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An iterated Radau method for time-dependent PDEs

ABSTRACT
This paper is concerned with the time integration of semi-discretized, multi-dimensional PDEs of
advection-diffusion-reaction type. To cope with the stiffness of these ODEs, an implicit method
has been selected, viz., the two-stage, third-order Radau IIA method. The main topic of this
paper is the efficient solution of the resulting implicit relations. First a modified Newton process
has been transformed into an iteration process in which the 2 stages are decoupled and,
moreover, can exploit the same LU-factorization of the iteration matrix. Next, we apply a so-
called Approximate Matrix Factorization (AMF) technique to solve the linear systems in each
Newton iteration. This AMF approach is very efficient since it reduces the `multi-dimensional'
system to a series of `one-dimensional' systems. The total amount of linear algebra work
involved is reduced enormously by this approach. The idea of applying AMF to two-dimensional
problems is quite old and goes back to Peaceman and Rachford in the early fifties. The situation
in three space dimensions is less favourable and will be analyzed here in more detail, both
theoretically and experimentally. Furthermore, we analyze a variant in which the AMF-technique
has been used to really solve (`until convergence') the underlying Radau IIA method so that we
can rely on its excellent stability and accuracy characteristics. Finally, the method has been
tested on several examples. Also a comparison has been made with the existing codes VODPK
and IMEXRKC, and the efficiency (CPU time versus accuracy) is shown to be at least
competitive with the efficiency of these solvers.
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1 IntrodutionWe are onerned with the numerial time integration of initial-value problems (IVP) forsystems of ordinary di�erential equations (ODEs) of the formy0(t) = f(t; y(t)); y(t0) = y0; t0 � t � tend; (1.1)where y; f 2 IRm. Throughout the paper, these systems are assumed to be the result ofapplying a spatial disretization to a time-dependent partial di�erential equation (PDE).Hene, we follow the Method of Lines (MoL) approah.The literature on the time integration of the resulting system of ODEs is overwhelming,whih is aused by the widely varying nature of the underlying PDEs. Numerial proessesthat behave eÆiently for one partiular lass of PDEs are not neessarily a good hoiefor other lasses. For example, methods suitable for hyperboli problems are often of aompletely di�erent onept ompared with methods for paraboli problems. Moreover,many `industrial problems' are so spei� that they justify an ad ho approah and are bestsolved by a method that is tuned to their idiosynrasies. Nevertheless, one an try to designalgorithms for problem lasses as wide as possible. The major aim of this paper is to omeup with suh an algorithm.In designing suh a time integration method one has to identify ertain ommon har-ateristis of the underlying PDE lasses that the numerial method is apable to opewith. For example, a typial property of systems (1.1) is that they possess sti�ness; thatis, the eigenvalues of the Jaobian matrix �f=�y di�er largely in magnitude. The sti�nessan be substantial if the PDE has to be semi-disretized on a spatial grid with high (loal)resolution to meet ertain auray onditions. Another aspet, related to the onept ofsti�ness, is that { apart from advetion and di�usion operators { often sti� reation termsare involved. Suh a situation is e.g. exempli�ed in hemial reations whih typially havewidely varying time sales.Another ompliating fator for dealing with sti�ness is that the eigenvalues of �f=�yan be situated allover the negative half plane. For example, di�usion-reation terms oftengive rise to negative real eigenvalues, but the disretization of advetion terms usually leadsto eigenvalues possessing a substantial imaginary part. The above onsiderations lead us toaim for a numerial time integrator that is apable to treat ODEs independent of the positionof the eigenvalues in the left half plane. In other words, we will require the method to beA-stable [9℄. As a onsequene of this hoie we shall exlude all expliit methods. Con�ningourselves to the lass of impliit methods, there is still a onsiderable hoie: a well-knownlass of methods is given by the BDF methods; indeed the popular and widely used odesVODE [1℄ and VODPK1 [2, 5℄ are based on this lass. However, sine the pioneering work ofDahlquist [7℄ we know that the order of A-stable methods of this type is neessarily limitedto 2. On the other hand, the amount of impliitness of these methods is minimal whihexplains their popularity.An alternative, to irumvent the order-2 barrier w.r.t. A-stability, is o�ered by the lassof impliit Runge-Kutta (IRK) methods. For example, the ode RADAU5 by Hairer andWanner [9℄ is based on this onept and is a robust and aurate sti� ODE solver. Theamount of impliitness, however, is larger than for VODE, due to the IRK-nature. Basedon the above onsiderations, we have deided to selet a member from the IRK-family as1VODPK is based on VODE, extended with the Krylov solver GMRES [15℄ allowing for a user-suppliedpreonditioner to aelerate onvergene of the iteration proess to solve the systems.2



our starting point to build a robust solver. To be more spei�, we have hosen the 2-stage Radau IIA sheme. This method ombines exellent stability properties (i.e., even thestronger onept of L-stability, see [9℄) with order of auray equal to 3, whih we think isan appropriate hoie in a PDE ontext.No matter whih impliit method has been seleted, we are always faed with solvingimpliit relations to obtain the numerial approximation in the new step point. In fat,solving these systems is the determining fator for the suess of a PDE-solver. This ispartiularly true in ase of multi -dimensional PDEs where a straightforward approah ofthe linear algebra involved may easily lead to exessive osts. To further elaborate this, letus onsider the 2-stage Radau IIA method. Applying this method, we enounter 2 maindiÆulties:(i) apart from omputing a new step point approximation, the sheme requires to solvefor a (oupled) intermediate approximation; this requirement doubles the dimension of thealgebrai systems to be solved in eah step, and(ii) the sparsity patterns in the matries involved in the Newton proess require { espe-ially for three-dimensional PDEs { a speial treatment sine standard LU-deompositionsare not feasible in suh ases.To ope with the �rst diÆulty, Buther proposed already in 1976 [3℄ a similarity trans-formation to redue the dimension of the impliit system to solve. Also DIRK methodseÆiently takle this problem by reduing the impliitness to a dimension equal to that ofthe ODE system. A disadvantage of DIRK methods, however, is that may su�er from thephenomenon of order redution. The idea of only solving systems of dimension m has beenexploited in many papers [4, 6, 8, 11℄. Tehniques to `deouple' the stages are based onproperties of the A-matrix in the RK sheme; also the ode RADAU5 is based on this prin-iple. The approah to be disussed in the present paper follows the same idea: the lassialNewton iteration for the full impliit relation is replaed by a muh simpler iteration inwhih the stages are deoupled and hene only systems of dimension m have to be solved.The de�nition of this iteration, as well as an analysis of its onvergene behaviour will bedesribed in Setion 2.For the seond diÆulty, i.e., the struture of the Jaobian matries originating froma multi-dimensional PDE, we use a so-alled Approximate Matrix Fatorization (AMF)approah. Also this idea is already quite old. In fat, the elebrated paper of Peaemanand Rahford from the early �fties was one of the �rst based on this priniple. However,so far a suessful appliation of AMF was usually restrited to two-dimensional problems.In Setion 3 we will disuss an extension suitable for three spatial dimensions. This ideaoriginates from the overview paper [10℄, but in that paper it was only suggested as a possibletreatment. As far as we know this idea has not yet been tested in real life three-dimensionalappliations. Hene, the above tehniques are not novel; what is new { and that is the mainontribution of this paper { is the ombination of both ingredients into one overall approahto takle multi-dimensional PDEs by keeping the osts to deal with the impliitness to amanageable level.Next, the performane of the resulting algorithm is demonstrated on several test prob-lems. We start with a linear model problem in Setion 4 to study the basi properties ofthe ombined method. Then, in Setion 5, the method is applied to several realisti prob-lems and will be ompared with existing solvers, suh as VODPK and IMEX. Finally, someonlusions will be formulated in Setion 6.
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2 Single-Newton iterationApplying a fully impliit s-stage RK method to the ODE system (1.1) leads toYn = e
 yn + �(A
 Im)F (etn + �; Yn);yn+1 = yn + �(bT 
 Im)F (etn + �; Yn); (2.1)
where the RK method is haraterized by the matrix A and the vetor b (both of dimensions), Yn is the so-alled stage vetor, ontaining the s approximations Yn;i � y(tn + i�); i =1; : : : ; s with � being the step size and i are the elements of the olloation vetor  =Ae. Furthermore, F (etn + �; Yn) ontains the f -evaluations at the olloation points, i.e.,F (etn+ �; Yn) = (f(tn+ 1�; Yn;1)T ; : : : ; f(tn+ s�; Yn;s)T )T , Im is m-dimensional identitymatrix, e is the s-dimensional vetor with unit entries, and 
 denotes the Kroneker produt.The quantity yn+1 is an approximation to the solution y(t) at t = tn+1 = tn + � .The usual approah in a sti� ontext is to solve the stage vetor Yn from (2.1) by meansof a modi�ed Newton iteration[Ims � �A
 J ℄�k = Dk�1;Y kn = Y k�1n +�k; k = 1; 2; : : : ; (2.2)
where the residual Dk�1 is de�ned byDk�1 = e
 yn � Y k�1n + �(A
 Im)F (etn + �; Y k�1n ); (2.3)and J is an approximation to the Jaobian �f�y (tn; yn). The iteration is started with Y 0n ,provided by some preditor formula. To simplify the presentation, here and heneforth weomit the dependene on n of any residual Dk�1.In eah iteration of (2.2) a linear system of dimension s �m has to be solved. As proposedby Buther [3℄, a similarity transformation an be used to redue the dimension. Unfortu-nately, for the s-stage impliit Runge-Kutta Radau IIA methods (s � 2), whih we take asstarting point, the A-matrix has pairs of onjugate omplex eigenvalues. As a onsequene,the Buther-approah leads to solving (blok) systems of dimension 2m, or { alternatively{ hange to omplex arithmeti.Another approah, whih has been onsidered in several papers [4, 6, 8, 11℄, is to replaethe matrix A in the left-hand side of (2.2) by a `more onvenient' matrix T . By `moreonvenient' we mean that the matrix T has a struture by whih the stages are deoupled(so that only systems of dimension m have to be solved, independent of the number of stagess) and, moreover, T has a one-point spetrum, so that only one LU -deomposition of anm�m matrix is required.In the papers mentioned above, the matrix T is determined on the basis of a linearanalysis. Here, we follow a similar approah, that is we apply the iteration sheme (2.2)with A replaed by T to the salar linear equation y0 = �y, with IRe� � 0, and �nd thatthe iteration error "k := Y kn � Yn satis�es the reursion"k =M(z)"k�1; M(z) = z(Is � zT )�1(A� T ); z = ��: (2.4)
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Clearly, for onvergene we need that the spetral radius � of the iteration matrix satis�es�(M(z)) < 1. If this iteration proess onverges, then it onverges to the solution of the un-derlying Radau IIA method and we an take full pro�t of the aurate and stable behaviourof this orretor.To determine a suitable T -matrix, we follow an approah as suggested in [8℄. In thatpaper, requirements on a suitable rate of onvergene are ombined with adequate linearstability properties, both for jzj ! 1, i.e. the fous is on extremely sti� omponents. Thesetwo onditions respetively lead to�(M(1)) = �(Is � T�1A) = 0 (2.5)and bTA�2(A� T ) = 0T : (2.6)Here, we remark that (2.6) implies that Rk(1) = R(1) for all k � 1, where Rk(z) isthe stability funtion for the advaning solution of the method obtained after k iterations,namely ykn+1, starting with the preditor Y 0n = e 
 yn, and R(z) is the stability funtionof the underlying IRK method, heneforth alled the orretor. Sine we will use an L-stable Radau IIA method as orretor, whih is sti�y aurate (ykn+1 = Y kn;s), we have {after an arbitrary number of k � 1 iterations { that the resulting stability funtion satis�esRk(1) = 0. Another result, whih we will use in the numerial Setions 4 and 5, onernsthe order of auray of the overall method. It is well-known that the order of auray isinreased by one in eah Single-Newton iteration until the order of the underlying orretorhas been reahed. It must be noted that this fat is independent of the approximation Jtaken in the iterative sheme to replae �f=�y(tn; yn) as long as J � �f=�y(tn; yn) = O(1).Hene after, say q iterations, the order p� of the advaning solution yqn+1 equalsp� = min (`+ q; p); (2.7)where p is the order of the orretor and ` is the order of the predition Y 0n , i.e., Y 0n � Yn =O(� `+1). For additional properties of this iteration proess we refer to [8℄.We will now derive the matrix T . Realling that we require T to have a one-pointspetrum, this matrix an be written asT = S(Is � L)�1S�1 (2.8)where L is a stritly lower triangular matrix, S is nonsingular, and  is the multiple eigen-value, whih needs to be positive. Replaing the matrix A in (2.2) by T and using itsdeomposition (2.8), we arrive at what we will all the single-Newton iteration proess [8℄,[Ims � �(Is 
 J)℄Ek = ((Is � L)S�1 
 Im)Dk�1 + (L
 Im)Ek;Y kn = Y k�1n + (S 
 Im)Ek; k = 1; 2; : : : : (2.9)
Sine L is stritly lower triangular, the s omponents Ek1 ; : : : ; Eks an be solved one afteranother and hene, only systems of dimension m are involved. We remark that (2.9) an beonsidered as a speial ase of the lass of iteration methods onsidered in [6℄.
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2.1 Determining the matrix T for the 2-stage Radau IIA orretorAs motivated in the introdution, an appropriate hoie, in a PDE ontext, for the orretoris the third-order, 2-stage Radau IIA method, de�ned by
A = 0BB� 512 � 11234 14

1CCA ; bT = �34 ; 14� :
Sine this method is sti�y-aurate, i.e., bTA�1 = (0; 1), we have that yn+1 equals theseond stage vetor omponent Yn;2. To determine a matrix T that satis�es the onditions(2.5) and (2.6), we de�ne the matrix P byP = I2 �A�1T:Clearly, ondition (2.5) is equivalent to the requirement that both eigenvalues of P vanish.Furthermore, ondition (2.6) now reads bTA�1P = 0T , whih, for this orretor, leads tothe requirement that the seond row of P is the zero vetor. Hene, P is of the formP = � 0 b0 0 � :The matrix T has a double eigenvalue  i�detT = 2 and trae T = 2:Sine T = A(I2 � P ) we have detT = detA and then  is determined by = pdetA = 16p6; (2.10)
whih is positive indeed, as required. Using trae T = 2 = 8� 9b12 , we have uniquelydetermined the matries P and T as

P = 0B� 0 8� 4p690 0
1CA ; T = 0BBB� 512 5p627 � 4910834 p63 � 512

1CCCA : (2.11)
Given the matrix T , we �nally have to determine its deomposition (2.8). Setting R =(I2 � L)�1, the matries S and R have the formS = � x1 x2x3 x4 � ; R = � 1 0x 1 � ;and they have to satisfy the equation TS = SR. In solving this system we are left withthree free parameters fx1; x2 6= 0; x3g. However, it is not possible to exploit this freedomto obtain better damping properties of the iteration sheme. Therefore, we will use theapproah used in [8℄ where the transformation matrix S has been hosen upper triangular6



with unit diagonal entries; this failitates the implementation and redues the omputationalosts. This hoie leads to
S = 0B� 1 5� 2p690 1

1CA ; L = I2 �R�1 = 0BB� 0 03p64 0
1CCA :

The matrix (I2 � L)S�1, also needed in the single-Newton proess (2.9), is given by
(I2 � L)S�1 = 0BBB� 1 �5� 2p69�3p64 5p612

1CCCA :
We onlude this setion by mentioning that one eigenvalue of the iteration matrix M(z)identially vanishes. For the other eigenvalue an analytial expression an be derived:�(M(z)) = jtrae M(z)j = �����2(2�p6)z(p6� z)2 ����� ;for whih we have the following suprema along the negative real axis and the imaginary axismaxz�0 f�(M(z))g = 12 � p66 � 0:09175; maxy2IRf�(M(iy))g = 1� 2p66 � 0:18350:
3 Approximate matrix fatorizationThe single-Newton iteration proess (2.9) requires, in eah iteration, the solution of the twom-dimensional linear systems8<: (Im � �J)Ek1 = ~Dk�11(Im � �J)Ek2 = ~Dk�12 + L21Ek1 (3.1)
where we have putEk = � Ek1Ek2 � ; ~Dk�1 = � ~Dk�11~Dk�12 � := ((I2 � L)S�1 
 Im)Dk�1: (3.2)Notie that the oupling in the two systems in (3.1) is one-sided, whih implies that �rstEk1 an be omputed and subsequently Ek2 , using Ek1 in the right-hand side. In the ur-rent appliation of multi -dimensional PDEs, the diret solution of these linear systems istime onsuming, due to the struture of the Jaobian. A possible remedy to redue theomputational osts is to use a so-alled Approximate Matrix Fatorization (AMF) teh-nique. To that end, the Jaobian matrix J is written as J = Pdi=1 Ji. Then the matriesIm � �J = Im � �(J1 + : : :+ Jd) in (3.1) are replaed by the fatored matrix �, de�nedas � := dYi=1(Im � �Ji): (3.3)
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In this paper, d will be hosen equal to the number of spatial dimensions of the underlyingPDE, and Ji orresponds to the disretization of the di�erential operators in the i-th spatialdiretion. Solving the resulting linear systems is muh heaper beause the fatored matrix� results in the suessive solution of d systems with a banded oeÆient matrix. Typially,the matries have a band width in the range 3-5, depending on the disretization stenils thathave been used (e.g., symmetri seond-order for di�usion terms, third-order upwind biasedfor advetion terms, et.). Solving suh systems is heap sine the omplexity involved isonly linear in the dimension. Now, we an proeed in two di�erent diretions.3.1 Fatorized iteration to solve the linear systemsThe �rst approah is to use the AMF-tehniques in an iterative way to solve the linearsystems in (3.1) until `onvergene'. This is in the spirit of the analysis of the single-Newtoniteration. Indeed, the use of the expression (Is � zT )�1 in the derivation of the iterationmatrix M(z) (f. (2.4)) assumes that the linear system is exatly solved. The onvergenebehaviour of this AMF-iteration has been analyzed in [10℄; see also [12℄ with a similaranalysis in a slightly di�erent ontext. As it turns out, a suessful appliation of the AMFapproah ritially depends on the number of spatial dimensions involved.Writing eah of the linear systems in (3.1) in the form (Im��J)x = b, the onvergeneof the AMF-iteration proess�(xj � xj�1) = b� (Im � �J)xj�1; j = 1; 2; : : : ; (3.4)orresponding to the linear model problem y0 = Jy = (J1 + : : : + Jd)y is governed by theiteration matrix Z given by Z = Im ���1(Im � �J): (3.5)Assuming that all the Jaobian matries Ji (i = 1; : : : ; d) have the same set of eigenvetors,then the eigenvalues of Z are given by
�(Z) = 1� (1� z) dYi=1(1� zi)�1; (3.6)

where zi runs through the eigenvalues of �Ji and z =Pdi=1 zi.The proess (3.4) is alled A(�)-onvergent [10℄ if �(Z) is within the unit irle for allzi 2 W(�) with W(�) := fw 2 C : w = 0 or jarg(�w)j < �g:Now, we have the followingTheorem 1. [12, 10℄ For the onvergene of the AMF-iteration proess (3.4) we have ford � 2 j�(Z)j < 1 for all zi 2 W(�) () � � 1d� 1 � �2 2For PDEs in two spatial dimensions this result is exellent, sine d = 2 yields A(�=2)-onvergene, hene unonditional onvergene as long as the eigenvalues of J1 and J2 are inthe left half-plane. On the other hand, we enounter a serious limitation for PDEs in threedimensions, sine then we only have A(�=4)-onvergene. This implies that for advetion
8



dominated 3D PDEs, we will enounter onvergene problems. In passing we remark that, ifJ has only real negative eigenvalues (orresponding to di�usion-reation type PDEs withoutadvetion terms), the proess will onverge, independent of the number of dimensions d.In [10℄ a remedy has been suggested to irumvent this restritive ondition on � inase of 3D PDEs. The basi idea is to replae the fatorization Q3i=1(Im � �Ji) by twosuessive fatorizations in eah of whih only two matries are involved. WritingJ = J1 + J�; with J� = J2 + J3; (3.7)and reursively applying the d = 2-appliation of the AMF-iteration with these matries,we arrive at (Im � �J1) ~�j = b� (Im � �J)xj�1;(Im � �J�)�j = ~�j ; xj = xj�1 +�j ; j = 1; 2; : : : : (3.8)
The matrix J1 has a simple band struture, but J� has not. Therefore, the system involvingJ� is iteratively solved by a (nested) AMF-iteration. Sine both proesses are based on afatorization with d = 2, they will onverge unonditionally. Now, the inner AMF-iterationis obtained by replaing Im � �J� by (Im � �J2)(Im � �J3) whih results in(Im��J2)(Im��J3)(�j;i��j;i�1) = ~�j� (Im��J�)�j;i�1; i = 1; 2; : : : ; r; (3.9)and the vetor xj is updated by the last result from this inner iteration, i.e., xj = xj�1+�j;r.We remark that the inner iteration should be ontinued until `onvergene', hene r shouldbe suÆiently large. A plausible starting value for the iteration (3.9) is given by �j;0 = ~�j ,as has been suggested in [10℄. For the approah desribed in the next subsetion, however,there is theoretial and numerial evidene that �j;0 = 0 is a better hoie to start theiteration.In applying the above (nested) AMF-iteration proess to really solve the linear systems in(3.1), the overall behaviour of the ombined single-Newton/AMF proess is merely governedby the onvergene behaviour of the single-Newton proess, whih has been analyzed inSetion 2.3.2 Mixed single-Newton and AMF-iterationNext, we will disuss an approah in whih both iteration proesses are mixed up. By thiswe mean that the linear systems (3.1) that our in eah single-Newton iteration are onlyapproximately solved by replaing the matrix Im � �J by the matrix � de�ned in (3.3).Then, after suessively solving the d bandsystems, we ontinue with the next single-Newtoniteration. Or, saying it di�erently, only one AMF-iteration of the form (3.4) is applied.This approah requires, of ourse, muh less bandsolves than the approah disussed in thepreeding subsetion. The onvergene analysis, however, does not diretly follow from theresults given in [10, 12℄ and needs some amendment. Starting from (3.1) and applying theAMF-tehnique, this mixed approah reads (see also (2.9))�Ek1 = ~Dk�11 ; �Ek2 = ~Dk�12 + L21Ek1 ;Y kn = Y k�1n + (S 
 Im)Ek; k = 1; 2; : : : ; ) (3.10)
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with � and ~Dk�1j given by (3.3) and (3.2), respetively. A natural initial guess is given byY 0n = e
 yn, but other hoies are possible, e.g. preditions of higher order (i.e., with ` > 0in (2.7)).If the mixed iteration proess (3.10) is applied to y0 = Jy = (J1 + : : : + Jd)y, we �ndthat the iteration error "k := (S�1 
 Im)(Y kn � Yn) (3.11)satis�es the reursion "k = Z�"k�1; k = 1; 2; : : :, whereZ� = I2m � (I2 
��1) �I2m + L
 (��1 � Im)� (I2m � � ~A
 J); ~A := S�1AS; (3.12)and we have taken into aount that L2 = 0. Similarly as in Setion 3.1, it is assumed thatall the Ji have the same set of eigenvetors, that zi runs through the spetrum of �Ji andz =Pdi=1 zi. Then, the eigenvalues of Z� are those of the 2-dimensional matrix M�
M� = I2 � x�1 �I2 + (x�1 � 1)L� (I2 � z ~A); where x = dYj=1(1� zj): (3.13)

Next, we formulate onvergene results for the ases d = 2 and d = 3.Result 1. The iteration proess (3.10) with d = 2 is onvergent for z1; z2 2 W(�) with� � 87:9Æ.Derivation. A straightforward alulation yields that the eigenvalues � of the matrix M�are determined by �2 � a1�+ a0 = 0;a0 = �6 + 6x2 � 2p6z + z2 + 2x(�6 +p6z)�(x�2=6);a1 = �6x2 � (�2 +p6)z + x(�6 +p6z)�(x�2=3): (3.14)
Sine z1 and z2 may vary independently in the wedge W(�), we examine the ases fz1 =�1ei�; z2 = �2ei�g and fz1 = �1ei�; z2 = �2e�i�g and determine numerially the largest �suh that �(M�) < 1 for (many values of) �1 and �2 2 (0;1). This omputation yields� � 87:9Æ. We remark that the largest values for the spetral radius in any interval 0 ��1; �2 � �; (� > 0) were found when �1 = �2 2 [0; �℄ 2To obtain a onvergene result for the three-dimensional ase we followed the same ap-proah using d = 3. That is, all possible ombinations of zi-values lying on the upper andlower boundary of the wedge and at mutually di�erent distanes from the origin have beenexamined. A numerial searh for the largest aperture of the wedge, still resulting in on-vergene, leads to the following result.Result 2. The iteration proess (3.10) with d = 3 is onvergent for z1; z2; z3 2 W(�) with� � 44:7Æ.Remark 1. It is interesting to ompare the onvergene properties of the mixed iterationproess with those of the approah desribed in Setion 3.1. To this aim, by omparing theResults 1 and 2 with Theorem 1, we onlude that the angle � redues from 90Æ to 87:9Æin ase d = 2, and from 45Æ to 44:7Æ for d = 3. This marginal redution of the onvergene10



region is amply ompensated by the enormous gain in omputational work.Remark 2. From (3.14) we obtain for IRezj ! �1 (j = 1; : : : ; d), that a0 ! 1 and a1 ! 2.Then �(M�) is only slightly smaller than 1, indiating that we may expet slow onvergenefor extremely sti� omponents.So far, we have onsidered the onvergene of the single-Newton proess (2.9) ombinedwith AMF. One may wonder whether better onvergene results are obtained if we apply theAMF-tehnique diretly to the modi�ed Newton proess (2.2). Hene, when the iterationmatrix (I2m � �A
 J) in (2.2) is replaed by Qdj=1(I2m � �A
 Jj). As we will show, thisapproah leads to a wedge with smaller aperture. This negative result is due to the nonzeroimaginary parts in the eigenvalues of the A-matrix of the 2-stage Radau IIA method. Forthis method, the eigenvalues are �(A) = (2� ip2)=6 = p66 e�i�R , with �R=artan(p2=2) �0:615 (� 35:3Æ). The new iteration an be written asdYj=1[I2m � �A
 Jj ℄�k = Dk�1; Y kn = Y k�1n +�k; k = 1; 2; : : : : (3.15)
For linear problems y0 = Jy; J =Pdj=1 Jj , the error of the iterates satis�es
Y kn � Yn =W �(Y k�1n � Yn); W � = I2m � � dYj=1[I2m � �A
 Jj ℄��1(I2m � �A
 J): (3.16)
Again, we assume that the Jj matries share the same set of eigenvetors. Then, theeigenvalues of W � are given by

�(W �) = 1� � dYj=1(1� zj�(A)��1(1� z�(A)); �(A) = (2� ip2)=6; (3.17)
where the zj and z have the same meaning as before. Now we an formulate the followingtheorem.Theorem 2. For the onvergene of the iteration proess (3.15) and the two-dimensionalase (d = 2) we havej�(W �)j < 1 for all z1; z2 2 W(�) () � � �=2� �R ' 54:7Æ:Proof. Writing � = �(A), it readily follows from (3.17) with d = 2 that�(W �) = �2z1z2(1� �z1)(1� �z2) = �z1(1� �z1) � �z2(1� �z2) :Hene, j�(W �)j < 1; 8 z1; z2 2 W(�) i� j��(1 � ��)�1j < 1; 8 � 2 W(�). The latterexpression is equivalent to � = �=2� �R: 2
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3.3 Stability analysisAs mentioned in Remark 2, the onvergene of the mixed iteration proess an be ratherslow, espeially for sti� eigenvalues lose to the boundary of the wedge. Therefore, inomputational pratie we will not ontinue the iteration until the true Radau IIA solutionhas been reahed. Starting with the preditionY 0n = e
 yn; (3.18)we see from (2.7) that after q � 3 outer iterations, an advaning solution yn+1 = Y qn;2,of order p = 3 is obtained. For this reason, we will fous on appliations with q = 3 orq = 4. In ase of a 3D problem we will also employ the inner iteration proess (nestedAMF) as desribed in Setion 3.1. Again, we are mainly interested in a small number ofinner iterations r. It should be remarked that with q = 3 outer iterations, third-orderauray is obtained (independent of the number of inner iterations), however the prinipalloal error term will di�er from the orresponding term of the Radau IIA orretor. Withq = 4, however, the prinipal loal error term oinides with that of the orretor.Stopping the iteration proess before onvergene has been reahed, implies that we an-not simply rely on the stability properties of the underlying Radau IIA orretor. Therefore,it is of interest to study the stability properties of the �nal approximation yn+1 obtainedafter a modest number of iterations.De�nition 1. A one-step method yn+1 = �(tn; yn; �) is said to be A(�)-stable for the d-dimensional ase, if its stability funtion R(z1; : : : ; zd) satis�es jR(z1; : : : ; zd)j � 1, wheneverzj are in the losure of W(�) for j = 1; 2; : : : ; d. In addition, if � = �=2 the method is saidto be A-stable.Result 3. For the two-dimensional ase (d = 2), the mixed iteration proess (3.10) with qiterations and with preditor (3.18) is A-stable for q = 1; 2; 3; 4.Derivation. Applying the mixed iteration (3.10) to the test problem
y0 = � dXj=1 �j�y; zj = ��j (j = 1; : : : ; d); z = dXj=1 zj ; (3.19)

it follows from (3.11) and (3.13) thatY kn � Yn = SM�S�1(Y k�1n � Yn) = S(M�)kS�1(Y 0n � Yn): (3.20)From (2.1), the stage vetor Yn of the 2-stage Radau IIA method is seen to satisfyYn = eyn + zAYn; yn+1 = eT2 Yn; eT2 = (0; 1):Solving for Yn and inserting the result into (3.20) leads toY qn = �(I2 � zA)�1e+ S(M�)qS�1(I2 � (I2 � zA)�1)e�yn:Taking into aount that the stability funtion of the advaning solution orrespondingto q outer iterations is obtained by setting yqn+1 = eT2 Y qn � Rq(z1; : : : ; zd)yn, it follows thatRq(z1; : : : ; zd) = R(z) + eT2 S(M�)qS�1�I2 � (I2 � zA)�1�e= R(z) + eT2 S(M�)q�I2 � (I2 � z ~A)�1�S�1e; (3.21)
12



where R(z) = eT2 (I � zA)�1e = (1 + z=3)=(1� 2z=3 + z2=6) is the stability funtion of thetwo-stage Radau IIA method. We have veri�ed numerially that the Rq stability funtion,based on d = 2, is A-aeptable for q = 1; 2; 3; 4. The maximum values of jRq(z1; z2)j areobtained for purely imaginary values of z1 and z2. In partiular, in ase z1 = �z2 = t i wehave z = 0 and hene Rq(t i;�t i) = R(0) = 1 for all t. As an illustration we show in Figure3.1 the behaviour of jRq(z1; z2)j with z1 = z2 = t i, for q = 1; 2; 3; 4 (whih seems to beaording to the numerial results the most ritial situation), along with the modulus ofthe stability funtion of the Radau IIA method. 2
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Figure 3.1: Graphs of jR(2t i)j and jRq(t i; t i)j (vertial axis) for q = 1; 2; 3; 4 and t � 0(horizontal axis). The left panel shows the situation in the neighborhood of the origin,whereas the right panel illustrates the behaviour on the larger interval 0 � t � 100. Thesituation near the origin serves to distinguish between the urves for the various q-values:the larger q, the loser jRj and jRqj.We will now proeed with analyzing the stability for the three-dimensional situation. Thestarting point is again the systems de�ned in (3.1) and (3.2) and the matrix J is deomposedas de�ned in (3.7). The inner-outer iteration is now de�ned in (3.8) in ombination with(3.9). Both for the stability analysis as well as for the atual implementation it is onvenientto expliitly write out the total proess. Heneforth, we will refer to this mixed, nestediteration as the (r; q)-iteration, whih reads:For k = 1; 2; : : : ; q: (outer iterations)First stage: (Im � �J1)�k1 = ~Dk�11 ; (3.22)Ek;01 = 0;For j = 1; 2; : : : ; r: (inner iterations)(Im � �J2)(Im � �J3)�̂k;j1 = �k1 � (Im � �(J2 + J3))Ek;j�11 ;Ek;j1 = Ek;j�11 + �̂k;j1 ; (3.23)End (for j)Ek1 = Ek;r1 ;
13



Seond stage:(Im � �J1)�k2 = ~Dk�12 + L21Ek1 ; (3.24)Ek;02 = 0;For j = 1; 2; : : : ; r (inner iterations)(Im � �J2)(Im � �J3)�̂k;j2 = �k2 � (Im � �(J2 + J3))Ek;j�12 ;Ek;j2 = Ek;j�12 + �̂k;j2 ; (3.25)End (for j)Ek2 = Ek;r2 ;
Stage updating:Y kn;1 = Y k�1n;1 + Ek1 + S12Ek2 ;Y kn;2 = Y k�1n;2 + Ek2 ; (3.26)

End (for k). Set yqn+1 = Y qn;2:We remark that the (1; q)-iteration is equivalent to the mixed AMF-iteration desribedin (3.10) for k = 1; 2; : : : ; q.The stability analysis for the (r; q)-iteration an be arried out along the same lines asgiven in Result 3. A rather tedious but straightforward alulation shows that the stabilityfuntion Rq(z1; z2; z3) is given by (3.21) with M� de�ned in (3.13), but with the importantdi�erene that now x is omputed fromx = (1� !r)�1(1� !)(1� z1)(1� z2)(1� z3);! = �z2(1� z2)�1��z3(1� z3)�1�: (3.27)Result 4. For the three-dimensional ase (d = 3) and q = 1; 2; 3; 4 outer iterations weobtain:(a) The (1; q)-iteration is A(�=4)-stable;(b) The (r; q)-iteration is A(�)-stable (with � = �=4 maximal) independently of the �xednumber r of inner iterations arried out.Derivation. By using the maximum priniple it follows that the maximum of jRq(z1; z2; z3)jis obtained when all zj are on the boundary of the wedge W(�). Again, the statements (a)and (b) in Result 4 have been veri�ed numerially. Similar to the two-dimensional ase themaximum was found on the lines z1 = z2 = z3 = �t exp (�i �); t � 0. In the Figures 3.2and 3.3 we have plotted the jRq(z1; z2; z3)j-values for q = 1; 2; 3; 4 and r = 1 and r = 2,respetively. Here the value � = �=4 has been used. As a referene, the Radau stabilityfuntion jR(z)j is also shown. Moreover, we have veri�ed numerially (for all ombinationsof r = 1; 2; : : : ; 10 and q = 1; 2; 3; 4) that using an �-value slightly larger than �=4 indeedyields the existene of a point t > 0 suh that jRq(z1; z2; z3)j > 1 2We onlude this subsetion by providing some quantitative information on the values ofjRq(z1; z2; z3)j, q = 3; 4 for the most ritial situation (i.e., zj = (� os�+i sin�)t; j = 1; 2; 3)and � > �=4). This information is presented in the Tables 3.1, 3.2, and 3.3, from whih we14
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Figure 3.2: Graphs of jR(z1 + z2 + z3)j and of jRq(z1; z2; z3)j (vertial axis) for r = 1,q = 1; 2; 3; 4 and z1 = z2 = z3 = (�1+ i)t; t � 0 (horizontal axis). The left panel shows thesituation in the neighborhood of the origin, whereas the right panel illustrates the behaviouron the interval 0 � t � 50. The situation near the origin serves to distinguish between theurves for the various q-values: the larger q, the loser jRj and jRqj.
onlude that:(i) near the origin (small t-values) the atual stability region (for eah of the zj-values) islarger than ditated by the wedge. In fat, the largest wedge ontained in eah of thesestability regions is determined by the sti� eigenvalues (t!1);(ii) To gain stability it helps to inrease r, the number of inner iterations;(iii) The number of outer iterations, q, has less inuene;(iv) As we will see in Setion 4, some ombinations of the (r; q)-iteration with some valuesof the step size � may lead to an unstable result in ase of an advetion dominated problem.Although inreasing r will help to gain stability in suh situations, it might be that aredution of the time step is a more eÆient approah.
Table 3.1: First positive t-value (with two deimal signi�ant digits) suh thatjRq(z1; z2; z3)j > 1 for the (1; q)-iteration and z1 = z2 = z3 = (� os�+ i sin�)t.q � = 50Æ � = 60Æ � = 70Æ � = 80Æ � = 90Æ3 28.94 9.18 5.33 2.18 1.654 28.93 9.17 5.38 2.36 1.97
Table 3.2: First positive t-value (with two deimal signi�ant digits) suh thatjRq(z1; z2; z3)j > 1 for the (2; q)-iteration and z1 = z2 = z3 = (� os�+ i sin�)t.q � = 50Æ � = 60Æ � = 70Æ � = 80Æ � = 90Æ3 38.47 12.18 7.12 5.08 2.944 38.46 12.18 7.21 5.36 2.96
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Figure 3.3: Graphs of jR(z1 + z2 + z3)j and of jRq(z1; z2; z3)j (vertial axis) for r = 2,q = 1; 2; 3; 4 and z1 = z2 = z3 = (�1+ i)t; t � 0 (horizontal axis). The left panel shows thesituation in the neighborhood of the origin, whereas the right panel illustrates the behaviouron the interval 0 � t � 50. The situation near the origin serves to distinguish between theurves for the various q-values: the larger q, the loser jRj and jRqj.
Table 3.3: First positive t-value (with two deimal signi�ant digits) suh thatjRq(z1; z2; z3)j > 1 for the (r; q)-iteration and z1 = z2 = z3 = (� os� + i sin�)t forthe angles � = 50Æ and � = 90Æ.� = 50Æ q r = 1 r = 2 r = 3 r = 4 r = 53 28.94 38.47 48.30 58.26 68.304 28.93 38.46 48.29 58.25 68.29� = 90Æ 3 1.65 2.94 5.60 7.01 8.424 1.97 2.96 6.04 7.30 8.64
4 Numerial results for a model problemWe will �rst apply the numerial proedure as desribed in the preeding setions to themodel problem ut + a � ru = D�u+ g; (4.1)de�ned in 2 or 3 spatial dimensions on the unit square and unit ube, respetively. Atthe boundaries we impose Dirihlet boundary onditions. In all tests in this setion, theanalytial solution is presribed by

u(t; x1; : : : ; xd) = os(t2) dYi=1xi(1� xi); with d = 2 or d = 3: (4.2)
The veloity vetor a = (ai) is onstant, with ai > 0, and the same holds for the di�usionoeÆient D. The advetion and di�usion terms are disretized using symmetri, seond-order stenils on a uniform grid with N internal points in eah spatial diretion, i.e., themesh width is h = 1=(N +1). The inhomogeneous term g, as well as the Dirihlet boundaryonditions are determined in suh a way that (4.2) is the exat solution indeed. The resulting
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linear system has the form,y0 = f(t; y) := Jy + g(t); y(0) = 0; y; f; g 2 RNd : (4.3)The ase d = 2 yieldsJ = J1 + J2 with J1 = IN 
 ~J1; J2 = ~J2 
 IN ;whereas for d = 3, we haveJ = J1 + J2 + J3 with J1 = IN 
 IN 
 ~J1; J2 = IN 
 ~J2 
 IN ; J3 = ~J3 
 IN 
 IN ; (4.4)with N -dimensional tridiagonal matries ~Jl (l = 1; 2; 3) of the speial form
~Jl =

0BBBBBBB�
� l 0 0 0 � � � 0 0 0�l � l 0 0 � � � 0 0 00 �l � l 0 � � � 0 0 0... ... ... . . . . . . . . . . . . ... ...0 0 0 0 0 � � � �l � l0 0 0 0 0 � � � 0 �l �

1CCCCCCCA ; 8<: �l = al=(2h) +D=h2l = �al=(2h) +D=h2� = �2D=h2 (4.5)
From the above splitting it is lear that all matries Jl for the ases d = 2 and d = 3 havethe same set of eigenvetors, respetively. For instane for the ase d = 3, the eigenvetorset is given by fuijk = v1i 
 v2j 
 v3k; 1 � i; j; k � Ng;where vlj denotes the jth eigenvetor of the matrix ~Jl.For this problem, the spatial disretization errors vanish (i.e., the PDE solution at thegrid points equals the ODE solution). Hene, we only onentrate on time integration errors,whih is preisely the aim of this setion: to study the auray and onvergene behaviourof the proposed time integration method. In the results presented below, the auray { atthe end point of the integration interval { will be measured by the quantity sd, de�ned assd := � log10 k numerial solution { exat solution k1 :For the time interval we hoose 0 � t � 3. The (r; q)-iteration that we used in the testshas been desribed in Setion 3.3 for the ase of dimension d = 3, see formulas (3.22) until(3.26). We remark that for d = 3, the (1; q)-iteration oinides with the AMF-iterationdesribed in (3.10). This also holds in the ase d = 2, by setting J3 = 0 in (3.22)-(3.26).Computational osts. It should be observed that the majority of the omputational workin the (r; q)-iteration onsists of matrix-vetor produts and solving linear systems with abanded matrix, the band width typially in the range 3-5. This property is independent ofthe number of spatial dimensions of the underlying PDE. Hene, the linear algebra workinvolved is muh less than that enountered in fully impliit methods where `multidimen-sional' systems have to be solved. Moreover, the full right-hand side funtion f ourringin (1.1) has to be evaluated only q times, i.e., at the start of a new single-Newton iteration.Suh an f -evaluation may be quite expensive, e.g., in ase of ompliated di�usion terms(see the example in Setion 5) or when a laborious inhomogeneous term is involved (as inthe example in Setion 4). Sine q is usually small, this property is an advantage omparedwith fully expliit methods, suh as stabilized Runge-Kutta methods, where in eah stagethe full right-hand side funtion f has to be re-evaluated. In Setion 5 we will desribea omparison with a BDF-based ode and an Runge-Kutta-Chebyshev ode, inluding therequired CPU times of all solvers. 17



4.1 Advetion dominated aseThe suess of the algorithm largely depends on the position of the eigenvalues of the Jao-bian of the disrete system. These eigenvalues are determined by the resolution of the spatialgrid and by the ratio of advetion and di�usion. A proper way to haraterize a partiularsituation is to use the so-alled ell P�elet number Pe, whih is de�ned by Pe = jajh=D(see e.g. [13℄). We will present results where we set the veloities ai = 1 and the di�u-sion oeÆient D = 10�4, i.e., the ase where advetion strongly dominates di�usion. Thisresults in Pe = 104h (in eah spatial diretion), whih beomes quite large for the spatialgrids that we will use. Large P�elet numbers indiate that we are dealing with the mostritial situation, where the eigenvalues are lose to the imaginary axis. We present resultsfor d = 2 and d = 3, obtained on spatial grids with inreasing resolution to see the inueneon the overall performane and the onvergene behaviour in partiular.For both ases we performed experiments with a onstant step size � and with a �xednumber q of single-Newton iterations per step. The tables show sd -values for various om-binations of � and q. First, in Table 4.1, we give results for the two-dimensional problem.
Table 4.1: sd-values for problem (4.1),(4.2) in 2 dimensions using iteration (3.10).N h Pe � q = 1 q = 2 q = 3 q = 4 ! q = 1032 1/33 303 3/10 1.34 1.75 1.81 1.76 ! 1.753/20 1.52 2.40 2.67 2.63 ! 2.613/40 1.72 3.14 3.61 3.51 ! 3.503/80 1.97 3.71 4.54 4.41 ! 4.41128 1/129 77.5 3/10 1.53 1.93 1.85 1.76 ! 1.763/20 1.60 2.51 2.73 2.64 ! 2.623/40 1.75 3.24 3.67 3.53 ! 3.513/80 2.00 3.83 4.58 4.43 ! 4.42512 1/513 19.5 3/10 1.66 2.10 1.91 1.82 ! 1.823/20 1.68 2.64 2.78 2.70 ! 2.683/40 1.82 3.28 3.74 3.59 ! 3.573/80 2.06 3.88 4.66 4.48 ! 4.48

From the 2D-results presented in Table 4.1 we may onlude:� Convergene of the iteration proess. For all values of the step size � we observe a fastonvergene. The numerial solution obtained with q = 4 iterations is (almost) thesame as the solution of the underlying Radau IIA method (olumn with q = 10). Thisproperty is seen to be independent of the resolution of the spatial grid. Stopping theiteration after q = 3 iterations yields a solution that is not yet fully onverged towardsthe Radau IIA solution, but it is ertainly of suÆient auray to adopt the q = 3result as the new step point approximation. As a matter of fat, for this problem iteven shows a slightly higher preision than the Radau solution. Here we reall that theprinipal loal error term for q = 3 is not idential to that of the orretor. Overall,the behaviour is satisfatory and in aordane with the theoretial results onerningA-stability (see Result 3) and almost A-onvergene (see Result 1).
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� Order behaviour. The mixed iteration proess has been started with the predition(3.18). Using (2.7) we see that the order p� after q iterations is equal to p�=min(q; 3).This order behaviour in time is niely observed from Table 4.1 (notie that halvingthe step size should yield an inrease in the sd -value equal to 0:3p�).Additionally, we repeated the above experiments (not displayed in tables) for the simplerase where D = ai = 1. Hene the di�usion and advetion oeÆients have equal weight,resulting in muh smaller P�elet numbers. We found a similar behaviour (again, the q = 4solution is almost the same as the Radau solution). The only di�erenes with Table 4.1 were:(i) q = 4 yielded more aurate results than q = 3, and (ii) for eah f� ; qg-pair, the sd -valueson the various grids were idential. In onlusion, the Radau-based mixed iteration proess(3.10) is very eÆient for 2D problems, independent of the position of the eigenvalues of thedisrete system.Next, we ontinue with the three-dimensional version of the model problem (4.1), (4.2),with ai = 1 and D = 10�4. Here, we will employ the iteration proess (3.22)-(3.26) and someresults for various (r; q)-ombinations are given. The Tables 4.2, 4.3, and 4.4 show sd -valuesfor r = 1; 2, and 5, respetively. Espeially for h = 1=33 and h = 1=129 a bad onvergenebehaviour is observed in some ases. Initially, for small q-values (say q � 3) often usefulresults are obtained; however, ontinuing the iteration results in divergene/instability. Inthe tables, an asterisk denotes an sd -value < �20. For h = 1=33, it helps to ontinuethe inner iteration proess (r = 5); unfortunately, on the �nest mesh (h = 1=129) several(r; q)-ombinations resulted in poor performane. However, a redution of the time step(� = 3=320 in Table 4.2) yielded satisfatory results again for those ombinations. Wehave also added results for a oarse mesh with h = 1=9. Here the onvergene is usuallysatisfatory in all ases, due to the fat that the onvergene and stability regions in theneighborhood of the origin are substantially larger than indiated by the wedge (see theTables 3.1, 3.2 and 3.3 and the aompanying disussion). Nevertheless, the onlusionmust be that the (r; q)-iteration for 3D problems with a dominating advetion term mustbe used with some aution. For this situation the onstrution of a robust ode needs theimplementation of a variable step size strategy. This topi is subjet of atual researh andit is outside of the sope of the present paper. Again, these experiments seem to on�rmthe theory in Result 2 and Result 4, respetively.For problems with substantial di�usion (ompared with advetion) the situation is muhmore favorable, in the sense that less redution on the time step sizes is required in order toget stable and aurate solutions. For instane by applying the (1; 3)-iteration (or equiva-lently, the AMF-iteration (3.10)) to the model problem with D = ai = 1, good onvergeneresults were found as is shown in Table 4.5.Non-smooth solutions. So far, we have shown the (onvergene) behaviour of the AMF-approah on the basis of a smooth solution in spae (f. (4.2)). The question arises whatwill happen when a non-smooth solution is involved. Hundsdorfer & Verwer write in [13,p. 406℄: `...the onvergene of modi�ed Newton AMF-iteration an be rather slow, espeiallyfor solutions rih in high frequenies'. To investigate that situation, we have performed anadditional test for the model problem (4.1), without the inhomogeneous term g(t), againon the unit square in spae and t running from 0 to 1. Furthermore, D = 10�4 and theveloities ai are set to 0:2. Hene, this is almost a pure advetion problem transporting theinitial pro�le with onstant veloity. The reason for reduing the veloities from 1 to 0:2
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Table 4.2: sd-values for problem (4.1),(4.2) in 3 dimensions using the (1; q)-iteration.N h Pe � q = 1 q = 2 q = 3 q = 4 ! q = 108 1/9 1111 3/10 1.75 1.98 2.07 2.12 ! 1.623/20 1.87 2.68 2.98 2.99 ! 3.003/40 2.12 3.54 3.96 3.90 ! 3.903/80 2.39 4.25 4.91 4.81 ! 4.8132 1/33 303 3/10 1.67 1.99 1.97 2.00 ! -3.493/20 1.86 2.59 2.87 2.91 ! -12.153/40 2.06 3.44 3.89 3.01 ! -5.863/80 2.32 4.24 4.83 4.73 ! 4.73128 1/129 77.5 3/10 1.90 1.94 1.92 1.96 ! 1.713/20 1.87 2.57 2.85 2.91 ! -2.523/40 2.07 3.44 3.57 1.71 ! *3/80 2.33 2.37 -2.90 -7.93 ! *3/160 2.61 -5.11 -16.13 * ! *3/320 2.90 5.65 6.68 6.56 ! 6.56
Table 4.3: sd-values for problem (4.1),(4.2) in 3 dimensions using the (2; q)-iteration.N h Pe � q = 1 q = 2 q = 3 q = 4 ! q = 108 1/9 1111 3/10 1.70 2.00 2.12 2.14 ! 2.153/20 1.87 2.70 3.00 2.99 ! 3.003/40 2.12 3.55 3.97 3.90 ! 3.903/80 2.39 4.22 4.92 4.81 ! 4.8132 1/33 303 3/10 1.64 1.99 2.08 2.07 ! -3.333/20 1.83 2.66 2.94 2.93 ! -9.563/40 2.05 3.46 3.90 3.83 ! 3.823/80 2.31 4.15 4.84 4.73 ! 4.73128 1/129 77.5 3/10 1.76 2.01 2.05 2.07 ! -0.603/20 1.84 2.66 2.92 2.09 ! *3/40 * * * * ! *3/80 * * * * ! *

is that we want to keep the (steep) solution pro�le inside the unit square at t = 1. Again,we use seond-order symmetri di�erenes, both for the di�usion and the advetion term.The main di�erene with the previous situation, however, is that we now start with thenon-smooth initial �eld (see also [13, pp. 52{62℄ where a similar test for an advetion modelis desribed) u(t = 0; x; y) = [sin(�x)℄100 [sin(�y)℄50: (4.6)For this problem we do not have an analytial solution, so we �rst alulated a referenesolution of the ODE on 2 spatial grids, i.e. h = 1=129 and h = 1=513. We restrit ouronsiderations to 2D sine the qualitative onvergene behaviour aused by a potential slowdamping of high-frequeny modes is similar in 2D and 3D (see also Remark 2 in Setion 3.2).
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Table 4.4: sd-values for problem (4.1),(4.2) in 3 dimensions using the (5; q)-iteration.N h Pe � q = 1 q = 2 q = 3 q = 4 ! q = 108 1/9 1111 3/10 1.71 2.01 2.11 2.14 ! 2.153/20 1.87 2.71 3.00 2.99 ! 3.003/40 2.12 3.56 3.97 3.90 ! 3.903/80 2.39 4.22 4.92 4.81 ! 4.8132 1/33 303 3/10 1.64 1.98 2.08 2.07 ! 2.083/20 1.83 2.67 2.94 2.93 ! 2.933/40 2.05 3.46 3.90 3.83 ! 3.823/80 2.31 4.15 4.84 4.73 ! 4.73128 1/129 77.5 3/10 1.74 2.07 2.09 2.07 ! -2.703/20 1.85 2.68 2.94 1.68 ! *3/40 -15.93 -11.61 -9.36 -6.93 ! -2.793/80 2.32 4.18 4.85 4.74 ! *
Table 4.5: sd-values for problem (4.1),(4.2) in 3 dimensions using the (1; q)-iteration. Here,we used D = ai = 1.N h Pe � q = 1 q = 2 q = 3 q = 4 ! q = 10128 1/129 0.008 3/10 1.94 2.07 2.23 2.41 ! 3.103/20 2.20 2.67 3.06 3.39 ! 4.013/40 2.78 3.47 4.03 4.47 ! 4.873/80 3.29 4.20 4.98 5.53 ! 5.73
We have tested the (1; q)-iteration for several q-values, to see its inuene on the onver-gene and found the results as given in Table 4.6. From this table we draw the following
Table 4.6: sd-values for problem (4.1),(4.6) in 2 dimensions using the (1,q)-iteration. D =10�4; a1 = a2 = 0:2.N h Pe � q = 3 q = 5 q = 10128 1/129 15.5 1/10 1.31 1.28 1.281/20 2.11 2.04 2.041/40 3.01 2.91 2.911/80 3.92 3.80 3.80512 1/513 3.9 1/10 1.26 1.23 1.231/20 2.05 1.98 1.981/40 2.95 2.84 2.851/80 3.86 3.74 3.74
onlusions: (i) the third-order behaviour in time is niely shown; (ii) the resolution of thespatial grid has hardly inuene; (iii) the onvergene is quite satisfatory: already for q = 3the iteration seems to be onverged.
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4.2 Solving the orretor iterativelyWe onlude this setion by giving some results for the approah desribed in Setion 3.1, totreat a 3D advetion dominated problem. This approah onsists in three nested iterations:the outer iteration is the single-Newton iteration (2.9) to solve for the stage values in Yn;the middle iteration proess is of AMF-type and is used to solve the linear systems in (3.1);�nally, the inner iteration (3.9) is used to solve the linear systems where the matrix J� isinvolved.The main idea of this nested iteration algorithm is to ontinue eah iteration until `on-vergene' to really �nd the Radau solution. Therefore, this approah is best implementedusing an adaptive strategy where residuals have to satisfy presribed toleranes. Suh animplementation is beyond the sope of the present paper and subjet of future researh. Togive an impression of the performane and robustness of this approah in a 3D setting, wehave solved the advetion dominated ase with D = 10�4 and ai = 1. The nested iterationhas been tested for many ombinations of q; l and r, denoting, respetively, the number ofouter, middle and inner iterations. It turns out that q = 3 outer iterations are suÆient toobtain onvergene for realisti step sizes. Conerning the middle iteration proess we anmake the same observation. To be on the safe side, the innermost iteration proess has beenapplied using the �xed number of r = 10 iterations, although in many ases smaller r-valuesould have been used to obtain the same auraies. The results have been summarized inTable 4.7. This table shows that we end up with auraies lose to those of the Radauorretor itself. By omparing the results with those in the Tables 4.2 until 4.4 it is evidentthat this approah is muh more robust in the sense that it an be used for 3D problemsin ombination with large Pe-numbers. Therefore, we expet that this algorithm an beupgraded to an eÆient and robust solver by inluding appropriate ontrol mehanisms.
Table 4.7: sd-values for problem (4.1),(4.2) in 3 dimensions using the nested iteration, withq outer iterations, l middle iterations and �xed r = 10 inner iterations. Here, we usedD = 10�4; ai = 1. q = 1 q = 2 q = 3N h Pe � l = 1 l = 2 l = 3 l = 1 l = 2 l = 3 l = 1 l = 2 l = 364 1/65 153.8 3/10 1.67 1.51 1.51 2.02 1.91 1.91 2.08 2.05 2.053/20 1.83 1.76 1.76 2.67 2.59 2.61 2.93 2.93 2.933/40 2.05 2.02 2.02 3.48 3.42 3.42 3.91 3.91 3.913/80 2.31 2.30 2.30 4.19 4.18 4.18 4.85 4.87 4.87
5 Numerial results for a nonlinear problemNext, we ontinue our tests by applying the (r; q)-iteration (3.22)-(3.26) to a strongly nonlin-ear example, i.e. a radiation-di�usion problem from [14℄. The following desription and theused spatial disretization were borrowed from Ch.V of [13℄. Also in [17℄ this problem hasbeen used as a test example and results for an IMEX RKC sheme as well as for VODPK [5℄are given in that paper. Here we will present a omparison between the results obtainedwith the (r; q)-iteration and the results given in [17℄.22



0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Mater.Temp.  T  at t = 3

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Mater.Temp.  T  at t = 3

Figure 5.1: 3D plot and ontour levels of the material temperature T at time t = 3 forZ0 = 10. Contour levels: 0:1; 0:2; : : : ; 1:2.The problem onsists of two strongly nonlinear di�usion equations with a highly sti�reation term (an idealization of non-equilibrium radiation di�usion in a material). Thedependent variables E and T represent radiation energy and material temperature, respe-tively. Problems like this are for instane found in laser fusion appliations. The equationsare de�ned on the unit square for t > 0,Et = r � (D1rE) + �(T 4 � E) ; Tt = r � (D2rT ) � �(T 4 � E) ; (5.1)where � = Z3=T 3; D1 = 1=(3� + jrEj=E) and D2 = kT 5=2 with k = 0:005. Here, jrEjdenotes the Eulidean norm of rE and Z = Z(x; y) represents the atomi mass numberwhih may vary in the spatial domain to reet inhomogeneities in the material. We haveZ(x; y) = Z0 if jx� 1=2j � 1=6 and jy � 1=2j � 1=6 with Z0 � 1 a onstant and Z(x; y) = 1otherwise. In our tests we have used Z0 = 10 [14℄.The initial values are onstant, E(x; y; 0) = 10�5 and T (x; y; 0) = E(x; y; 0)1=4 �5:62 10�2. As boundary onditions we have homogeneous Neumann onditions for T atall boundaries and for E at y = 0; 1. Further, at the left and right boundary mixed bound-ary onditions for E are presribed by 14E � 16�Ex = 1 at x = 0 and 14E + 16�Ex = 0 atx = 1.The solution onsists of a steep (temperature) front moving to the right. For Z0 > 1the movement is hampered at the interior region with larger atomi mass number (andorresponding smaller di�usion). E is for the most part almost equal to T 4, exept nearthe front where it is slightly larger with a steeper pro�le. Figure 5.1 shows a 3D plot andontour levels of a time-aurate referene solution of T at t = 3 for Z0 = 10, omputed ona 200� 200 spatial grid.The spatial disretization is on a uniform ell entered grid with grid size h by meansof seond-order entral onservative di�erening. This gives a semi-disrete system y0(t) =fdiff (y(t)) + freation(y(t)) of dimension 2=h2. At eah grid point we have the nonlinearreation systemfreation(E; T ) = � Z3T�3(T 4 � E)�Z3T�3(T 4 � E)� ; Jreation(E; T ) = � �� �� �� � ; (5.2)with � = Z3=T 3; � = Z3(1 + 3E=T 4) and eigenvalues 0 and �(�+ �).23



5.1 Numerial results5.1.1 The three solversWe present numerial results for three di�erent solvers:Iterated Radau method: Here we use our (1; 3)-iteration as de�ned in (3.22)-(3.26).Although (5.1) is a 2D problem, we have solved this problem by using a splitting of the Ja-obian into three parts: J1 is assoiated with the reation system (5.2), hene J1 = Jreation,whereas J2 and J3 represent the Jaobian matries in x- and y-diretion, respetively, of thedi�usion part in the problem. As a onsequene, the systems (3.22) and (3.24) involvingonly J1 an be solved grid point wise. Hene, on an N � N -grid, we have N2 unoupledsystems, eah of dimension 2.The Jaobian matries J2 and J3, needed in (3.23) and (3.25), have the blok-triangularform J2 = 0BB� �F x�E �F x�T �Gx�T
1CCA and J3 = 0BB� �F y�E �F y�T �Gy�T

1CCA : (5.3)
Here, we used F and G to denote the disretized di�usion term in the �rst and seondPDE in (5.1), respetively and the supersripts x and y refer to the spatial diretions. As asimpli�ation, we approximate D1 by 1=(3�), hene negleting the rE-ontribution. Thisredues the bandwidth and leads to a blok-struture in whih only tridiagonal systems haveto be solved. Using this approah, the systems in (3.23) and (3.25) will �rst solve for theT -omponent and subsequently for the E-omponent. We have also tested the method byimplementing a further simpli�ation: negleting �F x=�T and �F y=�T in (5.3) leads to aredution of the linear algebra work involved. However, in terms of eÆieny, we found thatthe �rst strategy is to be preferred. Therefore, we will only present results based on matriesJ2 and J3 of the form as spei�ed in (5.3).IMEX RKC: This solver is based on an impliit-expliit (IMEX) Runge-Kutta-Chebyshev(RKC) method, where the di�usion part is integrated by the expliit, stabilized RKC methodand the sti� reation terms (f. (5.2)) are treated impliitly. This solver is fully desribedin [17℄ and the orresponding software is disussed in [16℄ 2).VODPK: The sti� solver VODE [2, 5℄ provided with the Krylov solver GMRES [15℄ withuser-supplied preonditioner for solving the linear systems arising in the modi�ed Newtoniteration.3) For this radiation-di�usion problem preonditioning is essential. Without pre-onditioning VODPK either fails or is very ineÆient, depending on the tolerane and thegrid size. We have implemented a 2� 2 blok-diagonal left preonditioner P whih approx-imates the 2 � 2 blok-diagonal of the Newton matrix. P is derived from the grid pointformulaE0ij = � 4h2 D1;ij Eij + �ij (T 4ij � Eij) ; T 0ij = � 4h2 D2;ij Tij � �ij (T 4ij � Eij) ;2) http://www.netlib.org/ode/irk.f903) http://www.netlib.org/ode/vodpk.f
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where, similar as in our Radau-based method, D1 is approximated by 1=(3�). So the Pij-blok for grid point (xi; yj) reads
Pij =  1 00 1 !+ b0� 4h2 0� 13�ij T 2ij EijZ3ij0 72k T 5=2ij

1A� b0� 0� ��ij Z3ij (1 + 3EijT 4ij )+ �ij �Z3ij (1 + 3EijT 4ij )
1A ;

where b0 is a VODPK oeÆient. Note that there is no grid onnetivity used in thispreonditioner.5.1.2 ResultsFor the numerial simulations we have hosen three grid sizes, viz. h = 1=50; 1=100; 1=200.On eah of these grids, a time-aurate referene solution has been alulated to be ableto measure temporal errors. In Figure 5.2 we show the results of the three solvers on thevarious grids. Here, we have plotted temporal auray (measured in the L2-norm) versusCPU time, as to illustrate the eÆieny of the methods. We remark that IMEX RKC andVODPK are variable step size odes, i.e., the integration proess is ontrolled by a spei�edtolerane parameter. On the other hand, our Radau-based method is still in its researhphase and integrates with onstant step sizes. From these results we onlude that theiterated Radau method outperforms the other two solvers on the �nest grid. On the gridwith h = 1=100 the situation is similar, although less pronouned. On the oarsest mesh allthree solvers show approximately equal eÆieny, with slight preferene for VODPK.We antiipate that the eÆieny of the iterated Radau method an be improved by addingan adequate error ontrol strategy. Finally, we remark that VODPK did not behave veryrobust for this problem. We enountered many onvergene failures during the integrationproess. Furthermore, the ode only worked for rather stringent values of the toleraneparameter (see also [17℄ for more detailed information about the performane of VODPK).
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6 Conluding remarksWe have analyzed and tested a method that is suitable to solve multi-dimensional advetion-di�usion-reation PDEs. Based on an impliit RK method of Radau IIA-type we haveonentrated on a speial iteration tehnique to solve the impliit relations that we en-ounter in eah integration step. We have derived onvergene and stability results. In atwo-dimensional situation we found A(�)-onvergene, with � � 87:9Æ and A-stability. Forthree-dimensional problems the situation is less favourable; we obtained A(�)-onvergenewith � � 44:7Æ and A(45Æ)-stability. Numerial tests with a linear problem revealed thatthe algorithm is still useful for advetion dominated 3D problems by applying it with someare. Finally, we applied the method to a strongly nonlinear, real-life problem in 2D andompared its eÆieny (in terms of CPU time versus auraies) with two existing odes,i.e., with VODPK and IMEXRKC. It turns out that the performane of the new method isat least ompetitive with that of the existing solvers.Aknowledgement The �rst two authors aknowledge support from the Spanish (MEC)projet MTM2007-67530-C02-02; the third author aknowledges support from the Duthnational Bsik projet BRICKS.
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