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PROGRAM SUMMARY 

Title of program: FIREGU 

Catalogue number: AABX 

Program obtainable from: CPC Program Library, Queen's Uni
versity of Belfast, N. Ireland (see application form in this issue) 

Computer: CDC CYBER 175-750; Instaiiation: SARA 
(Academic Computer Centre Amsterdam) 

Operating system: NOS/BE 

Programming language: FORTRAN 77 

Program Library used: NAG FORTRAN LIBRARY, MARK 
10 (SUBROUTINE F04ASF; this, in tum, uses other NAG 
routines) 

Programming language: FORTRAN 77 

High speed storage requested: 60 K 

No. of bits in a word: 60 

Peripheral used: line printer 

No. of lines in combined program and lest deck: 321 

Keywords: Fredholm integral equation of the first kind, regu
larization, elastic electron-atom scattering, dispersion relation 

Nature of the physical problem 
Fredholm integral equations of the first kind arise in the 
mathematical analysis of many physical problems (cf. Nedcl
kov [1 !). An important characteristic of such problems is that 
the information which we seek about a physical quantitiy A can 
only be obtained indirtM·t~». by measuring some other quantity 
B which has some connection with A. Often, this connection 
can be expressed mathematically in terms of a Fredholm first 
kind integral equation. 

M erhod of solution. 
The first kind Fredholm integral equation is solved by means of 
the regularization method of Tihonov [2.3J and Phillips [4]. 

Running time 
Approximately proportk,nal to the third power of the number 
of data points. 
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LONG WRITE-UP 

1. Introduction 

The linear first kind Fredholm integral equation 

jbK(x, y)j(y)dy=g(x), c~x~d, (1.1) 
a 

where f is the unknown function, and g and K 
are given functions, arises in the mathematical 
analysis of problems from many branches of 
physics, chemistry and biology (3). Also several 
classical mathematical problems, like the problem 
of harmonic continuation, numerical inversion of 
the Laplace transform, the backwards heat equa
tion, and numerical differentiation, can be for
mulated as equations of the form (1.1). 

We assume that f and g are elements of certain 
linear spaces F and G, respectively. Defining the 
linear operator :£: F ~ G by ( :£ f)(x ): = 
fabK(x, y)f(y)dy, we write (1.1) in operator no
tation as: 

:ff= g, g E G given, f E F sought. (1.2) 

In general, numerical solution of (LI) is difficult, 
because (1.1) belongs to the class of so-called 
ill-posed, or improperly posed problems. The prob
lem (1.2) is ill-posed (in the sense of Hadamard, cf. 
ref. [2]) if at least one of the following three 
assertions is false ( F and G are assumed to be 
complete metric spaces): 
(i) for every g E G there exists a solution f E F; 
(ii) the solution of (1.2) is unique; 
(iii) the solution of (1.2) depends continuously on 

the data g. 
Note that this definition depends on the spaces F 
and G. A problem may be ill-posed with respect to 
given F and G, but well-posed in other metrics. In 
general, (1.2) is ill-posed because the solution f of 
(1.2) does not depend continuously on the data 
function g. This may be explained, at least heuris
tically, as follows. If K is a smooth function, then 
:£ is a smoothing operator and small perturba
tions in g may be caused by large perturbations in 
f, which were smoothed down by :£. · 

In practical situations, the data function g is 
often the output of some measuring process, so 
that it is only approximately known in some dis-

crete set of points x; E [c, d]. Consequently, rather 
than (1.2) it is more realistic to consider the prob
lem. 

:ff=g, (1.3) 

where only g and t: are known such that II g - g II 

~ £ for some norm II · II . This may cause g to lie 
outside the range of the operator :£, so that there 
may not exist a solution of (1.3). 

2. The regularization method 

A survey of numerical methods for solving 
(1.1)-(1.3) may be found in refs. [5,11). Here, we 
describe a simple implementation of the so-called 
regu.larization method of Phillips [4] and Tihonov 
[9-11). This method essentially consists of the 
replacement of the ill-posed problem (1.3) by the 
well-posed problem (i.e. for which the three asser
tions (i), (ii) and (iii) above are true): 

Minimize the quadratic functional <Pa ( f), defined by 

<1>0 (/): = 11.:ff-g II 2 +a II Lfll 2 , (2.1) 

over all functions f in the compact set: 

{/: 11.:£/-gll ~(}. 

Here, a is a fixed positive number, the so-called 
regu.larization parameter and L is some linear op
erator, e.g. Lf= f, f' or j", or Lj = f- J if an a 
priori approximation J of f can be provided. If Lf 
is the ith derivative of f, then it is customary to 
speak about ith order regularization. 

Under certain, mild conditions, (2.1) has a 
unique solution, which will be denoted by fa· 
Moreover, fa will converge as £ ~ 0, uniformly on 
[a, b J, to the solution of the equation :£ f = g (if it 
exists), provided that a satisfies 

C t: 2 <a< Ct: 2 
1 2 (2.2) 

for positive numbers C1 and C2 • Unfortunately, g 
is not known exactly and the ill-posedness of (1.3) 
will, generally, cause the solution /,,. of (2.1) to 
oscillate very wildly around the solution of the 
equation :£ f = g, when a is chosen to be close to 
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zero. An increase of a will result in an increase of 
the residual II :£fa - g II , and a decrease of the 
"penalty term" II Lfa II ; and vice versa. For sui
tably chosen L the term II Lfa II will have an 
increasing damping effect on unwanted oscilla
tions of fa, with increasing a. 

The question then arises: how do we have to 
choose a? Up till now, this has not been resolved 
in a satisfactory way. The choice (2.2) may be of 
some use in practice. In any case, a should be 
chosen in such a way that both II :£fa - g II and 

II Lfa II (which, e.g., measures the smoothness of 
fa in case Lf = /") are acceptable to the user. 
Consequently, the proper choice of a depends 
considerably on the particular problem at hand. 

3. The numerical solution of (2.1) 

In order to solve (2.1) numerically, we intro
duce the following discretizations: we assume that 
g(x) is given in N not necessarily equidistant 
points x = x;, i = 1,2, ... , N ( c .:i;;: x1 < x 2 < ... < 
xn .:i;;: d) with g(x;) = :g;, and we split up the in
tegration interval [a, b] into N subintervals 
(Yj-1• y), j=l, 2, ... ,N (a=yo<Y1 < ... <yN 
=b).The integrals (:f/)(x) occurring in (2.1) are 
approximated, for any given x = X;, by using the 
repeated mid-point rule: 

(:ff) (x;)= jbK (x;, y) f(y)dy 
a 

N Y· 
= ~ f' K(x;, y) f(y)dy 

;=1 Y1-1 

N 

= L Kijf;, 
j-1 

where Kij: = (Y; - Yj- 1) K(x;, jij), jij: = t(Yj-I + 
y.) and /,1-: = f(ji1-) is an (unknown) approximation J A A 

of f in the point jij. After defining f; = f CY1) as an 
N 

a priori known estimate off;, E;: = L ·KiJJ;- g;, 
j-1 

i = 1, 2, ... , N, and writing 

Lf: = ao(f- /) + aif' + aif", 

where a;= 0 or 1, we replace the continuous prob
lem (2.1) by the discrete problem: 

Minimize the quadratic functional °4>a( /), de
fined by 

N-1 

+a1 I: (/;+1 - /;)2 
j-1 

+a2N:El (/;+1 -2fj+ /;-1)2} (3.1) 
j=2 

over all vectors f = (/1, / 2 , ... , f N] T E !ilt N for 
N 

which L 1:; .:i;;: E2• 

i=1 -
From the necessary condition aq,a/aJ; = 0, j = 1, 
2, ... , N, we find, after some simple calculations, 
the linear matrix-vector equation: 

{KT K+a(a0 H0 +a1H1 +a 2H 2 )}/ 

(3.2) 
T A A A T 

where g=[gw··•gnl, /=U1, ... ,fN], K= 
(Kij), KT= (K1;), H0 =IN (the N X N identity 
matrix), 

1 -1 0 
-1 2 -1 

H1= 
-1 2 -1 

0 -1 2 -1 
-1 1 NXN 

-2 
-2 5 -4 1 0 

1 -4 6 -4 1 

H2= 
1 -4 6 -4 1 

0 -4 6 -4 1 
1 -4 5 -2 

1 -2 1 NXN 

The linear symmetric system (3.2) is solved by 
using the standard NAG-Library routine F04ASF. 

4. Description of the program 

The main program calls a subroutine FlREGU 
which solves the minimization problem (3.1). The 



426 H.J.J, It Rltk I Ftnt kiiui Frwlltobn inltJNll f'qtlOtions 

heading of this subroutine reads as follows: 

SUBROUTINE FlREGU (KERNEL, N. X, G, 
Y, ALFA. LINFUN. F. RES) 

EXTERNAL KERNEL 
REAL KERNEL. X(N). G(N). Y(O: N), RES(6) 

The parameters of FIREGU are: 
KERNEL: a user-supplied external function 

which delivers the value of the kernel 
function K in the point ( x, y) for any 
x in the interval [c, d] and any y in 

N: 

X(N), 
G(N): 

the interval [a, b J; 
the number of data points for which g 
is given and for which approximations 
to f are to be found; the maximum 
number allowed is 64; 
arrays containing, on entry, the abscis
sae Xp ••• , xN and the corresponding 
data values g1, .. ., gN; 

Y(O: N): array of length N + 1 containing., on 

ALFA 
entry, a subdivision of [a, b); 
the regularization parameter, to be 
supplied by the user; 

LINFUN: with this parameter, the user monitors 
the choice of the linear functional L: 

F(N) 

RES(6) 

LINFUN = 1: Lf= f-j, 
= 2: Lf= f', 
= 3: Lf = f"; 

array of length N which, on exit, con
tains approximations to the solution f 
in the midpoints ji1 ; if LINFUN = 1 
then, on entry, the user most provide 
in F an a priori estimate of the solu-
tion in these midpoints; 
array containing, on exit, the follow
ing information: ( II · II is the discrete 
L2-norm) 
RES (l)= 11 /-ju, 
RES (2) = II /' II , 

RES (3) = II /" 11 , 

RES(4)= II Kf-g II, 
RES (5) =minimum absolute value of 
the components of K/- g, 
RES (6) = maximum absolute value of 
the components of K/- g: 

S. Workspace 

FlREGU uses 8448 words blank common 
workspace to be declared in the main program as 
follows: 

COMMON K (64, 64), MAT (64, 64), RHS (64), 
WKl (64), WK2 (64), FH (64) 

REAL K, MAT, RHS, WKl, WK2, FH 

6. Test-examples 

The subroutine FlREGU has been tested on 
the following problem with known solution: 

-1 () _ 11 [l+x/a] K(x, y)=(x+y) ' g x =x n 1+x/b' 

j(y)=y-1, 

[a,b)=[c,d]=[l,5], N=l6,32, 

X;=l+(i-l)•h1, 

i = 1, 2, ... , N, h1 =4/(N-1), 

y;=I+i•h 2 , i=O,I, .. .,N,h2 =4/N, 

a= io-', r = 0, 1, .. ., 14. 

Table 1 

(6.1) 

Minimum number of correct digits obtained when solving 
problem (6.1)-(1.l) with subroutine F1REGU 

a Exact data Perturbed data 

N-16 N=32 N-16 N=32 

1 0.1 0.1 0.1 0.1 
10-1 0.4 0.4 0.4 0.4 
10- 2 0.5 0.5 0.4 0.4 
10-3 0.9 0.8 0.7 0.7 
10-4 1.1 1.1 0.7 0.7 
10-5 1.1 1.1 0.1 * -0.2* 
10-6 1.6 1.7 
10-1 1.2 1.5 
10-s 1.3 1.7 
io- 9 1.1 1.7 
10-10 1.0 1.6 
10-11 LO 1.5 
10-12 0.7. 1.3 
10-!3 0.7 * 1.0 * 
10-14 0.4 * 0.1 • 

* Numerical solution n<>t monotonically decreasing. 
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Tmbie 2 
Perturbed vlillue~ g( x,) of g( x1 used in the test examples 

N-16 

x, 2{(X,l g(x,) error(~} 

1.0000 0.5!0826 0.500345 -2.l 
L2667 0.467766 0.476891 2.0 
l.5333 0.431776 0.427548 -1.0 
l.8000 0.401186 0.409976 2.2 
2.0667 0.374826 0.365242 -2.6 
2.3333 0.351849 0.352851 OJ 
2.6000 0.33Hi24 0.333124 0.5 
2.8667 0.313673 0.316543 0.9 
3.1333 0.297623 0.301847 1.4 
3.4000 0.283180 0283277 0.0 
3.6667 0.270109 0.278030 2.9 
3.9333 0.258219 0.263798 2.2 
4.2000 0.247355 0.241919 -2.2 
4.4667 0.237387 0.239189 0.8 
4.7333 0.228207 0.232738 2.0 
5.0000 0.219722 0.217096 -1.2 

For the linear functional L we chose Lf = f 
(zero-order regularization). The initial vector f 
was taken to be 0. In table 1 we give for each test 
combination of o: and N the minimum number of 
correct digits obtained for f in the mid-points _}', 
= !tv, _ 1 + y, ), i = l, 2, ... , N. Since the exact 
solution is monotonic decreasing, we have marked 
those cases by an asterisk (*) for which the 
numerical solution was not monotonically decreas
ing. 

As a second test we have run the same problem 
with perturbed data g,, obtained by multiplying 
g(x1 ), i = l, 2, ... , N, by the factor 1 + 0.03(2p - 1) 

N-32 

x, g(x,) g(x,) error(%) 

1.0000 0.510826 0.500345 -2.1 
l.1290 0.488975 0.498514 2.0 
1.2581 0.469034 0.464441 -1.0 
1.3871 0.450752 0.460627 2.2 
1.5161 0.433920 0.422825 -2.6 
i.6452 0.418367 0.419558 0.3 
1.7742 0.403946 0.405773 0.5 
1.9032 0.390533 0.394106 0.9 
2.0323 0.378022 0.383387 1.4 
2.1613 0.366322 0.366448 0.0 
2.2903 0.355354 0.365775 2.9 
2.4194 0.345050 0.352504 2.2 
2.5484 0.335348 0.327978 -2.2 
2.6774 0.326197 0.328672 0.8 
2.8065 0.317549 0.323854 2.0 
2.9355 0.309362 0.305665 -1.2 
3.0645 0.301600 0.305834 1.4 
3.1935 0.294230 0.293497 -0.2 
3.3226 0.287222 0.284772 -0.9 
3.4516 0.280549 0.283210 0.9 
3.5806 0.274188 0.273713 -0.2 
3.7097 0.268116 0.272964 1.8 
3.8387 0.262313 0.269326 2.7 
3.%77 0.256763 0.258344 0.6 
4.0968 0.251448 0.252259 0.3 
4.2258 0.246354 0.240569 -2.3 
4.3548 0.241466 0.237938 -1.5 
4.4839 0.236772 0.236306 -0.2 
4.6129 0.232261 0.228952 -l.4 
4.7419 0.227923 0.228027 0.0 
4.8710 0.223746 0.225888 1.0 
5.0000 0.219722 0.217514 -LO 

where p is a random number in the interval (0,1] 
generated by the FORTRAN random number 
generator. Consequently, the maximum perturba
tion in g is 3%. In order to facilitate reproduction 
of our tests, we give in table 2 the perturbed values 
g( x, ) of g( x,) used in our computations, together 
with the percentages of the perturbation. The re
sults of the second test are given in the part of 
table l with heading "Perturbed data". For o: < 
10- 5 the numerical values of f obtained were 
wildly oscillating and completely worthless. 

In the case of exact data, the best results were 
obtained for values of o: which lie in the range 
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10- 11 < a < 10- 4• Doubling the number N of dis
cretization points has some effect only for very 
small values of a( < 10- 8, say). 

In the case of inexact data, the best results were 
obtained for a= 10- 3 and a= 10-4 • A maximal 
error of 3% corresponds, roughly, to t: = 0.03 in 
(2.1). The values of a for which the best results 
were obtained agree reasonably well with the theo
retical choice a= me £ 2 ) expressed in (2.2). 

In figs. 1 and 2 we present graphs of the 
numerical solutions fa. obtained in the cases a = 
10- 3, 10- 4 , N = 16, 32, with inexact data. The 
drawn line is the exact solution. 

The line printer output of the tests shown in 
figs. 1 and 2 is given below. 

The subroutine FlREGU has also been used 
recently to solve a problem arising in elastic elec
tron-atom scattering [8,12]. Some experiments with 
a (ALGOL 60) predecessor of FlREGU have 
been reported in ref. (5]. 
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TF.ST RUN OUTPUT 

TEST OF FlREGU 
ORDER OF REGULARIZATI 
NUMBER OF POINTS s~l 
RESIDUES RES(l , ... ,R 
.1763E+0l .1416E•0 .2256E-01 .l611E-lil4 .ll03E-01 

y 

l. 125iHHJ 
l. 3751HHl 
1. 625!HHl 
l.8751HHl 
2.125000 
2.375000 
2.625000 
2.875000 
3.12501Hl 
3.375000 
3.625000 
3.875000 
4.125000 
4.375000 
4.625000 
4.875000 

F ( ) 
EXACT 

.888889 

. 727273 

.615385 

. 533333 

.470588 

. 421053 

.380952 

.347826 

.320000 

.296296 

.275862 

.258065 

.242424 

.228571 

.216216 

.205128 

NUMBER OF 
F Y) CORRECT 

COMPUTED DIGITS 

.719862 .7 

.666015 1.1 

.611811 2.2 

. 560268 l. 3 

.512573 1.0 

.469044 .9 

.429594 .9 

.393959 .9 

.361803 .9 

. 332782 • 9 

.306564 1.0 

. 282844 1. 0 

.261347 1.1 

.241827 1.2 

.224069 1.4 

.207880 1.9 

MINIMUM NUMBER OF CORRECT DIGITS: .7 

TEST OF FlREGU 
ORDER OF REGULARIZATION= 0 
NUMBER OF POINTS N=l6 ALFA= .00100000 
RESIDUES RES(l), ••• ,RES(6)= 

ERROR 
PERCENTAGE 

19.0 
8.4 

.6 
-5.1 
-8.9 

-11. 4 
-12.8 
-13.3 
-13.l 
-12.3 
-11. l 
-9.6 
-7.8 
-5.8 
-3.6 
-1. 3 

.1751E+01 .1367E+00 .1952E-01 .2297E-01 .3586E-03 .1283E-lill 

y 

1.125000 
1. 375000 
1. 625000 
1. 875000 
2.125000 
2.375000 
2.625000 
2.875000 
3.125000 
3.375000 
3.625000 
3.875000 
4.125000 
4.375000 
4.625000 
4.875000 

F(Y) 
EXACT 

.888889 

. 727273 

.615385 

. 533333 

.470588 

. 421053 

.380952 

.347826 

.320000 

.296296 

.275862 

.258065 

.242424 

.228571 

.216216 

.205128 

NUMBER OF 
F(Y) CORRECT 

COMPUTED DIGITS 

.712591 .7 

. 641722 • 9 

.582561 1.3 

.532537 2.8 

. 489759 1. 4 

. 452814 1.1 

.420627 1.0 

. 392367 • 9 

.367380 .8 

.345148 .8 

.325257 .7 

.307366 .7 
• 2912111 • 7 
.276530 .7 
.263164 .7 
.250941 .7 

MINIMUM NUMBER OF CORRECT DIGITS: • 7 

ERROR 
PERCENTAGE 

19.8 
11.8 

5.3 
• 1 

-4.l 
-7.5 

-10.4 
-12.8 
-14 .8 
-16.5 
-17.9 
-19.1 
-20.l 
-21. 0 
-21. 7 
-22.3 
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TEST OF FlREGU 
ORDER OF REGULARIZATION= 0 
NUMBER OF POINTS N=32 ALFA= .00010000 
RESIDUES RES(l) , ••• ,RES(6)= 
.2520E+01 .ll96E+00 .4719E-02 .3017E-01 .3131E-03 .ll49E-01 

y 

l. 062500 
l.187500 
l. 312500 
l. 437500 
l. 562500 
l. 687500 
1.812500 
1.937500 
2.062500 
2.187500 
2. :312500 
2.437500 
2.562500 
2.687500 
2.812500 
2.937500 
3.062500 
3.187500 
3.312500 
3.437500 
3.562500 
3.687500 
3.812500 
3.937500 
4.062500 
4.187500 
4.312500 
4.437500 
4.562500 
4.687500 
4.812500 
4.937500 

F(Y) 
EXACT 

• 941176 
.842105 
.761905 
.695652 
.640000 
.592593 
• 551 724 
.516129 
.484848 
.457143 
.432432 
.410256 
.390244 
• 372093 
.355556 
.340426 
.326531 
• 313725 
.301887 
.290909 
.280702 
• 271186 
.262295 
.253968 
.246154 
.238806 
.231884 
.225352 
.219178 
.213333 
.207792 
.202532 

NUMBER OF 
F(Y) CORRECT 

COMPUTED DIGITS 

.781930 .8 
• 751169 l. 0 
• 719359 l. 3 
.687305 1.9 
• 655555 l. 6 
.624474 1.3 
.594304 1.1 
.565195 1.0 
• 537235 l. 0 
.510467 .9 
.484903 .9 
.460534 .9 
.437333 .9 
.415267 .9 
• 394294 l. 0 
.374369 1.0 
.355443 1.1 
.337470 1.1 
.320402 1.2 
.304191 1.3 
.288792 1.5 
.274162 2.0 
.260259 2.1 
.247042 1.6 
.234474 1.3 
• 222519 l. 2 
. 211143 l. 0 
.200314 1.0 
.190001 .9 
.180177 .8 
.170815 .7 
.161889 .7 

MINIMUM NUMBER OF CORRECT DIGITS: .7 

ERROR 
PERCENTAGE 

16.9 
10.8 

5.6 
l. 2 

-2.4 
-5.4 
-7.7 
-9.5 

-10.8 
-11. 7 
-12.1 
-12.3 
-12.1 
-11.6 
-10. 9 
-10.0 
-8.9 
-7.6 
-6.1 
-4.6 
-2.9 
-1.1 

• 8 
2.7 
4.7 
6.8 
8.9 

11. l 
13.3 
15.5 
17.8 
20.l 

431 
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TEST OF FlREGU 
ORDER OF REGULARIZATION• B 
NUMBER OF POINTS N=32 ALFAm .001~000Q 
RESIDUES RES(l} , •.• ,RES(6)" 
.2486E+01 .1138E+0i .91 3E-H2 .3137E-Hl .2841E-04 .1277E-Ql 

y 

1. 06251Hl 
l.187501l'l 
l. 312501 
l. 4375130 
1. 56250!i! 
l. 687500 
l. 812500 
1.937500 
2.062501 
2.187500 
2.312500 
2.437500 
2.56250@ 
2.687500 
2.812500 
2.937500 
3. 0625\H! 
3.187500 
3.312500 
3.437500 
3.562500 
3.687500 
3.812500 
3.937500 
4.062500 
4.187500 
4.312500 
4.437500 
4.562500 
4.687500 
4.812500 
4.937500 

F(Y) 
EXACT 

.941176 
• S42Hi5 
. 7619@5 
.695652 
• 64131!11H.l 
.592593 
.551724 
• 516129 
.484848 
.457143 
. 432432 
• 410256 
. 390244 
.372093 
.355556 
.340426 
• 326531 
. 313725 
.301887 
.290909 
.2807132 
. 271186 
.262295 
.253968 
• 246154 
.238806 
.231884 
.225352 
.219178 
.213333 
.207792 
.202532 

NUMBER OF 
F(? CORRECT 

COMPUTED DIGITS 

.768431 .7 

. 723721 • 9 

.683226 1.0 

. 64641J4 1. 2 
• 61281.B 1. 4 
. 582039 1. 7 
.553787 2.4 
.527766 1.6 
• 503736 1. 4 
.481492 1.3 
. 4608513 1. 2 
.441655 1.1 
. 423769 1.1 
.407\'!68 l.lil 
.391447 1.0 
.376811 l.G 
.363074 1.0 
.350161 .9 
.338005 .9 
.326545 .9 
• 315727 • 9 
.305501 .9 
.295824 .9 
. 286655 . 9 
. 277957 . 9 
.269698 .9 
.261847 .9 
.254377 .9 
.247262 .9 
.240480 .9 
.234008 .9 
.227828 .9 

MINIMUM NUMBER OF CORRECT DIGITS: .7 

ERROR 
PERCENTAGE 

18.4 
14.l 
Hl.3 
7.1 
4.2 
l. 8 
-.4 

-2.3 
-3.9 
-5.3 
-6.6 
-7.7 
-8.6 
-9.4 

-10.1 
-10.7 
-11. 2 
-11. 6 
-12.0 
-12.2 
-12.5 
-12.7 
-12.8 
-12.9 
-12.9 
-12.9 
-12.9 
-12.9 
-12.8 
-12.7 
-12.6 
-12.5 


