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On the Zeros of the Riemann Zeta Function 
in the Critical Strip. IV 

By J. van de Lune, H.J. J. te Riele and D. T. Winter 

Abstract. Very extensive computations are reported which extend and, partly, check previous 
computations concerning the location of the complex zeros of the Riemann zeta function. The 
results imply the truth of the Riemann hypothesis for the first 1,500,000,001 zeros of the form 
a + it in the critical strip with 0 < t < 545,439,823.215, i.e., all these zeros have real part 
a = 1/2. Moreover, all these zeros are simple. Various tables are given with statistical data 
concerning the numbers and first occurrences of Gram blocks of various types; the numbers 
of Gram intervals containing m zeros, form = O, l, 2, 3 and 4; and the numbers of exceptions 
to "Rosser's rule" of various types (including some formerly unobserved types). Graphs of the 
function Z( t) are given near five rarely occurring exceptions to Rosser's rule, near the first 
Gram block of length 9, near the clpsest observed pair of zeros of the Riemann zeta function, 
and near the largest (positive and negative) found values of Z(t) at Gram points. Finally, a 
number of references are given to various number-theoretical implications. 

1. Introduction. This paper is a continuation of three papers by Brent [l], Brent et 
al. [2]*, and van de Lune et al. [7]*. The computations reported there (up to 

g300,000,000 ) have been extended up to g1,5oo,ooo,ooo in order to show that the first 
1,500,000,001 zeros of Riemann's zeta function in the critical strip are simple and lie 
on the vertical with real part 1/2. This establishes the truth of the Riemann 
hypothesis in the rectangle {a+ it, 0 < a < 1, 0 < t < 545,439,823.215}. Moreover, 
parts of the computations reported on in [2] have been repeated in a slightly 
different manner (see below), so that it is now possible to present exact (rather than 

approximate) counts of the number of Gram blocks of various types and of the 
number of Gram intervals with various numbers of zeros, for the whole interval 

[go, g1,5oo,ooo,ooo). 

The FORTRAN/COMPASS program described in van de Lune et al. [6], was run 
on a CDC CYBER 175/750 computer to separate the zeros of Z(t) in the intervals 

[g300,ooo,ooo• g415,000,000 ) and [g1,445,000,000 , g1,500,000,000 ). A vectorized version ([9], [14]) 
of that program was run on a CYBER 205 vector computer to separate the zeros of 
Z(t) in the interval [g415,000,000 , g1,445,000,000 ). Finally, the program was run a little 
further beyond g1,5oo,ooo,ooo to yield 5 Gram blocks of lengths 1, 1, 2, 1 and 1 in 
[g1,500,000,000 , g1,500,000,006 ) which all satisfy Rosser's rule. Applying Theorem 3.2 of [l] 
we completed the proof of our claim that the first 1,500,000,001 complex zeros of the 
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Riemann zeta function have real part 1/2 (and that all these zeros are simple). The 
total CPU time used amounted to approximately 900 hours on the CYBER 175 /750 
and about 1000 hours on the CYBER 205. 

During the computations in the interval [g156,800,000 , g2oo,ooo,ooo) reported on in [2], 
the counts of the number of Gram blocks and of the number of Gram intervals with 
O, 1,... zeros were not exact, since small shifts were made in the argument 
of ZA(t) in case the value of ZA(t) in a Gram point gn was too small to yield 
the correct sign of Z(gn) with certainty. Since all subsequent computations were 
carried out without shifts, i.e., Z 8 (gn) was computed immediately in case ZA(gn) 
was too small, we have rerun and verified our computations in the interval 
[g156.x00.000 , g200,000,000 ) on the CYBER 205. The total amount of CYBER 205 CPU 
time needed for this check was about 21 hours. 

Moreover, with the aid of our CYBER 205 program we checked some of the 
computations reported on in [1] and [7], viz., those concerning the intervals 
[g1.000 , g5,000•000 ) and [g200,000•000 , g210,000,000 ). We found exact agreement with the 
corresponding results in [l] and [7]. The CPU time needed on the CYBER 205 was 
about 2800 seconds and 5 hours, respectively. 

2. Computation of Z( t) and Error Analysis. In principle, our method of computing 
Z (t) is exactly as described in [ 6] and Section 3 of [2]. In order to run our program 
on the CYBER 205, the most time-consuming part of our FORTRAN/COMPASS 
CYBER 175/750 program, i.e., the summation of 2:;;'= 1 k- 112cos[t · log(k) - O(t)] 
in ZA(t) (cf. [1], formula (2.6)), was vectorized by invoking so-called Q8-calls. 
Details are given in [9] and [14]. As a result, our CYBER 205 program ran about 7 
times as fast as the CYBER 175 /750 version. 

In [6] we have given a rigorous error analysis of our computation of Z( t) on the 
CYBER 175/750, for t in the interval (3.5 X 10**7, 3.72 X 10**8), covering the 
range of zero # 81,000,000 to zero # 1,000,000,000 of ns) in the critical strip. In 
Section 3 of [2], the resulting bounds for the error in the computed value Z(t) of 
Z ( t) are given for methods A and B. 

For the computations reported in the present paper, we have extended this error 
analysis to the interval (3.5 X 10**7, 5.6 X 10**8), in order to cover the range of 
zero # 81,000,000 to zero # 1,500,000,000, both for the CYBER 175/750 and the 
CYBER 205 (several spot checks of the CYBER 205 computations were carried out 
on the CYBER 175/750). For the CYBER 205 we took into account that the single­
and double-precision floating-point arithmetic works with 47- and 94-bit binary 
fractions, respectively. Since this machine works with truncated arithmetic, we took 
Es= 2**(-46) and Ev = 2**(-93) in our error analysis (cf., [6, p. 12]). This 
analysis is completely analogous to the one given in [6] and rather tedious. There­
fore, we omit the details. The dominant terms in the upper bounds for the errors are, 
in the case of method A, the error caused by the interpolation in the cosine table, 
and, in the case of method B, the inherent error caused by using the Riemann-Siegel 
formula with the first two terms of its asymptotic expansion. These two terms do not 
depend on the computer used. The other, nondominant, terms are quite small 
compared with the dominant terms. For both our CYBER 205 and our CYBER 
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175 /750 programs we found the following bounds for the error in the computed 
value Z(t) of Z(t): 

- {3X10**(-7)r114 for method A, I Z(t) - Z(t) I< 5 .5 X 10**( - 3)T- 5/ 4 for method B, 
for any t ( = 27TT) in the interval (3.5 x 10**7, 5.6 X 10**8). A safe upper bound 
for this error is 3 X 10**(- 5) for method A and 2.1 X 10**(-11) for method B. In 
our program we actually used the very conservative fixed bounds 10**( -4) and 
2.5 X 10**( - 7), respectively. Not a single Gram point was found for which method 
B could not determine the sign of Z(t). 

3. Statistics. Here we present, for the whole interval [g0 , g1,500,000,000 ), some 
statistics concerning Gram blocks, the number of zeros in Gram intervals and the 
exceptions to Rosser's rule (summarizing the statistics up to g300,ooo,ooo given in [l], 
[2] and [7]). As stated already in Section 1, the counts given here are exact, since no 
shifts were made when computing Z(t) in the Gram points. 

Table 1 gives the number of Gram blocks of length ~ 9 in the interval 
[g0 , g1,5oo,ooo,ooo) for strings of 10 **8 successive Gram intervals. The last line gives 
the totals for the whole interval. The average Gram block length is 1.2089. The 
number of Gram blocks of length 1 is slowly decreasing, whereas the number of 
Gram blocks of length ;;;. 2 is increasing. 

In Table 2 we list the number of Gram blocks of type (j, k ), 1 ~ j ~ 9, 
1 ~ k ~ j, in the interval [g0 , guoo.ooo,ooo), as far as they can be classified according 
to the definition given in (1, p. 1370]. The numbers in parentheses denote the 
percentages of the totals given in Table 1. We also specify the number of Gram 
blocks of lengths 2 and 3 which cannot be classified, viz., those of length 2 with 
"O O" and "2 2" zero-pattern, and those of length 3 with "O 1 O", "2 3 O" and 
"O 3 2" zero-pattern. These, very rare, Gram blocks occur in relation to excep-
tions to Rosser's rule (see below). 

TABLE 1 
Number of Gram blocks of given length k: 

l'(k, n) = l(k, n + 10**8) - J(k, n) 

n/10**8 k = l 2 3 4 5 6 7 8 9 
0 71004697 10493487 2169610 340360 25813 1436 54 0 0 1 69951462 10553967 2328243 431251 42822 2600 159 6 0 2 69601860 10569849 2375444 463716 51246 3223 234 5 0 3 69374447 10583331 2404468 484378 56775 3708 260 4 0 4 69216943 10583988 2426955 499662 61697 4156 300 6 0 5 69092437 10593934 2439977 511447 64960 4481 312 12 l 6 68982347 10593521 2455933 521450 69010 4895 352 16 0 7 68901963 10597074 2465035 529346 71551 5128 387 21 0 8 68827274 10598124 2474834 537063 73568 5532 357 23 1 9 68753961 10604699 2483174 542402 76147 5623 416 15 1 10 68700299 10601103 2491646 548805 77819 5859 426 13 0 11 68643888 10605270 2495792 554834 79666 6194 451 26 0 12 68592095 10607592 2502851 558808 81373 6446 445 35 0 13 68551250 10607492 2509106 562524 82815 6476 461 22 2 14 68509616 10609975 2513530 565833 84424 6788 497 22 l 

Totals 1036704539 158803406 36536598 765.1879 999686 72545 5111 226 6 % 83.55 12.80 2.94 0.62 0.08 0.01 0.00 
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TABLE 2 

Number of Gram blocks of type (J, k ), j = 1, 2, ... , 9, k = 1, 2, ... , j, 

in the interval [ g0 , g1,5oo.ooo.ooo) 

j k = l 2 3 4 5 6 7 8 9 

l 1036704539 

2 79405034 79395174 + 2973 " 0 l1J " - blocks 
( % ) (50) (50) + 225 " 2 2 " - blocks 

3 173311J591 1867470 17338450 + 82 " 0 l 0 " - blocks 
(%) (47) (5) (48) + 2 " 2 3 0 " - blocks 

+ 3 " 0 3 2 " - blocks 

4 3520937 306187 305141 3519614 
( % ) (46) (4) (4) (46) 

5 412874 69153 35262 69257 413140 
(%) (41) (7) (4) ( 7) (41) 

6 16505 14789 5097 5082 14556 16516 
(%) (23) (20) ( 7) (7) (20) (23) 

7 98 1559 743 305 718 1585 103 
( %) (2) (31) (15) (6) ( 14) (31) ( 2) 

8 l1J 20 78 18 10 75 25 0 

9 l1J 0 2 l 0 l 2 0 0 

The tendency of the so-called "missing two zeros" (cf., [2, Section 2]) in Gram 
blocks of lengths ~ 3 and ~ 6 to lie in one of the two outer Gram intervals of the 
Gram block is partly illustrated by Table 3. This table gives the number of Gram 
blocks of lengths 4, 5 and 6 in 3 strings of 10**8 Gram intervals, viz., [g0, g100,000,000 ), 

[g100.ooo,ooo• gsoo,ooo,000 ) and [g1,400,000,000 , g1,500,000,000 ). For Gram blocks of lengths 
~ 3 and ~ 6 the distribution of the various types seems to tend to a certain limit 

which seems to be fairly well reached in the third string. For Gram blocks of length 
~ 7, however, our numbers are probably still too small to supply any evidence for 

the existence of a limit distribution (although we are tempted to believe that such 
distributions exist for Gram blocks of all lengths). 

Table 4 (which partly summarizes previous such tables in [1] and [2]) gives the first 
occurrences of the various types of Gram blocks which have been found. Note the 
rather "late" first occurrence of type (8, 4) and (8, 5) Gram blocks and the absence 
of type (8, 1) and (8, 8) blocks and of blocks of length 9 of various types. 

Table 5 shows the number of Gram intervals which contain exactly 0, 1, ... zeros, 
for strings of 10**8 Gram intervals. In three cases, the index of the last Gram point 
of a string (and of the first Gram point of the next string) is not a multiple of 10**8 
since this index corresponds to a "bad" Gram point. In these cases, the string was 
extended up to the first "good" Gram point after the bad Gram point. As a partial 
check of the counts in this table the following relation is useful (this follows from a 
simple counting argument concerning the zeros in consecutive Gram intervals): if ij 
is the number of Gram intervals with j zeros, in a given string of Gram blocks 
[gn1, gn2) which contains n2 - nl zeros of Z(t), such that missing pairs of zeros 
connected with exceptions to Rosser's rule have "crossed" neither the Gram point 
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TABLE 3 

Number of Gram blocks of type (J, k ), j = 4, 5, 6, k = 1, 2, ... , j, 

in the intervals [ gnx 10 .. 8, g(n+l)xlO*•s), for n = 0, 7 and 14 

n total k = 1 2 3 4 5 6 

4 0 340360 152448 17793 17972 152147 
( % ) (45) ( 5) ( 5) (45) 

7 529346 243856 20724 20649 244117 
(%) (46) ( 4) ( 4) (46) 

14 565833 261995 21151 20879 261808 
( % ) (46) ( 4) ( 4) (46) 

5 0 25813 8549 3570 1579 3539 8576 
(%) (33) (14) (6) (14) ( 33) 

7 71551 29813 4779 2452 4698 29809 
(%) (42) ( 7) ( 3) ( 7) (42) 

14 84424 35934 4892 2651 4930 36017 
{ % ) (43) ( 6) ( 3) ( 6) (43) 

6 0 1436 93 473 157 129 518 66 
( % ) { 6) (33) ( 11) ( 9) ( 36) (5) 

7 5128 1166 1042 339 348 1006 1227 
( % ) { 23) (20) { 7) { 7) (20) (24) 

14 6788 1875 1121 415 400 1114 1863 
{ % ) (28) (17) (6) { 6) (16) { 27) 

TABLE 4 
First occurrences of Gram blocks of various types 

j k n k n 

2 1 133 7 1 258,779,892 
2 2 125 7 2 13,869,654 

7 3 17,121,221 
3 1 3,356 7 4 37,091,042 
3 2 2,144 7 5 20,641,464 
3 3 4,921 7 6 52,266,282 

7 7 195,610,937 
4 1 83,701 
4 2 39,889 8 2 112,154,948 
4 3 18,243 8 3 175,330,804 
4 4 67,433 8 4 717,574,239 

8 5 454,025,825 
5 1 1,833,652 8 6 145,659,810 
5 2 243,021 8 7 165,152,519 
5 3 601,944 
5 4 68,084 9 3 542 '964' 969 
5 5 455,256 9 4 1,331,284,715 

9 6 978,739,921 
6 1 20,046,223 9 7 818,033,831 
6 2 2,656,216 
6 3 4, 718, 714 
6 4 1,181,229 
6 5 2,842,089 
6 6 19,986,469 
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TABLE 5 

Number of Gram intervals in [ g"1 , g,, 2 ) containing exactly m zeros 

nl n2 rn = 0 m = 1 m = 2 m = 3 m = 4 

0 111l0000000 13197331 73771910 12864188 166570 1 
100000000 200000000 13534327 73106626 13183768 175278 1 
200000000 300000000 13641172 72895112 13286261 177454 1 
300000000 400000000 13711578 72755501 13354267 178651 3 
400000000 500000001 13756913 72666325 13396614 180148 1 
500000001 600000000 13795033 72589842 13435215 179909 0 
600000000 700000000 13826622 72528206 13463727 181440 5 
700000000 800000000 13849738 72481 722 13487344 181194 2 
800000000 900000000 13871424 72439079 13507575 181917 5 
900000000 111l00000003 13894145 72393385 13530805 181664 4 

1000000003 1100000001 13908465 72365865 13542874 182791 3 
1100000001 1200000000 13924978 72332789 13559487 182744 1 
1200000000 1300000000 13940406 72302046 13574692 182854 2 
1300000000 1400000000 13952735 72278368 13585060 183836 1 
1400000000 1500000000 13964556 72254377 13597581 183483 3 

0 1500000000 206769423 1089161153 201369458 2699933 33 
% 13.78 72.61 13. 42 0.18 

g,,1 nor g,, 2 , then we have i 0 =IF<> 2 j · i1. Note that the number of Gram intervals 
with precisely one zero is slowly (and monotonically) decreasing, whereas the 
number of Gram intervals with 0, 2, 3 and 4 zeros is increasing. 

We have found 3055 exceptions to Rosser's rule (2973 of length 2 and 82 of length 
3), including some formerly unknown types. Table 6 surveys the various types of 
exceptions which have been found so far (note that a length 2, type 10 exception has 
been defined, but not yet found). For all 3055 exceptions, the missing two zeros were 
located either in the preceding or in the succeeding Gram block (which always had 
length ~ 3). Our main separation program did not search for the missing two zeros 
in adjacent Gram blocks: this was done afterwards with an interactive program. 
Future investigators may find it useful to implement this search in their main 
separation program. The simplest case where this would not be successful is given by 
the zero-pattern "O 0 1 3" (or "3 1 0 O"), i.e., a Gram block of length 2 without any 
zeros followed (or preceded) by two Gram blocks of length 1, the nearest containing 
1 and the other 3 zeros. We do not have the slightest idea where this phenomenon 
might possibly occur for the first time. 

Table 7 gives the frequencies of the exceptions to Rosser's rule in strings of 10**8 
successive Gram intervals. Note the gradual, although not monotonic, increase of the 
number of exceptions of length 2 of types 1, 2, 5 and 6. For all 3055 exceptions, we 
have computed the local extreme values of S(t) ( cf., [1, p. 1370]) near these 
exceptions. 

Table 8 lists those exceptions for which the corresponding local extreme values 
exceed 2.2 for length 2, and 2.1 for length 3 exceptions. The most extreme values in 
this table are marked by an asterisk. It should be noted that, by a different method, 
Karkoschka and Werner [3] have found 10 of the 21 exceptions to Rosser's rule in 
the interval [g1,ooo.ooo.ooo• g1,1oo,ooo,ooo) for which ISextrl > 2.1 (including those three 
for which !Sextrl > 2.2). 

In Table 9 we give frequency counts of those exceptions for which the ISextrl-values 
lie beyond 2, in intervals of length 0.05, for three groups of 1000 successive 
exceptions. There is a tendency of the extreme values to increase, albeit very slowly. 
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TABLE 6 
Various types of exceptions to Rosser' s rule 

and their frequencies in [g0 , g1,soo,ooo,ooo) 

g 

3 

4 

2 

2 

4 

Gram block 
of length 2 
with " 0 0 " 
zero-pattern 

g 
n n+l 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

g 
n+2 

Gram block 

3 

4 

2 

2 

4 

of length 3 with 

g 
n+3 

0 

2 

3 

1 

g 
n+4 

0 

0 

LENGTH = 3 "0 1 0" zero-pattern 

Notes 

g 
n-2 

0 

g 
n-1 

3 

4 

B for n 
n 

g 
n 

0 
0 
0 
0 

g g g g 
n+l n+2 n+3 n+4 

1 0 3 
1 0 
1 0 4 
1 0 

1,368,002,233 
750,375,860 1,209,834,868 

1,257,209,100 

673 

g type freq. 
n+5 (note) 

1 1340 
2 1375 
3 15 
4 11 
5 114 
6 111 
7 (1) 2 
8 (2) 3 
9 ( 3) 2 

10 0 

g type freq. 
n+S (note) 

1 31 
2 46 
3 (4) 1 
4 ( 5) 4 

( 1) 
( 2) 
( 3) 
( 4) 
( 5) 

1,070,232,754 
526,196,236 
983,377,342 
744,719,566 
368,714,780 437,953,501 958,241,934 1,003,780,082 

In Figures 1-5 we present graphs of the function Z(t) near the first exceptions to 
Rosser's rule of length 2, types 7, 8 and 9, and length 3, types 3 and 4, respectively. 
The number of zeros in Gram intervals is indicated in parentheses. The scale of the 
graphs does not allow the reader to "see" all zeros, but sufficient magnification of 
the graphs (as in [7]) would resolve these zeros without any difficulties. The local 
extreme values of S(t) near these exceptions are - 2.033411, 2.092910, - 2.060040, 
- 2.012663 and 2.012380, respectively. 

Figure 6 shows B542,964,969 , the first Gram block of length 9 (which is of type 
(9, 3)). 

Figure 7 presents a graph of Z( t) in the Gram block B 1,048,449,112 of length 2 and 
of type (2, 1). This Gram block contains the closest pair of zeros observed by us. 
Comparing their distance with the quantity 2?T/!og(tn) which is a natural measure 
for the distance of two consecutive zeros tn and tn+i of Z(t), we have 

(tn+l - tn)log(tn)/2'77 = 0.00034. 
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TABLE 7 
Number of exceptions to Rosser' s rule in the intervals 

[gn, gn+lOO,ooo,ooo) for n = 0(100,000,000)1,400,000,000 

<---------- LENGTH 2 ----------------> <-- LENGTH 3-> 
TYPE TYPE 

n/10**8 1 2 3 4 5 6 7 8 9 10 l 2 3 4 

0 15 9 1 0 0 0 0 0 0 0 0 0 0 0 
1 37 38 1 0 1 2 0 0 0 0 0 0 0 0 
2 52 68 0 1 3 2 0 0 0 0 2 1 0 0 
3 53 77 2 0 3 2 0 0 0 0 3 2 0 1 
4 79 78 0 0 5 3 0 0 0 0 l 0 0 l 
5 94 71 0 0 7 5 0 l 0 0 2 5 0 0 
6 82 100 4 l 8 12 0 0 0 0 l 3 0 0 
7 104 98 1 0 6 7 0 l 0 0 2 2 1 0 
8 98 108 1 4 7 7 0 0 0 0 3 4 0 0 
9 107 115 1 1 11 13 0 0 1 0 2 4 0 l 

10 121 100 1 l 11 8 l 0 0 0 5 2 0 1 
11 112 132 0 1 15 7 0 0 0 0 2 8 0 0 
12 130 135 1 0 12 13 0 l 1 0 3 l 0 0 
13 128 123 0 1 17 14 1 0 0 0 2 8 0 0 
14 128 123 2 l 8 16 0 0 0 0 3 6 0 0 

Totals 1340 1375 15 11 114 111 2 3 2 0 31 46 1 4 

TABLE 8 
Exceptions to Rosser 's rule for which the absolute local 

extremevalueofS(t) exceeds 2.2 (length 2) resp. 2.1(length3) 

Notation: n (type) extreme value of S(t) close to B 
' n where n is the index of the Gram block B containing no zeros 

n 

LENGTH = 2 342,331,983 (2) 2.252286 
566,415,147 ( l) -2.207335 

1,032,818,120 ( l) -2.219390 
1,063,458,444 ( l) -2.206212 
1,081,300,140 (1) -2.290363 * 
1,126,600,767 ( 2) 2.218140 
1,140,009,253 (1) -2.206885 
1,257,893,676 ( l) -2.265578 
1,268,572,909 ( 2) 2.207575 
1,316,842,760 (2) 2.216533 
1,331,951,563 ( l) -2.208338 
1,333,195,692 ( 2) 2.313651 * 
1,353,464,414 ( 1) -2.208858 
1,372,703,317 ( l) -2.244361 
1,389,937,190 (2) 2.203209 
1,423,302,021 ( 5) -2. 204753 
1,430,028,952 ( 2) 2. 200009 
1,440,874,660 ( l) -2.202507 
1,496,982,189 ( l) -2.207073 

LENGTH 3 1,089,751,985 ( l) -2.122474 
1,339,212,674 (2) 2 .106224 
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TABLE 9 
Distribution of absolute local extreme values of S ( t), beyond 2, 

in intervals [ Sl, S2) of length 0 .05 

exception Sl 2.00 2.05 2.10 2.15 2.20 2.25 2.30 numbers S2 2.05 2.10 2.15 2.20 2.25 2. 30 2.35 

l - 1000 728 193 67 10 1 1 0 1001 - 2000 681 228 66 21 3 l 0 2001 - 3000 673 215 83 17 10 l 1 
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The corresponding value for the two close zeros found by Brent (1, p. 1371] is about 
0.0014. 

Our program kept track of large values of Z ( t) in Gram points. The largest 
positive and negative values found are: Z(g1,21 i.024,724 ) = 116.88 and Z(gususo,789 ) 

2: -116.147. Figures 8 and 9 show the graphs of Z(t) near these extrema. Figure 8 
shows a Gram block of length 4 with "2 1 1 O" zero-pattern followed by a Gram 
block of length 3 with "O 1 2" zero-pattern. The large value of Z lies in the common 
point of the two Gram blocks. Note that this graph shows two zeros which have a 
distance of approximately 3.85 times the current length of a Gram interval (which is, 
locally, almost constant). Figure 9 shows a Gram block of length 2 with "O O" 
zero-pattern (this is an exception to Rosser's rule of length 2, type 2; the missing two 
zeros are located in the Gram interval preceding this block) followed by a Gram 
block of length 4 with "O 1 1 2" zero-pattern. Here, the two zeros before and after 
the extreme value of Z have a distance of approximately 3.65 times the current 
length of a Gram interval. 

z ( g x l 
i 

26 

-4 

( 0 ) ( 0 ) ( 2 ) 

2 

FIGURE 1 

( 3 ) ( 0 ) 

3 4 5 

-+ x - 1070232754 

B 1,070 ,232 ,754 , the first exception to Rosser 's rule of length 2, type 7 
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z ( g x ) 
i 

35 

-3 
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( 0 ) ( 3 ) ( 2 ) ( 0 ) ( 0 ) 

2 3 4 5 

--+ x - 526196233 

FIGURE 2 
B526 ,196,236 , the first exception to Rosser 's rule of length 2, type 8 

z [ g x ) 
i 

1 0 

-5 

( 0 ) ( O I ( 4 ) 

2 

FIGURE 3 

(I) ( 0 ) 

3 5 

--+ x - 983377342 

Bn3 ,377 ,342 , the first exception to Rosser' s rule of length 2, type 9 
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( 0 ) (I) ( 0 ) ('I 

2 3 4 
-6 

4 x - 744719566 

FIGURE 4 
B744 ,719 ,566 , the first exception to Rosser 's rule of length 3, zvpe 3 

z ~ g x l 
1 0 

( 0 ) ( 4) 

2 
( 0 ) 

3 
(I) 

4 
I O J 

5 

-18 

4 x - 368714778 

FIGURE 5 
B368 ,714 ,780 , the first exception to Rosser' s rule of length 3, type 4 
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( 0 ) ( I ) ( 3 ) 

2 3 9 

__. x - 542964969 

FIGURE 6 
B542 ,964 ,969 , the first Gram block of length 9 (type ( 9, 3)) 

Distance between zeros < 0.00011 
Minimum of Z ( t) inbetween zeros: 

Z(gr.048,449,11288896415) = -0.0000002218 ... 

( 2 ) 

FIGURE 7 

( 0 ) 

2 
__. x - 1048449112 

B1,048 ,449 ,112 , the Gram block (of length 2, type (2,1)) 
containing the closest observed pair of zeros 
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(I) 
( I ) ( 0 ) ( 0 ) ( I ( 2 ) 

2 3 4 5 6 7 
----+ x - 1211024720 

FIGURE 8 

Z( t) near its largest positive value found 

(i.e., in the Gram point g1,211,024,124) 

4-l-~~~-L..~-(-D-)~-l-~(-0-)~-l-~~,<:::_-l-_.:=(--I )~=0-~-(-2-)---=I 

-117 

2 3 5 6 

----+ x - 1381150787 

FIGURE 9 

Z( t) near its largest negative value found 

(i.e., in the Gram point g1,3s1,1so,1s9) 
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4. Discussion. Our statistical material suggests that the zeros of Z(t) are distrib­

uted among the Gram intervals according to some hitherto unknown probabilistic 

law. E.g., the counts of the Gram blocks of lengths 3, 4, 5 and 6 of various types 

seem to tend to a certain (discrete) convex distribution ( cf. the percentages in Tables 

2 and 3) which depends on the length of the Gram block. It would be interesting to 

have a probabilistic model which could explain or at least support this phenomenon. 

Several results in the literature (cf., [4], [5], [8], [10], [11], [12], [13]) have been 

derived from the existence of a number A, say, for which all complex zeros a + it of 

?;'(s) with ltl <A have real part 1/2. Since our computations have increased this 

bound considerably, it might be worthwhile to trace the consequences of this new 

bound. We have not pursued this. 
History has shown that proving the truth of the Riemann hypothesis is an 

extremely delicate task. Nevertheless, we hope that our computational results may 

stimulate interest and efforts which might lead to a better understanding of the 

Riemann hypothesis and of the distribution of the complex zeros of the Riemann 

zeta function. 
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