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Abstract. A general class of linear multistep methods is presented for numericallv ,,oJving first· 
and second-kind Volterra integral equations. and Volterra integ,ro-diffcreniial equ;tions. 
These so-called VLA1 methods, which include the well-known direct quadrature m<'.thods, 

allow for a unified treatment of the problems of consistency and convergence. and have an 
analogue in linear multistep methods for ODEs. as treated in any textbook t'n computational 
methods in ordinary differential equations. 

General <.:onsistency and convergen.:e results arc presented (and proved in an Appendi~J. 
togeth.:r with results of numerical experiments which support the theon. 

l. Introduction. We consider Volterra integral equations of the form 

(1.1) By(t) = g(t) + { K(t, T, y(r)) dr, 
'o 

tE/:= [t0 .Tj.11=0,l. 

This equation is called of the first kind if 0 = 0 and of the second kind if 0 = 1. 
Furthermore, we consider Volterra integro-differelllial equations 

(1.2) 
dv dt = f ( t. y ( t). z ( t)), z(t)=g(t)+ J' K(t,r.y(T))dr, 

'" 
l E /. 

where y(t 0 ) = y0 . In these equations y(t) is the unknown function and g. K and fare 

given, nonsingular functions on I. S x R and I x R x R. respectively, where 

S:= {(t, r). t 0 ~ r ~ t ~ T}. The conditions which ensure the existence of a 
unique. continuous solution of (1.1) and ( 1.2) are listed in Appendix I. (All 

appendices appear in the supplements section at the end of this issue.) 
There exists a vast amount of literature dealing with the numerical solution of 

(1.1) and (1.2), and dealing with the many physical applications which underly thesrt: 

equations ([l]. [16], [18]). 
A common, simple way of solving (l. l) numerically is obtained by writing these 

equations down in a sequence of equidistant points 

(1.3) t,,:= t 0 + nh. n = O(l)N. h fixed and t, = T, 

approximating the integral term by some suitably chosen quadrature formula, and 

solving the resulting equation for y(t 11 ) successively for n = n 0 (1)N, where n 11 is 

some suitable starting index. Equation (1.2) is commonly solved by integrating the 
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differential equation in the points (1.3) (say), using an LM formula for ODEs, z(t1 ) 

being approximated by some suitably chosen quadrature formula. All these methods 
are called direct quadrature (DQ) methods. DQ methods may give satisfactory 
results, but sometimes the results with DQ are completely worthless, as was 
demonstrated for first-kind equations by Linz [12, p. 67], who applied a fourth-order 
Gregory quadrature method to the very simple integral equation 

0 = -sin t + f cos( t - T) y( T) dT, 
(1.4) 0 

I= [O, 2], with exact solutiony( t) = 1. 

The "approximate" values obtained for y(2) were 8.4 and 1.5 x 10 7 for h = 0.1 and 
h = 0.05, respectively. For second-kind equations, too, the Gregory rules will fail if 
large Lipschitz constants for the kernel function with respect toy are involved (see 
Example 2.4.2). 

In this paper we present a general class of linear multistep methods for (1.1) and 
(1.2) which includes the DQ methods. (It should be remarked that such methods for 
second-kind Volterra integral equations were already introduced in [9], and results 
were presented without proof.) A characteristic feature of this class is that it involves 
linear combinations, not only of y- and K-values, but also of values of the auxiliary 
function (called the lag term) 

(1.5) Y(t, s):= g(t) + r K(t, T, y( T)) dT, 
lo 

for (t, s) ES. Note that we may write (1.1) as Oy(t) = Y(t, t). 
This general class will be called Volterra linear multistep (VLM) methods. VLM 

methods allow for a uniform treatment of the problems of consistency and conver­
gence, and have an analogue in linear multistep methods for ordinary differential 
equations, as treated, e.g., by Lambert in [11 ]. 

In Section 2 of this paper we treat VLM methods for Volterra integral equations 
of the second and of the first kind jointly. We motivate the introduction of the 
general class of VLM methods; examples of VLM methods are presented and 
consistency and convergence results for VLM methods are derived. Numerical 
experiments with several examples of VLM methods are reported. In a similar way 
as is done in Section 2, Section 3 treats VLM methods for integro-differential 
equations. It turns out that several results of Section 2 for second-kind Volterra 
integral equations can be used in Section 3. The proofs of the theorems presented in 
Sections 2 and 3 are given, as far as they are nontrivial, in Appendix IV to this 
paper. 

2. VLM methods for Volterra Integral Equations. 
2.1. The General VLM Method. 
2.1.1. The family of DQ methods. In order to state our general VLM method for 

(1.1) we introduce numerical approximations y11 to y(t 11 ) and Y,,(t) to Y(t, t 11 ), and 
we let 

(2.1.1) K11 (1):= K(t, t 11 , y11 ), n ~ 0. 

We assume that Y,,(1), t ~ t 11 , will be computed by a quadrature formula of the form 
11 

(2.1.2) Y,,(t):= g(t) + h I: w111 K;(t), 
1=0 
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where the w111 are given weights and n 1 is sufficiently large in order to ensure the 
required order of accuracy. When we say that the order of this quadrature formula is 
r. we mean that for any t ~ t 11 

(2.1.3) E 11 (h; t):= f' K(t. 7', y(T)) dT - h f. w,,1 K(t, tf' y(t1)) = (!)(h,.) 
~ ;=0 

as h --> 0, n --> oo, with t 11 = t 0 + nh fixed. An important class of quadrature 
formulas, which includes the well-known Gregory formulas, are the so-called ( p, a)­
reducible quadrature formulas [20]. However, except for the Gregory formulas 
(which can be traced back to the Adams-Moulton (AM) formulas), these quadrature 
formulas give rise to rather awkward implementations. Hence, from a computational 
point of view we would like to approximate the lag term by means of a Gregory rule. 
This will be the case in all our numerical experiments. 

The (conventional) DQ method for (1.1) mentioned in the introduction is a direct 
discretization of the (equivalent) equation By( t) = Y( t, t ). viz. 

(2.1.4a) By,,= Y,,(t,,), 

2.1.2. Motivation for extending the family of DQ methods. It has already been 
observed that DQ methods may fail, both for first- and second-kind equations, when 
Gregory rules are used for approximating the lag term. To overcome this unfavora­
ble behavior, methods have been proposed in which the effect of the lag term 
approximation is reduced. 

If 8 = 0 (first-kind equations), an often applied remedy (cf. [1, p. 898], see also 
[12]) may be the differentiation of Eq. (1.1) to obtain the (implicit) second-kind 
equation (assuming that g' and K, exist) 

g'(t) + j' K,(t, T, y( T)) dT = -K(t, t, y(r)), 

'" 
or more compactly, 

(2.1.5) Y,(t, t) = -K(t, t, y(t)). 

If K is linear in y: K(t, t, y) = K*(t, t)y, with K*(t, t) =F 0, then (2.1.5) may be 
solved by standard DQ methods for second-kind equations. If the derivatives 
involved in (2.1.5) cannot be evaluated analytically, or if Kor g are given in tabular 
form, 0 may be replaced by a k-step forward difference approximation (see 
Appendix II. Notice that the order of the DQ method used for solving (2.1.5) is noT 

affected by this approximation, provided that the order of this difference approxi­
mation is at least as large as the order of the DQ method; cf. [12, pp. 81-82]). In 
that case, this equation can be approximated by 

k 

L o)Y(tn+)' ttl) = hK(tll, tll, y(ttl)), t 11 :=t0 +nh. 
;=0 

Finally, approximating Y(t, tn) by the direct quadrature formula (2.1.2) leads to 

k 

{2.l.4b) L ojYll(tn+J = hKll(tJ. 
1=0 
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(The difference with (2.l.4a. 0 = 0) is that now both Y and K are involved.) Here. 11 

is assumed that K ( t, t, y( t)) does not vanish. Otherwise, (2.1.5) is again a first-kind 
equation and the process described above can be repeated to obtain a formula 
similar to (2.l.4b) in the sense that linear combinations of Y~, and K,, values are 
involved. 

If K(t, t, y(t)) is small, then (2.l.4b) may produce poor results because it is in fact 
a direct quadrature method for a stiff second-kind equation. To see this more clearly. 
let K be linear: K(t, s, y) = K*(t, s)y; then (2.1.5) can be written in the form (1.1) 

with 8 = 1 and with the kernel -K,*(t, s)y/K*(t, t). that is. an equation of the 
second kind in which the kernel has a large Lipschitz constant with respect tor. 
Approximating the derivatives in this stiff equation numerically and applying the 
DQ method leads to formulas of the type (2.l.4b). When using Gregory rules. such 
methods are poorly stable because of the restricted stability regions of the underly­
ing AM formulas. 

The above considerations prompt us to look for alternatives of the DQ method for 
stiff, second-kind equations. Following [8]. we differentiate (1.1) to obtain the 
integro-differential equation 

(2.1.6) y'(t) = K(t. t, y(t)} + Y,(t, t). 

Approximating Y,(t, t) by the k-step forward differentiation formula and then 
applying a linear k-step method to the resulting ODE. we obtain the formula 

/.. k k-i k 

(2.1.4c) L a1Yn-1 + L L bA+jYn_;(t,,+;) = h L b;K,,_,(t,, I). 
1-0 1=01=-1 i=O 

Again, the lag term does not play the central role in this formula as it does in 
formula (2.1.4a, 8 = 1). In particular, if Y(t, s) does not depend on t the whole 
expression containing the lag terms vanishes in (2.l.4c). 

Thus, the formulas (2.l.4a)-(2.l.4c) are all relations exhibiting some linear combi­
nation of y1-, Y,U)- and K,(t)-values. This leads us to consider a general class of 
Volterra Linear Multistep (VLM) methods in which numerical approximations to 
y(t), Y(t, T) and to K(t, .,., y(T)) occur linearly in a set of points in the (t, T)-plane 
as indicated in Figure 2.1.l. 

2.1.3. Definition of VLM methods. Our general VLM method for (1.1) consists of 
(i) the VLMformula 

/.. k /.. 

0 L a;Yn-i + L L /3;JY,,_;{t,,+J) 
(2.1.4) 

1=0 i=O 1=-/.. 
/.. /.. 

= h L L Y;1Kn-;(t,,+1 ), n = k*(l)N, 
1=0 1=-t. 

(k* fixed), where a,. /3;1 and Y;;• i = O(l)k,j = -k(l)k, are to be prescribed, and 
(ii) the lag term formula (2.1.2) for the computation of Y,,_;(t,,+)· 

In the VLM method the quantitiesy1, .•. •>'k•-i with k* = k + n 1 are assumed to be 
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FIGURE 2.1.l 

Points in the ( t, T )-plane needed in (2.1.4) fork = 2 

precomputed by some starting method. Then Yk•• ... ,yN can be successively com­
puted using (2.1.4). Since the kernel K(t, r, y) is not necessarily defined outside S, 
we require /3;1 = Y;J = 0 for i + j < 0. In addition, we will only consider VLM 
methods where /3;1 = Y;1 = 0 for i + j > k. Furthermore, if /3;p Y;J =I= 0 for j = l(l)k, 
we assume that the domain of definition of K can be extended to points (t, r) with 
t ~ T + kh, r ~ T. It is convenient to characterize (2.1.4) by the matrices 

(2.1.7) 

where the row index i assumes the values O(l)k and the column index j the values 
-k(l)k (see Figure 2.1.1: the point (t,,+1 , t,,_;) corresponds to the matrix elements 
/3;1 and Y;)· Note that for () = 0 the values of the coefficients a; in (2.1.4) are 
irrelevant. We will be particularly interested in VLM formulas with vanishing row 
sums in the B matrix, in order to reduce the effect of the lag term approximation. 

It should be remarked that in the theory of Volterra-Runge-Kutta (VRK) methods 
we have a similar situation as for the VLM methods described here; that is, the VRK 
method consists of a VRK formula, involving (nonlinearly) the lag term and the 
kernel function at a number of step and nonstep points in the ( t, s )-plane, and a 
quadrature rule for approximating the lag term [4]. 

2.1.4. Special families of VLM methods. 
1. Direct quadrature methods. Direct quadrature methods for (l.l) are char­

acterized by the (1 x 1) matrices A = I, B = -!, C = 0, for which (2.1.4) reduces to 
the simple scheme (2.l.4a). 
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2. Indirect linear mu/tistep methods. The formula (2.1.4c) is of the form (2.1.4) and 

is generated by the matrices 

0 

0 

This VLM formula forms, together with (2.1.2), a so-called indirect linear multistep 

(ILM) method for (1.1), not only for() = 1, but also for() = 0. When the ai and b, 

are the coefficients of a backward differentiation method (for k = 1(1)5 these are 
listed in Table 2 of Appendix II), (2.1.4) represents the so-called IBD (indirect 
backward differentiation) formula. For this method, we have b0 = 1, b > 0 = 0 and 
b081 = a1,j = O(l)k. 

As was shown in [8] for() = 1, the IBD methods have excellent stability properties, 
irrespective of the lag term formula chosen (see also the numerical experiments in 
Section 2.4). 

Notice that formula (2.1.4b) (which is often recommended for first-kind equations 
when the DQ approach diverges) is in fact the IBD formula with() = 0. 

It should be remarked that the ILM methods require the extension of the domain 

of definition S with the points { ( t, 'T) IT < t ~ T + kh, t 0 ~ 'T ~ T}. In this connec­
tion we observe that if S can also be extended to points with t < T, we may use 

backward instead of forward differentiation coefficients 8i in the IBD method, i.e., 

the matrix B is replaced by the matrix ( f3;) all elements of which vanish, except for 
those in the first row, which are given by ( b08 k• b08k 1, ••• , b080 , 0, ... , 0). 

3. Multilag methods. In [22], [23] we find methods for (1.1) with () = 1 which can 

be characterized by the matrices (by 0" we mean the (k x k) null-matrix) 

ao 0 . . . 0 . .. 0 0 . . . ho ... 0 

0 al h1 
(2.1.9) A= B= 

Ok Ok ' 
C= 

Ok Ok 

0 ak bk 

These methods were called mu/tilag methods (ML) for (1.1) with() = 1. Here, the a, 

and h;, i = O(l)k, may be the coefficients of any LM method for ODEs. Wolkenfelt 
has pointed out that in the case that the lag term Y,,(t) is computed by using a 
quadrature rule which is reducible to an LM-method for ODEs with the same 

coefficients a; and b;, then the resulting method is, in fact, equivalent to a DQ 

method based on the same quadrature rule (provided, of course, that identical 
starting values are used). 
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4. Modified multilag methods. In [22] Wolkenfelt introduced a modification of the 
ML methods, viz., the so-called modified multilag (MML) methods for (1.1),char­
acterized by the matrices 

Go 0 0 ... 0 0 . .. bo . .. 0 
a1 0 -al a1 b1 

(2.1.10) A , B= .·o Ok 
C= 

Ok Ok 
ak -ak ak bk 

The a, and b; are, again, the coefficients of any LM method for ODEs. A common 
choice are the Adams-Moulton formulas (listed in Table 3 of Appendix III, for 
k = 1(1)5). As with ML methods, the MML method is algebraically equivalent to 
the DQ method if in both methods the lag term formula is based on the LM formula 
{a;, b;} and if the starting values would be identical, where y11 = Y11 (1 11 ) for 11 1 ~ n 
~ 11 1 + k. However, the crucial difference with the ML methods is that by virtue of 
the vanishing row sums in the B matrix, the stability of MML formulas is hardly 
influenced by the lag term formula, whereas the stability of ML methods largely 
depends on the lag term formula. Since lag term formulas other than the (poorly 
stable) Gregory formulas give rise to rather awkward implementations, the MML 
methods may be more efficient than the DQ and ML methods if stability becomes 
important, that is, if large 3K/3y values are involved (see Example 2.4.3). 

2.2. Consistency of VLM Methods for Volterra Integral Equations. As is usual in the 
consistency analysis of numerical schemes for functional equations, we substitute the 
exact solution y(t) of (1.1) into (2.1.4), and analyze the resulting residue. With the 
relations By(t) = Y(t, t) and 3Y(t, s)/3s = K(t, s, y(s)), and (2.1.3), we obtain 

,t, ( Oa,y( t,. ,) + ,~,( fi,,[ g( t,.,1) + h :~: w,,_,JK( t,..1 , t,. y( t,))] 

(2.2.1) 
-hy,1K(tn+j• ln-i' y(t,,_;)))} 

= L,,[Y] + Q,,(y], 

where we have introduced the operators L 11 : C](S)-> Rand Q,,: L1(R) __,. R, 

k k 

(2.2.2b) Q,,[y]:=-:L L /3;jE,,;(h;t,,+J· 
1=0 1=-i. 

Here, C]( S) denotes the space of continuous functions Y( t, s ), differentiable with 
respect to s for all ( t, s) E S. 

The residue (2.2.1) will be called the local truncation error of the VLM method. It 
consists of two terms: the first term is determined by the VLM formula (2.1.4) and 
will be called the local truncation error of the VLM formula; the second term 
originates from the quadrature formula (2.1.2) approximating the lag term (1.5) and 
will be called the lag term error. Both errors play a role in the convergence analysis 
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of VLM methods; in Section 2.3 we will see that the rate of convergence of the 

numerical solution to the exact solution is closely related to that of the local 
truncation error of the method. The convergence of the local truncation error is 

often called consistency: 
Definition 2.2.l. (a) The VLM method is said to be consistent with Eq. (1.1) if both 

the VLM formula and the lag term formula are consistent. 
(b) The VLM formula and the lag term formula are said to be consistent if the 

respective errors L,,[ Y] and Q ,,[ y] ~ 0 as h ~ 0 where Y and y correspond to the 

exact solution. They are said to be consistent of order p if the errors are @( h P + 1 ) as 

h ~ 0. 0 

For the lag term formula we immediately have that Q,,[y] = @(h') if the lag term 

quadrature rule is of order r (cf. (2.1.3)). 
For the VLM formula the order of its truncation error depends on the parameters 

a.1, {3;1 and 'l;J· By expanding L,,[Y] in a Taylor series about t,,, conditions can be 
derived for which L,,[Y] = @(hP+ 1) ash--> 0. However, such an expansion requires 

sufficient differentiability of the lag term function Y(t, s) with respect tot and s. 

From its definition (1.5) it then follows that the functions g and Kand the solutiony 

should be in a class of sufficient differentiability. Since for existence and uniqueness 
it is only required that y E C(J), g E C1 - 8(/) and KE C 1- 8(S X R) (see Appen­

dix I), we conclude that generally we cannot expand L,,[Y] in a Taylor series of 
sufficiently high order. Therefore, and in analogy with the consistency theory for 

ODEs (see, e.g., Lambert [11, p. 23]), we allow L,, to operate on an arbitrary test 

function X which we may assume to have as many higher derivatives as we require. 

In this way we can formally define the order of the VLM formula. 

Definition 2.2.2. The operator (2.2.2a) and the associated VLM formula (2.1.4) are 

said to be of order p if for all X E C P + 1( S ), which in the case of first-kind equations 
(() = 0) vanish on the line t = r, we have L,,[X] = @(hP+ 1) ash--> 0 with nonvanish­

ing error constant. D 

We emphasize that the order conditions for VLM formulas only refer to the VLM 

formula itself and do not involve the exact solution, whereas the consistency of the 
VLM formula refers to both the solution and the VLM formula. A similar situation 

holds for LM and RK methods for ODEs and for VRK methods for Volterra 
equations. 

In the remainder of this section we concentrate on the derivation of the order 
conditions for VLM formulas and we will not be concerned with lag term approxi­
mations. 

The following two theorems express the order p conditions, in terms of the 

parameters occurring in (2.1.4),for (1.1) in the cases()= 1 and()= 0, respectively. 

The proofs are given in Appendix IV. 

THEOREM 2.2.1. If() = 1 then the operator L,, and the associated VLM formula 

(2.1.4) are of order p if Cq1 = 0 for q = O(l)p, I= O(l)q, where 

(2.2.3) c'I,:= ( _11)!!! t [(-i)qa; - t jq- 1(-i) 1- 1(if3iJ + 1'1;1)], 
q t=O 1=-k 

with the convention that (-i)1- 11 = 0 if i = l = 0. O 
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THEOREM 2_2.2. If () = 0 then the operator L" and the associated VLM formula 
(2.1.4) are of order p if Bq1 = 0 for q = l(l)p, l = l(l)q, where 

(2.2.4) 

k k 

Bq,:= (q _\)!/! i~OjEk (J- i)q-1-l(J + i)/-1 

. [,B;1(J 2 - i 2) - Yij(qj +qi - 2U)]. 0 

The various orders of the illustrating families introduced in Section 2.1.4 can now 
be found by substituting the relevant values of the parameters a. ,B .. and y .. into the 

" lj lj 

above two theorems. The results are summarized in the following corollary. 

COROLLARY 2.2.1. Let p be the order of the LM formula for ODEs defining the 
coefficients {a,, b,} in families 2, 3 and 4. Then the order p of the operator Ln and of 
the associated VLM formula (2J .4) is given by 

p = min{ k, p/O} for family 2 (ILM); { 
oo for family 1 ( DQ); 

p both for families 3 and 4 (ML resp. MML). D 

Since the DQ method is completely determined by the lag term formula the infinite 
order of the DQ formula is only a formal result. Note that for() = 0 in the ILM case 
this corollary gives p = k, independent of the order p, and, in fact, in this case the 
{a;, b;} need not represent an LM method for ODEs at all. 

Instead of starting with an already known VLM formula, such as (M)ML and ILM 
formulas, one can derive VLM formulas directly from the order conditions. We will 
illustrate this for second-kind equations ( fJ = l) and for the special class where all 
row sums in the B-matrix vanish. First, we consider the order equations Cq,q = 0, 
Le., 

k 

I: [(-i)qa, -(-i)q- 1qy,] = o, q = O(l)p, 
1=0 

where the Y, denote the row sums in the C matrix. It is easily verified that these 
conditions are just the order equations of a pth order LM method for OD Es with 
coefficients {a,, Y; }. Thus, by choosing some pth order LM method we prescribe the 
a; and the row sums in the C matrix. There remain "J.p ( p + 1) order equations 
Cq,1 = 0, l = O(l)q - 1, q = l(l)p. Summarizing, we have 2(k + 1) + "J.p(p + 1) 
linear equations for the parameters ,BiJ and y,J" Restricting these parameters to points 
in the domain of definition (see Figure 2.1.1),we have (3k + 2)(k + 1) free parame­
ters. Let us choose a second-order BD method to fix the parameters a; and Y;· An 
example of the many possible formulas generated by these {a;, Y;} is given by 

3 Yn - 4 Yn - 1 + Yn . -· 2 + [ ~ Yn ( f n ) - 2 Yn ( f n + l ) + 'I Yn ( ( n + 2 ) + 2 Y,, l ( ( n -- 1 ) 

-2Y,,_ 1(tn) - 2Y11 _2(l,,_2) + 2Y,,_2(tn) ] 

= 2hK11 ( t 11 ). 

This formula does not belong to the (M)ML or ILM family. 
Let us assume in the rest of this section that the VLM formula (2.1.4) is of order p. 

From the proofs of Theorems 2.2.1, resp. 2.2_2, it follows that the local truncation 
error L 11 [ Y] can be expressed in terms of the constants defined in (2.2.3), resp. 
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(2.2.4), as follows: 

(2.2.5) 

resp. 

(2.2.6) 

where 

p+l 

L [ Y ] = h P + 1 ~ C Y < P + 1 - /,1 l + @ (. h P + 2 ) as h -> 0, 
II /_,; p+J,/ 

1=0 

p+l 

L [Y] = hp+i ~ B z<p+l--1.f) + @(hP+ 2 ) ash-> 0, 
n /_,; p + !,/ 

I= 1 

yu.J) := (a;atr (a/as)' Y(t, s )i1=s=1,,, 

z(i.;) := (a;aur (o/av )1 Z(u, v )l,,=2r,,.1·=<h 

( u+v u-v) Z(u, v):= Y - 2 -, - 2 - : 

In order to compare the values of the error constants C" + u and BP f 1,1 for the 

various families introduced in Section 2.1.4, we have evaluated and simplified the 
expressions for these constants as much as possible, and obtained the following 

results. 
For B = 1, Corollary 2.2.1 gives for the ILM formula: p = k provided that p ~ k 

(which is a reasonable assumption, valid, e.g., when the LM formula for ODEs is a 

Backward Differentiation formula ( p = k) or an Adams-Moulton formula (p = 

k+ 1)). Hence, 

(-l)p--1 k 

CP + 1.1 = ( p + l _ /) !/ ! ;~o { i P [ ia; + ( p + 1) b, j - R}, p = k, 

with R = k lb; if l = 0 and R = 0 if I = 1, 2, ... ,p + 1. For the (M)ML formula, 

Corollary 2.2.1 gives p = p and we find 

{
o 

c - ( 1)p-l k 
p+ll- - -p. 

' (p + l - /)!/! i~OI [ia; +(p + l)b1] 

if I ,,;; p, 

if I= p + 1, 
p = p. 

In Table 2.2.1 the numerical values of the constants CP + u are explicitly given for 
two popular choices of the coefficients {a,, b1 }, viz., the BD formulas and the AM 
formulas. 

For B = 0, and in the case of the ILM formula, Corollary 2.2.1 gives p = k, while 

the coefficients { b,} can still be chosen freely. For the error constants we find 

(-l)"k! " 
Bp+l,I = ( p + 1 - /)!/! i~O b,, 1,,;;l,,;;p+l,p=k. 

For the MML formula, Corollary 2.2.1 gives p = p, and for the error constants we 
find 

(-l)p+l-1 k 

Bp+U = ( 1 _/)'I' L i"[ia, +(p + l)b,], 
p + '· i=O 

l,,;;l,,;;p+l. 
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TABLE 2.2.1 

Error constants C1" u = C/. 11 -1-;-(. · ..... 1 l""" O( I) p + l 
. p . ··- /}! . 

----------- --------
A ' = ' k ::::':,' 2 A k 4 -~ 5 \"L\l!LMi p 

~-~--·-~· 

:~ 1441.KJ . J.H 2 .. 
4 " 28X 

1.1 
l 

3 31:> 12rn.1 
11 

25 

HMIBD] !. 

lL\![A\1] A i C/. l,11 .~ 1 ·-h 24 -120 

u "' 
U··r l 0 

<.I 0 

- l 
4 .'Ii 2~K ~11~) 

1.p-· l !l 

1\l1\lL[BD] 

( (~~~ = 0 
1 _i~ r. l 

lq ,_ 
Sti3 

l. q:. !.f1 l ' 

TABLf: 2.2.2 

1 
Error constants BP 1 1 = B* 1 1-. ----- I= -.- l 

-. P'·/!(p+l-1)!' 

\ LM[L\1] p k = l I. = 2 " - 3 A -~ 4 A ~ ' -------
IL\1!BD] " B,7'~ LI 

4 :<t; 28<' 
-1 

J 11 

\IML!BD] " (-1 )I'' l 'B/;. 
4 36 2~~ 

1.1 -1 
3 l 1 2~ 

In Table 2.2.2 the BP, u are given for the BO formulas (cf. Table 2.2. l ). 
2.3. Com·ergence. We first give a definition of t:onvergern:e. 

12ou 

l'"' 

Definition 2.3. l. A VLM method is said to yield a conNrgent sviutum ( 1.l 1f 
r,, .... _I'( r,,) as h --> 0. with 111 = t fixed. holds for all convergent starting \alue~ 
l,. l',(l 1 )}. i = l,. .. ,k - 1,j =-i. -i + l, ... J - I. 0 

Before considering the convergence of VLM methods for ( Ll l. we an~wer the 
question as to what equation the numerical st:heme !2.1.4) converges tu. if we 
substitute a sufficiently differentiable function y( t) (not necessanh the exact solu­
tiL)n) and if we then let h tend to zero in a fixed point To that end. we ddine the 

polynomial 

and the quantities 

( 2.3.2) 

' a(.:l:= L:(\,=' 
t=U 

" Aq:= L (-i)'1a,, q = 0.1 ..... 
,~u 

We observe that A 0 = a(l). A1 = a'(1) - ka(l)_. ... 
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THEOREM 2.3.1. If sufficiently differentiable functions y(t), g(t) and K(t, -r, y) 
substituted into the VLM method, then the method converges to the equation 

(2.3.3) 
m {OAqdq q[ Aq ](a)q-'(a)' } q~O hq 7 dtqy(t) + /~O cql - l!(q - /)! at as Y(t, t) 

= (1)(h' + hm+l) ash~ 0, 

where r is defined in (2.1.3), Cq1 in (2.2.3), and m is some integer;;;:. 0 determined by 
differentiability of y, g and K. D 

The proof of Thoerem 2.3.1 is given in Appendix IV. 
Examples. In the case of the DQ method for { (1.1 ), 0 = 1} we have A 0 = 1 

that we infer from Corollary 2.2.1 and Theorem 2.3.1 that the numerical sch 
converges to the equation y( t) - Y( t, t) = 0 ash ~ 0, which is the original equa 
(1.1). In the case of the DQ method for {(1.1), 0 = O} we have C00 = 1, so thi 
easily follows that the numerical scheme converges as h ~ 0 to the equa 
Y(t, t) = 0, also the original equation (1.1). In the case of the ILM method for ( 
it is not difficult to show that if the coefficients {a;, b;} in (2.l.4c) correspond 
convergent LM formula for ODEs, then the numerical scheme converges, ash -
to the differentiatedVolterra equation Oy'(t) = K(t, t, y(t)) + Y;(t, t). D 

In order to present convergence theorems for VLM methods, we need 
following concepts and definitions: A polynomial is called simple von Neumann· 

zeros lie on the unit disk, those on the unit circle being simple. A polynomi 
called Schur if its zeros lie within the unit circle. Besides a( z) defined above 
define 

" k - i 

(2.3.4a) Mz):= I: /3;zk-i where f3; := I: !311; 
i=O j= -/ 

k " I 

(2.3.4b) y(z) := L Y;Zk-i where Y; := I: Y;1· 
i=O J=-i 

Furthermore, we need 

(2.3.5) 

(2.3.6a) 

(2.3.6b) 

b := max lf3ul, c := max lr1J w := max lw11 I; 
I • .J I .J I,/ 

{
llK(t, ~~Y·. y*) := K(.t, s, y) - ~(t, s, y* ), 

llE(h).- max )E;(h, t1) - E;(h, t1, 1)\. 
t~J~N 

/<;,k 

E(h):= max )E;(h; t1+ 1)\, 
i,;;,j~N · 
l~k 

T(h ):= max IL;( Y )I, 
i~N 

~(h):= max ly(tJ - yJ 
l<;,J~k· -1 . 

where y( t) is the exact solution of (1.1), resp. (1.2), and Y(t, s ), Yn(t) ar 
corresponding functions defined in (1.5), resp. (2.1.2). E( h) is the maximal 
arising in the approximation of the lag terms Yn( t) during the integration proce 
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to t = T; T( h) may be considered as the maximal local truncation error of the VLM 
formula (2.1.4) up tot= T, and 8(h) is the maximal starting error. 

2.3.1. Second-kind equations. We are now in a position to state a general conver­

gence theorem for VLM methods in the case of second-kind equations ( () = 1 ), which 
provides an estimate for the global error 

(2.3.7) e,, := y(tn) - Yn· 

THEOREM 2.3.2. Let the conditions for the existence of a unique solution y E C(/) of 
{ (1.l ), B = 1} be satisfied (see Appendix I). 

(a) If a(z) = a 0 zk, a 0 =I= 0, then there exists a constant C > 0, independent of h, 
such that for h sufficiently small 

le,,I ~ C[h8(h) + E(h) + T(h)], n = k*, ... ,N. 

(b) If a(z) is simple uon Neumann, if /3(z) = 0, and if !:..K satisfies the (uniform) 
Lipschitz condition 

IAK(t, s, y, y*) - !:..K(t*, s, y, y*)I ~Lit - t*l IY - y*j, 

for all ( t, s, y ), ( t, s, Y * ), ( t *, s, y ), ( t *, s, y *) E S X {I y I < oo}, where the Lipschitz 

constant Lis independent oft, t*, s, s*, y and y*, then there exists a constant C > 0, 
independent of h, such that for h sufficiently small 

ie,,I ~ Ch- 1 [h8(h) + AE(h) + T(h)], n = k*, ... ,N. o 
The proof of Theorem 2.3.2 is given in Appendix IV. 

Using Theorem 2.3.2 it is easy to derive the orders of convergence of the families 
introduced in Section 2.1.4. The results are given in the following 

COROLLARY 2.3.1. Let p be the order of the LM formula for ODEs defining the 

coefficients {a;, b;} employed in the ILM and (M)ML methods; let o(h) = (!)(hs), 

E(h) = (!)(hr) and !:..E(h) = (!)(hr+l) ash-> 0. If the functions g and K are suffi­

ciently smooth, then the order of convergence p is given by 

{

min{ s + 1, r} for the DQ method, 

min{ s, r, p, k} for the ILM method, 

p = min{ s + 1, r, p + 1} for the ML method, 

min{ s, r, p} for the MML method. D 

The convergence analysis of the DQ methods goes back to Kobayasi [10], Linz 

[12] and Noble [17). The (M)ML methods were proved to be convergent in 
Wolkenfelt [22). 

It is known (cf. [9], [22]) that VLM methods which have /3(z) = 0 are more stable 

than DQ methods if large Lipschitz constants for aK/ay are involved. The maximal 

attainable order of convergence of these VLM methods is expressed in the following 

COROLLARY 2.3.2. Let o(h) = fY(hs), !:..E(h) = (!)(hr+I) as h-> 0; let a(z) be 

simple van Neumann and let /3( z) = 0. Then the order of convergence p of the k-step 

VLM method {(2.1.4); (2.1.2)} satisfies 

{ 
min(s, r, k + 1) fork odd, 

p~ 
rnin( s, r, k + 2) for k even. D 

From this corollary it follows that the MML methods are of maximal attainable 

order of convergence if we choose the generating LM formula { p, a} to be optimal, 

that is, of order k + 1 when k is odd, and of order k + 2 when k is even. We note 
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that the restriction p ~kin the ILM methods is due to the use of a k-step forw,mJ 

2.32. Pirst-kmJ 

methods for \'1Jlterra 

o, ] in the generating matrix B (see ( 2.1.8) ). 

Now we shall convergence theorems for \l \I 

equations I() = We restrict our attention here ii' 

iinear e4uatuons. 1.e .. we assume in { l. l) that 

r:U.8 t.T.V(T))=K(t.T)y(T). 

We first give the following convergence theorem of Wolkenfelt [20] fr1r ( p. a J-reduG­

hk DQ methods. 

THEOREM 2.3.3. Let the condiiions for the existence a unique solution y( i) E f 1 

{ (1.1 ), £) = be satis.fied (see Appendix l). ll'here K (l, T. y) is of" thefi1rn1 m 

(2.3.8). Let A = 0. B = l. C = 0 in (2.1.7) ( DQ formula) and let the 1ffights 111 (2.l .2 

he by a ( p, a )-reducible quadrature formula of order r ~ l. where a is 

Veumann. Th..:n tht•re exists a constant C > 0. indep..:ndent ol h. h 

small 

~ C[o(h) + E(h)]. n = k,. .. ,;'1;'. D 

See 

THEOREM 2.3.4. Let the conditions for the exist enc.: of a unique solution y E C( J 

{ ( 1.1 ). fJ = 0} be satisfied. Let /3<:::) = 0 and let y(:::) be Schur. Then there ex1szs u 

constant C > 0. independent of h, such that for h sufficient(v small 

~ Ch 1 [ho(h) + .:..E(h) + T(h)]. n = k * ~ ... ~ 1V. D 

The proof of Theorem 2.3.4 is given in Appendix IV. 
Observe that this convergence result is identical to that obtained for \'L'.\1 

methods for .ll. fJ = l) with /3(::) = 0 {Theorem 2.3.2(b)). Now it is easv tu 

derive from Theorems 2.3.3 and 2.3.4 the orders of convergence of the DQ. ILM and 

M \1L methods for { (l .l l. {) = 0). The results are summarized in the following 

COROUARY 2.3.3. Let p be the order of the LM formula { p, a} employed in the D() 

lag term jimnula (2.l.2) and let ft he the order of the LM formula for OD Es emplu1ed 

m rhe MML (2.1.10) (with A= 0). Furthermore. let o(h) = @(h'l. E(h) 0~ 

t (11") and .:,. E !}1) = h" 1 J as h -> 0. If The jimctions g and K are su//icient!r 

smooth. then die order ol concergence p is given by 

p= 

lmin{s.p} 
,min{s.r./..:} 

\min{ s. r, ft) 

for rhe DQ method with a being simple uon Neumann. 

j(1r the I L"vf method with y being Schur. 

for the Al ML method with y being Schur. D 

Wolkenfelt [21] has also given a convergence theorem for MML methods for 

non!111ear equations {(1.1). 8 = O}. with the following restrictions on the codfi<.:ients 

/311 and Y, ,: /3(:::) = 0, Yoo * 0 and all other y, 1 vanish. 
2.4. Numerical Exp..:riments. In this section we present the results of numerical 

experiments in order to support and illustrate the convergence behavior of VLl\1 

methods for ( 1.1 ), as predicted by Corollaries 2.3.l and 2.3.3, by applying vari,iu~ 

DQ. ILM and (M)ML methods to a number of problems. In addition. for second-kind 

equations we illustrate the behavior of the various methods when the kernel 

K (t. T, y) has a large Lipschitz constant Vlith respect toy. 
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The required starting values for Y;· 0 ~ i < n1 + k, are taken from the exact 

solution y(t;) (so that s = oo in Corollaries 2.3.1 and 2.3.3), and values of the lag 

term Y,,( t) required in (2.1.4) for n > n 1 are computed with a Gregory quadrature 

rule in (2.1.2) of the proper order. The coefficients {a;, b;} in the ILM and (M)ML 

formulas are taken from Tables 2 and 3 of Appendix II. The values of r, p and k in 

Corollary 2.3.1 and r, p, P and kin Corollary 2.3.3 are chosen as small as is allowed 
by the theoretical order to be tested. 

In the tables of results, we present the number of correct significant digits at the 
endpoint T, i.e., the value of 

(2.4.1) sd(h):= -log 10 (iy(T) -yNl/[y(T)[), T = t,v = Nh. 

Moreover, we list the effective order of the method, viz., the value of 

(sd(h) - sd(2h))/log 10 2. 

This value should tend to the asymptotic order of convergence as h -? O and will tell 
us therefore 

(i) whether the asymptotic, theoretical order of the numerical scheme is correct, 
and 

(ii) how fast the asymptotic order is reached. 
2.4.1. Second-kind equations ((1.1) with()= 1). 

Example 2.4.1 (Garey [5], adapted). 

K(t, T, y) =-A· ln(l + t - T)y, 

g(t) = 1 - t + A.[Hl - t 2 )ln(l + 1) + ~1 2 - ~t], 

y(t)=l-t, [t 0 ,T]=[0,4]. 

For A = 4, Table 2.4.1 gives the results obtained with DQ, ILM and (M)ML 

methods of asymptotic order 5, where for the coefficients {a;, b;} employed in the 

ILM and ( M)ML methods we used the coefficients of the Adams-Moulton formula 

of the proper order. G, means that for the lag term we used a Gregory rule of order r 

and AM,; means that ajJth order Adams-Moulton formula was used. 

The example with A. = 4 shows that the correct asymptotic order p = 5 is already 

reached by all methods for not too small integration steps. For relatively large values 

of h the MML method shows the most accurate results. The ILM method shows an 

accuracy about 1-2 digits less than the other methods. because of larger error 

constants ( cf. Table 2.2.1 ). 

h DQ(G5 ) 

1/4 4.6 
> 4.6 

l/8 6.0 
> 5.0 

1/16 7.5 
> 5.0 

1/32 9.0 
> 5.0 

1/64 10.5 

TABLE 2.4.l 
Example 2.4.l with A. = 4 

ILM(G5 - AM 6 ) ML(Ci, - AM 4 ) 

3.4 4.3 
> 3.8 > 4.8 

4.5 5.7 
> 4.5 > 4.6 

5.9 7.1 
> 4.7 > 5.0 

7.3 8.6 
> 4.8 > 5.U 

8.8 Ill.I 

MML(Ci 5 - AM 5 ) 

6.1 
> 3.9 

7.3 
> 3.2 

8.2 
> 4.0 

9.4 
> 4.6 

HJ.8 
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TABLE 2.4.2 

Example 2.4.l with A = 100 ( * indicates instability) 

ILM ML MML 
h DQ(G5 ) (G5 - AM6 ) (G5 - BD5 ) (G5 - AM4 ) (G5 - BD4 ) (Gs - AMs) (Gs - BD5 ) 

1/4 -6.5 1.8 3.1 * * 
1/8 2.3 4.5 3.6 3.7 4.2 

* 
1/16 6.3 5.8 5.8 6.2 2.2 9.0 5.6 

TABLE 2.4.3 
Example 2.4.2 

h DQ(Gi ILM(G5 - BD5 ) ML(G5 - BD4 ) MML(G5 - BD5 ) 

1/2 •(2.5) 1.57 •(4.5) •(5.0) 
> 7.7 

1/4 •(2.25) 3.88 •(3.25) •(4.0) 
> 7.4 

1/8 •(3.375) 6.11 •(2.875) •(3.625) 
> 5.2 

1/16 •(4.6875) 7.68 •(3.5625) •(5.4375) 

The example with A = 100 shows that the ILM method is stable for "realistic" 
values of h (in view of the behavior of the exact solution, integration steps h = 1/4 
or h = 1 /8 should be small enough for representing the function y( t) = 1 - t ), 

whereas the other methods develop instabilities. Comparing the results obtained for 
A = 4 and A = 100 we see that the ILM method is insensitive to larger values of A. 
already for h ~ 1/8, whereas the other methods become insensitive only for much 
smaller values of h. D 

Example 2.4.2. As a further test of the behavior of VLM methods for stiff 
problems we have integrated the nonlinear Hammerstein-type equation defined by 

K(t, r, y) = -[l6(t - r) + 1] eY, 

g(t) = -15t + 17(e 1 - l), 
y(t) = t, [t 0 , T] = [0,8]. 

The nonlinear equations which emerge when we apply a VLM method to this 
problem, are solved with Newton's process. The Newton iteration is stopped as soon 
as IY~;+ 1> - y~ill ~ io-12(1 + IY~;+ 1>1), where y~i> is the ith Newton approximation 
toy,,, with the restriction that not more than 10 Newton iterations are allowed. Table 
2.4.3 presents the results. An "*( t )" indicates that at a point t the Newton iteration 
process had not yet converged after 10 steps, and in all these cases the numerical 
process clearly showed an unstable behavior. The results show the superiority of the 
ILM method for this stiff problem. In (8] more experiments are given with the ILM 
method, together with a comparison with a block-implicit Runge-Kutta method of 
de Hoog and Weiss. 
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TABLE 2.4.4 

Example 2.4.3 with e = io- 4 and e = 10- 6 ( * indicates instability) 

h DQ(G5 ) ILM(G5 - AM 6 ) ML(G5 - AM 4 ) MML(G5 - AM 5 l 
f = io- 4 f = 10- 6 f = 10- 4 f = 10- 6 I'= 10-• e = 10- 6 e = io- 4 e = 10-0 

1/4 .20 .02 .17 .02 54 6.6 
1/8 .37 .05 .34 .04 5.0 6.4 
1/16 .90 .09 .58 .08 4.8 6.3 

Example 2.4.3 (Weakly singular equations). Finally we show that VLM methods 
may be used for integrating weakly singular equations, a standard example of which 
is given by [19] 

C lt V(T) dr y(t)=l+2vr- · , 
0 rr=-; 0 ~ t ~ 4, 

with the exact solution y(t) = 1. We cannot directly apply a VLM method to this 
equation; however, by approximating the square root ~ by /t - T + e with e a 
small, positive parameter, the equation becomes nonsingular and in principle the 
VLM methods do apply. The numerical solution { y,,(e) }~=k* obtained is expected to 
present an accurate approximation if h and e are sufficiently small. 

In choosing an appropriate VLM method we should take into account that the 
kernel -y/)t - T + f has a derivative aK/oy = -1/)t - T + E which is large 
negative for t "" r. This strongly suggests choosing a VLM formula that does not use 
kernel values on or close to the line t = s, i.e., the matrix C = (Y;;) should have its 
nonzero entries preferably off the "diagonal" j = -i. Among the special families of 
VLM formulas discussed in Section 2.1.4, the ML and MML formulas (2.1.9) and 
(2.1.10) are formulas having just one nonzero entry Yo.a on the "diagonal" j = -i. It 
has already been observed in Section 2.1.2 that the ML methods may become 
unstable if large Lipschitz constants are involved. The ILM formulas only use Y,,'s 
on the "diagonal" and therefore they should not be expected to work on our 
"almost" singular equation. 

The above heuristic arguments are completely confirmed by the results presented 
in Table 2.4.4. Moreover, this experiment indicates that the MML methods are to be 
considered as promising methods for weakly singular equations of the type given 
here, and that it would be interesting to compare them with other methods for this 
type of integral equations (see, e.g., [19]). 

2.4.2. First-kind equations ((Ll) with()= 0). 
Example 2.4.4 (Gladwin [6]). 

K ( t, r, y) = cos( t - T) y, 

g(t) = -exp(t) - sin(t) + cos(t), 

y(t) = exp(t), [t 0 , T] = [0,4]. 

Table 2.4.5 gives the results obtained with DQ, ILM and MML methods of 
asymptotic order 4 and 5, where for the coefficients { a1, b,} in the ILM and MML 
methods we used the coefficients of the backward differentiation formulas of the 
proper order. BD k means that a k-step ( k th order) BD formula was used. Notice 
that these special ILM methods are identical to (2. l.4b ). 



456 P. J. VAN DER HOUWEN AND H.J. J. TE RIELE 

TABLE 2.4.5 
Example 2.4.4 

h DQ(Ci4 ) ILM(G4 -- BD4) MML(G4 - B04) I DQ(G5 ) ILM(G 5 BD5 ) MML(G, - BD;) 

1/10 -7.6 4.3 3.9 -11 5.6 4.9 
> 4.1 > 3.8 > 4.9 > 4.9 

1/:20 -21 5.5 5.1 -29 7.0 6.4 
> 4.0 > 3.9 > 5.0 > 5.0 

1/40 -50 6.7 6.3 -65 8.5 7.9 
> 4.0 > 4.0 > 5.2 > 5.0 

1/80 -109 7.9 7.5 -140 10.l 9.4 

For the ILM and the MML methods the results show that the correct asymptotic 
order is reached already for relatively large values of h. The apparent unstable 
hehavior of the DQ(G4 ) and DQ(G 5 ) methods is explained by the fact that the 
Gregory quadrature formulas of order ?o 3 are ( p, a )-quadrature formulas for which 
the a-polynomial is not simple von Neumann (cf. Corollary 2.3.3). Unlike its 
performance for second-kind equations, the ILM method is here more accurate than 
the MML method. 

3. VLM Methods for Volterra lntegro-Differential Equations. 
3.1. The General VLM Method. In analogy to the VLM formula (2.1.4) for 

Volterra integral equations we formally define the VLM formula for Volterra 
integro-differential equations (l.2) as follows: 

k 

(3.1.la) L ajy" 1 = h L Y1*f,,_,, 111 : = f ( t II ' Y11 ' z II ) ' 

i=O 1=0 

k k k /( 

L a 1 z 11 I+ :L L: f311 Y,I l(t"+,) = h L: :L Y1;K11 I ( {II l / ) ' 

(3.1.lh) 1=0 1=0 1=-k i=O 1=-k 

n = k*(l)N. 

where Y,,(I) is defined as in (2.l.2) and {a'(, y1* }~=o are the coefficients of some LM 
method for ODEs. These formulas (3.1.1), combined with (2.1.2), will be called a 
VLM method for integro-differential equations. Formula (3.1. lb) can be char­
acterized hy the parameter matrices A = ( a1 ), B = ( /311 ), C = ( y11 ). 

When we compare (3.l.1) with (2.1.4 ), it is clear that all methods defined for 
second-kind Volterra integral equations, hy specifying the matrices A, B and C in 
(2.1.7) and the quadrature weights w,, 1 in (2.1.2), can be extended to methods for 
V olterra integro-differential equations by specifying the coefficients {a'(, /31*} of 
some LM method for ODEs. In this way, we define DQ, ILM, ML and MML 
methods for (l.2), where the matrices A, B and Care specified in Section 2.1.4 for 
the families 1, 2, 3 and 4, respectively. For example, any DQ method for (1.2) is 
specified by A = I, B = -I, C = 0, which gives z11 = Y,,(t 11 ) for (3.1.1b). 

An alternative way to arrive at the VLM formulas (3.1.1) is obtained as follows. 
We first integrate (1.2) formally, which results in the system of Volterra integral 
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equations of the second kind 

(3.1.2) {
y ( () = }. ' ( t O) + r f ( T, )" (.T), Z ( T)) d T, 

lo 

z(t) = g(t) + r K(t, T, y(T)) dT. 
lo 

Next, we apply the VLM formula (2.1.4) to this system with parameter matrices 

(A*, B *, C *) and (A, B, C) for the respective components. i.e., 

A k /, A A 

L,a;y,, ;+ L L ,8,jY,,*_,(t,,+,)=h_L L Y,jf(t 11 _ 1 ,y,, ,.z11 _ 1 ), 

i=O i=O j=-k 1=0 j=-k 

" " k k " 

(3.1.l') 

L a,z,,_; + L L /3, 1Y,,_,(t,,+j) = h L L Y;1 K(t 11 +1• t,,_ ;• Yn ;), 
i=O i=O 1=-k i=O /=-" 

where Y,,*( t1 ) is an approximation to 

Y*(t,s):= y(t 0 )+ [f(T,y(T),z(T))dT 
lo 

at t = t1 , s = tw Here, however, both Y* and f do not depend on t so that, by 

putting ,8,* := L~=-k/3,j = 0 and writing y1* := 'L)=-kY,j. we have reduced (3.1.1') to 
(3.1.1). 

3.2. Consistency of VLM Formulas for Integro-Differentia! Equations. With the 

numerical schemes (3.1.1) we associate the linear difference-differential operators 

L;,: C 1(J) ~ Rand L 11 : Ci(S) ~ R, defined by 

(3.2.la) L;,[y]:= i[a;-r;*h:i]y(t"_;) 
1=0 

and 

(3.2.lb) LJY]:= ;t{a,Y(t11 _ 1 ,t11 _;)+
1
t.J,8,1 -y,1h:JY(t11 trt,, ,)}. 

wherey and Y are arbitrary functions from C 1(J) and Cj(S), respectively. Now we 

substitute the exact solution y(t) and z(t) of (1.2) into (3.2.1) and obtain ( cf. (2.2.2)) 

k 

L [a;y(t 11 _,)-y,*hf(t 11 1 ,y(t11 ;),z(t11 _;))] = L;,[y], 
i=O 

;~J { a,z(t,, ;) + 
1
t, [/3,1 Y,, Jr,,+J - y,1 hK 11 1 (!1141 )]} 

" k 
=L11 [Y]- L L /3Ij£n Jh;t 11 ,,) 

i=O /=-k 

= L,J Y] + @(hr) ash-> 0, 

where Y,, ( t . ) and [( ( t + ) are defined by ( 2.1.2) and (2.1.1) with Y11 rep laced 
i n+J n-1 n J • 

by y(t,,), and where r is the order of the quadrature error E 11 • This shows the 

connection of the operators (3.2.l) with the VLM formula (3.1.1). The quantities 

L;,[y] and L,,[Y], with y and Y corresponding to the exact solution of (l.2), are 
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called the local truncation errors of the VLM formulas (3.1.1). In analogy to Section 
2.2 we use the following 

Definition 3.2.l. The operators (3.2.1) and the associated VLM formulas (3.1.1) are 
said to be of order p* and p if for ally E Cp•+ 1(J) and for all YE CP 1 1(S), we 
have L*[y] = {!}(hp•+i) and Ln[Y] = (!)(hp+l) ash-> 0, with nonvanishing error 
constants. D 

Since L;, is of the same form as the linear operator L,, occurring in ODE theory 
(compare Lambert (11, p. 23]) the consistency conditions for Li, are also of the same 
form. (It should be remarked that in the derivation of the order conditions we 
expand y(t,,_i) and y'(t,,_i) as Taylor series about t,,, whereas Lambert expands 
about t,,_k.) Similarly, since L,, defined in (3.2.lb) is identical to the operator 
defined in (2.2.1), the order conditions for L,, are also known already. Therefore, the 
following theorem is immediate. 

THEOREM 3.2.1. The operators Li, and L,, and the associated VLM formulas (3.1.1) 
are of order p* and p, if cq = 0 for q = 0, 1, ... ,p* and cql = 0 for q = 0, 1, ... ,p, 
l = 0, 1, ... ,q, where 

and where Cq1 is defined in (2.2.3). D 

Evidently, p* equals the order of the LM method for ODEs with coefficients 
{ aj, Yt}. Furthermore, in the case of the DQ, ILM, ML and MML formulas, p is 
determined by the expressions as derived for the operator L,, for second-kind 
V olterra equations in Corollary 2.2.1. 

The values of the error constants CP. + 1 and CP + U• 0 ~ I ~ p + 1, follow easily 
from those given in Table 2.2.1 (for a number of popular methods for second-kind 
Volterra integral equations). 

3.3. Convergence. As we did for the first- and second-kind Volterra equations, we 
first consider the continuous problem to which the VLM method { (3.1.1); (2.1.2)} 
converges as h -> 0. We assume that the LM formulas in (3.1.1) are consistent and 
that A1 = a.'(l) - ka(l) * 0 (see Section 2.3). Then, for sufficiently smooth func­
tions g, Kand/, the VLM method converges to the equations 

(3_3 _1) y'(t) = f(t, y(t), z(t)), 

a ( 1 )[ z ( t) - Y( t, t)] + (a' ( 1) - k a ( 1)) h [ z' ( t) - Y1 ( t, t) - Y, ( t, t)] = 0 

ash -> 0 (see the proof of Theorem 2.3.1). Thus, if a(l) * 0 (DQ and ML method), 
then the VLM method is a direct discretization of (1.2). If a(l) = 0 (ILM and MML) 
(and a'(l) * 0 by assumption), then the linear method converges to the system 

y'(t) = f(t, y(t), z(t)), 
(3.3.2) 

z'(t) = K(t, t, y(t)) + g'(t) + r KJt, T, y( T)) dT, 
to 

that is, to the system (1.2) where the expression for z(t) is differentiated with respect 
tot. 
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Next, we present a general convergence theorem. In the proof it is convenient to 

use, in addition to the notation introduced in Section 2.3, the notations 

71 11 = z(t,,) - z,,, 

D.J,, := f(t,,, y(tn)• z(t,,)) - f(tn, Y11 , z,,), 

(3.3.3) T*(h):= ~a;IL)'[y]I, 

/.: 

O'.*(z):= L a.f'zk-i, 
i=O 

where z and y correspond to the exact solution. 

THEOREM 3.3.1. Let the conditions for the existence of a unique solution y E C 1(1) 

of (l.2) be satisfied (see Appendix I). Let O'.(z) and a*(z) be simple von Neumann. 

(a) If a(z) = a 0 zk, a 0 =f. 0, then there exists a constant C > 0, independent of h, 
such that for h sufficiently small, 

le,,!~ c[o(h) + ho*(h) + E(h) + T(h) + h-1T*(h)], n=k*, ... ,N. 

(b) If /3( z) = 0, then there exists a constant C > 0, independent of h, such that for h 
sufficiently small, 

le,,!~ c[o(h) + o*(h) + h- 16E(h) + h-1r(h) + h- 1T*(h)]. 

n=k*, ... ,N. D 

The proof of Theorem 3.3.1 is given in Appendix IV. 

Using this theorem, it is easy to derive the orders of convergence of the various 

examples of VLM methods for Volterra integro-differential equations, described in 
Section 3.1. The results are given in the following 

COROLLARY 3.3.l. Let p* and p be the orders of the VLM formula {a(. y/} 
employed in (3.1.la) and of the LM formula {a;, b;} employed in the (M)ML and 

ILM methods, respectively; let o(h) = @(h'), o*(h) = @(hs"), E(h) = @(h'), 6£(h) 

= @(h'+ 1) ash~ 0. Let the functions f, g and K be sufficiently smooth. Then, the 

order of convergence p of the VLM method { (3.1.1 ); (2.1.2)} is given by 

p= 

min(s, s* + 1, r, p*) 
min(s, s* + 1, r, p*, p + 1) 

. ( * * •) mms,s,r,p,p 

. ( * * - k) m1n s,s ,r,p ,p, 

for the DQ method, 

for the ML method, 

for the MML method, 

for the ILM method. D 

The convergence of the conventional DQ method has already been studied by 
Linz [13] and Mocarsky [15]. The convergence results for the (M)ML methods have 

already been given in Wolkenfelt [22]. 
3.4. Numerical Experiments. In order to illustrate the convergence behavior of 

VLM methods for (1.2), we have tested the DQ, ILM and (M)ML methods of orders 

2, 3 and 4. For the two ODE-LM formulas involved in (3.1.1) we choose the 

backward differentiation formulas. As in the experiments for (1.1), the lag term 

Yn(t) was evaluated with a Gregory quadrature rule of the proper order. 
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EXAMPLE 3.4.1 (Linz [13], Mocarsky [15], Makroglou [14]). 

f(t, y, z) = 1 - t · exp(-t 2 ) + y + 2z, y(O) = 0, 

K(t, T, y) = tTexp(-y 2 ), g(t) = 0, 

y(t) = t, [t 0 , T] = [0,2). 

Table 3.4.1 gives the results of our experiments. The ILM method is the less accurate 
one, the DQ and (M)ML methods exhibit a varying accuracy behavior. 

TABLE 3.4.1 
Example 3.4.1 

second-order methods (with {a[, y/} = BD2 in (3.1.la)) 

1/10 2.2 3.3 
> 2.0 > -2 

1/20 2.8 2.6 
> 2.0 > 1.3 

1/40 3.4 3.0 

third-order methods (with BD3 in (3.1.la)) 

h DQ(G3 ) ILM(G3 - BD3 ) 

1/10 3.6 2.4 
> 2.8 > 2.3 

1/20 4.5 3.1 
> 3.9 > 2.8 

1/40 5.4 3.9 

fourth-order methods (with BD4 in (3.1.la)) 

h DQ(G4 ) ILM(G4 - BD4 ) 

1/10 4.0 3.2 
> 3.7 > 4.5 

1/20 5.1 4.6 
> 3.9 > 6.2 

1/40 6.3 6.4 

2.2 
> 2.2 

2.8 
> 2.0 

3.5 

ML(G3 - BD2 ) 

2.9 
> 2.7 

3.7 
> 3.0 

4.6 

ML(G4 - BD3 ) 

3.6 
> 4.0 

4.8 
> 4.1 

6.1 

MML(G2 - BD2 ) 

1.8 
> 2.0 

2.4 
> 2.0 

3.0 

MML(G3 - BD3 l 

3.3 
> 4.7 

4.7 
> 4.1 

6.0 

3.6 
> 3.1 

4.6 
> 3.9 

5.7 
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