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An iterated Radau method for time-dependent PDEs

ABSTRACT
This paper is concerned with the time integration of semi-discretized, multi-dimensional PDEs of
advection-diffusion-reaction type. To cope with the stiffness of these ODEs, an implicit method
has been selected, viz., the two-stage, third-order Radau IIA method. The main topic of this
paper is the efficient solution of the resulting implicit relations. First a modified Newton process
has been transformed into an iteration process in which the 2 stages are decoupled and,
moreover, can exploit the same LU-factorization of the iteration matrix. Next, we apply a so-
called Approximate Matrix Factorization (AMF) technique to solve the linear systems in each
Newton iteration. This AMF approach is very efficient since it reduces the `multi-dimensional'
system to a series of `one-dimensional' systems. The total amount of linear algebra work
involved is reduced enormously by this approach. The idea of applying AMF to two-dimensional
problems is quite old and goes back to Peaceman and Rachford in the early fifties. The situation
in three space dimensions is less favourable and will be analyzed here in more detail, both
theoretically and experimentally. Furthermore, we analyze a variant in which the AMF-technique
has been used to really solve (`until convergence') the underlying Radau IIA method so that we
can rely on its excellent stability and accuracy characteristics. Finally, the method has been
tested on several examples. Also a comparison has been made with the existing codes VODPK
and IMEXRKC, and the efficiency (CPU time versus accuracy) is shown to be at least
competitive with the efficiency of these solvers.
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Keywords and Phrases: Advection-diffusion-reaction equations; Numerical integration; Single-Newton iteration;
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Abstra
tThis paper is 
on
erned with the time integration of semi-dis
retized, multi-dimensionalPDEs of adve
tion-di�usion-rea
tion type. To 
ope with the sti�ness of these ODEs, animpli
it method has been sele
ted, viz., the two-stage, third-order Radau IIA method.The main topi
 of this paper is the eÆ
ient solution of the resulting impli
it relations.First a modi�ed Newton pro
ess has been transformed into an iteration pro
ess inwhi
h the 2 stages are de
oupled and, moreover, 
an exploit the same LU-fa
torizationof the iteration matrix. Next, we apply a so-
alled Approximate Matrix Fa
torization(AMF) te
hnique to solve the linear systems in ea
h Newton iteration. This AMFapproa
h is very eÆ
ient sin
e it redu
es the `multi-dimensional' system to a series of`one-dimensional' systems. The total amount of linear algebra work involved is redu
edenormously by this approa
h. The idea of applying AMF to two-dimensional problemsis quite old and goes ba
k to Pea
eman and Ra
hford in the early �fties. The situationin three spa
e dimensions is less favourable and will be analyzed here in more detail,both theoreti
ally and experimentally. Furthermore, we analyze a variant in whi
hthe AMF-te
hnique has been used to really solve (`until 
onvergen
e') the underlyingRadau IIA method so that we 
an rely on its ex
ellent stability and a

ura
y 
hara
ter-isti
s. Finally, the method has been tested on several examples. Also a 
omparison hasbeen made with the existing 
odes VODPK and IMEXRKC, and the eÆ
ien
y (CPUtime versus a

ura
y) is shown to be at least 
ompetitive with the eÆ
ien
y of thesesolvers.2000 Mathemati
s Subje
t Classi�
ation: 65M12, 65M20.1998 ACM Computing Classi�
ation System: G.1.1, G.1.7, G.1.8.Keywords and Phrases: Adve
tion-di�usion-rea
tion equations, Numeri
al integration,Single-Newton iteration, Approximate matrix fa
torization.�Corresponding author
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1 Introdu
tionWe are 
on
erned with the numeri
al time integration of initial-value problems (IVP) forsystems of ordinary di�erential equations (ODEs) of the formy0(t) = f(t; y(t)); y(t0) = y0; t0 � t � tend; (1.1)where y; f 2 IRm. Throughout the paper, these systems are assumed to be the result ofapplying a spatial dis
retization to a time-dependent partial di�erential equation (PDE).Hen
e, we follow the Method of Lines (MoL) approa
h.The literature on the time integration of the resulting system of ODEs is overwhelming,whi
h is 
aused by the widely varying nature of the underlying PDEs. Numeri
al pro
essesthat behave eÆ
iently for one parti
ular 
lass of PDEs are not ne
essarily a good 
hoi
efor other 
lasses. For example, methods suitable for hyperboli
 problems are often of a
ompletely di�erent 
on
ept 
ompared with methods for paraboli
 problems. Moreover,many `industrial problems' are so spe
i�
 that they justify an ad ho
 approa
h and are bestsolved by a method that is tuned to their idiosyn
rasies. Nevertheless, one 
an try to designalgorithms for problem 
lasses as wide as possible. The major aim of this paper is to 
omeup with su
h an algorithm.In designing su
h a time integration method one has to identify 
ertain 
ommon 
har-a
teristi
s of the underlying PDE 
lasses that the numeri
al method is 
apable to 
opewith. For example, a typi
al property of systems (1.1) is that they possess sti�ness; thatis, the eigenvalues of the Ja
obian matrix �f=�y di�er largely in magnitude. The sti�ness
an be substantial if the PDE has to be semi-dis
retized on a spatial grid with high (lo
al)resolution to meet 
ertain a

ura
y 
onditions. Another aspe
t, related to the 
on
ept ofsti�ness, is that { apart from adve
tion and di�usion operators { often sti� rea
tion termsare involved. Su
h a situation is e.g. exempli�ed in 
hemi
al rea
tions whi
h typi
ally havewidely varying time s
ales.Another 
ompli
ating fa
tor for dealing with sti�ness is that the eigenvalues of �f=�y
an be situated allover the negative half plane. For example, di�usion-rea
tion terms oftengive rise to negative real eigenvalues, but the dis
retization of adve
tion terms usually leadsto eigenvalues possessing a substantial imaginary part. The above 
onsiderations lead us toaim for a numeri
al time integrator that is 
apable to treat ODEs independent of the positionof the eigenvalues in the left half plane. In other words, we will require the method to beA-stable [9℄. As a 
onsequen
e of this 
hoi
e we shall ex
lude all expli
it methods. Con�ningourselves to the 
lass of impli
it methods, there is still a 
onsiderable 
hoi
e: a well-known
lass of methods is given by the BDF methods; indeed the popular and widely used 
odesVODE [1℄ and VODPK1 [2, 5℄ are based on this 
lass. However, sin
e the pioneering work ofDahlquist [7℄ we know that the order of A-stable methods of this type is ne
essarily limitedto 2. On the other hand, the amount of impli
itness of these methods is minimal whi
hexplains their popularity.An alternative, to 
ir
umvent the order-2 barrier w.r.t. A-stability, is o�ered by the 
lassof impli
it Runge-Kutta (IRK) methods. For example, the 
ode RADAU5 by Hairer andWanner [9℄ is based on this 
on
ept and is a robust and a

urate sti� ODE solver. Theamount of impli
itness, however, is larger than for VODE, due to the IRK-nature. Basedon the above 
onsiderations, we have de
ided to sele
t a member from the IRK-family as1VODPK is based on VODE, extended with the Krylov solver GMRES [15℄ allowing for a user-suppliedpre
onditioner to a

elerate 
onvergen
e of the iteration pro
ess to solve the systems.2



our starting point to build a robust solver. To be more spe
i�
, we have 
hosen the 2-stage Radau IIA s
heme. This method 
ombines ex
ellent stability properties (i.e., even thestronger 
on
ept of L-stability, see [9℄) with order of a

ura
y equal to 3, whi
h we think isan appropriate 
hoi
e in a PDE 
ontext.No matter whi
h impli
it method has been sele
ted, we are always fa
ed with solvingimpli
it relations to obtain the numeri
al approximation in the new step point. In fa
t,solving these systems is the determining fa
tor for the su

ess of a PDE-solver. This isparti
ularly true in 
ase of multi -dimensional PDEs where a straightforward approa
h ofthe linear algebra involved may easily lead to ex
essive 
osts. To further elaborate this, letus 
onsider the 2-stage Radau IIA method. Applying this method, we en
ounter 2 maindiÆ
ulties:(i) apart from 
omputing a new step point approximation, the s
heme requires to solvefor a (
oupled) intermediate approximation; this requirement doubles the dimension of thealgebrai
 systems to be solved in ea
h step, and(ii) the sparsity patterns in the matri
es involved in the Newton pro
ess require { espe-
ially for three-dimensional PDEs { a spe
ial treatment sin
e standard LU-de
ompositionsare not feasible in su
h 
ases.To 
ope with the �rst diÆ
ulty, But
her proposed already in 1976 [3℄ a similarity trans-formation to redu
e the dimension of the impli
it system to solve. Also DIRK methodseÆ
iently ta
kle this problem by redu
ing the impli
itness to a dimension equal to that ofthe ODE system. A disadvantage of DIRK methods, however, is that may su�er from thephenomenon of order redu
tion. The idea of only solving systems of dimension m has beenexploited in many papers [4, 6, 8, 11℄. Te
hniques to `de
ouple' the stages are based onproperties of the A-matrix in the RK s
heme; also the 
ode RADAU5 is based on this prin-
iple. The approa
h to be dis
ussed in the present paper follows the same idea: the 
lassi
alNewton iteration for the full impli
it relation is repla
ed by a mu
h simpler iteration inwhi
h the stages are de
oupled and hen
e only systems of dimension m have to be solved.The de�nition of this iteration, as well as an analysis of its 
onvergen
e behaviour will bedes
ribed in Se
tion 2.For the se
ond diÆ
ulty, i.e., the stru
ture of the Ja
obian matri
es originating froma multi-dimensional PDE, we use a so-
alled Approximate Matrix Fa
torization (AMF)approa
h. Also this idea is already quite old. In fa
t, the 
elebrated paper of Pea
emanand Ra
hford from the early �fties was one of the �rst based on this prin
iple. However,so far a su

essful appli
ation of AMF was usually restri
ted to two-dimensional problems.In Se
tion 3 we will dis
uss an extension suitable for three spatial dimensions. This ideaoriginates from the overview paper [10℄, but in that paper it was only suggested as a possibletreatment. As far as we know this idea has not yet been tested in real life three-dimensionalappli
ations. Hen
e, the above te
hniques are not novel; what is new { and that is the main
ontribution of this paper { is the 
ombination of both ingredients into one overall approa
hto ta
kle multi-dimensional PDEs by keeping the 
osts to deal with the impli
itness to amanageable level.Next, the performan
e of the resulting algorithm is demonstrated on several test prob-lems. We start with a linear model problem in Se
tion 4 to study the basi
 properties ofthe 
ombined method. Then, in Se
tion 5, the method is applied to several realisti
 prob-lems and will be 
ompared with existing solvers, su
h as VODPK and IMEX. Finally, some
on
lusions will be formulated in Se
tion 6.
3



2 Single-Newton iterationApplying a fully impli
it s-stage RK method to the ODE system (1.1) leads toYn = e
 yn + �(A
 Im)F (etn + 
�; Yn);yn+1 = yn + �(bT 
 Im)F (etn + 
�; Yn); (2.1)
where the RK method is 
hara
terized by the matrix A and the ve
tor b (both of dimensions), Yn is the so-
alled stage ve
tor, 
ontaining the s approximations Yn;i � y(tn + 
i�); i =1; : : : ; s with � being the step size and 
i are the elements of the 
ollo
ation ve
tor 
 =Ae. Furthermore, F (etn + 
�; Yn) 
ontains the f -evaluations at the 
ollo
ation points, i.e.,F (etn+ 
�; Yn) = (f(tn+ 
1�; Yn;1)T ; : : : ; f(tn+ 
s�; Yn;s)T )T , Im is m-dimensional identitymatrix, e is the s-dimensional ve
tor with unit entries, and 
 denotes the Krone
ker produ
t.The quantity yn+1 is an approximation to the solution y(t) at t = tn+1 = tn + � .The usual approa
h in a sti� 
ontext is to solve the stage ve
tor Yn from (2.1) by meansof a modi�ed Newton iteration[Ims � �A
 J ℄�k = Dk�1;Y kn = Y k�1n +�k; k = 1; 2; : : : ; (2.2)
where the residual Dk�1 is de�ned byDk�1 = e
 yn � Y k�1n + �(A
 Im)F (etn + 
�; Y k�1n ); (2.3)and J is an approximation to the Ja
obian �f�y (tn; yn). The iteration is started with Y 0n ,provided by some predi
tor formula. To simplify the presentation, here and hen
eforth weomit the dependen
e on n of any residual Dk�1.In ea
h iteration of (2.2) a linear system of dimension s �m has to be solved. As proposedby But
her [3℄, a similarity transformation 
an be used to redu
e the dimension. Unfortu-nately, for the s-stage impli
it Runge-Kutta Radau IIA methods (s � 2), whi
h we take asstarting point, the A-matrix has pairs of 
onjugate 
omplex eigenvalues. As a 
onsequen
e,the But
her-approa
h leads to solving (blo
k) systems of dimension 2m, or { alternatively{ 
hange to 
omplex arithmeti
.Another approa
h, whi
h has been 
onsidered in several papers [4, 6, 8, 11℄, is to repla
ethe matrix A in the left-hand side of (2.2) by a `more 
onvenient' matrix T . By `more
onvenient' we mean that the matrix T has a stru
ture by whi
h the stages are de
oupled(so that only systems of dimension m have to be solved, independent of the number of stagess) and, moreover, T has a one-point spe
trum, so that only one LU -de
omposition of anm�m matrix is required.In the papers mentioned above, the matrix T is determined on the basis of a linearanalysis. Here, we follow a similar approa
h, that is we apply the iteration s
heme (2.2)with A repla
ed by T to the s
alar linear equation y0 = �y, with IRe� � 0, and �nd thatthe iteration error "k := Y kn � Yn satis�es the re
ursion"k =M(z)"k�1; M(z) = z(Is � zT )�1(A� T ); z = ��: (2.4)
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Clearly, for 
onvergen
e we need that the spe
tral radius � of the iteration matrix satis�es�(M(z)) < 1. If this iteration pro
ess 
onverges, then it 
onverges to the solution of the un-derlying Radau IIA method and we 
an take full pro�t of the a

urate and stable behaviourof this 
orre
tor.To determine a suitable T -matrix, we follow an approa
h as suggested in [8℄. In thatpaper, requirements on a suitable rate of 
onvergen
e are 
ombined with adequate linearstability properties, both for jzj ! 1, i.e. the fo
us is on extremely sti� 
omponents. Thesetwo 
onditions respe
tively lead to�(M(1)) = �(Is � T�1A) = 0 (2.5)and bTA�2(A� T ) = 0T : (2.6)Here, we remark that (2.6) implies that Rk(1) = R(1) for all k � 1, where Rk(z) isthe stability fun
tion for the advan
ing solution of the method obtained after k iterations,namely ykn+1, starting with the predi
tor Y 0n = e 
 yn, and R(z) is the stability fun
tionof the underlying IRK method, hen
eforth 
alled the 
orre
tor. Sin
e we will use an L-stable Radau IIA method as 
orre
tor, whi
h is sti�y a

urate (ykn+1 = Y kn;s), we have {after an arbitrary number of k � 1 iterations { that the resulting stability fun
tion satis�esRk(1) = 0. Another result, whi
h we will use in the numeri
al Se
tions 4 and 5, 
on
ernsthe order of a

ura
y of the overall method. It is well-known that the order of a

ura
y isin
reased by one in ea
h Single-Newton iteration until the order of the underlying 
orre
torhas been rea
hed. It must be noted that this fa
t is independent of the approximation Jtaken in the iterative s
heme to repla
e �f=�y(tn; yn) as long as J � �f=�y(tn; yn) = O(1).Hen
e after, say q iterations, the order p� of the advan
ing solution yqn+1 equalsp� = min (`+ q; p); (2.7)where p is the order of the 
orre
tor and ` is the order of the predi
tion Y 0n , i.e., Y 0n � Yn =O(� `+1). For additional properties of this iteration pro
ess we refer to [8℄.We will now derive the matrix T . Re
alling that we require T to have a one-pointspe
trum, this matrix 
an be written asT = 
S(Is � L)�1S�1 (2.8)where L is a stri
tly lower triangular matrix, S is nonsingular, and 
 is the multiple eigen-value, whi
h needs to be positive. Repla
ing the matrix A in (2.2) by T and using itsde
omposition (2.8), we arrive at what we will 
all the single-Newton iteration pro
ess [8℄,[Ims � 
�(Is 
 J)℄Ek = ((Is � L)S�1 
 Im)Dk�1 + (L
 Im)Ek;Y kn = Y k�1n + (S 
 Im)Ek; k = 1; 2; : : : : (2.9)
Sin
e L is stri
tly lower triangular, the s 
omponents Ek1 ; : : : ; Eks 
an be solved one afteranother and hen
e, only systems of dimension m are involved. We remark that (2.9) 
an be
onsidered as a spe
ial 
ase of the 
lass of iteration methods 
onsidered in [6℄.
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2.1 Determining the matrix T for the 2-stage Radau IIA 
orre
torAs motivated in the introdu
tion, an appropriate 
hoi
e, in a PDE 
ontext, for the 
orre
toris the third-order, 2-stage Radau IIA method, de�ned by
A = 0BB� 512 � 11234 14

1CCA ; bT = �34 ; 14� :
Sin
e this method is sti�y-a

urate, i.e., bTA�1 = (0; 1), we have that yn+1 equals these
ond stage ve
tor 
omponent Yn;2. To determine a matrix T that satis�es the 
onditions(2.5) and (2.6), we de�ne the matrix P byP = I2 �A�1T:Clearly, 
ondition (2.5) is equivalent to the requirement that both eigenvalues of P vanish.Furthermore, 
ondition (2.6) now reads bTA�1P = 0T , whi
h, for this 
orre
tor, leads tothe requirement that the se
ond row of P is the zero ve
tor. Hen
e, P is of the formP = � 0 b0 0 � :The matrix T has a double eigenvalue 
 i�detT = 
2 and tra
e T = 2
:Sin
e T = A(I2 � P ) we have detT = detA and then 
 is determined by
 = pdetA = 16p6; (2.10)
whi
h is positive indeed, as required. Using tra
e T = 2
 = 8� 9b12 , we have uniquelydetermined the matri
es P and T as

P = 0B� 0 8� 4p690 0
1CA ; T = 0BBB� 512 5p627 � 4910834 p63 � 512

1CCCA : (2.11)
Given the matrix T , we �nally have to determine its de
omposition (2.8). Setting R =(I2 � L)�1, the matri
es S and R have the formS = � x1 x2x3 x4 � ; R = � 1 0x 1 � ;and they have to satisfy the equation TS = 
SR. In solving this system we are left withthree free parameters fx1; x2 6= 0; x3g. However, it is not possible to exploit this freedomto obtain better damping properties of the iteration s
heme. Therefore, we will use theapproa
h used in [8℄ where the transformation matrix S has been 
hosen upper triangular6



with unit diagonal entries; this fa
ilitates the implementation and redu
es the 
omputational
osts. This 
hoi
e leads to
S = 0B� 1 5� 2p690 1

1CA ; L = I2 �R�1 = 0BB� 0 03p64 0
1CCA :

The matrix (I2 � L)S�1, also needed in the single-Newton pro
ess (2.9), is given by
(I2 � L)S�1 = 0BBB� 1 �5� 2p69�3p64 5p612

1CCCA :
We 
on
lude this se
tion by mentioning that one eigenvalue of the iteration matrix M(z)identi
ally vanishes. For the other eigenvalue an analyti
al expression 
an be derived:�(M(z)) = jtra
e M(z)j = �����2(2�p6)z(p6� z)2 ����� ;for whi
h we have the following suprema along the negative real axis and the imaginary axismaxz�0 f�(M(z))g = 12 � p66 � 0:09175; maxy2IRf�(M(iy))g = 1� 2p66 � 0:18350:
3 Approximate matrix fa
torizationThe single-Newton iteration pro
ess (2.9) requires, in ea
h iteration, the solution of the twom-dimensional linear systems8<: (Im � 
�J)Ek1 = ~Dk�11(Im � 
�J)Ek2 = ~Dk�12 + L21Ek1 (3.1)
where we have putEk = � Ek1Ek2 � ; ~Dk�1 = � ~Dk�11~Dk�12 � := ((I2 � L)S�1 
 Im)Dk�1: (3.2)Noti
e that the 
oupling in the two systems in (3.1) is one-sided, whi
h implies that �rstEk1 
an be 
omputed and subsequently Ek2 , using Ek1 in the right-hand side. In the 
ur-rent appli
ation of multi -dimensional PDEs, the dire
t solution of these linear systems istime 
onsuming, due to the stru
ture of the Ja
obian. A possible remedy to redu
e the
omputational 
osts is to use a so-
alled Approximate Matrix Fa
torization (AMF) te
h-nique. To that end, the Ja
obian matrix J is written as J = Pdi=1 Ji. Then the matri
esIm � 
�J = Im � 
�(J1 + : : :+ Jd) in (3.1) are repla
ed by the fa
tored matrix �, de�nedas � := dYi=1(Im � 
�Ji): (3.3)

7



In this paper, d will be 
hosen equal to the number of spatial dimensions of the underlyingPDE, and Ji 
orresponds to the dis
retization of the di�erential operators in the i-th spatialdire
tion. Solving the resulting linear systems is mu
h 
heaper be
ause the fa
tored matrix� results in the su

essive solution of d systems with a banded 
oeÆ
ient matrix. Typi
ally,the matri
es have a band width in the range 3-5, depending on the dis
retization sten
ils thathave been used (e.g., symmetri
 se
ond-order for di�usion terms, third-order upwind biasedfor adve
tion terms, et
.). Solving su
h systems is 
heap sin
e the 
omplexity involved isonly linear in the dimension. Now, we 
an pro
eed in two di�erent dire
tions.3.1 Fa
torized iteration to solve the linear systemsThe �rst approa
h is to use the AMF-te
hniques in an iterative way to solve the linearsystems in (3.1) until `
onvergen
e'. This is in the spirit of the analysis of the single-Newtoniteration. Indeed, the use of the expression (Is � zT )�1 in the derivation of the iterationmatrix M(z) (
f. (2.4)) assumes that the linear system is exa
tly solved. The 
onvergen
ebehaviour of this AMF-iteration has been analyzed in [10℄; see also [12℄ with a similaranalysis in a slightly di�erent 
ontext. As it turns out, a su

essful appli
ation of the AMFapproa
h 
riti
ally depends on the number of spatial dimensions involved.Writing ea
h of the linear systems in (3.1) in the form (Im�
�J)x = b, the 
onvergen
eof the AMF-iteration pro
ess�(xj � xj�1) = b� (Im � 
�J)xj�1; j = 1; 2; : : : ; (3.4)
orresponding to the linear model problem y0 = Jy = (J1 + : : : + Jd)y is governed by theiteration matrix Z given by Z = Im ���1(Im � 
�J): (3.5)Assuming that all the Ja
obian matri
es Ji (i = 1; : : : ; d) have the same set of eigenve
tors,then the eigenvalues of Z are given by
�(Z) = 1� (1� 
z) dYi=1(1� 
zi)�1; (3.6)

where zi runs through the eigenvalues of �Ji and z =Pdi=1 zi.The pro
ess (3.4) is 
alled A(�)-
onvergent [10℄ if �(Z) is within the unit 
ir
le for allzi 2 W(�) with W(�) := fw 2 C : w = 0 or jarg(�w)j < �g:Now, we have the followingTheorem 1. [12, 10℄ For the 
onvergen
e of the AMF-iteration pro
ess (3.4) we have ford � 2 j�(Z)j < 1 for all zi 2 W(�) () � � 1d� 1 � �2 2For PDEs in two spatial dimensions this result is ex
ellent, sin
e d = 2 yields A(�=2)-
onvergen
e, hen
e un
onditional 
onvergen
e as long as the eigenvalues of J1 and J2 are inthe left half-plane. On the other hand, we en
ounter a serious limitation for PDEs in threedimensions, sin
e then we only have A(�=4)-
onvergen
e. This implies that for adve
tion
8



dominated 3D PDEs, we will en
ounter 
onvergen
e problems. In passing we remark that, ifJ has only real negative eigenvalues (
orresponding to di�usion-rea
tion type PDEs withoutadve
tion terms), the pro
ess will 
onverge, independent of the number of dimensions d.In [10℄ a remedy has been suggested to 
ir
umvent this restri
tive 
ondition on � in
ase of 3D PDEs. The basi
 idea is to repla
e the fa
torization Q3i=1(Im � 
�Ji) by twosu

essive fa
torizations in ea
h of whi
h only two matri
es are involved. WritingJ = J1 + J�; with J� = J2 + J3; (3.7)and re
ursively applying the d = 2-appli
ation of the AMF-iteration with these matri
es,we arrive at (Im � 
�J1) ~�j = b� (Im � 
�J)xj�1;(Im � 
�J�)�j = ~�j ; xj = xj�1 +�j ; j = 1; 2; : : : : (3.8)
The matrix J1 has a simple band stru
ture, but J� has not. Therefore, the system involvingJ� is iteratively solved by a (nested) AMF-iteration. Sin
e both pro
esses are based on afa
torization with d = 2, they will 
onverge un
onditionally. Now, the inner AMF-iterationis obtained by repla
ing Im � 
�J� by (Im � 
�J2)(Im � 
�J3) whi
h results in(Im�
�J2)(Im�
�J3)(�j;i��j;i�1) = ~�j� (Im�
�J�)�j;i�1; i = 1; 2; : : : ; r; (3.9)and the ve
tor xj is updated by the last result from this inner iteration, i.e., xj = xj�1+�j;r.We remark that the inner iteration should be 
ontinued until `
onvergen
e', hen
e r shouldbe suÆ
iently large. A plausible starting value for the iteration (3.9) is given by �j;0 = ~�j ,as has been suggested in [10℄. For the approa
h des
ribed in the next subse
tion, however,there is theoreti
al and numeri
al eviden
e that �j;0 = 0 is a better 
hoi
e to start theiteration.In applying the above (nested) AMF-iteration pro
ess to really solve the linear systems in(3.1), the overall behaviour of the 
ombined single-Newton/AMF pro
ess is merely governedby the 
onvergen
e behaviour of the single-Newton pro
ess, whi
h has been analyzed inSe
tion 2.3.2 Mixed single-Newton and AMF-iterationNext, we will dis
uss an approa
h in whi
h both iteration pro
esses are mixed up. By thiswe mean that the linear systems (3.1) that o

ur in ea
h single-Newton iteration are onlyapproximately solved by repla
ing the matrix Im � 
�J by the matrix � de�ned in (3.3).Then, after su

essively solving the d bandsystems, we 
ontinue with the next single-Newtoniteration. Or, saying it di�erently, only one AMF-iteration of the form (3.4) is applied.This approa
h requires, of 
ourse, mu
h less bandsolves than the approa
h dis
ussed in thepre
eding subse
tion. The 
onvergen
e analysis, however, does not dire
tly follow from theresults given in [10, 12℄ and needs some amendment. Starting from (3.1) and applying theAMF-te
hnique, this mixed approa
h reads (see also (2.9))�Ek1 = ~Dk�11 ; �Ek2 = ~Dk�12 + L21Ek1 ;Y kn = Y k�1n + (S 
 Im)Ek; k = 1; 2; : : : ; ) (3.10)

9



with � and ~Dk�1j given by (3.3) and (3.2), respe
tively. A natural initial guess is given byY 0n = e
 yn, but other 
hoi
es are possible, e.g. predi
tions of higher order (i.e., with ` > 0in (2.7)).If the mixed iteration pro
ess (3.10) is applied to y0 = Jy = (J1 + : : : + Jd)y, we �ndthat the iteration error "k := (S�1 
 Im)(Y kn � Yn) (3.11)satis�es the re
ursion "k = Z�"k�1; k = 1; 2; : : :, whereZ� = I2m � (I2 
��1) �I2m + L
 (��1 � Im)� (I2m � � ~A
 J); ~A := S�1AS; (3.12)and we have taken into a

ount that L2 = 0. Similarly as in Se
tion 3.1, it is assumed thatall the Ji have the same set of eigenve
tors, that zi runs through the spe
trum of �Ji andz =Pdi=1 zi. Then, the eigenvalues of Z� are those of the 2-dimensional matrix M�
M� = I2 � x�1 �I2 + (x�1 � 1)L� (I2 � z ~A); where x = dYj=1(1� 
zj): (3.13)

Next, we formulate 
onvergen
e results for the 
ases d = 2 and d = 3.Result 1. The iteration pro
ess (3.10) with d = 2 is 
onvergent for z1; z2 2 W(�) with� � 87:9Æ.Derivation. A straightforward 
al
ulation yields that the eigenvalues � of the matrix M�are determined by �2 � a1�+ a0 = 0;a0 = �6 + 6x2 � 2p6z + z2 + 2x(�6 +p6z)�(x�2=6);a1 = �6x2 � (�2 +p6)z + x(�6 +p6z)�(x�2=3): (3.14)
Sin
e z1 and z2 may vary independently in the wedge W(�), we examine the 
ases fz1 =�1ei�; z2 = �2ei�g and fz1 = �1ei�; z2 = �2e�i�g and determine numeri
ally the largest �su
h that �(M�) < 1 for (many values of) �1 and �2 2 (0;1). This 
omputation yields� � 87:9Æ. We remark that the largest values for the spe
tral radius in any interval 0 ��1; �2 � �; (� > 0) were found when �1 = �2 2 [0; �℄ 2To obtain a 
onvergen
e result for the three-dimensional 
ase we followed the same ap-proa
h using d = 3. That is, all possible 
ombinations of zi-values lying on the upper andlower boundary of the wedge and at mutually di�erent distan
es from the origin have beenexamined. A numeri
al sear
h for the largest aperture of the wedge, still resulting in 
on-vergen
e, leads to the following result.Result 2. The iteration pro
ess (3.10) with d = 3 is 
onvergent for z1; z2; z3 2 W(�) with� � 44:7Æ.Remark 1. It is interesting to 
ompare the 
onvergen
e properties of the mixed iterationpro
ess with those of the approa
h des
ribed in Se
tion 3.1. To this aim, by 
omparing theResults 1 and 2 with Theorem 1, we 
on
lude that the angle � redu
es from 90Æ to 87:9Æin 
ase d = 2, and from 45Æ to 44:7Æ for d = 3. This marginal redu
tion of the 
onvergen
e10



region is amply 
ompensated by the enormous gain in 
omputational work.Remark 2. From (3.14) we obtain for IRezj ! �1 (j = 1; : : : ; d), that a0 ! 1 and a1 ! 2.Then �(M�) is only slightly smaller than 1, indi
ating that we may expe
t slow 
onvergen
efor extremely sti� 
omponents.So far, we have 
onsidered the 
onvergen
e of the single-Newton pro
ess (2.9) 
ombinedwith AMF. One may wonder whether better 
onvergen
e results are obtained if we apply theAMF-te
hnique dire
tly to the modi�ed Newton pro
ess (2.2). Hen
e, when the iterationmatrix (I2m � �A
 J) in (2.2) is repla
ed by Qdj=1(I2m � �A
 Jj). As we will show, thisapproa
h leads to a wedge with smaller aperture. This negative result is due to the nonzeroimaginary parts in the eigenvalues of the A-matrix of the 2-stage Radau IIA method. Forthis method, the eigenvalues are �(A) = (2� ip2)=6 = p66 e�i�R , with �R=ar
tan(p2=2) �0:615 (� 35:3Æ). The new iteration 
an be written asdYj=1[I2m � �A
 Jj ℄�k = Dk�1; Y kn = Y k�1n +�k; k = 1; 2; : : : : (3.15)
For linear problems y0 = Jy; J =Pdj=1 Jj , the error of the iterates satis�es
Y kn � Yn =W �(Y k�1n � Yn); W � = I2m � � dYj=1[I2m � �A
 Jj ℄��1(I2m � �A
 J): (3.16)
Again, we assume that the Jj matri
es share the same set of eigenve
tors. Then, theeigenvalues of W � are given by

�(W �) = 1� � dYj=1(1� zj�(A)��1(1� z�(A)); �(A) = (2� ip2)=6; (3.17)
where the zj and z have the same meaning as before. Now we 
an formulate the followingtheorem.Theorem 2. For the 
onvergen
e of the iteration pro
ess (3.15) and the two-dimensional
ase (d = 2) we havej�(W �)j < 1 for all z1; z2 2 W(�) () � � �=2� �R ' 54:7Æ:Proof. Writing � = �(A), it readily follows from (3.17) with d = 2 that�(W �) = �2z1z2(1� �z1)(1� �z2) = �z1(1� �z1) � �z2(1� �z2) :Hen
e, j�(W �)j < 1; 8 z1; z2 2 W(�) i� j��(1 � ��)�1j < 1; 8 � 2 W(�). The latterexpression is equivalent to � = �=2� �R: 2
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3.3 Stability analysisAs mentioned in Remark 2, the 
onvergen
e of the mixed iteration pro
ess 
an be ratherslow, espe
ially for sti� eigenvalues 
lose to the boundary of the wedge. Therefore, in
omputational pra
ti
e we will not 
ontinue the iteration until the true Radau IIA solutionhas been rea
hed. Starting with the predi
tionY 0n = e
 yn; (3.18)we see from (2.7) that after q � 3 outer iterations, an advan
ing solution yn+1 = Y qn;2,of order p = 3 is obtained. For this reason, we will fo
us on appli
ations with q = 3 orq = 4. In 
ase of a 3D problem we will also employ the inner iteration pro
ess (nestedAMF) as des
ribed in Se
tion 3.1. Again, we are mainly interested in a small number ofinner iterations r. It should be remarked that with q = 3 outer iterations, third-ordera

ura
y is obtained (independent of the number of inner iterations), however the prin
ipallo
al error term will di�er from the 
orresponding term of the Radau IIA 
orre
tor. Withq = 4, however, the prin
ipal lo
al error term 
oin
ides with that of the 
orre
tor.Stopping the iteration pro
ess before 
onvergen
e has been rea
hed, implies that we 
an-not simply rely on the stability properties of the underlying Radau IIA 
orre
tor. Therefore,it is of interest to study the stability properties of the �nal approximation yn+1 obtainedafter a modest number of iterations.De�nition 1. A one-step method yn+1 = �(tn; yn; �) is said to be A(�)-stable for the d-dimensional 
ase, if its stability fun
tion R(z1; : : : ; zd) satis�es jR(z1; : : : ; zd)j � 1, wheneverzj are in the 
losure of W(�) for j = 1; 2; : : : ; d. In addition, if � = �=2 the method is saidto be A-stable.Result 3. For the two-dimensional 
ase (d = 2), the mixed iteration pro
ess (3.10) with qiterations and with predi
tor (3.18) is A-stable for q = 1; 2; 3; 4.Derivation. Applying the mixed iteration (3.10) to the test problem
y0 = � dXj=1 �j�y; zj = ��j (j = 1; : : : ; d); z = dXj=1 zj ; (3.19)

it follows from (3.11) and (3.13) thatY kn � Yn = SM�S�1(Y k�1n � Yn) = S(M�)kS�1(Y 0n � Yn): (3.20)From (2.1), the stage ve
tor Yn of the 2-stage Radau IIA method is seen to satisfyYn = eyn + zAYn; yn+1 = eT2 Yn; eT2 = (0; 1):Solving for Yn and inserting the result into (3.20) leads toY qn = �(I2 � zA)�1e+ S(M�)qS�1(I2 � (I2 � zA)�1)e�yn:Taking into a

ount that the stability fun
tion of the advan
ing solution 
orrespondingto q outer iterations is obtained by setting yqn+1 = eT2 Y qn � Rq(z1; : : : ; zd)yn, it follows thatRq(z1; : : : ; zd) = R(z) + eT2 S(M�)qS�1�I2 � (I2 � zA)�1�e= R(z) + eT2 S(M�)q�I2 � (I2 � z ~A)�1�S�1e; (3.21)
12



where R(z) = eT2 (I � zA)�1e = (1 + z=3)=(1� 2z=3 + z2=6) is the stability fun
tion of thetwo-stage Radau IIA method. We have veri�ed numeri
ally that the Rq stability fun
tion,based on d = 2, is A-a

eptable for q = 1; 2; 3; 4. The maximum values of jRq(z1; z2)j areobtained for purely imaginary values of z1 and z2. In parti
ular, in 
ase z1 = �z2 = t i wehave z = 0 and hen
e Rq(t i;�t i) = R(0) = 1 for all t. As an illustration we show in Figure3.1 the behaviour of jRq(z1; z2)j with z1 = z2 = t i, for q = 1; 2; 3; 4 (whi
h seems to bea

ording to the numeri
al results the most 
riti
al situation), along with the modulus ofthe stability fun
tion of the Radau IIA method. 2
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Figure 3.1: Graphs of jR(2t i)j and jRq(t i; t i)j (verti
al axis) for q = 1; 2; 3; 4 and t � 0(horizontal axis). The left panel shows the situation in the neighborhood of the origin,whereas the right panel illustrates the behaviour on the larger interval 0 � t � 100. Thesituation near the origin serves to distinguish between the 
urves for the various q-values:the larger q, the 
loser jRj and jRqj.We will now pro
eed with analyzing the stability for the three-dimensional situation. Thestarting point is again the systems de�ned in (3.1) and (3.2) and the matrix J is de
omposedas de�ned in (3.7). The inner-outer iteration is now de�ned in (3.8) in 
ombination with(3.9). Both for the stability analysis as well as for the a
tual implementation it is 
onvenientto expli
itly write out the total pro
ess. Hen
eforth, we will refer to this mixed, nestediteration as the (r; q)-iteration, whi
h reads:For k = 1; 2; : : : ; q: (outer iterations)First stage: (Im � 
�J1)�k1 = ~Dk�11 ; (3.22)Ek;01 = 0;For j = 1; 2; : : : ; r: (inner iterations)(Im � 
�J2)(Im � 
�J3)�̂k;j1 = �k1 � (Im � 
�(J2 + J3))Ek;j�11 ;Ek;j1 = Ek;j�11 + �̂k;j1 ; (3.23)End (for j)Ek1 = Ek;r1 ;
13



Se
ond stage:(Im � 
�J1)�k2 = ~Dk�12 + L21Ek1 ; (3.24)Ek;02 = 0;For j = 1; 2; : : : ; r (inner iterations)(Im � 
�J2)(Im � 
�J3)�̂k;j2 = �k2 � (Im � 
�(J2 + J3))Ek;j�12 ;Ek;j2 = Ek;j�12 + �̂k;j2 ; (3.25)End (for j)Ek2 = Ek;r2 ;
Stage updating:Y kn;1 = Y k�1n;1 + Ek1 + S12Ek2 ;Y kn;2 = Y k�1n;2 + Ek2 ; (3.26)

End (for k). Set yqn+1 = Y qn;2:We remark that the (1; q)-iteration is equivalent to the mixed AMF-iteration des
ribedin (3.10) for k = 1; 2; : : : ; q.The stability analysis for the (r; q)-iteration 
an be 
arried out along the same lines asgiven in Result 3. A rather tedious but straightforward 
al
ulation shows that the stabilityfun
tion Rq(z1; z2; z3) is given by (3.21) with M� de�ned in (3.13), but with the importantdi�eren
e that now x is 
omputed fromx = (1� !r)�1(1� !)(1� 
z1)(1� 
z2)(1� 
z3);! = �
z2(1� 
z2)�1��
z3(1� 
z3)�1�: (3.27)Result 4. For the three-dimensional 
ase (d = 3) and q = 1; 2; 3; 4 outer iterations weobtain:(a) The (1; q)-iteration is A(�=4)-stable;(b) The (r; q)-iteration is A(�)-stable (with � = �=4 maximal) independently of the �xednumber r of inner iterations 
arried out.Derivation. By using the maximum prin
iple it follows that the maximum of jRq(z1; z2; z3)jis obtained when all zj are on the boundary of the wedge W(�). Again, the statements (a)and (b) in Result 4 have been veri�ed numeri
ally. Similar to the two-dimensional 
ase themaximum was found on the lines z1 = z2 = z3 = �t exp (�i �); t � 0. In the Figures 3.2and 3.3 we have plotted the jRq(z1; z2; z3)j-values for q = 1; 2; 3; 4 and r = 1 and r = 2,respe
tively. Here the value � = �=4 has been used. As a referen
e, the Radau stabilityfun
tion jR(z)j is also shown. Moreover, we have veri�ed numeri
ally (for all 
ombinationsof r = 1; 2; : : : ; 10 and q = 1; 2; 3; 4) that using an �-value slightly larger than �=4 indeedyields the existen
e of a point t > 0 su
h that jRq(z1; z2; z3)j > 1 2We 
on
lude this subse
tion by providing some quantitative information on the values ofjRq(z1; z2; z3)j, q = 3; 4 for the most 
riti
al situation (i.e., zj = (� 
os�+i sin�)t; j = 1; 2; 3)and � > �=4). This information is presented in the Tables 3.1, 3.2, and 3.3, from whi
h we14
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Figure 3.2: Graphs of jR(z1 + z2 + z3)j and of jRq(z1; z2; z3)j (verti
al axis) for r = 1,q = 1; 2; 3; 4 and z1 = z2 = z3 = (�1+ i)t; t � 0 (horizontal axis). The left panel shows thesituation in the neighborhood of the origin, whereas the right panel illustrates the behaviouron the interval 0 � t � 50. The situation near the origin serves to distinguish between the
urves for the various q-values: the larger q, the 
loser jRj and jRqj.

on
lude that:(i) near the origin (small t-values) the a
tual stability region (for ea
h of the zj-values) islarger than di
tated by the wedge. In fa
t, the largest wedge 
ontained in ea
h of thesestability regions is determined by the sti� eigenvalues (t!1);(ii) To gain stability it helps to in
rease r, the number of inner iterations;(iii) The number of outer iterations, q, has less in
uen
e;(iv) As we will see in Se
tion 4, some 
ombinations of the (r; q)-iteration with some valuesof the step size � may lead to an unstable result in 
ase of an adve
tion dominated problem.Although in
reasing r will help to gain stability in su
h situations, it might be that aredu
tion of the time step is a more eÆ
ient approa
h.
Table 3.1: First positive t-value (with two de
imal signi�
ant digits) su
h thatjRq(z1; z2; z3)j > 1 for the (1; q)-iteration and z1 = z2 = z3 = (� 
os�+ i sin�)t.q � = 50Æ � = 60Æ � = 70Æ � = 80Æ � = 90Æ3 28.94 9.18 5.33 2.18 1.654 28.93 9.17 5.38 2.36 1.97
Table 3.2: First positive t-value (with two de
imal signi�
ant digits) su
h thatjRq(z1; z2; z3)j > 1 for the (2; q)-iteration and z1 = z2 = z3 = (� 
os�+ i sin�)t.q � = 50Æ � = 60Æ � = 70Æ � = 80Æ � = 90Æ3 38.47 12.18 7.12 5.08 2.944 38.46 12.18 7.21 5.36 2.96
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Figure 3.3: Graphs of jR(z1 + z2 + z3)j and of jRq(z1; z2; z3)j (verti
al axis) for r = 2,q = 1; 2; 3; 4 and z1 = z2 = z3 = (�1+ i)t; t � 0 (horizontal axis). The left panel shows thesituation in the neighborhood of the origin, whereas the right panel illustrates the behaviouron the interval 0 � t � 50. The situation near the origin serves to distinguish between the
urves for the various q-values: the larger q, the 
loser jRj and jRqj.
Table 3.3: First positive t-value (with two de
imal signi�
ant digits) su
h thatjRq(z1; z2; z3)j > 1 for the (r; q)-iteration and z1 = z2 = z3 = (� 
os� + i sin�)t forthe angles � = 50Æ and � = 90Æ.� = 50Æ q r = 1 r = 2 r = 3 r = 4 r = 53 28.94 38.47 48.30 58.26 68.304 28.93 38.46 48.29 58.25 68.29� = 90Æ 3 1.65 2.94 5.60 7.01 8.424 1.97 2.96 6.04 7.30 8.64
4 Numeri
al results for a model problemWe will �rst apply the numeri
al pro
edure as des
ribed in the pre
eding se
tions to themodel problem ut + a � ru = D�u+ g; (4.1)de�ned in 2 or 3 spatial dimensions on the unit square and unit 
ube, respe
tively. Atthe boundaries we impose Diri
hlet boundary 
onditions. In all tests in this se
tion, theanalyti
al solution is pres
ribed by

u(t; x1; : : : ; xd) = 
os(t2) dYi=1xi(1� xi); with d = 2 or d = 3: (4.2)
The velo
ity ve
tor a = (ai) is 
onstant, with ai > 0, and the same holds for the di�usion
oeÆ
ient D. The adve
tion and di�usion terms are dis
retized using symmetri
, se
ond-order sten
ils on a uniform grid with N internal points in ea
h spatial dire
tion, i.e., themesh width is h = 1=(N +1). The inhomogeneous term g, as well as the Diri
hlet boundary
onditions are determined in su
h a way that (4.2) is the exa
t solution indeed. The resulting
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linear system has the form,y0 = f(t; y) := Jy + g(t); y(0) = 0; y; f; g 2 RNd : (4.3)The 
ase d = 2 yieldsJ = J1 + J2 with J1 = IN 
 ~J1; J2 = ~J2 
 IN ;whereas for d = 3, we haveJ = J1 + J2 + J3 with J1 = IN 
 IN 
 ~J1; J2 = IN 
 ~J2 
 IN ; J3 = ~J3 
 IN 
 IN ; (4.4)with N -dimensional tridiagonal matri
es ~Jl (l = 1; 2; 3) of the spe
ial form
~Jl =

0BBBBBBB�
� 
l 0 0 0 � � � 0 0 0�l � 
l 0 0 � � � 0 0 00 �l � 
l 0 � � � 0 0 0... ... ... . . . . . . . . . . . . ... ...0 0 0 0 0 � � � �l � 
l0 0 0 0 0 � � � 0 �l �

1CCCCCCCA ; 8<: �l = al=(2h) +D=h2
l = �al=(2h) +D=h2� = �2D=h2 (4.5)
From the above splitting it is 
lear that all matri
es Jl for the 
ases d = 2 and d = 3 havethe same set of eigenve
tors, respe
tively. For instan
e for the 
ase d = 3, the eigenve
torset is given by fuijk = v1i 
 v2j 
 v3k; 1 � i; j; k � Ng;where vlj denotes the jth eigenve
tor of the matrix ~Jl.For this problem, the spatial dis
retization errors vanish (i.e., the PDE solution at thegrid points equals the ODE solution). Hen
e, we only 
on
entrate on time integration errors,whi
h is pre
isely the aim of this se
tion: to study the a

ura
y and 
onvergen
e behaviourof the proposed time integration method. In the results presented below, the a

ura
y { atthe end point of the integration interval { will be measured by the quantity sd, de�ned assd := � log10 k numeri
al solution { exa
t solution k1 :For the time interval we 
hoose 0 � t � 3. The (r; q)-iteration that we used in the testshas been des
ribed in Se
tion 3.3 for the 
ase of dimension d = 3, see formulas (3.22) until(3.26). We remark that for d = 3, the (1; q)-iteration 
oin
ides with the AMF-iterationdes
ribed in (3.10). This also holds in the 
ase d = 2, by setting J3 = 0 in (3.22)-(3.26).Computational 
osts. It should be observed that the majority of the 
omputational workin the (r; q)-iteration 
onsists of matrix-ve
tor produ
ts and solving linear systems with abanded matrix, the band width typi
ally in the range 3-5. This property is independent ofthe number of spatial dimensions of the underlying PDE. Hen
e, the linear algebra workinvolved is mu
h less than that en
ountered in fully impli
it methods where `multidimen-sional' systems have to be solved. Moreover, the full right-hand side fun
tion f o

urringin (1.1) has to be evaluated only q times, i.e., at the start of a new single-Newton iteration.Su
h an f -evaluation may be quite expensive, e.g., in 
ase of 
ompli
ated di�usion terms(see the example in Se
tion 5) or when a laborious inhomogeneous term is involved (as inthe example in Se
tion 4). Sin
e q is usually small, this property is an advantage 
omparedwith fully expli
it methods, su
h as stabilized Runge-Kutta methods, where in ea
h stagethe full right-hand side fun
tion f has to be re-evaluated. In Se
tion 5 we will des
ribea 
omparison with a BDF-based 
ode and an Runge-Kutta-Chebyshev 
ode, in
luding therequired CPU times of all solvers. 17



4.1 Adve
tion dominated 
aseThe su

ess of the algorithm largely depends on the position of the eigenvalues of the Ja
o-bian of the dis
rete system. These eigenvalues are determined by the resolution of the spatialgrid and by the ratio of adve
tion and di�usion. A proper way to 
hara
terize a parti
ularsituation is to use the so-
alled 
ell P�e
let number Pe, whi
h is de�ned by Pe = jajh=D(see e.g. [13℄). We will present results where we set the velo
ities ai = 1 and the di�u-sion 
oeÆ
ient D = 10�4, i.e., the 
ase where adve
tion strongly dominates di�usion. Thisresults in Pe = 104h (in ea
h spatial dire
tion), whi
h be
omes quite large for the spatialgrids that we will use. Large P�e
let numbers indi
ate that we are dealing with the most
riti
al situation, where the eigenvalues are 
lose to the imaginary axis. We present resultsfor d = 2 and d = 3, obtained on spatial grids with in
reasing resolution to see the in
uen
eon the overall performan
e and the 
onvergen
e behaviour in parti
ular.For both 
ases we performed experiments with a 
onstant step size � and with a �xednumber q of single-Newton iterations per step. The tables show sd -values for various 
om-binations of � and q. First, in Table 4.1, we give results for the two-dimensional problem.
Table 4.1: sd-values for problem (4.1),(4.2) in 2 dimensions using iteration (3.10).N h Pe � q = 1 q = 2 q = 3 q = 4 ! q = 1032 1/33 303 3/10 1.34 1.75 1.81 1.76 ! 1.753/20 1.52 2.40 2.67 2.63 ! 2.613/40 1.72 3.14 3.61 3.51 ! 3.503/80 1.97 3.71 4.54 4.41 ! 4.41128 1/129 77.5 3/10 1.53 1.93 1.85 1.76 ! 1.763/20 1.60 2.51 2.73 2.64 ! 2.623/40 1.75 3.24 3.67 3.53 ! 3.513/80 2.00 3.83 4.58 4.43 ! 4.42512 1/513 19.5 3/10 1.66 2.10 1.91 1.82 ! 1.823/20 1.68 2.64 2.78 2.70 ! 2.683/40 1.82 3.28 3.74 3.59 ! 3.573/80 2.06 3.88 4.66 4.48 ! 4.48

From the 2D-results presented in Table 4.1 we may 
on
lude:� Convergen
e of the iteration pro
ess. For all values of the step size � we observe a fast
onvergen
e. The numeri
al solution obtained with q = 4 iterations is (almost) thesame as the solution of the underlying Radau IIA method (
olumn with q = 10). Thisproperty is seen to be independent of the resolution of the spatial grid. Stopping theiteration after q = 3 iterations yields a solution that is not yet fully 
onverged towardsthe Radau IIA solution, but it is 
ertainly of suÆ
ient a

ura
y to adopt the q = 3result as the new step point approximation. As a matter of fa
t, for this problem iteven shows a slightly higher pre
ision than the Radau solution. Here we re
all that theprin
ipal lo
al error term for q = 3 is not identi
al to that of the 
orre
tor. Overall,the behaviour is satisfa
tory and in a

ordan
e with the theoreti
al results 
on
erningA-stability (see Result 3) and almost A-
onvergen
e (see Result 1).
18



� Order behaviour. The mixed iteration pro
ess has been started with the predi
tion(3.18). Using (2.7) we see that the order p� after q iterations is equal to p�=min(q; 3).This order behaviour in time is ni
ely observed from Table 4.1 (noti
e that halvingthe step size should yield an in
rease in the sd -value equal to 0:3p�).Additionally, we repeated the above experiments (not displayed in tables) for the simpler
ase where D = ai = 1. Hen
e the di�usion and adve
tion 
oeÆ
ients have equal weight,resulting in mu
h smaller P�e
let numbers. We found a similar behaviour (again, the q = 4solution is almost the same as the Radau solution). The only di�eren
es with Table 4.1 were:(i) q = 4 yielded more a

urate results than q = 3, and (ii) for ea
h f� ; qg-pair, the sd -valueson the various grids were identi
al. In 
on
lusion, the Radau-based mixed iteration pro
ess(3.10) is very eÆ
ient for 2D problems, independent of the position of the eigenvalues of thedis
rete system.Next, we 
ontinue with the three-dimensional version of the model problem (4.1), (4.2),with ai = 1 and D = 10�4. Here, we will employ the iteration pro
ess (3.22)-(3.26) and someresults for various (r; q)-
ombinations are given. The Tables 4.2, 4.3, and 4.4 show sd -valuesfor r = 1; 2, and 5, respe
tively. Espe
ially for h = 1=33 and h = 1=129 a bad 
onvergen
ebehaviour is observed in some 
ases. Initially, for small q-values (say q � 3) often usefulresults are obtained; however, 
ontinuing the iteration results in divergen
e/instability. Inthe tables, an asterisk denotes an sd -value < �20. For h = 1=33, it helps to 
ontinuethe inner iteration pro
ess (r = 5); unfortunately, on the �nest mesh (h = 1=129) several(r; q)-
ombinations resulted in poor performan
e. However, a redu
tion of the time step(� = 3=320 in Table 4.2) yielded satisfa
tory results again for those 
ombinations. Wehave also added results for a 
oarse mesh with h = 1=9. Here the 
onvergen
e is usuallysatisfa
tory in all 
ases, due to the fa
t that the 
onvergen
e and stability regions in theneighborhood of the origin are substantially larger than indi
ated by the wedge (see theTables 3.1, 3.2 and 3.3 and the a

ompanying dis
ussion). Nevertheless, the 
on
lusionmust be that the (r; q)-iteration for 3D problems with a dominating adve
tion term mustbe used with some 
aution. For this situation the 
onstru
tion of a robust 
ode needs theimplementation of a variable step size strategy. This topi
 is subje
t of a
tual resear
h andit is outside of the s
ope of the present paper. Again, these experiments seem to 
on�rmthe theory in Result 2 and Result 4, respe
tively.For problems with substantial di�usion (
ompared with adve
tion) the situation is mu
hmore favorable, in the sense that less redu
tion on the time step sizes is required in order toget stable and a

urate solutions. For instan
e by applying the (1; 3)-iteration (or equiva-lently, the AMF-iteration (3.10)) to the model problem with D = ai = 1, good 
onvergen
eresults were found as is shown in Table 4.5.Non-smooth solutions. So far, we have shown the (
onvergen
e) behaviour of the AMF-approa
h on the basis of a smooth solution in spa
e (
f. (4.2)). The question arises whatwill happen when a non-smooth solution is involved. Hundsdorfer & Verwer write in [13,p. 406℄: `...the 
onvergen
e of modi�ed Newton AMF-iteration 
an be rather slow, espe
iallyfor solutions ri
h in high frequen
ies'. To investigate that situation, we have performed anadditional test for the model problem (4.1), without the inhomogeneous term g(t), againon the unit square in spa
e and t running from 0 to 1. Furthermore, D = 10�4 and thevelo
ities ai are set to 0:2. Hen
e, this is almost a pure adve
tion problem transporting theinitial pro�le with 
onstant velo
ity. The reason for redu
ing the velo
ities from 1 to 0:2
19



Table 4.2: sd-values for problem (4.1),(4.2) in 3 dimensions using the (1; q)-iteration.N h Pe � q = 1 q = 2 q = 3 q = 4 ! q = 108 1/9 1111 3/10 1.75 1.98 2.07 2.12 ! 1.623/20 1.87 2.68 2.98 2.99 ! 3.003/40 2.12 3.54 3.96 3.90 ! 3.903/80 2.39 4.25 4.91 4.81 ! 4.8132 1/33 303 3/10 1.67 1.99 1.97 2.00 ! -3.493/20 1.86 2.59 2.87 2.91 ! -12.153/40 2.06 3.44 3.89 3.01 ! -5.863/80 2.32 4.24 4.83 4.73 ! 4.73128 1/129 77.5 3/10 1.90 1.94 1.92 1.96 ! 1.713/20 1.87 2.57 2.85 2.91 ! -2.523/40 2.07 3.44 3.57 1.71 ! *3/80 2.33 2.37 -2.90 -7.93 ! *3/160 2.61 -5.11 -16.13 * ! *3/320 2.90 5.65 6.68 6.56 ! 6.56
Table 4.3: sd-values for problem (4.1),(4.2) in 3 dimensions using the (2; q)-iteration.N h Pe � q = 1 q = 2 q = 3 q = 4 ! q = 108 1/9 1111 3/10 1.70 2.00 2.12 2.14 ! 2.153/20 1.87 2.70 3.00 2.99 ! 3.003/40 2.12 3.55 3.97 3.90 ! 3.903/80 2.39 4.22 4.92 4.81 ! 4.8132 1/33 303 3/10 1.64 1.99 2.08 2.07 ! -3.333/20 1.83 2.66 2.94 2.93 ! -9.563/40 2.05 3.46 3.90 3.83 ! 3.823/80 2.31 4.15 4.84 4.73 ! 4.73128 1/129 77.5 3/10 1.76 2.01 2.05 2.07 ! -0.603/20 1.84 2.66 2.92 2.09 ! *3/40 * * * * ! *3/80 * * * * ! *

is that we want to keep the (steep) solution pro�le inside the unit square at t = 1. Again,we use se
ond-order symmetri
 di�eren
es, both for the di�usion and the adve
tion term.The main di�eren
e with the previous situation, however, is that we now start with thenon-smooth initial �eld (see also [13, pp. 52{62℄ where a similar test for an adve
tion modelis des
ribed) u(t = 0; x; y) = [sin(�x)℄100 [sin(�y)℄50: (4.6)For this problem we do not have an analyti
al solution, so we �rst 
al
ulated a referen
esolution of the ODE on 2 spatial grids, i.e. h = 1=129 and h = 1=513. We restri
t our
onsiderations to 2D sin
e the qualitative 
onvergen
e behaviour 
aused by a potential slowdamping of high-frequen
y modes is similar in 2D and 3D (see also Remark 2 in Se
tion 3.2).
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Table 4.4: sd-values for problem (4.1),(4.2) in 3 dimensions using the (5; q)-iteration.N h Pe � q = 1 q = 2 q = 3 q = 4 ! q = 108 1/9 1111 3/10 1.71 2.01 2.11 2.14 ! 2.153/20 1.87 2.71 3.00 2.99 ! 3.003/40 2.12 3.56 3.97 3.90 ! 3.903/80 2.39 4.22 4.92 4.81 ! 4.8132 1/33 303 3/10 1.64 1.98 2.08 2.07 ! 2.083/20 1.83 2.67 2.94 2.93 ! 2.933/40 2.05 3.46 3.90 3.83 ! 3.823/80 2.31 4.15 4.84 4.73 ! 4.73128 1/129 77.5 3/10 1.74 2.07 2.09 2.07 ! -2.703/20 1.85 2.68 2.94 1.68 ! *3/40 -15.93 -11.61 -9.36 -6.93 ! -2.793/80 2.32 4.18 4.85 4.74 ! *
Table 4.5: sd-values for problem (4.1),(4.2) in 3 dimensions using the (1; q)-iteration. Here,we used D = ai = 1.N h Pe � q = 1 q = 2 q = 3 q = 4 ! q = 10128 1/129 0.008 3/10 1.94 2.07 2.23 2.41 ! 3.103/20 2.20 2.67 3.06 3.39 ! 4.013/40 2.78 3.47 4.03 4.47 ! 4.873/80 3.29 4.20 4.98 5.53 ! 5.73
We have tested the (1; q)-iteration for several q-values, to see its in
uen
e on the 
onver-gen
e and found the results as given in Table 4.6. From this table we draw the following
Table 4.6: sd-values for problem (4.1),(4.6) in 2 dimensions using the (1,q)-iteration. D =10�4; a1 = a2 = 0:2.N h Pe � q = 3 q = 5 q = 10128 1/129 15.5 1/10 1.31 1.28 1.281/20 2.11 2.04 2.041/40 3.01 2.91 2.911/80 3.92 3.80 3.80512 1/513 3.9 1/10 1.26 1.23 1.231/20 2.05 1.98 1.981/40 2.95 2.84 2.851/80 3.86 3.74 3.74

on
lusions: (i) the third-order behaviour in time is ni
ely shown; (ii) the resolution of thespatial grid has hardly in
uen
e; (iii) the 
onvergen
e is quite satisfa
tory: already for q = 3the iteration seems to be 
onverged.
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4.2 Solving the 
orre
tor iterativelyWe 
on
lude this se
tion by giving some results for the approa
h des
ribed in Se
tion 3.1, totreat a 3D adve
tion dominated problem. This approa
h 
onsists in three nested iterations:the outer iteration is the single-Newton iteration (2.9) to solve for the stage values in Yn;the middle iteration pro
ess is of AMF-type and is used to solve the linear systems in (3.1);�nally, the inner iteration (3.9) is used to solve the linear systems where the matrix J� isinvolved.The main idea of this nested iteration algorithm is to 
ontinue ea
h iteration until `
on-vergen
e' to really �nd the Radau solution. Therefore, this approa
h is best implementedusing an adaptive strategy where residuals have to satisfy pres
ribed toleran
es. Su
h animplementation is beyond the s
ope of the present paper and subje
t of future resear
h. Togive an impression of the performan
e and robustness of this approa
h in a 3D setting, wehave solved the adve
tion dominated 
ase with D = 10�4 and ai = 1. The nested iterationhas been tested for many 
ombinations of q; l and r, denoting, respe
tively, the number ofouter, middle and inner iterations. It turns out that q = 3 outer iterations are suÆ
ient toobtain 
onvergen
e for realisti
 step sizes. Con
erning the middle iteration pro
ess we 
anmake the same observation. To be on the safe side, the innermost iteration pro
ess has beenapplied using the �xed number of r = 10 iterations, although in many 
ases smaller r-values
ould have been used to obtain the same a

ura
ies. The results have been summarized inTable 4.7. This table shows that we end up with a

ura
ies 
lose to those of the Radau
orre
tor itself. By 
omparing the results with those in the Tables 4.2 until 4.4 it is evidentthat this approa
h is mu
h more robust in the sense that it 
an be used for 3D problemsin 
ombination with large Pe-numbers. Therefore, we expe
t that this algorithm 
an beupgraded to an eÆ
ient and robust solver by in
luding appropriate 
ontrol me
hanisms.
Table 4.7: sd-values for problem (4.1),(4.2) in 3 dimensions using the nested iteration, withq outer iterations, l middle iterations and �xed r = 10 inner iterations. Here, we usedD = 10�4; ai = 1. q = 1 q = 2 q = 3N h Pe � l = 1 l = 2 l = 3 l = 1 l = 2 l = 3 l = 1 l = 2 l = 364 1/65 153.8 3/10 1.67 1.51 1.51 2.02 1.91 1.91 2.08 2.05 2.053/20 1.83 1.76 1.76 2.67 2.59 2.61 2.93 2.93 2.933/40 2.05 2.02 2.02 3.48 3.42 3.42 3.91 3.91 3.913/80 2.31 2.30 2.30 4.19 4.18 4.18 4.85 4.87 4.87
5 Numeri
al results for a nonlinear problemNext, we 
ontinue our tests by applying the (r; q)-iteration (3.22)-(3.26) to a strongly nonlin-ear example, i.e. a radiation-di�usion problem from [14℄. The following des
ription and theused spatial dis
retization were borrowed from Ch.V of [13℄. Also in [17℄ this problem hasbeen used as a test example and results for an IMEX RKC s
heme as well as for VODPK [5℄are given in that paper. Here we will present a 
omparison between the results obtainedwith the (r; q)-iteration and the results given in [17℄.22
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Figure 5.1: 3D plot and 
ontour levels of the material temperature T at time t = 3 forZ0 = 10. Contour levels: 0:1; 0:2; : : : ; 1:2.The problem 
onsists of two strongly nonlinear di�usion equations with a highly sti�rea
tion term (an idealization of non-equilibrium radiation di�usion in a material). Thedependent variables E and T represent radiation energy and material temperature, respe
-tively. Problems like this are for instan
e found in laser fusion appli
ations. The equationsare de�ned on the unit square for t > 0,Et = r � (D1rE) + �(T 4 � E) ; Tt = r � (D2rT ) � �(T 4 � E) ; (5.1)where � = Z3=T 3; D1 = 1=(3� + jrEj=E) and D2 = kT 5=2 with k = 0:005. Here, jrEjdenotes the Eu
lidean norm of rE and Z = Z(x; y) represents the atomi
 mass numberwhi
h may vary in the spatial domain to re
e
t inhomogeneities in the material. We haveZ(x; y) = Z0 if jx� 1=2j � 1=6 and jy � 1=2j � 1=6 with Z0 � 1 a 
onstant and Z(x; y) = 1otherwise. In our tests we have used Z0 = 10 [14℄.The initial values are 
onstant, E(x; y; 0) = 10�5 and T (x; y; 0) = E(x; y; 0)1=4 �5:62 10�2. As boundary 
onditions we have homogeneous Neumann 
onditions for T atall boundaries and for E at y = 0; 1. Further, at the left and right boundary mixed bound-ary 
onditions for E are pres
ribed by 14E � 16�Ex = 1 at x = 0 and 14E + 16�Ex = 0 atx = 1.The solution 
onsists of a steep (temperature) front moving to the right. For Z0 > 1the movement is hampered at the interior region with larger atomi
 mass number (and
orresponding smaller di�usion). E is for the most part almost equal to T 4, ex
ept nearthe front where it is slightly larger with a steeper pro�le. Figure 5.1 shows a 3D plot and
ontour levels of a time-a

urate referen
e solution of T at t = 3 for Z0 = 10, 
omputed ona 200� 200 spatial grid.The spatial dis
retization is on a uniform 
ell 
entered grid with grid size h by meansof se
ond-order 
entral 
onservative di�eren
ing. This gives a semi-dis
rete system y0(t) =fdiff (y(t)) + frea
tion(y(t)) of dimension 2=h2. At ea
h grid point we have the nonlinearrea
tion systemfrea
tion(E; T ) = � Z3T�3(T 4 � E)�Z3T�3(T 4 � E)� ; Jrea
tion(E; T ) = � �� �� �� � ; (5.2)with � = Z3=T 3; � = Z3(1 + 3E=T 4) and eigenvalues 0 and �(�+ �).23



5.1 Numeri
al results5.1.1 The three solversWe present numeri
al results for three di�erent solvers:Iterated Radau method: Here we use our (1; 3)-iteration as de�ned in (3.22)-(3.26).Although (5.1) is a 2D problem, we have solved this problem by using a splitting of the Ja-
obian into three parts: J1 is asso
iated with the rea
tion system (5.2), hen
e J1 = Jrea
tion,whereas J2 and J3 represent the Ja
obian matri
es in x- and y-dire
tion, respe
tively, of thedi�usion part in the problem. As a 
onsequen
e, the systems (3.22) and (3.24) involvingonly J1 
an be solved grid point wise. Hen
e, on an N � N -grid, we have N2 un
oupledsystems, ea
h of dimension 2.The Ja
obian matri
es J2 and J3, needed in (3.23) and (3.25), have the blo
k-triangularform J2 = 0BB� �F x�E �F x�T
 �Gx�T
1CCA and J3 = 0BB� �F y�E �F y�T
 �Gy�T

1CCA : (5.3)
Here, we used F and G to denote the dis
retized di�usion term in the �rst and se
ondPDE in (5.1), respe
tively and the supers
ripts x and y refer to the spatial dire
tions. As asimpli�
ation, we approximate D1 by 1=(3�), hen
e negle
ting the rE-
ontribution. Thisredu
es the bandwidth and leads to a blo
k-stru
ture in whi
h only tridiagonal systems haveto be solved. Using this approa
h, the systems in (3.23) and (3.25) will �rst solve for theT -
omponent and subsequently for the E-
omponent. We have also tested the method byimplementing a further simpli�
ation: negle
ting �F x=�T and �F y=�T in (5.3) leads to aredu
tion of the linear algebra work involved. However, in terms of eÆ
ien
y, we found thatthe �rst strategy is to be preferred. Therefore, we will only present results based on matri
esJ2 and J3 of the form as spe
i�ed in (5.3).IMEX RKC: This solver is based on an impli
it-expli
it (IMEX) Runge-Kutta-Chebyshev(RKC) method, where the di�usion part is integrated by the expli
it, stabilized RKC methodand the sti� rea
tion terms (
f. (5.2)) are treated impli
itly. This solver is fully des
ribedin [17℄ and the 
orresponding software is dis
ussed in [16℄ 2).VODPK: The sti� solver VODE [2, 5℄ provided with the Krylov solver GMRES [15℄ withuser-supplied pre
onditioner for solving the linear systems arising in the modi�ed Newtoniteration.3) For this radiation-di�usion problem pre
onditioning is essential. Without pre-
onditioning VODPK either fails or is very ineÆ
ient, depending on the toleran
e and thegrid size. We have implemented a 2� 2 blo
k-diagonal left pre
onditioner P whi
h approx-imates the 2 � 2 blo
k-diagonal of the Newton matrix. P is derived from the grid pointformulaE0ij = � 4h2 D1;ij Eij + �ij (T 4ij � Eij) ; T 0ij = � 4h2 D2;ij Tij � �ij (T 4ij � Eij) ;2) http://www.netlib.org/ode/irk
.f903) http://www.netlib.org/ode/vodpk.f
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where, similar as in our Radau-based method, D1 is approximated by 1=(3�). So the Pij-blo
k for grid point (xi; yj) reads
Pij =  1 00 1 !+ b0� 4h2 0� 13�ij T 2ij EijZ3ij0 72k T 5=2ij

1A� b0� 0� ��ij Z3ij (1 + 3EijT 4ij )+ �ij �Z3ij (1 + 3EijT 4ij )
1A ;

where b0 is a VODPK 
oeÆ
ient. Note that there is no grid 
onne
tivity used in thispre
onditioner.5.1.2 ResultsFor the numeri
al simulations we have 
hosen three grid sizes, viz. h = 1=50; 1=100; 1=200.On ea
h of these grids, a time-a

urate referen
e solution has been 
al
ulated to be ableto measure temporal errors. In Figure 5.2 we show the results of the three solvers on thevarious grids. Here, we have plotted temporal a

ura
y (measured in the L2-norm) versusCPU time, as to illustrate the eÆ
ien
y of the methods. We remark that IMEX RKC andVODPK are variable step size 
odes, i.e., the integration pro
ess is 
ontrolled by a spe
i�edtoleran
e parameter. On the other hand, our Radau-based method is still in its resear
hphase and integrates with 
onstant step sizes. From these results we 
on
lude that theiterated Radau method outperforms the other two solvers on the �nest grid. On the gridwith h = 1=100 the situation is similar, although less pronoun
ed. On the 
oarsest mesh allthree solvers show approximately equal eÆ
ien
y, with slight preferen
e for VODPK.We anti
ipate that the eÆ
ien
y of the iterated Radau method 
an be improved by addingan adequate error 
ontrol strategy. Finally, we remark that VODPK did not behave veryrobust for this problem. We en
ountered many 
onvergen
e failures during the integrationpro
ess. Furthermore, the 
ode only worked for rather stringent values of the toleran
eparameter (see also [17℄ for more detailed information about the performan
e of VODPK).
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Figure 5.2: Temporal a

ura
ies (verti
al axis), measured as � log10(L2-errors) versus CPUtime (horizontal axis), measured in se
onds, for h = 1=50 (left), h = 1=100 (middle) andh = 1=200 (right). The lines marked with `+' refer to the Radau-based (1; 3)-iteration, lineswith `o' to IMEX RKC, and lines with `*' to VODPK.
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6 Con
luding remarksWe have analyzed and tested a method that is suitable to solve multi-dimensional adve
tion-di�usion-rea
tion PDEs. Based on an impli
it RK method of Radau IIA-type we have
on
entrated on a spe
ial iteration te
hnique to solve the impli
it relations that we en-
ounter in ea
h integration step. We have derived 
onvergen
e and stability results. In atwo-dimensional situation we found A(�)-
onvergen
e, with � � 87:9Æ and A-stability. Forthree-dimensional problems the situation is less favourable; we obtained A(�)-
onvergen
ewith � � 44:7Æ and A(45Æ)-stability. Numeri
al tests with a linear problem revealed thatthe algorithm is still useful for adve
tion dominated 3D problems by applying it with some
are. Finally, we applied the method to a strongly nonlinear, real-life problem in 2D and
ompared its eÆ
ien
y (in terms of CPU time versus a

ura
ies) with two existing 
odes,i.e., with VODPK and IMEXRKC. It turns out that the performan
e of the new method isat least 
ompetitive with that of the existing solvers.A
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