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Abstract—This paper presents a probabilistic power flow
model subject to connection temperature constraints. Renewable
power generation is included and modelled stochastically in order
to reflect its intermittent nature. In contrast to conventional
models that enforce connection current constraints, short-term
current overloading is allowed. Temperature constraints are
weaker than current constraints, and hence the proposed model
quantifies the overload risk more realistically. Using such a
constraint is justified the more by the intermittent nature of
the renewable power source.
Allowing temporary current overloading necessitates the incor-
poration of a time domain in our model. This substantially
influences the choice of model for the renewable power source,
as we explain. Wind power is modelled by use of an ARMA
model, and appropriate accelerations of the power flow solution
technique are chosen. Several IEEE test case examples illustrate
the more realistic risk analysis. An example shows that a
current constraint model may overestimate these risks, which
may lead to unnecessary over-investments by grid operatorsin
grid connections.

Keywords- Probabilistic power flow, renewable generation,
Monte Carlo, reliability analysis

I. I NTRODUCTION

Renewable energy generation is increasingly integrated,
but high penetration of renewable generators is expected to
strain the power grid. The limited predictability of distributed
renewable sources implies that substantial implementation in
the grid will result in a significantly increased risk of power
imbalances. Uses of storage, trade or unit commitment may
mitigate these risks. Above all, a quantitative uncertainty
analysis of the power flow has to be performed, which is the
topic of this paper.
An electricity network should fulfill the following constraints:

• The absolute voltage should be between acceptable
bounds at all nodes. Formally stated,

Vmin < |V (t)| < Vmax,

should hold at all nodes for all timest.
• The reactive power should be between acceptable bounds

at all generation nodes:

Qmin < Q(t) < Qmax,

should hold at all nodes for all timest.

• The temperature of each connection should be bounded:

T (t) < Tmax, (I.1)

should hold at all node connections for all timest. Tmax

is assumed to be the critical temperature of the connection
above which operation failure may occur.

A straightforward method to satisfy the latter constraint,is to
ensure that the current never exceeds a certain maximum. That
is,

|I(t)| < Imax, (I.2)

should hold at all node connections for all timest. In this
paper, we assume thatImax corresponds toTmax in the sense
that if I(t) = Imax for all times t, then

lim
t→∞

T (t) = Tmax.

These maxima depend on the material and thickness of the
connection. Tables displaying this correspondence for cables
can be found in [1], for example.
However, the transient temperature adjustment incurs somelag
time, so a mild violation of a given current maximum—with
a short duration—may not lead to violation of the temperature
constraint. Hence, directly imposing the current constraint
may be too restrictive. In fact, the grid dimensioning should
anticipate the most extreme event, which may very well be
accidental and of short duration. Underestimating the connec-
tion capacities in this way, may lead to over-investments in
grid connections. Therefore, this article will treat an improved
“soft” current constraint, which essentially demands thatthe
current be not too high for too long, by focusing on constraint
(I.1) instead of (I.2).
To include renewable generation units, we must model their
uncertain nature. The choice of model should be consistent
with available data. Often, and especially when considering
investments in new infrastructure, power generation data are
scarce, and data of their meteorological sources (e.g. wind
speed, solar radiation) are preferred because of their wide
availability. Further, the power generation and thereforethe
connection currents exhibit time correlation. This means that
checking for short-term current overloading necessitatesthe
inclusion of chronology in our model, which discourages the
choice for frequency domain approaches [2], [3], [4]. Instead,
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we prefer a model which involves time correlation of the
meteorological sources.
A second reason for proposing a time domain based model
is the eventual inclusion of storage devices. In order to know
the storage capacity and maximum power at some time step,
the state of charge information is required. This information
will depend on the device behaviour at the previous time step,
again necessitating the introduction of chronology into the
model. Since storage is one of the main solutions proposed to
mitigate the very problem of highly variable renewable power
generation, the possibility to extend the model with storage
is a welcome feature. Furthermore, we will show that the
theoretical benefit of mitigation will be underestimated byuse
of the current constraint, which implies that storage mitigation
is even more promising.
Monte Carlo techniques are one way to quantify the risk of
violating the three mentioned constraints. In a straightforward
approach, one would first sample the meteorological source.
Then the corresponding power injection would be used in a
steady state power flow problem. In this way, many power flow
solution samples are drawn, after which the risk of constraint
violation can be estimated statistically.
This paper elaborates on this approach, using wind power as
the straining renewable resource. First, Section II-A presents a
time integration scheme for the dynamic connection tempera-
ture. Section II-B describes a stochastic wind power simulation
method. In Section II-C, we investigate an efficient solver for
the steady state power flow problem. Simulation results are
presented in Section III. After proposing possible extensions
in Section IV, we conclude this paper in Section V.

II. M ETHODOLOGY

A. Short-term overloading

Short-term overloading may warm up a connection insuf-
ficiently to increase the temperature to dangerous levels. In
fact, the actual quantity to be controlled is the connection
temperatureT (t), and not the current itself. Fortunately, as
is well-known [5], the transient temperature of the connection
is described by a first order ordinary differential equation:

τ
dΘ(t)

dt
+ Θ(t) =

|I(t)|2

I2
max

, (II.1)

with

Θ(t) =
T (t) − T0

Tmax − T0
.

Here,T0 denotes the ambient temperature andI(t) the current.
The other three coefficients are determined by the connection
properties:τ denotes the thermal time constant for the heating
of the conductor, whereasTmax and Imax are as defined in
Section I.
The solution of (II.1) is obtained by direct integration:

T (t) = T0 +
Tmax − T0

τI2
max

∫ t

0

|I(s)|2e(s−t)/τds.

To qualitatively demonstrate to what sense a temperature
constraint weakens the current constraint, let us first assume

a constant currentI(t) ≡ I. In this case, the formula above
simplifies to

T (t) = T0 +
|I|2

I2
max

(

Tmax − T0

)(

1 − e−t/τ
)

.

Practically, this equation states that in order to satisfy con-
straint (I.1), one requires

1 −
I2
max

|I|2
< e−t/τ ∀ t.

This inequality naturally shows that no excessive temperature
can occur as long as|I| < Imax. Otherwise,I is allowed to
take on some (constant) value higher thanImax for a maximum
duration of

− τ ln

(

1 −
I2
max

|I|2

)

,

as long as the current subsequently drops belowImax.
In reality, I(t) is neither constant in time nor known ana-
lytically, so we cannot find the analytic solution of (II.1).
However, suppose that we obtain a numeric sample path for
I(t). Then we can construct a corresponding sample path for
the temperature, by discretizing (II.1):

τ
Θt − Θt−∆

∆
+ Θt−∆ =

|It|
2

I2
max

. (II.2)

Here,Θt andIt denote the numerical approximation forΘ(t)
and I(t), respectively, and∆ is the time step. Solving this
equation forΘt yields a numerical scheme for the relative
temperatureΘ(t), and thus for the absolute temperatureT (t).
In order to fufill the temperature constraint,Θt < 1 should
hold for all t.

B. ARMA based wind power model

In this article, we will choose wind power as the intermittent
power resource. To check the time dependent temperature
constraint (I.1), we require a time domain for the wind speed
model. Secondly, the model should capture the wind speed
distribution as observed in nature, which is assumed to be
the Weibull distribution. Further, to reflect inertia and recur-
rence of meteorological systems, spatial correlation between
meteorological sources as well as temporal periodicity should
be incorporated. The autoregressive-moving-average (ARMA)
model is a well-known technique to fulfill these requirements.
The ARMA-GARCH wind speed time series model in [6]
is a useful example of this model. For simplicity, we use
an ARMA model, assuming no conditional heteroscedasticity.
The autoregressive moving average model captures the time
correlations naturally, and spatial dependency can be attained
by imposing correlation on the white noise terms. The Weibull
distributed nature of the wind speed is preserved: the input
data are first transformed from Weibulls to standard normals.
On this new data, the ARMA model is fitted. New time series
samples, simulated from this model, are then transformed back
to Weibull samples. The daily periodicity is automatically
attained by fitting different Weibull cdf’s on each our of the
day. The yearly periodicity can be incorporated as well, but
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Figure 1. Wind power as function of the wind speed.

is neglected by considering time series of no longer than one
month.
One month of hourly wind speed measurements from the
KNMI 1 [7] are used as data. For a specific wind turbine, the
relation between the wind speed and the wind power is known,
as illustrated in Figure 1. We transform wind speed time series
by use of this function, thus obtaining wind power time series.

C. Accelerated power flow method

In order to achieve a satisfactory accuracy level for a
connection reliability analysis, one should use a realistic time
frame as well as a sufficient number of Monte Carlo samples.
Then, for each time step and each Monte Carlo sample, a
steady state power flow problem has to be solved. This means
that each power flow problem should be solved reasonably fast.
This requirement will drive the choice of power flow method.
A steady state power flow problem involves the solution of
the power balance equations:

Pi =

N
∑

j

|Vi||Yij ||Vj | cos(Θij + δj − δi), (II.3)

Qi = −

N
∑

j

|Vi||Yij ||Vj | sin(Θij + δj − δi). (II.4)

Here, Pi, Qi ∈ R denote the active and reactive power,
respectively, injected at nodei. |Vi|, δi ∈ R denote the voltage
magnitude and angle, respectively, in grid nodei. |Yij |, Θij ∈
R denote the absolute value and angle, respectively, of the
connection admittance between nodesi andj. N is the number
of grid nodes. This nonlinear system of equations has to be
solved for the state vectors|V | and |δ|, which is normally
done using a Newton-Raphson method [8].
The Fast Decoupled Load Flow (FDLF) method [9] speeds up
the conventional method, mainly by assuming approximations
which ensure that the Jacobian depends on the admittance
matrix Y only. This implies that the Jacobian will be constant

1Koninklijk Nederlands Meteorologisch Instituut. The windspeed at each
hour is estimated by the last 10 minutes mean wind speed of theprevious
hour.
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Figure 2. Sparsity of admittance matrix of IEEE-30 and IEEE-300 cases.

in the Newton-Raphson iteration number, and it thus has to
be inverted only once. This feature is particularly beneficial in
our proposed Monte Carlo method, since the inverse can be
reused for all samples.
Elements of the admittance matrixY are zero precisely when
there is no edge between the corresponding nodes. The number
of edges in a typical power grid topology is on the order of the
number of grid nodes. This means thatY is typically sparse,
as is illustrated in Figure 2, based on two IEEE-test cases
[10]. This sparsity can be used to accelerate computations.
The nodal power estimates in one Newton-Raphson iteration
are computed from the state vectors using (II.3) and (II.4).For
example, we can rewrite the first equation as

Pi/|Vi| =
∑

j

|YijVj | cos(Θij + δj − δi),

for all nodesi, or in vector form:

P /|V | = A(Y, δ)|V |. (II.5)

Here, P , V , δ ∈ R
N are vectors, the division on the left-

hand side is performed elementwise, and the matrixA(Y, δ) ∈
R

N×N depends onY andδ:

A = (aij), with aij = |Yij | cos(Θij + δj − δi).

Now note thatA will be as sparse asY . Therefore, to evaluate
(II.5), it will be beneficial to compute only the necessary terms
in the summand by precaching the indices of nonzero elements
of Y . Then, we use the necessary elements ofδ to update
the necessary elements ofA. In this way, significantly fewer
computations have to be performed in this computation step.
Another acceleration for the power flow method involves the
power flow solution from the previous time step. Since the
amount of renewable power is a piecewise continuous function
of time, one may expect that two subsequent solutions will be
close. Therefore, the previous solution will be a reasonable
first guess for the current problem.
The three acceleration techniques discussed above (i.e. use of
FDLF method, sparse computations, and smart initialization)
significantly speed up the Newton-Raphson iteration loop.
Table I gives an impression of the CPU times2 of some
standard IEEE-test cases: the test case number correspondsto
the number of grid nodes. All average CPU times are based

2MATLAB Version 7.12.0.635 (R2011a), on an Intel(R) Core(TM) i7 CPU
M 640 2.80GHz, 2.79 GHz, 3.24 GB of RAM.



IEEE-test case 14 30 57 118 300
Conventional power flow 0.96 1.66 4.0 12.3 116.4
FDLF, sparse 0.72 0.78 1.5 2.2 11.6
FDLF, sparse, smart initialization 0.57 0.76 1.5 1.1 11.9

Table I
THE AVERAGE CPUTIME OF A SOPHISTICATED POWER FLOW METHOD IS

ON THE ORDER OF MILLISECONDS.

on 1000 trials, and a Newton-Raphson tolerance error of10−5

is used. The table clearly shows that a sparse FDLF method is
accelerating the conventional power flow method, especially
for large grids. Smart initialization may yield some further
acceleration, depending on the test case.
We conclude that the computational time for a steady state
power flow is on the order of milliseconds. This order of
magnitude is desirable, since an accurate uncertainty analysis
requires a large number of Monte Carlo samples, each of
which involves as many steady state power flow problems as
the number of time steps.

III. R ESULTS

A. Comparison between current and temperature constraint

To demonstrate the use of the temperature constraint in
a time domain based model, we consider the IEEE-14 test
case [10]. The conventional generators at nodes 3 and 6 are
replaced by wind parks with comparable rated power (4 base
MVA). Wind power time series samples are generated 1000
times, on an interval of one month, on an hourly basis, using
spatially correlated KNMI wind speed measurements during
August 2011 at Valkenburg and IJmuiden, the Netherlands.
Consumption is assumed constant in time. For simplicity, we
chooseImax = 3.7Ibase uniformly at all connections. Precisely
this value is used since then the current exceeds this maximum
at some connection approximately once a year. We choose
τ = 3 hours (see [11] for realistic values of the thermal time
constant).
In our results, the current overloading occurs most of the
times at the same connection during periods of high values
of wind power generation. Figure 3 shows an example of
temporary overloading at this critical connection, when the
temperature constraint is not violated. One can see that the
temperature time series is indeed following the current time
series. However, local temperature peaks are lower, less fre-
quent and smoother than local current peaks, and slopes are
more gradual. This illustrates the “softness” of temperature
constraint (I.1) compared to current constraint (I.2).
In the upper graph of Figure 4, all 1000 current time series
samples at the critical connection are displayed. In the lower
graph of the same figure, the corresponding temperature time
series are displayed. One can see from this figure that the
current and temperature indeed exceed their maximum only
rarely. The graph magnification in Figure 5 clearly illustrates
that a current overload does not necessarily imply excess
temperature at this connection. This result can be extendedto
the other connections. In fact, in total 88 current violations
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Figure 3. Example: temporary current overloading, which isallowed since
the temperature constraint is fulfilled.τ = 3.

Figure 4. The current and temperature at the critical connection, 1000 time
series samples,τ = 3.
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Figure 5. Magnification of Figure 4: the temperature constraint is violated
less frequently than the current constraint.



Test cases IEEE-14 IEEE-30 IEEE-57 IEEE-118
Current Violations 88 69 152 101
Temperature Violations 6 16 20 16

Table II
NUMBER OF CONSTRAINT VIOLATIONS FOR DIFFERENTIEEE TEST

CASES. 1000TIME SERIES SAMPLES OF1 MONTH, τ = 3

τ (hours) 1 1.5 2 3 4 5 6
Current Violations 119 80 100 88 95 100 101
Temperature Violations 119 50 25 6 3 0 0

Table III
NUMBER OF CONSTRAINT VIOLATIONS IN THEIEEE-14TEST CASE AS

FUNCTION OFτ . 1000TIME SERIES SAMPLES OF1 MONTH.

were incurred over all samples, which indeed corresponds
to approximately once a year. In contrast, the temperature
exceedsTmax only 6 times. Other IEEE test cases yield similar
results, as can be seen in Table II.

B. Sensitivity toτ

It is clear that the higher the thermal time constantτ , the
more the grid capacity will be underestimated when checked
by use of current constraints. Table III shows a quantification
estimate of this sensitivity. We repeated the simulation of
the previous subsection for different values ofτ . The table
suggests that our proposed model will yield a significantly
more accurate reliability estimate forτ > 1.5. For values of
τ close to the time step∆ = 1, our discrete model loses its
ability to detect any differences. To explain this, note that for
τ → ∆, equation (II.2) goes to:

Θt =
|It|

2

I2
max

,

and thus becomes independent of the previous time step.
This model phenomenon is partly realistic. On the one hand,
the decreasing difference between the two constraints indeed
corresponds to reality:τ reflects the time the temperature
requires to reach1− 1/e = 63.2% of its asymptotic value, in
case of constant current. So for small values, the temperature
will be close to its asymptotic value, which will cause the two
constraints to agree. On the other hand, the total agreement
between current and temperature constraints is an overestima-
tion. Current peaks with a duration less than the time step size
do not necessarily violate the temperature constraint in reality,
in contrast to our model which regards the current as constant
during one time step∆. Therefore, the number of temperature
violations in Table III is overestimated. Since hourly based
data limits us to a time step of one hour, this overestimation
cannot be reduced by choosing a smaller time step size. It
therefore makes no sense to chooseτ < ∆ in the model,
whereas the overestimation can be reduced by acquiring data
with a smaller time step.

IV. FURTHER RESEARCH

We aim to extend the model with distributed storage devices,
in order to investigate their potential mitigating effect on

variable power flows. In fact, Figures 3 and 4 suggest that
the theoretical benefit of grid mitigation is expected to be
substantially higher when estimated using the temperature
constraint rather than the current constraint. Specifically, the
mean current of all time series is24% of Imax, whereas the
mean temperature is only8% of Tmax. In other words, the
peaks that can be mitigated by use of decentralized storage
are relative to the mean even more extreme than convention-
ally estimated. This implies that mitigation can theoretically
increase the connection ampacity by an even higher factor than
estimated using the current constraint.
Since storage devices produce and consume, and both to
varying degrees, the uncertain nature of their strategies makes
such an extension challenging. Further, we aim to increase
the efficiency of the Monte Carlo technique, to achieve higher
accuracy with the same number of simulations. We already
explained the computational intensity of the proposed model,
so an extension with storage devices will definitely necessitate
an increase of computational efficiency.
Other forms of renewable generation may be included in
the model as well. Suppose that the characteristics of the
considered meteorological source are known, data are available
and the relation between the source and power parameters is
known. Then one may try to fit an ARMA model and simulate
power generation as done in Section II-B. Finally, stochastic,
time-varying consumption can be analogously included.

V. CONCLUSION

Due to the implementation of uncertain energy generators
in power grids, grid operators require quantitative uncer-
tainty analysis of power flow. Grids should satisfy certain
constraints in order to match the demand while controlling
overload risks. Using a conventional current constraint for
grid connections, Monte Carlo simulations underestimate the
grid capacity. Instead, a temperature constraint quantifies the
risk more accurately. Especially for connections with a high
thermal time coefficient, the temperature constraint estimate
for overloading frequency may be many times smaller than the
current constraint estimate. Therefore, using a model allowing
for temporary overloading may save costs by avoiding over-
investments.
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