lsuspects is “full”, and in that case
the protocol stops and every honest player has correctly identified at least one
dishonest player (because an honest player ends up in Lsuspects only by accusing
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a dishonest player). Notice that the commitment check is not executed in this
case. On the other hand, if BlockCheck ends with a “Fail with Agreement”, then
CommitCheck is invoked and will publicly identify a dishonest player.

As for the overall error probability, by combining the soundness error of
BlockCheck with the bound on pguess, and observing that BlockCheck is invoked
at most 2n times — as we have n blocks plus at most n reboots — we obtain an
overall error probability of at most

ε = 2n ·
(

1
q − 2n

+
2|C|/n + 2n + 1

q

)

To sum up, and using a similar checking mechanism for ensuring correctness
of the input-sharing and the output-reconstruction phases, our new multiparty
computation protocol satisfies the following.

Theorem 1. For any computationally bounded adversary that cannot break the
encryptions/commitments used in the preprocessing phase, except with negligible
probability, an execution of our protocol results in one of the following cases
(depending on the adversary’s strategy):

I. Success: the protocol reaches the end of the circuit and outputs the correct
result to all players. In this case, CommitCheck is not executed.

II. Identification without agreement: the protocol aborts, but each honest player
has identified at least one dishonest player. Also in this case, CommitCheck
is not executed.

III. Identification with agreement: the protocol aborts, and the honest players
have in-agreement identified at least one dishonest player.

Furthermore, in all cases, the adversary learns no information on the honest
players’ inputs, beyond the result of evaluating the circuit C on the inputs.

3.4 The Complexity of Our Protocol

We discuss in this section the complexity of our protocol; as with the previous
sections, we focus on the multiplication check, which is the most expensive part
of our protocol. The input sharing and the output reconstruction, moreover, can
be analyzed in a similar fashion (i.e., in the general case they yield a complexity
of the same order of magnitude as the original SPDZ, and exceed it only to
unanimously identify a dishonest player).

We thus focus on the multiplication check. We first study the complexity of
processing and checking a single block:

– First, the gates of the block are evaluated as in standard SPDZ; this yields a
complexity of |C|/n ·O(n) = O(|C|) field operations (in total over all players)
and the same number of field elements for point-to-point communication, and
no broadcasts.
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– At the end of the block, the subprotocol BlockCheck is executed. Its com-
putation complexity is dominated by computing the linear combination of
t = 2 · |C|/n sharings on n shares in step 1; in total, as we will see in
AppendixA.2, BlockCheck has a computation complexity of O

(|C| + n2
)

field operations, plus preparing 4n commitments. Its communication complex-
ity consists of no point-to-point communication, and 3n broadcasts of field
elements and 4n of commitments and openings.

Now as we have seen, BlockCheck can lead an execution of CommitCheck,
to a re-boot of the current block, or simply to the processing of the following
block. The exact cost of CommitCheck depends on how the commitments were
implemented, but it certainly causes a significant overhead given that it involves
a number of cryptographic operations that grows with the size of the circuit;
however, CommitCheck leads to the public exposure of a dishonest player, so
there is little incentive for the adversary to enforce this. As argued in Sect. 3.3,
we can have at most n reboots in total before the protocol aborts; as such,
the overhead of the reboots causes at most a factor 2 overhead to the ordinary
computation of the n blocks.

We thus get the following result summarizing the complexity of our protocol:

Proposition 4. Except in the case where CommitCheck is enforced by the adver-
sary, which would lead to an identification-with-agreement of at least a dishonest
player, our protocol has the following complexity:

– Computation: O
(
n|C|+n3

)
field operations, plus preparing 8n2 commitments

(as part of Rand and of ZeroTest);
– Communication: O

(
n|C|) field elements for point-to-point communication plus

O
(
n2

)
broadcasts.7

In case CommitCheck is executed, the communication complexity remains the
same, while players need to execute O

(
n2|C|) cryptographic operations on top

of the original computational complexity.8

Compared to the original SPDZ protocol, in case all players behave honestly,
our protocol is as efficient as the original protocol, up to an additive overhead
caused by an increased number of commitments and broadcasts9, but this over-
head is independent of the circuit size and thus negligible except for small cir-
cuits. In case of active cheating — unless a dishonest player cheats so bluntly that
7 Note that we treat broadcast as a given primitive here; implementing it using the

point-to-point communication and, say, digital signatures, causes some (communi-
cation and computation) overhead, but this overhead is independent of the circuit
size.

8 The actual cost of these cryptographic operations depends on how the commitment
scheme is implemented.

9 Plus that we have to do real broadcasts, whereas in the original SPDZ protocol
without cheater detection it is good enough to do a simple consistency check and
abort as soon as there is an inconsistency.
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CommitCheck is invoked and he will be publicly identified as being a cheater —
the (computation and communication) complexity of our protocol is larger by a
factor 2 only, plus the same kind of additive overhead that does not depend on
the circuit size.

4 Conclusion

We presented an alternative to the original SPDZ multiparty computation proto-
col. In contrast to the original protocol, our version allows for cheater detection.
As such, our protocol is much less vulnerable to a “denial of service” attack: if
a dishonest player enforces the protocol to abort, he will be identified and mea-
sures can be taken. Furthermore, in our protocol, this feature comes essentially
for free: as long as everything works as supposed, our protocol is as efficient
as the original SPDZ (up to an additive overhead that is negligible except for
small circuits); but as soon as a fault is detected, instead of simply aborting
and being clueless about who cheated, we can proceed and — depending on the
adversary’s behavior — still complete the computation or identify cheaters with-
out agreement with a factor 2 overhead, or identify cheaters with agreement but
with a significant overhead.

As such, we think that our multiparty computation protocol is an attractive
alternative to the original SPDZ protocol when considering real life scenarios
where dishonest parties may have various incentives for sabotaging an execution.

An obvious open problem is to have agreement on the cheater(s) in all cases,
and/or without a significant overhead; however, this seems hard to achive with-
out increasing the complexity of the honest execution.

A The Protocol BlockCheck in Detail

We shall now begin the study of the sub-protocol Block Check; we first establish
some notation rules that will be used in the whole section: t will denote a positive
integer; we assume that t multiplication opening values 〈z(1)〉, · · · , 〈z(t)〉 have
been publicly opened via a king player Pk, and we will use the following notation:
for each shared value 〈z(h)〉,
– each player Pj has sent z

(h)
j to Pk;

– z̃
(h)
j denotes the value received by Pk from Pj (so if Pj is honest, z̃

(h)
j = z

(h)
j );

– Pk has computed and sent to each Pj the value z(h);
– z̃(h)(j) denotes the value received by each Pj from Pk (so if Pk is honest,

z̃(h)(j) = z(h)).

The goal of BlockCheck is to detect errors in this process; as we have seen, the
first step of the check consists in computing a (quasi-) random linear combination
of the values to be checked. This is performed by generating a seed via the
subroutine Rand, and then using the powers of the seed as coefficients of the
linear combination. We first define Rand, which assumes that players have access
to a commitment scheme (as in standard SPDZ):
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Rand:
The protocol is used to generate a random seed e ∈ Fq.

(i) Each player Pj selects random ej ← Fq and broadcasts a commitment
Commit(ej) to it;

(ii) all the commitments are then opened, so that all players get e1, · · · , en;
(iii) the output of Rand is the value e :=

∑n
j=1 ej .

We now show that any error that occurred during the opening of the values
〈z(1)〉, · · · , 〈z(t)〉 will affect their linear combination as well (with high probabil-
ity); the proof is a standard argument, and is omitted here. We refer to the full
version of the paper for the details.

Lemma 1. Let e be a seed generated by Rand; consider the following linear
combination with coefficients given by the powers of e:

〈z〉 :=
t∑

h=1

eh · 〈z(h)〉, z̃(j) :=
t∑

h=1

eh · z̃(h)(j) for any j = 1, · · · , n.

Assume that for a given index h ∈ {1, · · · , t} the value received by a given player
Pj is incorrect, i.e. z̃(h)(j) �= z(h); then z̃(j) �= z except with probability t/q.

Similarly, if the values received by two players Pj and Pi for an index h are
different (i.e. z̃(h)(j) �= z̃(h)(i)), then the same will hold for the corresponding
linear combinations, i.e. z̃(j) �= z̃(i) except with probability t/q.

The next step of BlockCheck is the “public opening and conflict” phase; it
has already been defined in previous sections, but we will re-write it here in
order to make this chapter as self-contained as possible:

PublicOpening:
The protocol takes as input a shared value [z] and the index k of the king
player Pk; initialize the boolean value b to � and the list L to the empty
set ∅.

(i) For each j = 1, · · · , n, player Pj broadcast zj and Pk broadcast z̃j ; if the
two values do not coincide, set b = ⊥ and L ← L ∪ {Pj}.

(ii) If b = ⊥, the protocol stops and output (⊥, L).
(iii) Players set z̃ :=

∑
j zj ; for each j = 1, · · · , n, player Pj broadcasts z̃(j).

If this value is different from z̃, set b = ⊥ and L ← L ∪ {Pj}.
(iv) The protocol outputs (b, L, z̃).

The following lemma is a direct consequence of the definition of the algorithm,
and states that the public opening routine is correct and sound:
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Lemma 2. Let (b, L, z̃) be the output of PublicOpening ([z]) with king player
Pk; we then have the following properties:

– (correctness) if 〈z〉 has been correctly reconstructed and players follow the
instructions of the protocol, then b = � and L = ∅.

– (soundness) if z̃(j) �= z̃(i) for some honest players Pj and Pi, then b = ⊥ and
L �= ∅.
Furthermore, in this case either Pk or all players in L are dishonest.

The last step consists in checking the tags of the value 〈z〉 = ([z], [γ(z)]); as
we have previously discussed, this is performed by using the subroutine ZeroTest
to check that the value [γ(z)] − z̃[α] opens to 0.

As hinted in Sect. 3.2, we need to be careful when checking the tags via
ZeroTest, as this can increase the adversary’s guessing probability of α. We
introduce the following definition to model the information on α possessed by
the adversary:

Definition 1. Given a distribution p(x, v), we say that the distribution of x
given v is a list of size m if there exists a (conditional) distribution p(	|v), where
the range of 	 consists of lists of m elements in the range of x, such that the
following two properties hold for the joint distribution p(x, v, 	) := p(x, v) ·p(	|v):

(I) p(x ∈ 	) ≤ max�̂∈Im(�) p(x ∈ 	̂);

(II) p(x|v = v̂, 	 = 	̂, x /∈ 	̂) = p(x|x /∈ 	̂) for every v̂, 	̂ such that the formula is
well-defined.

In a nutshell, we use the above definition to formalize the following situation:
let v denote the adversary’s view and x := α; assume that the distribution of α
given v is a list of size m. This means that the adversary has tried to guess the
value of α for m consecutive times, and he has learned whether his guess was
correct or not after each guess.

We now state the basic properties of ZeroTest, which will in turn imply the
desired properties of the tag check; we assume that ZeroTest outputs a boolean
value b ∈ {�,⊥}, marking whether the input opens to zero or not, and some
extra data that will be omitted in the following lemma.

Lemma 3. Let b be the output of ZeroTest ([x]); we then have the following
properties:

– (correctness): if x = 0 and players follow the instructions of the protocol, then
b = � with probability 1.

– (soundness): consider the joint distribution p(x, v0), where v0 denotes the
adversary’s view before the execution of ZeroTest. Then

p(b = �) ≤ 1/q + pguess(x|v0).
Furthermore, if x = 0 but b = ⊥, then a dishonest player has broadcast an
incorrect version of a value to which he is committed by means of a linear
combination of the commitments produced in the preprocessing phase.
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– (privacy): Assume that x is uniformly distributed and that the distribution of
x given v0 is a list of size m0. Then after the execution of ZeroTest([x]), the
distribution of x given v is a list of guesses of size at most m := m0+1, where
v denotes the adversary’s view after the execution of ZeroTest.

Now that we have fixed the notation for the subroutines, we can state the
definition of BlockCheck in a more formal way:

BlockCheck:
The protocol takes as input a block and the index k of the king player Pk;
denote by 〈z(1)〉, · · · , 〈z(t)〉 the multiplication opening values of the block.

(i) Players execute Rand to get a random seed e ∈ Fq, then compute the
linear combination 〈z〉 :=

∑t
h=1 eh〈z(h)〉.

(ii) Run
(
b, L, z̃

) ← PublicOpening ([z]); if b = ⊥, BlockCheck stops and
outputs the message “Fail with Conflict” together with the list L.

(iii) Run
(
b, (〈a〉, 〈b〉, 〈c〉), 〈r〉) ← ZeroTest ([γ(z)] − z̃[α]).

(iv) If b = �, output the message “Success”;
if b = ⊥, output the message “Fail with Agreeement” together with the
elements

(
(〈a〉, 〈b〉, 〈c〉), 〈r〉).

We can now prove the properties of BlockCheck claimed in Sect. 3.3; we omit
the proof here, as it can be easily derived from the definition of BlockCheck.

Proposition 5. BlockCheck satisfies the following:

Correctness of BlockCheck: if all players behave honestly and hence all z̃(j) are
correct and consistently announced by Pk, then BlockCheck outputs “Success”
with probability 1.

Soundness of BlockCheck: if at least one of the z̃(j) is incorrect, i.e. �= z(j), or
inconsistently announced by Pk, then the following holds except with probability
at most

δ = (2|C|/n + 1)/q + pguess(α|v) ,

where v is the adversary’s view before the execution of BlockCheck. BlockCheck
outputs “Fail”; furthermore, if it outputs “Fail with Conflict”, then either the
king player Pk or all of the accusing players are dishonest (or both), and if it out-
puts “Fail with Agreement”, then all z̃(j) have been consistently announced by Pk,
and a dishonest player has broadcast as part of BlockCheck an incorrect version
of a value to which he is committed by means of a linear combination (depending
on the z̃(j)’s) of the commitments produced in the preprocessing phase.

Finally, we can now prove the bound on the adversary’s guessing probability
of the global key α:

Proposition 6. Throughout the entire protocol, the adversary’s guessing prob-
ability of α is bounded by

pguess(α|v) ≤ 1
q − 2n

+
2n

q
.
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Proof. Clearly, the adversary can increase his guessing probability only during
the execution of ZeroTest; this, by definition of BlockCheck, is executed only
when the value z̃ is consistent among players, so that its input is equal to [x] :=
[γ(z)] − z̃[α] = (z − z̃)[α]. Hence we can assume as a worst-case scenario that
z �= z̃, so that the adversary’s guessing probabilities of α and of x coincide.

Notice that at the beginning of the computation, the distribution of α given
the adversary’s view is a list of guesses of size 0; hence we can inductively
apply Lemma 3, so that during the execution of the protocol the distribution
of α given the adversary’s view is a list of guesses of size at most 2n (recall
that BlockCheck, and hence ZeroTest, is executed at most 2n times). Hence
according to Definition 1, and given that α is uniformly distributed, there exists
a distribution p(	|v) with the following properties:

(I) p(α ∈ 	) ≤ 2n/q;
(II) maxα̂,�̂ p(α = α̂|v = v̂, 	 = 	̂, α /∈ 	̂) = 1/(q − m).

Now from this we can deduce the claimed upper bound on the guessing
probability: indeed, by using the law of total probability with the events (α ∈ 	)
and (α /∈ 	), we obtain

pguess(α|v) =
∑

v̂

p(v = v̂) · max
α̂

p(α = α̂|v = v̂) ≤ 1
q − 2n

+
2n

q
.

�

A.1 The Tag Checking in Detail

We discuss in this section the sub-routine ZeroTest, meant to check whether
some shared value [x] is equal to zero or not. The key point is that we cannot
simply open [x]: indeed, in the actual scenario this value will be equal to [γ(z)]−
z̃[α] for some shared value 〈z〉; now the adversary could select any value Δz and
let z̃ = z + Δz, so opening [γ(z)] − z̃[α] = Δz · [α] will actually let the adversary
learn the global key α. This is not a problem in the original SPDZ protocol,
since it will abort if the value does not open to 0, but it is a problem for our
protocol, which carries on even if the result is not zero. To avoid this, we will
perform a multiplication of [x] with a random shared value:

ZeroTest:
The protocol takes as input a shared value [x].

(i) Players select a random shared value 〈r〉 and a fresh multiplication triplet
(〈a〉, 〈b〉, 〈c〉).

(ii) Players compute [rx] with multiplication triplet (〈a〉, 〈b〉, 〈c〉) as
described in Section 2, but with a different communication model: instead
of sending their data to a king player that acts as a relay, they will broad-
cast a commitment to it, then open all the commitments before moving
to the next round.
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(iii) Each player Pj broadcasts a commitment Commit((rx)j) to his share of
[rx], then all commitments are opened, so that players obtain rx.

(iv) Set b = � if rx = 0, b = ⊥ otherwise; output
(
b, (〈a〉, 〈b〉, 〈c〉), 〈r〉).

From now on, we will adopt a slight abuse of notation by writing formulae
such as ZeroTest([x]) = b, i.e. considering only the boolean value among the
outputs of the protocol. We first prove that the subprotocol is correct and sound:

Lemma 4. ZeroTest satisfies the following properties:

– Correctness: if players follow the instructions of the protocol, ZeroTest([0]) =
� with probability 1.

– Soundness: consider the joint distribution p(x, v0), where v0 denotes the adver-
sary’s view before the execution of ZeroTest; then

p(ZeroTest([x]) = �) ≤ 1/q + pguess(x|v0).
Furthermore, if x = 0 but b = ⊥, then a dishonest player has broadcast an
incorrect version of a value to which he is committed by means of a linear
combination of the commitments produced in the preprocessing phase.

Proof

– Correctness: trivially, ZeroTest will open [r · 0] = [0].
– Soundness: by definition of the protocol, the output of ZeroTest([x]) is equal

to � if and only if b = 0, where

b := (r − r̃)(x − x̃) − ỹ

where r is a variable uniformly distributed and independent of x, x̃, r̃ and ỹ, and
the variables r̃, x̃ and ỹ are chosen by the adversary, and are thus determined
by his current view (since we can assume without loss of generality that the
adversary is deterministic).

Now notice that for any v̂0 we have the following inequality:

p((r − r̃(v̂0))(x − x̃(v̂0)) = 0|v0 = v̂0) ≤ 1/q + max
v̂

p(x = x̂|v0 = v̂0)

In turn, by applying the law of total probability to p((r − r̃)(x − x̃) − ỹ = 0)
with the events (v0 = v̂0), we obtain the following inequality:

p((r − r̃)(x − x̃) − ỹ = 0) ≤ 1/q + pguess(x|v0) .

Finally, if x = 0 but b = ⊥, then necessarily a player has communicated
some incorrect values during ZeroTest; hence since all communications are per-
formed by broadcast, he is committed to the incorrect value, so that the claim
is proved. �
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Finally, we need to discuss the privacy of ZeroTest; we first remark that
Definition 1, formalizing our privacy notion, yields the following consequences:

Remark 1. Assume that the uniform distribution x is a list of size m given v;
we then have the following properties:

(i) p(x ∈ 	) ≤ m/q (immediate consequence of (I));
(ii) p(x = y|x /∈ 	) ≤ 1/(q − m) for any y = y(v) (consequence of (II) via the

law of total probability).

Furthermore, let r be a random variable independent of both v and x, and set
v′ := (v, r). Then it trivially holds that if p(x, v) satisfies the above definition,
then so does p(x, v′).

Lemma 5. Given a distribution p(x, v0), where v0 denotes the adversary’s view,
assume that the uniform distribution of x given v0 is a list of size m0. Then after
the execution of ZeroTest([x]), the distribution of x given v is a list of guesses
of size at most m := m0 + 1, where v denotes the adversary’s view after the
execution of ZeroTest.

Proof. By looking at the instructions to compute and open [xr] to Pi, we see
that what the adversary can learn the following values (plus random sharings of
them): γ := x−a, δ := r − b and π := (r − r̃)(x− x̃), where a, b and r are jointly
uniformly distributed and independent of each other and of v, x, x̃, r̃.

x̃ and r̃ are chosen by the adversary, and are thus determined by his view
(since we assume without loss of generality that the adversary is deterministic).

Now given the adversary’s view v0 before the execution of ZeroTest, the
adversary’s current view is equal to (v0, γ, δ, π); notice that a and b are (jointly)
random and independent of x, r, v0 and π, and thus so are γ = x − a and
δ = r − b, so that we may restrict the view to v := (v0, π) (cf. Remark 1)10.

Now by inductive hypothesis, there exists a conditional distribution p(	0|v0)
such that properties I and II hold for p(x, v0, 	0) := p(x, v0)·p(	0|v0); in a natural
way, we define the new distribution to be

p(	 = (x1, · · · , xm0 , xm)|v) := p(	0 = (x1, · · · , xm0)|v0) · p(x̃(v0) = xm|v0).

We now prove that properties I and II hold for p(x, v, 	): first of all, notice that
p (x ∈ 	) = p (x ∈ 	0)+p (x = x̃(v0)|x /∈ 	0)·p (x /∈ 	0). Hence thanks to Remark 1
we have that

p (x ∈ 	) ≤ m0/q +
(
1/(q − m0)

) · (
(q − m0)/q

)
= m/q .

Hence property I holds; we can thus focus on property II. As a first step,
notice that

p(x|v = (v̂0, π̂), 	 = 	̂, x /∈ 	̂) = p(x|v0 = v̂0, 	0 = 	̂0, x /∈ 	̂0, x �= x̃(v̂0))

10 For the same reason, we omit here the fact that the view also contain random sharings
of x − a, r − b and π.
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since if x /∈ 	̂, then in particular x �= x̃(v̂0); hence we can re-write π = π̂ as
r = r̃(v0) + π̂/(x − x̃(v̂0)), and can be removed because r is independent of x,
v0 and 	0. We thus get the following equality:

p(x|(v0, π) = (v̂0, π̂), 	 = 	̂, x /∈ 	̂) = p(x|x /∈ 	̂0, x �= x̃(v̂0))

which means that property II holds. �

A.2 The Complexity of the Block Check

We briefly discuss in this section the complexity of BlockCheck, which was
presented in Sect. 3.4. First notice that since each block contains at most |C|/n
gates, there are at most 2|C|/n multiplication opening values to be checked in
each block; we thus get the following complexity:

– 4n commitments need to be prepared, broadcast and opened (n to produce a
random seed via Rand, and 3n during ZeroTest);

– the computational complexity of a block check is in O
(|C| + n2

)
field opera-

tions (excluding computation on commitments), essentially given by the cost
of computing the linear combination of the values to be checked;

– finally, the block check requires broadcasting 3n field elements for the dispute
phase of PublicOpening. Notice that we do not use point-to-point communi-
cation.

B The Commitment Check

We now discuss how to authenticate shares of a value; as remarked in Sect. 2, for
every shared value z that is [·]-shared in the pre-processing phase each player Pi

holds randomness ρzi
and the value ezi

:= Enc(zi, ρzi
) has been broadcast. We

give here the details on how to use these encryptions as a commitment scheme:

EncryptionCheck:
the protocol takes as input the index i of a player Pi and his share zi =
∑M

h=1 λ(h)z
(h)
i , where all

[
z(h)

]
are computed in the preprocessing phase;

let e
(h)
i := Enc

(
z
(h)
i , ρ

(h)
i

)
(these values are public, cf. Section 2).

(i) Players set ei :=
∑M

h=1 λ(h)e
(h)
i ;

(ii) Pi computes and broadcasts ρi :=
∑M

h=1 λ(h)ρ
(h)
i ;

(iii) players set ei ← Enc (zi, ρi).

If ei = Enc (zi, ρi), the protocol outputs �; otherwise, it outputs ⊥.

Trivially, if Pi behaves honestly, EncryptionCheck will output �; on the
other hand, if the share z̃i he submitted is not correct, then the output will be
⊥ since Enc (zi, ρi) �= Enc (z̃i, ρ̃i) for any possible randomness ρ̃i.
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We are now ready to define the protocol CommitCheck, that simply applies
EncryptionCheck to all shares submitted during the multiplication of two values:

CommitCheck:
The protocol takes as input the index i of a player Pi, a shared value 〈z〉
and the values (〈a〉, 〈b〉, 〈c〉), 〈r〉 used to check its tag.

(i) Run EncryptionCheck(zi) for Pi, denote by b1 its output;
(ii) run EncryptionCheck(γ(z)i − z̃αi − ai) for Pi, denote by b2 its output;
(iii) run EncryptionCheck(ri − bi) for Pi, denote by b3 its output;
(iv) run EncryptionCheck(ci + (γ(z) − z̃α − a) bi + (r − b)ai + (γ(z) − z̃α −

a)(r − b)) for Pi, denote by b4 its output.

Output b1 ∧ b2 ∧ b3 ∧ b4.

The following proposition summarizes the security property of CommitCheck;
we omit the proof, as it can be easily deduced from the definition of the protocol.

Proposition 7. Under the binding property of the underlying commitment
scheme, if a dishonest player has broadcast as part of BlockCheck an incorrect
value, then this player will be publicly identified by CommitCheck. Furthermore,
no honest player will incorrectly be identified as being dishonest.

C Checking the Input and Output of the Computation

We show in this section how to secure the input-sharing and output-
reconstruction phases; we use the main ideas and techniques of the multiplication
check.

We first describe in more detail how the input sharing is performed in the
original SPDZ protocol: each shared value 〈r〉 produce in the preprocessing phase
comes with another type of sharing, denoted by

�r� :=
(
[r],

(
βi, γ(r)i

1, · · · , γ(r)i
n

)
i=1,··· ,n

)
,

where each player Pi holds ri, βi, γ(r)i
1, · · · , γ(r)i

n and rβi =
∑

j γ(r)j
i for any

i. Now in classical SPDZ, whenever a player Pi holds input x, a random shared
value �r� is selected; then each player Pj communicates rj and γ(r)j

i to Pi, who
computes r and checks that rβi =

∑
j γ(r)j

i ; Pi can then broadcast either an
error message or the value ε := x − r. The input is then shared as 〈r〉 + ε.

We add to this protocol our system of accusations and, as a last resort, the
commitment checks:
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InputShare:
The protocol is used to share an input x held by player Pi; a fresh king
player Pk and a shared value 〈r〉, �r� are selected.

(i) for each j �= i, player Pj sends (rj , γ(r)j
i ) to Pk, who in turn communi-

cates these elements to Pi.
(ii) Pi computes y := rβi −∑

j γ(r)j
i . If y = 0, he broadcasts (�, ε := x − r);

players share x as 〈r〉 + ε and the protocol stops.
(iii) If y �= 0, Pi broadcasts ⊥. Then for each j �= i, player Pj broadcasts

(rj , γ(r)j
i ).

(iv) The king player Pk broadcast a list L of players that he accuses of incon-
sistent behaviour; if L �= ∅, then Pk and all the players in L are added to
the list of suspect players. InputShare is then rebooted; if all player are
suspect, then the overall protocol aborts.

(v) If L = ∅, then Pi can accuse Pk of inconsistent behaviour; if that is the
case, Pi and Pk are added to the list of suspect players, and the protocol
is rebooted. If all player are suspect, then the overall protocol aborts.

(vi) Given that all values are now public, players run EncryptionCheck(rj)

and EncryptionCheck
(
γ(r)j

i

)
. If all players pass the encryption check,

Pi is deemed dishonest and the protocol aborts

The following proposition follows from the definition of InputShare and
proves that the protocol is secure:

Proposition 8. Let x be an input held by player Pi; InputShare satisfies the
following properties:

– Correctness: if players behave honestly, InputShare(x) produces no accusa-
tions and players obtain a 〈·〉-sharing of x.

– Soundness: if a player different from Pi behaves dishonestly during the execu-
tion of InputShare, then except with probability 1/q he will be deemed suspect
or dishonest.

– Privacy: if Pi is honest, the adversary’s guessing probability of x is equal to
maxx̂ p(x = x̂).

We now introduce an output-checking phase which makes use of the pro-
tocols introduced in the previous sections: it simply reconstructs the output,
then checks its tag with ZeroTest and, if an error is detected, requires player to
authenticate their shares via CommitCheck.

OutputCheck:
The protocol takes as input the shared value 〈z〉, output of the circuit.

(i) Each player Pi broadcasts his share zi of [z];
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(ii) players set z̃ ← ∑
i zi; they then run ZeroTest ([γ(z)] − z̃[α]). Denote by(

b, (〈a〉, 〈b〉, 〈c〉), 〈r〉) its output;
(iii) if b = �, the protocol stops and output outputs z̃;
(iv) if b = ⊥, then player run b(i) ← CommitCheck(〈z〉) with values

(〈a〉, 〈b〉, 〈c〉), 〈r〉 for each player Pi; if b(i) = ⊥, the protocols outputs
the message “Pi dishonest” and stops.

The following proposition proves that the protocol is correct and sound;
we omit the proof here, as it can be easily obtained from the definition of
OutputCheck, and refer to the full version of the paper for the details.

Proposition 9. OutputCheck satisfies the following properties:

– Correctness: if players submit the correct shares of [z] and behave honestly
during ZeroTest, then OutputCheck will output the correct value z;

– Security: assume that z̃ �= z or that the adversary behaved dishonestly in the
ZeroTest phase; then OutputCheck will produce an accusation to a dishonest
player except with probability 1/q + pv, where pv is the adversary’s guessing
probability of α given his view v.
In the concrete setting, this error probability will be equal to 1/q + 1/(q − 2n).
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