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Geometric space—time integration of ferromagnetic materials
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Abstract

The Landau-Lifshitz equation (LLE) governing the flow of magnetic spin in a ferromagnetic material is a PDE
with a noncanonical Hamiltonian structure. In this paper we derive a number of new formulations of the LLE as a
partial differential equation on a multisymplectic structure. Using this form we show that the standard central spatial
discretization of the LLE gives a semi-discrete multisymplectic PDE, and suggest an efficient symplectic splitting
method for time integration. Furthermore we introduce a new space—time box scheme discretization which satisfies
a discrete local conservation law for energy flow, implicit in the LLE, and made transparent by the multisymplectic
framework.
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1. Hamiltonian structure of the Landau—Lifshitz equation

This paper addresses the Landau-Lifshitz equation (LLE) as a nonlinear wave equation supporting
solitons and stable magnetic vortices, as considered, e.g., in [5,19,23]. The LLE governs the flow of
magnetic spin in a ferromagnetic material. At a paing R? the spin m(x, 1) = (my, mp, m3)" in
Cartesian coordinates satisfies

m,=mx [Am+ Dm + £2], (@D}

whereA is the Laplacian operator in‘RD = diag(d:, d», d3) models anisotropy in the material, as
is an external magnetic field.

In applications in micromagnetics, the LLE may additionally include a nonlocal term, a spin
magnitude-preserving Gilbert damping term, as well as a coupling terms to a dynamic external field
governed by Maxwell's equations, see [6].
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The LLE can be written in the form of a Hamiltonian PDE with a nonlinear Lie—Poisson structure
(see, e.g., [22,8]). The general form of a Hamiltonian PDE is

o0H

wherey(x,t) e R?, H is a functional,%—H is the vector of variational derivatives @& with respect to

y, and B(y) is a Poisson structure matrix, i.e., a skew-symmetric matrix operator satisfying the Jacobi
identity (see [22]). IfB(y) is a Poisson structure matrix, continuous with respedt, tihere is a local
change of variableg = y(y) such that the structure assumes a canonical form

o T 0 0 o0
Ypyp? =s=|0 o 1,]|. 3)
sy- sy

0 —1I 0

P1
wherep = 2p, + po and/,, is the p;-dimensional identity matrix. Expressed in the new variables, the
Hamiltonian system (2) becomes

Vi =J ——".
Yi 5y
It is obvious from the structure of that the dependent variablgs, . .., y,, are constants of motion for
any HamiltonianH .
For (1) the Hamiltonian functional is the total energy

1
H:§/|me|2+m-Dm+2.Q-mdx, (4)
and the Poisson structure is
0 —ms no
B(m=m=| mg3 0 -—my|, 5)
—my My 0

which is related to the Poisson structure of the free rigid body [16].
If the spin is alternatively represented in the coordinabes (m,, my, m.)",

_1m2
mgz,/m%—i-m%-i-m%, my =tan ! —=, m, = mas, (6)
my

where tarr® denotes the anglén,, m») makes with then, axis, then the Poisson structure takes the
canonical form (3) withp; = p, = 1, which shows that the spin lengi#h, = |m| is a conserved quantity.
Indeed, we have

ﬂ|m|2=2m-mt=2m-<mx6—H>:O, (7)
ot sm
for any H; that is,|m|? is a Casimir of (5).

The polar coordinates (6) are well defined exceptidg= m, = 0, for which the spin is aligned with
them3 axis. The degenerate case can be treated by defining a local chart with, for example,= m»
andmg = tant(my/ms). In this papewe will always assume that locally either; or m, is nonzero
Although this assumption is crucial for the analysis, the numerical methods developed here are globally
defined, making no use of local charts.
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AssumingD and$2 are independent afandx, (1) is time- and space-translation invariant, implying
the conservation of the total energy (4) and total momentum (given hene, ferl):

1
P= / (m1Vymo — maVymq) dX. (8)
1+ms3

Both global invariants are consequences of related local conservation laws. For example, in the simplified
case: {D =1, 2 =0,d = 1}, the energy and momentum conservation laws become,

1 1
et+fx:0, ezém'mxx’ fzé(mx'mt_m'mxt)’ (9)
a; +b, =0, a= E(msmax — Mpm3y), b= E(mamsz — mamg, — |M,[). (10)

These conservation laws can be integrated over the domain of interest and under appropriate (for example
periodic) boundary conditions, imply the invariance of the total integral. &6t 0, (1) is also time-
reversible.

In numerical simulations of the Landau-Lifshitz and related equations, it is crucial to preserve the
relation (7). A number of strategies for doing so are encountered in the literature. A general numerical
integrator cannot be expected to do this automatically, making it necessary to either impose the condition
as a constraint, or to repeatedly project the solution onto the constraint manifold [4]. However, a number
of results under the heading of “geometric integration” techniques (see [9]) can be used to construct
integrators that automatically preserve the spin magnitude. First, it is well known that the class of Gauss—
Legendre Runge—Kutta methods preserves any quadratic invariant such as the spin magnitude (and th
total energy!). The implicit midpoint method is quite common in this context; see the work of Monk
and Vacus who use a finite element discretization of micromagnetics [20,21]. Second, giveaKuthat
evolves on the surface of a sphere, one can derive an equivalent formulation of (1) in the Lie-group SO(3)
(see [24] for a Lie-group formulation of the LLE) and apply Lie-group integrators, as in [10,13]. Third,
since the spin magnitude is a Casimir of the Poisson matrix (5), any Poisson integrator will conserve it
by definition. In [7] time-reversible, energy conserving, and Poisson integrators were compared against
standard methods for the lattice Landau-Lifshitz equation.

The use of geometric integrators places an additional constraint on the discrete phase space of the
numerical solution, eliminating some of the freedom ordinary methods have to wander away from
geometric structures such as invariant manifolds. On the other hand, the Hamiltonian structure discussed
above is really associated with purely temporal quantities. For PDEs, this implies that some integrals over
space are well-conserved whereas the local character of the PDE is not addressed. For instance, althoug
the total energy and momentum may be nearly conserved under a symplectic integrator, the flow of
energy and momentum from one point in space to another due to the implied conservation laws (9) and
(10) is masked by integration. Recent activity has focused on spatio-temporal Hamiltonian structure and
multisymplecticPDEs, which do address such local conservation properties. In this paper we propose
a new space—time discretization of the LLE which exactly conserves a discrete analog of the implicit
energy conservation law (9). We will focus on the case of one spatial dime#isioh, although most of
what is said carries over to higher dimensions as well.
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2. Review of linear multisymplectic structure

In this section we review some of the implications of multisymplectic structure in the case of linear
symplectic forms. In the subsequent section we will generalize these ideas to the nonlinear Poisson case
of the Landau-Lifshitz equation. For a full discussion of multisymplectic geometry, see the papers of
Bridges [1,2] and Marsden et al. [14].

Given a variational description of a continuous dynamical system (see, e.g., Lanczos [11])

0= 8/ L(u,u;,u,)dedx,

the equation of motion is formally given by
oL aL AL

—t — =
ou, ou, Ju

The corresponding Hamiltonian description introduces a conjugate vanatdiated to the temporal
derivativeu, by

oL
V= —,
ou,
which we assume to define an invertible relationship= u, (v). Then the Hamiltonian is defined via a
Legendre transformation

H(u,v)= f vu,; (v) — E(u, u,(v), ux) dx.

The variational derivatives off are prescribed to satisfy the original equation of motion (11) and the
definition of the conjugate variable

SH . 9L oL

0. (11)

(12)

g = =g,

Su ou, Ou

SH , ,

o =u,(v) +vu,(v) — a—utu,(v) = 0,u,

or, withy = (u, v)T,

SH 0 -1

]y[ - -, ] == . (13)
3y 1 O

A space-time analog of this procedure yields a multisymplectic structure as follows [1]. A second
conjugate variablev is introduced, this time with respect to the spatial derivative
oL
du,
Again we assume this to define an invertible relatigr= u, (w), and a new Hamiltonian is defined by a
Legendre transformation with respect to botandw:

(14)

S(u, v, w) = vu; +wuy — L(u, u, (v), ux(w)).

The partial derivatives of with respect tqu, v, w) are prescribed to satisfy the equation of motion (11)
as well as the definitions af (12) andw (14):
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N oL

— =——=—0,v— 0w,
du du

N

/ 8 /
™ =u(v) +vu,(v) — a—utu,(v) = 0,u,
0S

% = l/l[(u)) + wu;(v) — aux

resulting in the form, witrz = (1, v, w)T,

uy (v) = dyu,

S
Kz + Lz, =—, (15)
where
0 -1 0 0 0 -1
K=|1 0 0, L=({0 0 O
0O 0 O 1 0 O

Eqg. (15) with K and L skew-symmetric matrices defines a PDE on a multisymplectic structure. The
theory of such systems has been developed by Bridges [1] and Marsden et al. [14].
Some immediate consequences of multisymplectic structure are summarized below:

Conservation law of symplecticity.If dy is a solution of the variational equation associated with (13),
then the symplectic two-form is globally conservei;i%fdy A Jdydx = 0. Analogously, if @ is a
solution of the variational equation associated with (15), a conservation law of symplecticity holds [2]

1 1
atédZ/\KdZ—i-BxédZALdZ:O. (16)

Integration of this relation over with appropriate boundary conditions implies the global conservation
of symplecticity.

Conservation laws of energy and momenturaking the inner product of (13) witly, yields
conservation of total energif, = O upon integration over space, whereas taking the inner product of
(15) with z; andz, give local conservation laws of energy and momentum, respectively [1].

1 1
e+ f, =0, ezéz-sz—S, fzéz,-Lz, a7

1 1
a;+b, =0, a:zzx-Kz, b:EZ-Kz,—S. (18)

The multisymplectic structure can be generalized to altadependence itk and L, as long as the
two-forms associated witk (z) andL(z) are closed, i.e., can be expressed locally as the differentials of
one-forms [1,2].

Experience has demonstrated that numerical methods for Hamiltonian systems (13) which take
into account the global conservation of total symplecticity and energy exhibit performance superior
to standard methods. It is then reasonable to expect that methods which take into account the local
conservation laws associated with (15) will also perform well. To this end Marsden et al. [14,12] and
Reich and Bridges [25,3] have developed multisymplectic numerical methods.

In this paper we determine a multisymplectic structure for the Landau—Lifshitz equation and discuss
related numerical discretizations.
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3. Multisymplectic structure of the Landau—Lifshitz equation

To follow the derivation in the previous section, we begin with a variational formulation of the Landau—
Lifshitz equation. We start with a formulation in the coordinates (6) since this gives multisymplectic
structure matriceX andL that are constant, simplifying analysis. However for numerical computations
the Cartesian components: 1, m,, m3) are to be preferred, so a constrained multisymplectic structure
follows. See [15] for a general framework for constrained multisymplectic theory.

With the spin expressed in the coordinates (6), the canonical equations of motion are

6H 0H
mﬂtzoa myy = ’ My =——",
m, dmy

where the energy (4) takes the form

1 Mgy — MM,y )2 _
H:E/maxz(mg—mf)_i_( ¢ EZ Mzx) +m§x+d1m50052m(; +d2m§sm2m9 +d3m§

mj —m?
+ 2821m, COSmy + 282,m, Sinmy +2.(23mzd.x. (19)
Sincem,(x,t) = m,(x, 0) iIs constant in time, it will play the role of a parameter in the variational
description. Leth(mg, m,, my,,m,,) be the energy density, that H = fh(mg,mz,mgx,m”)dx.
Define the action densitg by
L(mg,mg;) =mmg, —h(mg,m;, mg,,m;). (20)

Introducing new conjugate variables

2
2 2 myni,my x —mzm”
qe 235/3m9x :_mex(m[ _mz)’ q: :8£/am2x = 2 > ,
mj — m?

the multisymplectic Hamiltonia is obtained via the Legendre transformation

S=m,mg, + qomg, +q,m,, — L

=qomgy +q,m;x + h(mea mz, Moy, mzx)

1 2 2 2memy .
= E[_—qu 5 — q—zz(m% - m?) + —zmezmzqz + my 2 4 dym? cog my + dom? Sir? my
my—mz my ny
+ d3m§ + 2821m, COSmg + 2§2om, Sinmg + 293mz], (21)
and has partial derivatives
58S . .
= m?(dy — dy) Sinmg COSmg + m(£2,COSMy — §21 SiNmg),
my
8S  q’m,+q.memg, 7
—=qz z qzz e — ;nzqezz‘i‘d?;mz‘i‘g&
dm, mj (m§ —m?)
8S _ 9
Sqy m% — mg’
58S —qz(mf — mf) + momemy

8q, m%
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The multisymplectic structure has form (15) in coordinaes (mg, m., g, q.)" with

0 -1 0 0 00 -1 0
1 0 00 00 0 -1

K= . L= . (22)
O 0 0O 10 0 O
O 0 0O 01 0 O

The two-forms associated witki and L satisfy the conservation law (16).
The energy and momentum conservation laws for the Landau—Lifshitz equation in these coordinates
are given by (9) and (10) with

1
e=S+ E(C]exme —Myxqo + Gz Mz — Mzxq2),

1
f= —E(%tme —Mmyiqo + g m; — m;q.),
1

a= _E(mzxme —my,m;),

1
b=S+ é(mztme - m&tmz)-

For numerical computations, the coordinates (6) are impractical beeauge undefined fom, =
+m,. Alternatively, we can derive a multisymplectic form for the LLE in Cartesian coordinates with a
constraint. We rewrite the action densifyin terms of Cartesian coordinates using (6). To preserve the
spin length, we add it as a constraint with Lagrange multiplier

mamy — MM _

L=m3 %(|mx|2+m-Dm+2.Q-m)+A(|m|2—m§).

2 2
mq+mj5

Defineq; =0L/0m;, =—m;j, j =1, 2,3 and the multisymplectic Hamiltonian becomes

S(m,q):%(|q|z+m-Dm+2[2-m)—A(|m|2—m2). (23)
The configuration variable = (m1, m», m3, q1, g2, g3, A)7, and the structure matricés(z) andL are
Ki(m) 0 O 0 Iz 0
K2 = 0 0 0], L=|-I3 0 0O, (24)
0 00 0O 0 O
where
0 0 —niy

Ki(m) = (m%—i—m%)fl 0 0 m
my —mq 0
To check the closedness of the symplectic oper&t@), consider the two-form

U
(U, V) = Vatan 72 (25)

1
Locally determine orthonormal coordinates such thaand z, are not both zero, define a one-form

@2V =« (z,V),i.e.,a(2) = (0,0, tan [z/z1]), and check thak (2);; = 224 —

0z; az; "
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The equations of motion are

Ki(mym, +g,=Dm+ 2 —2Am, (26)
—-m, =4q, (27)
0= |m(x, 0| = my(x, 02 (28)

Premultiplying (26) withrh (cf. (5)) gives, for the first term,

2
—M1mama; —mimama;+msmsi;

2, .2
mi+m5

2
—Mpm3amg; —mamimy;+mimy;

m x K{(m)m, = =m;, (29)

m%+m%
m%msﬁ»m%mg,

m%+m%
where the second equality follows upon substitution of the time derivative of the constraint (28), i.e.,
mimy, + momy, + mamsz, = 0. Furthermorem x 2Am = 0, and substitution of (27) fay in (26) gives
(2).

In the next section we turn to the numerical approximation of (26)—(28). We would just mention
again that although the above formulation requires the use of local coordinate charts to handle the case
mq1 = my = 0, the methods to be developed in the next two sectionglabally defined

4. Standard semi-discretization

Two different approaches to a discrete numerical analog of multisymplectic structure are: that due to
Marsden et al. [14,12], which rests on the discretization of the variational formulation, and that due to
Reich and Bridges [25,3], which focuses on the Hamiltonian side. In this paper we will consider the latter
approach.

In this section we show that the standard spatial discretization of the LLE gives a semi-discrete
multisymplectic PDE. Let us introduce a uniform grid with grid-spading; = i&, and approximations
mi (1) ~m(x;, 1), g () ~ q(x;, t). Also define forward and backward difference operators

7t g y 7i— i1
- 8.7 =——.
§ §
We isolate the spatial derivative terms in (26)—(28) and discretize using symplectic Euler differencing [9]
to obtain

+oi
87 =

8tg' = Dm' + 2 — 2Am’ — Kq1(m)m;, (30)

—5-mi =" (31)
This system of differential equations satisfies a semi-discrete multisymplectic conservation law
extending the result of [25], in which constakt and L were considered. To see this, defirie=

(mi, mb, m&, qi, g5, g5, AT, and lets € S* parameterize a closed curve in phase space.
For « from (25) one finds the identity

ww(Z,2)=0k(Z.2) -2 -K(Z)Z. (32)
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Define a discrete two-forr associated with the spatial operafoby
)_L(Zi—l’ Zi) —mi-1. qi.
It is easily checked that
_ . . _ . . . . . s-m!
Stz Z)=00(Z,87) -2 - Ls¥Z, wheresZ = <8x+qf > : (33)
Summing (32) and (33) and integrating arousfdgives

f w(Z.2)+8F0(Z7,2)ds

= %[K(Zi’ Z)+MZ.8/7)] —[Z-K(Z)Z +Z -Ls7Z |ds = —f %ds =0,

which via Stokes theorem yields a semi-discrete multisymplectic conservation law [2].
This spatial discretization also retains a semi-discrete analog of the local energy conservation law (9),
namely:
e+ =0 = é(—(u‘)2 +m'-Dm' +22-m'), fi=mit-u.
For a given temporal discretization, the error in local energy conservation can be estimated by the residue,
defined as

ri,n — S;rei,n + S;rf_-i,n’ f_i,n — 8t+mifl,n . ui,n. (34)

Simply substituting the relation (31) into (30) fgf, pre-multiplying by’ and inserting the time
derivative of the constrairjin; (r)|? = |m; (0)|? as in (29) gives the semi-discretized equation
. . 1., . . . .

m; =m’ x [?(mlﬂ—Zm‘ +m~) + Dm' +(2}, (35)
which is globally defined. This system (with = 1) and its higher dimensional generalizations
are referred to as the Lattice Landau—Lifshitz equation [5]. It comprises a Hamiltonian ODE with
Hamiltonian

1 1, i i|2 i i i
H:EZ?M —m' [ 4m’Dm' 422 - m', (36)

and a Poisson structure (5) with block-diagonal form
B(m) = m' . (37)

Symplectic and time-reversible integrators for (35) were considered in [7]. A symplectic integrator for
the isotropic cas® = I3 was derived by splitting the sum in (36) according to odd and éysuach that

the dynamics generated Ibfqg and Hevenare exactly solvable. Since the exact flow map is symplectic for
any Hamiltonian and the composition of symplectic maps is symplectic, the overall method is symplectic.
Such splitting methods can be made symmetric, and higher order methods can be contrived [18]. A more
efficient method was also derived, based on even-odd splitting of the domain. The resulting scheme is
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not symplectic, but time-reversible, and conserves the energy (36) exactly in the isotropic case. Also
considered was the implicit midpoint rule (IM), which for this problem is also not symplectic, but is
time-reversible and exactly energy conserving. Due to its implicitness, the IM scheme is suitable for use
in very fine discretizations, where the explicit methods suffer from a stability restriction on the stepsize.

Another, possibly better, explicit splitting method is based on a three-term splitting of the Hamiltonian
into m1q, m> andms contributions:

11, . . ,
H = Hy + Hy + Hs, Hj:Ezg(m'jl—m;)2+d,-(m;)2+29jm;..

The dynamics generated B, for example, are

i

; : ; 9H
m 0 —ms  mt =L 0
1 3 2 amy OHy i
O | my | =| my 0 -—mj o |=| /™ |,
i i i AHy i
my my,  mj 0 0 — 2
1

which is easily solved to give a rotation about theaxis. The dynamics due #, and Hs are analogous.
Let @, ; represent the solution operator for the dynamics duH t@ver an intervalr. The symmetric
composition method

M= 510 @220 P30 P20 Pr21M”, (38)

is second order and symplectic [18]. This method has been used by a number of authors to integrate the
Euler rigid body equations (see, e.g., [17]). Its main advantages over the methods of [7] are that it is
both fastand symplectic (though not exactly energy conserving), and it allows a uniform treatment of
anisotropy.

To understand how this splitting fits into the multisymplectic framework, define a decomposition
L =L, + L, + L3 of the spatial symplectic operator, with the nonzero components;afiven by
(Lj)jj+3=1=—(L;);+3,, and associated symplectic 2-forn. Similarly, letS;(z) = %(qj? + djmﬁ +
22;m ;) — A(Im|? — m?). Then the split flows (z')Z} + L ;6¥Z = S;(Z') are solved consecutively and
exactly in time, yielding a sequence of semi-discrete multisymplectic conservation laws

dk (dz;, dz}) + 87 2;(dZ 1, dzj) =0, j=1.23,

analogous to (16), where the differential; dolves the variational equation associated withttneflow.
Summing these relations across the grid with periodic boundary conditions shows that each split timestep
is globally symplectic, implying that the composite time integrator is globally symplectic, however it is
not clear to what extent the composition may be interpreted as a local conservation law of symplecticity
in the sense of [3]. There exist splittings that clearly preserve local conservation, but these are restricted
to Hamiltonian splittings for which the identity (27) remains intact, which for the LLE essentially means
solving the exact dynamics. Besides splitting, other options for obtaining symplectic integrators for the
structure (37) include seeking a global transformation to canonical form or Lie group integrators [9].
Recent papers on Lie group integrators for Landau—Lifshitz equations are [10,13].

Instead, in the next section we will drop the requirement of multisymplecticity and focus on the energy
conservation law.
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5. Box scheme discretization

Bridges and Reich [3] proposed the multisymplectic box scheme and showed that it preserves discrete
energy and momentum conservation laws analogous to (9), (10) for multisymplectic PDEs with quadratic
Hamiltonians. For constant symplectic operat&rsand L, such PDEs are linear. For the LLE the box
scheme is no longer symplectic in time, i.e., it is not a Poisson map for the symplectic opgécataf
(24). However, since the Hamiltonian (23) is quadratic &nd constant, a discrete energy conservation
law still holds. The discrete momentum law is also lost due to the nonlineariky(of.

Let Z'" ~ z(x;, t,) and define, for an arbitrary functiof), the average and difference operators

,LLxZi’n — }(Zi+1,n + Zi,n)’ 6xzi,n — }(Zi—ﬁ—l,n _ Zi,n)’

2 §
Wz = :—ZL(Z"*"+l +z'"), 87" = %(z"””rl -z,
all of which mutually commute. Using these definitions, a discrete chain rule holds for bilinear forms
BV, W):
B8V, W) + B(pV, 8.w7)
= e[ 5 B W) - B w) - B w)
+ (VLW — B(V, Wit + B(VITE W) — B(V, W]
= g}[ﬂ(v"“, wth) — (v, w)] =8, 8(V, w'). (39)
The same relations hold far, ands,.

Consider the multisymplectic form with nonconstant temporal symplectic operator and quadratic
function S(z) = 3z- Az:

K2z + Lz, = Az.
The box scheme discretization for this system is
K(qutzi’n)(stﬂ“xzi’n + Léxlutzi’n = A/)Lx:utzi’n.

Computing the inner product of this expression with,z"", and using the skew-symmetry &f(z), we
obtain

812" - LSt 2" = 8i0, 2" - Ap 2"

The left side of this equation is, using (39) and skew-symmetty,of
. . 1 . . 1 . .
Stl’l/le’n ' LMt(szlﬂ = E‘St (szz,n) : L:U/t (szl’n) + E:u/x (6tzl’n) ' L(Sx (:u/tzl’n)
1 ; . 1 ; ; 1 . ‘ 1 . .
= ESX (atzl'n : Ll/vtzl’n) - Esxstzl’n “Lpep 27" + Eat (N«le’n : Lale'n) - El/vxl/vtzl’n - Lé,6,2"

= %8, (meZ" - L8:Z") + %ax (8:2"" - L, 2""),
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and the right side is, using (39) and symmetryof

. 1 . .
it - At 2" = S8, (xZ" - A Z").

2
Combining the last two relations gives the desired discrete energy conservation law
8 (2" - L8,Z" — 2" - A 2" 4 8, (8,2"" - L, 2") = 0. (40)
For the specific case (26)—(28) discretization with the box scheme gives
Ky (g mM™™) 8 s ™" + 8, 0,Q°" = Dty pueM™" + 2 — 2A g pr,m™", (41)
— 8 by M™" = gty G, (42)
0= |popeem™ |* = my (x; +£/2, 02 (43)

For a numerical implementation of (41)—(43), we premultiply (42)pby;* and substitute into (41)
to eliminateg™”. We then premultiply both sides ky, ., Mm*" and substitute the discrete derivative of
(43) as in the continuous case. Because (43) enforces the spin length consirairE#R, we prefer to
work with the spatially averaged spm’” = p,m*", for which the method becomes

S = 0 x [(8,, 1) ™ + Dpy i + 2],

which is an implicit midpoint update. The operatar?® exists for periodic boundary conditions and
number of gridpointsV odd. ForN even,u, can be inverted up to the alternating grid sequence using
the pseudoinverse.

6. Numerical verification

In this section, we provide a preliminary evaluation of the new methods on the basis of numerical
experiments.

All numerical experiments utilize the soliton solution to the LLE published by Tjon and Wright [26].
The soliton is defined, for the anisotropic LLIP & I), by

my(n) = siné (n) cose (n), ma(n) = sing (n) sing (1), mg = COs9(n),
wheren =x — xg — Vt and

cosd(n) = 1 — 2b*sech(b/wn), (44)

2 1/2

) by | 45)

and the parameterg, o, andb satisfy V2/(4w) = 1 — b?. V is the translation speed of the solitdn,
determines its size, and the signin (45) should agree with that af. With the external magnetic field

given by 2 = (0,0, £25)", the parametew in (44)—(45) satisfies = 25 + wo, With wy determining the
relative phase ofiz; andm,. These equations describe a right-running wave for positivend a left
running wave for negativ& . The function 1-m3(n) is a “pulse” centered at = 0. The soliton solution

is defined on the whole real line, but we have truncated it and use periodic boundary conditions on a
domain of length 48.

; all
d(m) = EV(X — Xxp) T tan
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150

Fig. 1. Collision of two solitons computed with the splitting methad-£ 600, = 0.01).

Splitting, N=100 Box, N=100

Fig. 2. Collision of two poorly resolved solitons computed with the splitting method (left) and box scheme @ight],00,
=0.3.

To simulate a two-soliton collision we chose parameters
Vl = 0.5, bl = 0.8, Vz = —0.8, 93 =Wy = wiq,

for which b, = 0.28. The two solitons were initially located &t = 127 andx, = 36r.

The LLE was discretized on a grid witN grid points and periodic boundary conditions using the
splitting method (38) and the box scheme (41)—(43). The methods were implemented in Matlab, and for
the box scheme Newton iterations were done at time lewvell using the Jacobian from time leve]
until convergence of the residue to 18 in the maximum norm.

Fig. 1 illustrates the dynamics of the pulse-like componentrls; through approximately one period
of motion (0, 300Q]) of the slow soliton, computed using the splitting method at grid resolutiea600.

To more clearly distinguish the features of the two methods, a poorly resolved discretizafiba-d00
grid points was simulated over the same time interval. Fig. 2 illustrates the comparison. The solution
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Fig. 3. Relative change in total momentum (top) and total energy (bottom) for a long simulation of 50 soliton collisions, splitting
method (gray) and box scheme (black) = 150,7 = 0.2, T = 6000.
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Fig. 4. Residue in local energy conservation law (34) for the splitting metNod.300,7 = 0.05.

obtained with the splitting method exhibits a small lag in group velocity compared to the more accurate
solution in Fig. 1. The box scheme has a more severe, accelerated group velocity: at the current grid
resolution, the slow soliton evolves through approximately 1.5 periods. Comparing the quality of the
two solutions, the splitting method is smoother but tends to deteriorate as the integration progresses,
and appears to support some small reflected waves emanating from the collision. With the box scheme,
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especially the small soliton is very poorly resolved for this grid size, but appears to stabilize before the
first collision. No reflections are observed.

We also carried out a long simulation through more than 50 collisions to compare the global
conservation properties of the two methods. Using a meshMWith150, both methods were integrated
with T = 0.2 on an interval0, 6000. Fig. 3 shows the relative changes in total momentum and total
energy. Both quantities were well-conserved by the splitting method. For the box scheme the total energy
is exactly conserved up to truncation error of the Newton iteration. For the given toleranéd) ¢there is
a small drift of magnitude 101 Total momentum is not exactly conserved, but the peaks in momentum
error with the box scheme are smaller by a factor 10 than those obtained with the splitting method.

The conservation of total energy for the box scheme is a consequence of the exact preservation of the
discrete local conservation law (40) under periodic boundary conditions. We also estimate the error in
local energy conservation incurred by the splitting method by plotting the absolute value of the residue
(34) in Fig. 4 forN = 300. From the figure it is evident that the residue is largest near the solitons, and
that the peaks observed in Fig. 3 are accompanied by larger local residues near collisions, but that there
are small peaks in the quiescent regions as well. The change in total energy, obtained by summing the
r" overi, is an order of magnitude smaller than the local quantity due to cancellation of positive and
negative contributions. As tends to zero, the amplitudes of the peaks in Fig. 4 converge to zero.

7. Conclusions and extensions

In this paper we have generalized the idea of multisymplectic structure to the nonlinear case of the
Landau-Lifshitz equation. Motivated by this structure we have proposed a new box scheme discretization
which, though not multisymplectic, does retain a discrete energy conservation law. We have also shown
that the standard discretization leads to a semi-discrete multisymplectic PDE, which in turn can be
discretized in space using a globally symplectic splitting method.

The methods presented both give good behavior for soliton collisions. The splitting method is globally
symplectic and very fast. The box scheme satisfies the discrete analog of the implicit energy conservation
law, implying exact global energy conservation, and appears to conserve total momentum better as well.
The implications of local energy conservation need to be investigated further.

In micromagnetics applications, the LLE is often coupled with an external field satisfying Maxwell's
equations [6]. These equations also have a simple multisymplectic structure, suggesting a unified
approach. Maxwell's equations are, foithe electric field an® the magnetic induction,

B, =V xE, —E, =V x B, V.-B=V-E=0.

Writing z' = (ET, BT), Maxwell’s equations assume the three-dimensional multisymplectic structure
Kz, + L'z, + L%z, + L3z, = 0 with

K= ., L= ,
-7 0 0 O'j

0 0 O 0O 01 0 -1 0
op=(0 0 -1}, o= 0 0 0], o3=(1 0 O
01 O -1 0 O 0 0 O
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Both the box scheme and the symplectic Euler discretization could be applied here, and the box scheme
would satisfy discrete conservation laws of symplecticity and energy as well as momenta in 3 directions.
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