@ Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Factoring integers with large prime variations of the quadratic
sieve

H. Boender and H.J.J. te Riele
Department of Numerical Mathematics

NM-R9513 1995

https://core.ac.uk/display/301661267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report NM-R9513
ISSN 0169-0388

CWwiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Factoring Integers with Large Prime Variations of the Quadratic Sieve

Henk Boender and Herman J.J. te Riele

cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
E-mail: henkb@cwi.nl, herman@cwi.nl

Abstract

We present the results of many factorization runs with the single and double large prime variations (PMPQS,
and PPMPQS, respectively) of the quadratic sieve factorization method on SGI workstations, and on a
Cray C90 vectorcomputer. Experiments with 71—, 87—, and 99—-digit numbers show that for our Cray C90
implementations PPMPQS beats PMPQS for numbers of more than 80 digits, and this cross—over point goes
down with the amount of available central memory.

For PMPQS a known theoretical formula is worked out and tested that helps to predict the total running
time on the basis of a short test run. The accuracy of the prediction is within 10% of the actual running
time. For PPMPQS such a prediction formula is not known and the determination of an optimal choice of
the parameters for a given number would require many full runs with that given number, and the use of
an inadmissible amount of CPU-time. In order yet to provide measurements that can help to determine a
good choice of the parameters in PPMPQS, we have factored INany numbers in the 66 — 88 decimal digits
range, where each number was run once with a specific choice of the parameters. In addition, an experimental
prediction formula is given that has a restricted scope in the sense that it only applies to numbers of a given
size, for a fixed choice of the parameters of PPMPQS. So such a formula may be useful if one wishes to

factor many different large numbers of about the same size with PPMPQS.

AMS Subject Classtfication (1991): 11A51, 11Y05
CR Subject Classification (1991): F.21
Keywords & Phrases: Factorization, Multiple Polynomial Quadratic Sieve, Vector supercomputer,

Cluster of workstations

1. INTRODUCTION
Let n be an odd positive integer to be factored and suppose that n is not a prime
power. If we can find two integers X and Y such that

X?=Y? mod n, (1.1)
then the greatest common divisor of X —Y and n is a non—trivial factor of nif X # +Y

(mod n). If X and Y are randomly chosen subject to (1.1), then this yields a proper
factor of n in at least 50% of the tries. This principle is the basis for the best known

1. Introduction 2

general factorization methods, namely, the multi-polynomial quadratic sieve (MPQS

[Bre89, Pom85, PST88, Sil87, RLW89]) and the number field sieve (NFS [LL93]).

In this paper we discuss and compare the single large prime variation (PMPQS) and
the double large prime variation (PPMPQS) of MPQS, and we factor many numbers
in the 66-88 decimal digits range, mainly with PPMPQS, both on SGI workstations,

and on a Cray C90 vectorcomputer.

PPMPAQS is known to be faster than PMPQS “by approximately a factor of 2.5 for
sufficiently large n” [LM94], but the cross—over point depends heavily on the choice of
the parameters in the two methods, on the computer, on the available memory, and
on the implementation. It is stated further in [LM94] that PPMPQS was found to be
faster than PMPQS for numbers of at least 75 decimal digits, and that the speed—up
factor of 2.5 was obtained for numbers of more than 90 digits. As a comparison, a
106-digit number was factored with PMPQS in about 140 mips years, and a 107-
digit number with PPMPQS in about 60 mips years, both with a factor base size of
65,500. A 116-digit number was factored with PPMPQS in about 400 mips years,
with a factor base size of 120,000. No actual results for smaller numbers were given.
In Thomas Denny’s Master Thesis [Den93] various experiments with PPMPQS are
reported for numbers in the 75 — 95 decimal digits range. From these experiments it
is not clear where the cross—over point for Denny’s implementation lies. The largest
numbers presently factored with PPMPQS are a 120-digit number done in about 825
mips years [DDLM94], and the 129—-digit RSA challenge described by Martin Gardner,
done in about 5000 mips years with a factor base size of 524,339 [AGLL).

A theoretical and practical problem with PPMPQS is the determination of the op-
timal parameters for a number of a given size. Since it only pays to use PPMPQS for
rather large numbers, and since it is difficult to accurately predict the total running
time of PPMPQS on the basis of a short test run (as contrasted with PMPQS), the
precise effect of one specific choice of the parameters can only be measured accurately
by carrying out the complete sieve part of the job. So in order to find the optimal
parameter choice for a given number, that would minimize the CPU-time, one would
have to repeat the complete sieve job for several (10, say) different choices of the pa-
rameters. Of course, this does not make much sense since one sieve job will do to factor
the number, so we decided to adopt the strategy to factor as many as possible different
numbers in a not too wide decimal digits range, thus providing extensive experience
with PPMPQS for many different numbers on the one hand, and contributing to a table
of unfactored numbers [BR92] on the other hand. The price to pay for this strategy is
that we can only give an indication of the optimal parameter choice for PPMPQS for
numbers in the 65 — 90 decimal digits range.

We have implemented PPMPQS on an SGI workstation, and on a Cray vector-
computer. Some comparative experiments with PMPQS and PPMPQS on a Cray C90
indicated that for our implementation on that machine the cross—over point lies around
numbers having 80 — 85 decimal digits. For several different choices of the parameters

2. Basic Idea 3

in PPMPQS, we have factored eight numbers in the 66 — 83 digit range on an SGI
workstation, and more than 70 numbers in the 67 — 88 digit range on a Cray C90
vectorcomputer, as a contribution to the table [BR92]. Most of these numbers were
already tried before with the elliptic curve method (ECM), but without success.

In Section 2 Dixon’s algorithm is discussed. MPQS is described in Section 3. In
Section 4 we treat the efficient generation of the polynomials in MPQS.

In Section 5 the single large prime variation of MPQS (PMPQS) is described. A
known theoretical formula is worked out that helps to predict the total sieve time on
the basis of a short test run. In this test run (of a few minutes CPU-time, say) the
speed is determined by which so—called complete and partial relations are generated
during the sieve step of the algorithm; this speed is approximately constant during the
whole sieve step. The accuracy of the prediction formula is within 10% of the actual
sieve time. In Section 6 the double large prime variation of MPQS is described, and
an experimental prediction formula is given that has a restricted scope in the sense
that it only applies to numbers of roughly the same size, and for a fixed choice of the
parameters of the algorithm. In addition, for one particular number of 80 decimal digits,
we have determined the optimal choice of one (of the four) parameters in PPMPQS as
an illustration of the fact that this optimum is attained for a rather wide range of this
parameter. Section 7 covers implementation aspects and discusses our experiments,
including a comparison of our PMPQS— and PPMPQS—implementations for 71—, 87,
and 99-digit numbers. An Appendix gives tables of the numbers we have factored.

2. Basic IDEA

The algorithm described in this section is due to Dixon who based it on the continued
fraction method of Morrison and Brillhart [MB75]. It is not efficient in practice com-
pared to almost any other method, but it shows clearly the idea behind finding X and
Y. So we mention it mainly for didactical reasons.

For z € Z, |z| > /n, define

2

g(z) := z* mod n.

(If we write \/n, we always mean the positive square root of n.) Suppose that we have
a finite subset J C Z such that [[,c7g(z) is a square. Then we can take

X:\/@,Y:gm.

A problem is how to determine J.

Choose a positive integer B;, let 7 = m(B;) be the number of primes < B, and
{p1,P2,---,Pr} be the set of primes < B;. Suppose that we have a set T of t > 7
numbers g(z) only composed of primes < By, i.e.,

3. The Multi-Polynomial Quadratic Sieve 4

g(e) = p - p e pir @),

where e;(z) is the exponent of p; in g(z). Then

1 o(z) = [T,
=1

zed

This is a square if and only if

Y e(z)=0mod2 (1=1,2,...,m). (2.2)
zeJ
Since |T'| =t > =, there exists a non—trivial solution of the linear system (2.2) of

equations over GF(2). A solution can be found using Gaussian elimination. This
yields at least ¢ — 7 useful subsets J.

3. THE MULTI-POLYNOMIAL QUADRATIC SIEVE

Dixon’s algorithm does not tell us how to find efficiently the set 7. Building on previous
work of Kraitchik [Kra29|, Lehmer and Powers [LP31], Morrison and Brillhart [MB75],
and Schroeppel, C. Pomerance [Pom82] introduced the quadratic sieve algorithm. This
works with the quadratic polynomial g(z) = (z + |/r])* — n, where z runs over the
integers in (—n¢,n¢), so that g(z) = O(n'/2*<). With this g(z) the set T may be built
up, where some of the numbers g(z) can be factored completely by a cheap sieve process
because g(z) is a polynomial (this is much more efficient than trial division or any other
factoring method). We could also use a sieve process in Dixon’s algorithm if we choose
random numbers z in an arithmetic progression like e.g. z,z 4+ 1,z 4 2, ... However, in
practice this single polynomial g(z) (or an arithmetic progression in Dixon’s algorithm)
does not give rise to a sufficiently large set 7' (with ¢ > 7 elements) in a reasonable
amount of time. The reason for this is that the interval (—n®,n®) is large when n is
large and since g(z) = O(n'/?*¢) (which is large), many numbers g(z) are not likely
to factor over a set of small primes. P.L. Montgomery found an efficient way to use
several polynomials (thus introducing a simple way to run the algorithm in parallel).
The numbers z can be taken from much smaller intervals rather than from one single
very large interval. The average polynomial values then are smaller than the average
value of g and are thus more likely to factor over small primes than the g(z)-values.
If all the numbers in a small interval have been considered, then we can pass to a next
polynomial and try again. We describe here the resulting multi—polynomial quadratic
steve method. (We remark that Davis and Holdridge [DH83|] had a multi-polynomial
version before Montgomery came up with his idea of how to choose the polynomials.
In fact, Montgomery’s method is based on that of Davis and Holdridge.)

Suppose that we have integer numbers z, U(z), V(z), and W(z) such that
U?*(z) = V*(z)W(z) mod n for all integers z € Z. (3.3)
If J C Z is a finite subset such that [[,c; W(z) is a square, then we can take

3. The Multi-Polynomial Quadratic Sieve 5

X = I_IJV(m) /l_IJW(:c),Y: l_IJU(m)

In practice we choose

Uz) = a’z + b,
V(z) = a,
W(z) = a’z? + 2bz + c,

with |z| < M (where M is a parameter we choose beforehand) and where «, b and ¢
are integers satisfying the following conditions [Bre89, p. 117]:

a®> ~ V2n/M,
¥ —n = dc 3.5

6] < d*/2.

~~
w
~
N’

In the next section we describe how a, b and ¢ are to be calculated.

W (z) plays the role of g(z) in Dixon’s algorithm. In order to determine the subset
J, we choose an upper bound B; for the primes. We want to have many W (z)—values
that consist of primes < B;. However, only roughly half of the primes below B; can
occur as a prime divisor of W(z). Namely, if a prime p divides W(z), then p | ¢*W (z)
and thus p | (a*z + b)> — n which means that n is a quadratic residue modulo p. This
leads to the definition of the factor base F:

F = {prime powers ¢ = p* < B | (2)=1}.

(Of course, a prime can divide W(z) more than once, so we also have to account for
prime powers.) Note that F is independent of the choices of a, b and ¢, so we can use
the same factor base for every proper choice of a, b and c.

Since W (z) is more likely to be divisible by small primes than by large primes, it is
advantageous that the factor base contains many small primes. We can construct such
a factor base to multiply the number n to be factored by a suitable small number, the
so—called multiplier, and factor the product rather than n [PST88, p. 391].

For a given g € F the values of z for which ¢ divides W(z) can be found as follows.
Compute the solution t = ¢, of the congruence equation

t?=nmodgq, 0 <t<gq/2

(see [Rie85, pp. 212 and 287-288]). This has to be done only once during the algorithm.
Now, if ¢ | W(zq), then g | (a*zo + b)> — n and thus

zo = a *(4+t, — b) mod q, (3.7)

4. Efficient Calculation of The Polynomials 6

provided that ged(a,q) = 1. This is guaranteed by the choice of a (see Section 4). For
each proper choice of & we compute a=2 mod g for all ¢ € F. In the next section we
describe how these computations can be done. Furthermore, since W(z) is a quadratic
polynomial, g | W(zo + lg), | € Z. So we can calculate efficiently the places where an
element of F divides the W — —values. This idea originated from Schroeppel.

Define the report threshold RT as the average of log |W(z)| on the interval
[—M, M|, which is approximately log(%m). Initialize a sieve array SI(—M, M)
to zero and sieve with each ¢ = p* € F,i.e., add log p to SI(zo+ lq) for all [€ Z such
that zo + lq is in the interval [— M, M]. For those numbers = for which SI(z) > RT,
W(z) is a good candidate for fully factoring over the factor base. In general, the time
spent on sieving takes more than 85% of the total computing time.

Since sieving with small primes is expensive, it is customary not to sieve with the
primes and prime powers < QTHRES, where QT HRES is some suitably chosen
threshold value. In order not to loose W(z)-values divisible by such small primes,
the report threshold RT will be lowered by the amount 3 xcormrrslogp. After the
sieve step and the selection of those z for which SI(z) > RT, the prime factors of the
corresponding W(z) are found by comparing, for all ¢ € F, z with the two values of
2o in (3.7) (which are computed and stored after the factor base has been computed).
In this way, W (z)—values divisible by one or more of the small primes by which we
have “forgotten” to sieve, are not lost. If QT HRES is suitably chosen, this can save
a considerable amount of sieve time. This refinement of MPQS is known as the small
prime variation.

4. EFFICIENT CALCULATION OF THE POLYNOMIALS
Choose integers r and k such that 1 < k < r (typical choices are e.g. » = 30 and
k = 3). Generate primes g1, 9g2,..., g, the so—called g—primes, such that

() g~ (P,
() (2)=1
(i) god(givq) = 1

for: =1,2,...,r and for all ¢ € F. Let a be the product of & g—primes:
A= Giy " Giz """ Gigs

with 1 <4y < iy < --- <1 < r. Because of (i), this a satisfies condition (3.4).

Let b; be a solution of the congruence equation

t* = n mod g7,

5. The Large Prime Variation of MPQS 7

(1 =1,2,...,7). Solve the system of congruence equations (for a specific choice of the
signs)
z = b, mod 91'21
r = +b;, mod 91'22
: (4.8)
r = +b;, mod gfk

by means of the Chinese Remainder Theorem. Let b be the solution of this system
of equations. Then it follows that 4> = n mod a® so that condition (3.5) holds with
c=(b* —n)/a®. If b > a*®/2, then we replace b by b — a* in order to satisfy condition
(3.6). Since there are 2"~ possible combinations of signs in (4.8), the number of

polynomials that can be calculated with one set of » g—primes and a fixed k is 2*~1 (Z)

If a new a has to be chosen then new sieve numbers zo subject to (3.7) have to be
computed. Since ¢ = g;, gi, - . . gi,, We can use
a”? modq=gi_lzgi_22...gi_k2 mod gq.
Therefore, with the generation of the g—primes we also compute and store the numbers

gi?mod g, (i=1,2,...,r), for all the prime powers g in the factor base.

For a fixed a, Alford and Pomerance [AP] developed a method to compute iteratively
all the other values of b (and thus c) from a given initial value of b (see also the work
of Peralta [Per|). They also pointed out how the two solutions in the interval [0, q)
of the congruence equation W(z) = 0 mod ¢ can be calculated from the zeros mod ¢
of a “previous” polynomial. MPQS provided with this improvement is called the self
initializing variation of MPQS. This variation has the advantage that it can change
polynomials rapidly and hence a shorter sieve interval can be used. We implemented
this variation and it appeared that we gained a speed—up of a few percent of the total
computing time. This is not surprising since the initializing part takes no more than five
percent of the total time (in our implementation). Furthermore, for larger numbers (of
more than 100 decimal digits, say) the self initializing version takes too much memory.

5. THE LARGE PRIME VARIATION OF MPQS

The following idea to improve the quadratic sieve algorithm is based on a step in the
continued fraction algorithm introduced in 1975 by Morrison and Brillhart [MBT75].
This improvement is called the large prime variation of MPQS: W (z) is allowed to
have a factor R > B; that is not composed of primes from the factor base. If the
cofactor R (after dividing out all factor base primes in W(z)) is less than or equal
to B?, it must be a prime. In order to restrict the amount of disk space needed for
storage of the relations (3.3), we only accept factors R < B,, where B, is a parameter
we choose beforehand. In practice we choose B, in such a way that B,/ B; is a number

5. The Large Prime Variation of MPQS 8

between 10 and 100. We have to lower the report threshold by log(B-) in order to find
these W (z)-values after sieving.

If we have found two W(z)-values with the same R, multiplication of the corre-
sponding relations (3.3) yields a relation of the form (3.3) where W(z) only consists of
prime powers ¢ € F (and R is moved to V(z)).

A relation of the form (3.3), where W(z) only consists of primes g € F, is called a
complete relation. If W(z) has one prime factor R < B, (and the others are in F),
then the relation is called a partial relation.

We wish to compute E, the expected number of complete relations coming from a
given number of r partial relations. Let Q = {primes q | B; < ¢ < By, (3) = 1}. The
elements of Q are called large primes. Let P, be the probability that a large prime
q occurs in a partial relation. Lenstra and Manasse [LM94] assume that

Porg /Y p (5.9)

pER

for some positive constant a < 1 that should be determined experimentally. They

report that a € [%, %] gives a reasonable fit with their experimental results. Denny

[Den93, pp. 44-49] takes o = 0.775.
From [LM94] it follows that

E=r—#0Q+ E(l_Pq)r'

q€Q
We apply the binomial formula of Newton and use approximation (5.9) to find:
- (7 —a - —az
Er Z(—l)z(-) (Z q) > (5.10)

i=2 v/ \qee q€Q
Since 7(t) ~ t/logt as t — oo, we have
Yop i /mt_”d(t/logt)
p<z 2

(p prime, z € R>,, u € Ry). Hence for u > 0 we have

gt 1/32 t~“d(t/logt). (5.11)

q€Q 2 /8,

To compute the last integral we first use partial integration and then use the substitu-
tion s = (1 — u)logt. We get

/é " =ud(t/log t) = BL/log By — B/ log By
+ u{Ei((1 — u)log B,) — Ei((1 — v)log B:1)} (5.12)

6. The Double Large Prime Variation 9

where Ei is the exponential integral defined by Ei(z) = [(e®/s)ds. Now combine
(5.10), (5.11), and (5.12) for the appropriate choices of u to get an approximation for
E. In approximation (5.10) we sum from ¢ = 2 to ¢ = 5 and forget about the higher
order terms to get a formula for an approximation of F that we can use in practice
(given B, B, r, and).

The following examples show that our approximation works well for our experiments
if @ = 0.73. The table below contains a column for the number r of partial relations,
the actual number of complete relations derived from these partial relations, and the
estimated number of complete relations. By Cx (first column) we denote a composite
number with x decimal digits. An approximation of F can be used to predict the
computing time. We determined a as follows. We wrote a program in Maple that
(given a) computes the absolute value of the difference of the actual number of complete
relations and the estimated number of complete relations for each of fifteen test numbers
we took. Then we summed the fifteen absolute values of the differences. Thus for each
a we took, we got a sum of absolute values. It appeared that o = 0.73 gave rise to the
smallest sum. In the table below we list the results for ten test numbers.

n | B1/10° | By/B; r actual # comp. rel. | estimated # comp. rel.
C75 3 20.0 37472 4790 4966
C80 1 60.0 15918 1121 1209
C80 3 167 68195 4113 4150
C84 8 25.0 96138 10894 11148
C88 5 100 94651 6605 6736
C88 7.5 100 148403 11455 11211
C88 7.5 100 158214 12830 12657
C88 7.5 100 146983 11051 11008
C88 7.5 100 150327 11498 11488
C88 7 100 148016 12116 11827

6. THE DOUBLE LARGE PRIME VARIATION

In the large prime variation of MPQS we allow W(z) in (3.3) to have a prime factor
R with B; < R < B,. In the double large prime variation of MPQS we also accept
W(z) to have a factor R < B2 composed of two primes > B;. In this case we call
such a relation a partial-partial relation (pp-relation for short). Now the problem
of finding combinations of partial and partial-partial relations that yield a complete
relation can be formulated as finding cycles in an undirected graph: the vertices are
the large primes and two vertices (primes) are connected by an edge if there is a pp—
relation in which both primes occur. A partial relation is represented by adding 1 as a
vertex to the graph. We consider this partial relation as a pp—relation where one of the
large primes is 1. So an edge in the graph corresponds to a partial or partial-partial
relation and a cycle corresponds to a set of relations with the following property: if
we multiply these relations, then all the large primes in the product occur to an even

6. The Double Large Prime Variation 10

power. Hence, for the linear algebra step this set can be viewed as a complete relation.
To avoid dependent relations one only has to find the basic cycles of the graph.

The number of complete relations coming from the pp-relations is much more difficult
to predict than that coming from the partial relations. One has to know how the
number of basic cycles in a graph with given vertices varies when edges are added more
or less randomly. Having a basic cycle is a monotone increasing property [Bol85, p.
33] that can appear rather suddenly [ER59], [ER60], [ER61]. An algorithm for finding
the basic cycles in a graph can be found in [Pat69].

If R is prime then we require R < B, in order to restrict the total number of relations
(in our experience partial relations with B, < R < BZ? do not contribute much to the
total number of complete relations). If R is composite, its large prime factors can be
found, e.g., by using Shanks’ SQUFOF algorithm [Rie85, pp. 191-199]. This algorithm
has the advantage that most numbers that occur during its execution are in absolute

value not larger than 2v/R.

We want to estimate the time that PPMPQS spends on the sieve step for numbers
n of about d decimal digits, given By, M, By, and QT HRES. To that end, let

ns = number of elements in the factor base,
n. = number of complete relations,

f 1 = nc/ g,

n; = number of partial relations,

ny = number of pp-relations,

fa = mna/ni,

T, = sieve time.

During the sieve step, the numbers n., n; and n, grow (more or less) linearly with the
time, so that also the fraction f; grows linearly, and f, stays more or less constant
(after the sieve step has been running for a short time). We observed that the values
of the fractions f; and f;, measured after completion of the sieve step, seem to be
connected. For example, the following tables give the values of f; and f; measured
for 16 numbers factored on the Cray C90 with d = 86, B; = 5 x 10°, M = 1.5 x 105,
B,/B; = 20, and QTHRES = 40. For each of the 16 numbers n we computed a
multiplier m and factored m - n instead of n. More information about the 16 numbers
can be found in the tables in the Appendix.

fi 0.243 0.244 0.255 0.269 0.275 0.297 0.301 0.310

f2 598 5.79 4.04 3.68 2,75 237 213 2.29
multiplier | 109 37 1 109 1 109 5 29

Table 10(1) 10(3) 10(5) 10(12) 10(10) 10(6) 12(3) 10(8)

6. The Double Large Prime Variation 11

fi 0.320 0.325 0.331 0.346 0.348 0.349 0.352 0.363
fo 1.70 1.64 1.14 0.906 0.961 0.862 0.760 0.798
multiplier 1 1 1 7 43 1 1 41
Table 12(2) 10(2) 10(7) 10(4) 12(1) 10(9) 8(13) 10(11)
The tables suggest that f, is an exponential function of f;:
fo = ae®h
for some constants ¢ and b. Based on the table, we estimated a = 315 and b = —16.5.

Since log f; = loga + bf, it follows that n. = ;(log fo —loga) - ny. If u is the time
needed to generate one complete relation, we obtain the following approximation for
the sieve time 7}:

T, ~ (0.349 — 0.0611og f2) - w - ny. (6.13)
We can estimate u and f, by letting the program run for a short while, five minutes
say. We tested our formula with several 85 and 86 digit numbers on the Cray C90 and
it appeared that the estimate works well (actually, the numbers are composite factors

of the numbers in the column below “n”; 98 91+ means 98%! +1, 47 67 — means 477 — 1
etc.):

n mult. | Table | u (sec) f2 ny | actual T, (h) | appr. (6.13)
98 91+ 19 8(2) 5.140 | 1.1945 | 20741 9.8 10.0
56 96+ 1 8(12) | 4.226 | 1.0866 | 24641 10.0 9.94
80 58+ 1 8(3) 4.518 | 0.7646 | 20744 9.8 9.50
39 111+ 1 8(5) 3.357 | 1.4378 | 20930 6.0 6.37
47 67 — 5 12(3) | 8.785 | 2.1364 | 20911 15.4 15.4

Consequently, the approximation (6.13) can be used to obtain a good estimate of 7,
in the PPMPQS-algorithm for numbers of about the same size, and fixed parameters
By, M, By,and QT HRES. For numbers in another range, or if we wish to change the
parameters, some experiments have to be done to determine the total sieve time under
these new conditions, by which the coeflicients in (6.13) can be estimated.

In order to test the dependency of 7, on B,, we carried out the complete sieve step

of PPMPQS for the 80-digit number:

080 = (75% + 1)/(2 - 224914177 - 151113908786421917036806943723393) =

1484463729 7924826822 3924402812 7205475762
2335589237 4279886592 8124925295 6234072833

6. The Double Large Prime Variation 12

(having the two prime factors 68799038786512319388821350925569
and 215768091527974049646247615957101365677594246657)

on the Cray C90, with B; = 10°, M = 3 x 10°, QT HRES = 50 fixed, and for
various different values of B,. In the partial relations we accepted the large prime R
to be < B?. (We get these for free because R < B? implies that R is prime.) For
B; = 10° the number of elements in the factor base is 4806. The sieving was continued
until the total number of complete relations (including those generated by the partial
relations and the partial-partial relations) surpassed this number (measuring the total
number of complete relations obtained so far is done only at selected points in our
program, so the actual total number of complete relations usually is somewhat larger
than the number of elements in the factor base). The column n.; gives the number of
complete relations generated by the partial relations (counted in the previous column
n1), and the column n.» gives the number of complete relations generated by combin-
ing the partial relations (with different large primes) and the pp-relations (counted in
the previous column n,).

By/B; | T (h) Nne+ N (3 Te,1 Ny N2
+7e,1 + T2

30 8.64 4818 1036 | 129318 | 1661 | 29143 | 2121
60 7.06 4859 871 | 117532 | 1249 | 51929 | 2739
100 6.49 4870 775 | 109506 | 1025 | 76324 | 3070
200 6.02 4819 685 | 99474 | 795 | 123001 | 3339
400 5.67 4850 618 | 91332 | 634 | 193278 | 3598
600 5.71 4844 578 | 87265 | 568 | 243015 | 3698
800 5.62 4869 563 | 84926 | 531 | 291177 | 3766
1000 5.75 4843 546 | 83082 | 501 | 333726 | 3796
1600 6.19 4845 521 | 79960 | 464 | 445526 | 3860

As we increase B,/ B, the program generates more partial-partial relations and less
complete and less partial relations in a given, fixed amount of sieve time. For 30 <
B,/B; < 400, the gain in complete relations (n.2) generated by the pp-relations (n3)
more than sufficiently compensates for the loss of complete relations directly found
by the sieve (n.) and the loss of complete relations (n.;) generated by the partial
relations (n1). As a result, the total sieve time T, goes down. For B,/B; > 1000,
however, the increase in size of the large primes in the partial and partial-partial
relations is responsible for a decrease in the number of complete relations derived from
these relations, and also the time that SQUFOF needs to find the two large primes in a
pp—relation increases, so now the resulting total sieve time increases. Consequently, the
minimal sieve time is reached if we choose B;/B; in the interval 400 < B,/ B; < 1000.
In that interval the total sieve time is only slightly varying. We conclude that, in order
also to minimize the amount of memory for storage of the relations, the optimal choice

of B,/ B, is about 400.

7. Implementation and experiments 13

7. IMPLEMENTATION AND EXPERIMENTS
For our PMPQS-experiments we used the implementation described in [RLW89]. Al-
most all our subroutines are written in Fortran.

We have originally implemented the PPMPQS—algorithm on a supercomputer like
the Cray C90 vectorcomputer. We used the same implementation on Silicon Graphics
workstations (although we now have written a program especially designed for work-
stations). The sieve operations (i.e., additions of log p to an element of the sieve array)
are done in 64-bits floating—point arithmetic on Cray and in 32-bits on SGI. The max-
imum speed we obtained (in millions of sieve operations per second) was 3.3 on the
Silicon Graphics, 110 on the Cray Y-MP [RLW91] and 270 on the Cray C90. The max-
imum speed was 5.7 when we used the workstation version of our program. We used
a package of Winter in order to carry out multi-precision integer arithmetic. For the
large prime R occurring in the partial relations we accepted R with B; < R < B, and
those with B, < R < B? were rejected. We have implemented Paton’s cycle finding
algorithm [Pat69] and used it as a preprocessing step for the Gaussian elimination step
in PPMPQS. An algorithm for just counting (but not finding) the basic cycles ([LM94,
pp. 789-790] and [Den93, pp. 61-64]) was implemented by us as a tool to check dur-
ing the sieve part of PPMPQS whether sufficiently many relations (complete, partial,
and partial-partial) were collected. The method used to do the Gaussian elimination
(mod 2) is described in [PW84]. The elements of the bit-array are packed in words
of 64 bits (on the Cray computers) or 32 bits (on the Silicon Graphics). This allows
the use of XOR-ing (exclusive or) with the column vectors of the array, which is very
efficient. The total Gaussian elimination step (including finding basic cycles) takes less

than 0.6% of the total work of the PPMPQS—-algorithm.

In order to compare PMPQS with PPMPQS we have run our implementations of
these algorithms on the Cray C90 for the 71-digit number

C71 = (10" —1)/9
and for the 87-digit cofactor

C87 = 1360245 9257583786 3939661047 9463908049 3042354284
1197990430 2204441489 2390146207 9070640121

of 72°% + 1. For CT1, four experiments with different combinations of B;, B»/Bi,
and M were carried out where in the second, third and fourth experiment only one
of the three parameters was changed compared with the previous experiment. The
value of QT HRES was kept fixed on 40. For C80 treated in the previous section
with PPMPQS, we made a comparing run with PMPQS for B; = 10°, M = 3 x 108,
QTHRES =50, and B,/B; = 400 (the optimal choice for PPMPQS). The results are
given in Table 1.

For C71, the parameter choice B; = 3 x 10°, By/B; = 20, and M = 5 x 10° yields a
somewhat smaller sieve time for PPMPQS (0.55 CPU hours) than for PMPQS (0.58),

7. Implementation and experiments 14

but if we allow more memory use by choosing B; = 6 x 10° and M = 2.5 x 10° (and
B,/B; = 40), then PMPQS beats PPMPQS (0.29 vs. 1.21). Increasing the length of
the sieve interval (M from 5 x 10° to 2.5 x 10°) particularly improves the efficiency of
PMPQS (and, to a lesser extent, of PPMPQS). For C87, with the parameter choice
B; =5 x 10°, By/B; = 20, and M = 2.5 x 10°, PPMPQS is faster than PMPQS (11.9
vs. 16.4).

We conclude that for our implementations PPMPQS can beat PMPQS for numbers
of more than 80 (say) decimal digits, but the cross—over point strongly depends on the
amount of available central memory. For practical reasons (like throughput) it can be
profitable to reduce the size of a sieve job on the Cray C90, so even though such a
computer has a very large central memory, it is still worthwhile to restrict the size of the
upper bound on the primes in the factor base and to have an efficient implementation
of a memory—economic method like PPMPQS. This aspect is even more important on
workstations, particularly when there are primary and secondary cache memories (as
is usual on workstations).

7. Implementation and experiments

PMPQS-results

PPMPQS—results

CT71
B; =3 x10° | n, = 10204 n. = 5063
ny = 12979 ny = 17993 — n.; = 2784 | n; = 36468 — n.; = 4709
By/B; = 20 ny = 42617 — o = 3400
M =5x10° | T, = 0.58 hrs. T, = o.55 hrs.
CT71
B; =6 x 10° | n. = 20827 n. = 10868
ny = 24510 ny = 23794 — n.; = 3703 | n, = 68019 — n.; = 8383
By/B; = 20 ny = 70395 — . = 5389
M =5x10° | T, = 0.56 hrs. T, = 0.96 hrs.
CT71
B; =6 x10° | n, = 20312 n. = 9817
ny = 24510 ny = 30399 — n.; = 4209 | n, = 80017 — n.; = 7390
By/B; = 40 ny = 132290 — n, 5 = 7412
M =5x10° | T, = o.55 hrs. T, = 1.28 hrs.
CT71
B; =6 x10° | n. = 20196 n. = 9803
ny = 24510 ny = 31034 — n.; = 4359 | n, = 81612 — n.; = 7499
By/B; = 40 ny = 138147 — n, 5 = 7969
M =25 x10% | T, = 0.29 hrs. T, = 1.21 hrs.
C80
B; =10° n. = 1580 n, = 618
ny = 4806 ny = 49143 — n.1 = 3229 | ny =91332 — n.; = 634
B,/B; = 400 ny = 193278 — n, 5 = 3508
M =3x10% | T, = 13.4 hrs. T, = 5.67 hrs.
C87
B; =5 x10° | n. = 9902 n. = 7009
ny = 20838 ny = 70029 — n.; = 10940 | n, = 63089 — n.; = 8220
By/B; = 20 ny = 57513 — nes = 5620
M =25 x10% | T, = 16.4 hrs. T, = 11.9 hrs.

Table 1: Comparison of PMPQS with PPMPQS for C71, C80, and C87

15

7. Implementation and experiments 16
Furthermore, with our PMPQS—program we have factored the 99—digit cofactor

168483084 9783397621 1530436039 9726602530 8430041776
9257490404 3633682183 8963842217 5595211200 8347771913

of the more wanted number from the Cunningham table with code “2,914M C133”. This
“C133” is the composite number of 133 decimal digits (2457 + 2222 4 1)/(5 x 71293);
Peter Montgomery had found the 34-digit prime factor

6196333979234679466021864314534473

of this number with ECM. and left the 99-digit composite cofactor. We decomposed
it into the product of the 49— and a 50-digit primes:

5845296257595668545524969937697507923682374822769
and

28823703291241135239378075616078003806433692452377,

with the help of an eight processor IBM 9076 SP1, and 69 Silicon Graphics worksta-
tions (63 at CWI and 6 at Leiden University). The factor base size was 56976 with
B; = 1.5 x 10%, By/B; = 50, M = 2 x 10%, and QT HRES = 30. Parallel process-
ing with good load balancing was effectuated by assigning different polynomials to
different workstations. The total amount of sieve time was about 19,500 workstation
CPU-hours. The physical time for this factorization was about four weeks. This means
that we consumed about 40% of the total CPU-capacity of these workstations during
that period (assuming that they all are equally fast: in fact, an RS 6000 processor of
the IBM SP1 sieved about twice as fast as an SGI workstation). The Gaussian elim-
ination step was carried out on a Cray (C90; it required about 0.5 Gbytes of central
memory, and one hour CPU-time.

As a comparison with a vectorcomputer [RLW91], on a Cray Y-MP we factored a
101-digit more wanted Cunningham number with PMPQS in 475 CPU-hours, using
B; = 1300000, with 50179 primes in the factor base, B,/B; = 50, M = 4.5 x 10%, and
QTHRES = 40 (our PMPQS—implementation runs about twice as fast on the Cray
C90 as on the Cray Y-MP).

As a comparison with PPMPQS, from the PPMPQS results listed in Table 1 we esti-
mate (based on the assumption that the computing time of PPMPQS approximately
doubles if the size of the number increases by three decimal digits) that we would
roughly need 10,000 CPU-hours of an SGI workstation to factor the 99-digit cofactor
of 2,914M (133, yielding a speed—up factor of about 2 compared to PMPQS. If we
would take a factor 1.64 (see the next paragraph) instead of 2, then the time would be
less than 4000 CPU-hours.

In the Appendix (Tables 2 — 15) we list the results of our experiments with PPMPQS
on eight numbers in the 66 — 83 digit range on an SGI workstation, and 73 numbers

References 17

in the 67 — 88 digit range on a Cray C90 vectorcomputer. Most of these numbers
fill gaps in the table [BR92], and are difficult to factor (they were tried before with
ECM without success). We have varied the different parameters By, B2/ By, and M on
different numbers (but not in a very systematic way) and kept QT HRES = 40 fixed.
We observe that the average CPU-time for numbers in the 67 — 88 digit range varies
between 0.4 and 12 CPU-hours, so that increasing the number of digits by three gives
an increase of the sieve time by a factor of about 1.64. This is smaller than the factor

of 2 that is usually observed for PMPQS.

ACKNOWLEDGEMENTS

We thank Arjen Lenstra, Walter Lioen and Rob Tijdeman for reading the paper and
for suggesting several improvements. Walter Lioen helped us with the implementation
of our programs on SGI workstations and on Cray vectorcomputers. We gratefully ac-
knowledge the Dutch National Computing Facilities Foundation NCF for the provision
of computer time on Cray Y-MP and Cray C90 vector processors. Finally, we acknowl-
edge the help of IBM and the Academic Computing Center Amsterdam (SARA) for
providing access to and CPU-time on the IBM SP1 at SARA.

REFERENCES

[AGLL] Derek Atkins, Michael Graff, Arjen K. Lenstra, and Paul C. Leyland. THE
MAGIC WORDS ARE SQUEAMISH OSSIFRAGE. In Proceedings of Asi-
acrypt ’94, Lecture Notes in Computer Science, Berlin. Springer—Verlag. To
appear.

[AP] W.R. Alford and C. Pomerance. Implementing the self initializing quadratic
sieve on a distributed network. To appear.

[Bol85] B. Bollobas. Random Graphs. Academic Press, 1985.

[BR92] R.P. Brent and H.J.J. te Riele. Factorizations of a”+1, 13 < a < 100. Tech-
nical Report NM-R9212, Centrum voor Wiskunde en Informatica, Kruis-
laan 413, 1098 SJ Amsterdam, The Netherlands, June 1992.
Update 1 to this report has appeared as CWI Report NM-R9419, Septem-
ber 1994, with P.L.. Montgomery as third author.

[Bre89] David M. Bressoud. Factorization and Primality Testing. Springer—Verlag,
New York, NY, 1989. Undergraduate Texts in Mathematics.

[DDLM94] T.F. Denny, B. Dodson, A. K. Lenstra, and M. S. Manasse. On the fac-
torization of RSA-120. In D.R. Stinson, editor, Advances in Cryptology —
CRYPTO ’93, volume 773 of Lecture Notes in Computer Science, pages
166-174, Berlin, 1994. Springer—Verlag.

[Den93] T.F. Denny. Faktorisieren mit dem Quadratischen Sieb. Master’s thesis,
Universitat des Saarlandes, Saarbriicken, 1993.

[DH83] J.A. Davis and D.B. Holdridge. Factorization using the quadratic sieve

References

[ER59]
[ER60]
[ER61]
[Kra29]

[LL93]

[LM94]
[LP31]

[MB75]
[Pat69]
[Per]

[Pom82]

[Pom85]

[PSTS3]

[PW84]

18

algorithm. Technical Report Sandia Report Sand 83-1346, Sandia National
Laboratories, Albuquerque, New Mexico, 1983.

P. Erdos and A. Rényi. On random graphs I. Publ. Math. Debrecen, 6:290-
297, 1959.

P. Erdos and A. Rényi. On the evolution of random graphs. Publ. Math.
Inst. Hungar. Acad. Sci., 5:17-61, 1960.

P. Erdos and A. Rényi. On the evolution of random graphs. Bull. Inst. Int.
Statist. Tokyo, 38:343-347, 1961.

M. Kraitchik. Recherches sur la théorie des nombres, volume II. Gauthier—

Villar, Paris, 1929.

A K. Lenstra and H.W. Lenstra, Jr., editors. The development of the number
field sieve, volume 1554 of Lecture Notes in Mathematics. Springer—Verlag,
Berlin, 1993.

A K. Lenstra and M.S. Manasse. Factoring with Two Large Primes. Math-
ematics of Computation, 63:785-798, 1994.

D.H. Lehmer and R.E. Powers. On factoring large numbers. Bull. Amer.
Math. Soc., 37:770-776, 1931.

M.A. Morrison and J. Brillhart. A method of factoring and the factorization
of F;. Mathematics of Computation, 29:183-205, 1975.

K. Paton. An Algorithm for Finding a Fundamental Set of Cycles of a
Graph. Comm. ACM, 12:514-518, 1969.

René Peralta. Implementation of the Hypercube Variation of the Multiple
Polynomial Quadratic Sieve. Submitted for publication.

Carl Pomerance. Analysis and comparison of some integer factoring al-
gorithms. In H.W. Lenstra, Jr. and R. Tijdeman, editors, Computational
methods in number theory, Mathematical Centre Tracts 154/155, pages 89—
139. Mathematisch Centrum, Amsterdam, 1982.

Carl Pomerance. The Quadratic Sieve Factoring Algorithm. In T. Beth,
N. Cot, and I. Ingemarsson, editors, Advances in Cryptology, Proceedings of
EUROCRYPT 84, volume 209 of Lecture Notes in Computer Science, pages
169-182, Springer—Verlag, New York, 1985.

Carl Pomerance, J.W. Smith, and Randy Tuler. A pipeline architecture
for factoring large integers with the quadratic sieve algorithm. SIAM J.
Comput., 17:387-403, 1988.

D. Parkinson and W. Wunderlich. A compact algorithm for Gaussian elim-
ination over GF(2) implemented on highly parallel computers. Parallel
Comput., 1:65-73, 1984.

References 19

[Rie85] Hans Riesel. Prime Numbers and Computer Methods for Factorization.
Birkhauser, Boston, etc., 1985.

[RLW89] H.J.J. te Riele, W.M. Lioen, and D.T. Winter. Factoring with the quadratic
sieve on large vector computers. J. Comp. Appl. Math., 27:267-278, 1989.

RLW91| Herman te Riele, Walter Lioen, and Dik Winter. Factorization beyond the
[: , y
googol with MPQS on a single computer. CWI Quarterly, 4:69-72, March
1991.

[Sil87] R.D. Silverman. The Multiple Polynomial Quadratic Sieve. Math. Comp.,
48:329-339, 1987.

Appendix 20

APPENDIX

We factored many numbers (with PPMPQS) in order to update the table of Richard
Brent and Herman te Riele [BR92]; we also factored some numbers of the form a™ + 1
that are outside the range covered by [BR92]. We give two tables with information
about the most important quantities involved. For the sake of clarity we explain these
quantities (again):

d = '%log(number to be factored)
B; = upper bound for the primes in the factor base,
B, : B2is the upper bound for the input R to SQUFOF
(yielding a pp-relation),

ny = number of primes in the factor base,
M : [—M,M]is the sieve interval,
n. = number of complete relations we find immediately,
ny = number of partial relations,
n., = number of complete relations coming from partial relations,
ny = number of pp-relations,
nc, = number of complete relations coming from pp-relations,
T, = sieve time in CPU-hours.

The small prime variation parameter Q7T HRES was kept fixed on 40.

Appendix 21
nr. d B;/10° ny B,/B; | M/10° | n, nq N1 Ty Nea | Ts
1 |65.56 0.8 3911 | 11.25 2 1493 | 9753 | 1715 | 4102 | 710 | 5.8
2 |66.17 0.8 3908 10 1.5 1452 | 9433 | 1766 | 3697 | 693 | 4.8
3 | 66.83 0.8 3984 10 2 1214 | 9952 | 2139 | 4238 | 637 | 14.2
4 | 74.15 3 13045 20 6 4840 | 37472 | 4790 | 26391 | 3424 | 55.4
5 | 78.76 3 12898 30 5 4444 | 44583 | 5104 | 29653 | 3355 | 123
6 | 81.54 5 20812 20 5 7992 | 63176 | 8471 | 33614 | 4351 | 173
7 | 81.70 4.5 18961 20 4.5 6796 | 55435 | 7229 | 38950 | 4942 | 198
8 | 82.89 5 20861 20 8 7387 | 62346 | 8229 | 40035 | 5250 | 273

Table 2: Parameter choices and timings for numbers in the 66-83 decimal digits range,

factored with PPMPQS on a SGI workstation

=
=

number

prime factor

O ~J O T W N

C66 77 534+ = P31 * P35
C67 58 88+ = P26 * P41
C67 62 89— = P31 * P37
C75 70 87+ = P29 * P46
C79 72 118+ = P38 * P42
C82 84 71+ = P33 * P50
(82 80 99+ = P32 * P51
(83 92 87+ = P23 * P61

P31 = 8508101816450689975658227843439
P26 = 62057338333442627487392257
P31 = 3916898265747514256035560079891
P29 = 56476537654063551106920429541
P38 = 16059490907009321225480347480687832441
P33 = 133184106044570646620234096956423
P32 = 11935171798229644025656192643827

P23 = 10127992394070979564027

Table 3: Factorizations of the numbers in Table 2

Appendix 22

nr. d B;/10° ny B,/B; | M/10° | n, nq N1 Ty Nea | Ts
1 |66.80 2 8881 30 25 2945 | 27673 | 2762 | 31855 | 3347 | 0.36
2 | 68.74 2.5 11086 20 5 3988 | 30107 | 3631 | 27746 | 3476 | 0.46
3 | 74.20 3.16 13623 20 6.31 4921 | 38371 | 4889 | 29855 | 3822 | 1.22
4 | 74.51 3.16 13625 20 6.31 5503 | 42284 | 5844 | 17604 | 2297 | 1.16
5 | 74.69 1 4790 60 5 1005 | 17630 | 1320 | 29502 | 2465 | 2.42
6 | 74.83 3 12892 17 25 4697 | 37137 | 5388 | 19447 | 2820 | 1.20
T | 74.92 2.5 11086 36 25 3339 | 35899 | 3335 | 43531 | 4382 | 1.91
8 | 77.37 5 20972 20 25 7152 | 54706 | 6444 | 60361 | 7393 | 1.84
9 | 77.56 5 20888 30 30 7518 | 65930 | 6980 | 60042 | 6453 | 1.41
10 | 79.04 5 20597 30 30 6596 | 61563 | 6201 | 76295 | 7828 | 2.43

Table 4: Parameter choices and timings for numbers in the 67-80 decimal digits range,
factored with PPMPQS on a Cray C90 vectorcomputer

nr. | number prime factor
1 | C67 89 64+ = P24 * P44 P24 = 153316525308739316934017
2 | C69 50 122+ = P30 * P40 P30 = 276832194921994230575098974137
3 | C75 101 41+ = P32 * P43 P32 = 21587227703328821952030527314507
4 | C75 110 41+ = P16 * P25 * P35 | P16 = 3850561614882023
P25 = 7797598239853074057655219
5 | C75 110 474+ = P24 * P51 P24 = 728424414211828929294823
6 | C75 35 147+ = P35 * P40 P35 = 86052439411099140168070862933143801
7 | C75 53 59— = P24 * P51 P24 = 943970114867362247759443
8 | C78 19 165+ = P28 * P50 P28 = 2481953419044452308291386601
9 | C78 51 102+ = P30 * P48 P30 = 459028910227193494771112394289
10 | C80 86 58+ = P33 * P47 P33 = 129094951090723152084884804969621

Table 5: Factorizations of the numbers in Table 4

Appendix 23
nr. d B;/10° ny B,/B; | M/10° e nq Te1 Ty Nea | Ts
1 |79.17 4 16927 20 1 5619 | 45717 | 5584 | 48399 | 6279 | 3.29
2 | 79.17 5 20895 20 3 6457 | 72272 | 11650 | 37114 | 2802 | 2.68
3 |79.39 3 13001 | 166.7 3 3739 | 68195 | 4113 | 72708 | 5157 | 2.27
4 | 79.87 3 13011 | 166.7 3 3323 | 64308 | 3624 | 91150 | 6084 | 3.41
5 | 80.86 5 20819 20 6 6925 | 57619 | 7050 | 55281 | 6877 | 3.36
6 | 82.82 6 24598 20 2.5 8522 | 68723 | 8378 | 59901 | 7713 | 4.82
7 |82.91 7 28413 20 2.5 11451 | 87010 | 11694 | 40636 | 5271 | 4.38
8 | 83.66 8 32104 25 2.5 11419 | 96138 | 10894 | 85260 | 9807 | 5.46
9 | 83.98 7 27980 | 25.7 2.5 10594 | 93766 | 11327 | 51233 | 6070 | 6.59

Table 6: Parameter choices and timings for numbers in the 80-84 decimal digits range,

factored with PPMPQS on a Cray C90 vectorcomputer

=
=

number

prime factor

© 00 ~J O Ui W N

C80 75 644 = P32 * P48
C80 59 85— = P36 * P44
C80 76 123+ = P28 * P53
C80 84 87— = P40 * P41
C81 18 103- = P35 * P47
(83 82 68+ = P40 * P43
(83 93 714+ = P34 * P50
C84 89 67— = P41 * P44
C84 74 91- = P31 * P54

P32 = 68799038786512319388821350925569
P36 = 192052183634195717382812875959337681
P28 = 1602475801546350975094860307
P40 = 2904043752413366850400636076474517615769
P35 = 15936754604932361311519937275763087
P40 = 9241855378580566956862595601843404638609
P34 = 1871598891695207952802939248474557

P41 = 17345460386856072657168883886351357651503
P31 = 6300454649733691099786120178647

Table 7: Factorizations of the numbers in Table 6

Appendix 24

nr. d B;/10° ny B,/B; | M/10% | n, nq N1 Ty Te2 T,
1 | 84.10 5 20713 20 2.5 6175 | 51592 | 5808 | 76377 | 8732 | 5.6
2 | 84.35 5 20741 20 2.5 6865 | 60444 | 7638 | 72201 | 6256 | 9.8
3 | 84.80 5 20744 20 2.5 7809 | 57576 | 7457 | 44022 | 5481 | 9.8
4 | 84.87 5 20790 20 2.5 7153 | 61546 | 7923 | 43044 | 5721 | 8.4
84.87 5 20790 40 2.5 6412 | 73385 | 6960 | 75133 | 7427 | 8.4

5 | 84.92 5 20930 20 2.5 6434 | 52315 | 5865 | 75217 | 8614 | 6.0
6 | 84.99 5 20749 20 2.5 7106 | 58607 | 7259 | 53507 | 6389 | 6.8
7 |85.02 5 20675 20 2.5 6982 | 61080 | 7920 | 64746 | 5774 | 9.8
8 | 85.02 5 20792 20 2.5 6679 | 58782 | 7268 | 81258 | 6853 | 11.
9 |85.05 5 20887 20 2.5 7754 | 65228 | 8990 | 46265 | 4178 | 8.4
10 | 85.11 5 20810 20 2.5 4923 | 43182 | 4064 | 280566 | 11857 | 8.4
11 | 85.11 5 20841 20 2.5 5615 | 50651 | 5434 | 182705 | 9822 | 10.7
12 | 85.12 6 24641 20 2.5 8518 | 67320 | 9253 | 73153 | 6953 | 10.0
13 | 85.12 5 20651 20 1.5 7269 | 64239 | 8799 | 48843 | 4625 | 9.5

Table 8: Parameter choices and timings for numbers in the 85-86 decimal digits range,

factored with PPMPQS on a Cray C90 vectorcomputer

=
=

number

prime factor

—_
N = o L

—_
w

0 3O Tk W

085 69 117+ = P42 * P43
C85 98 91+ = P39 * P47
C85 80 58+ = P42 * P44
(85 56 64+ = P43 * P43
C85 39 111- = P32 * P54
C85 77 95— = P34 * P52
C86 18 111+ = P35 * P51
C86 76 59+ = P39 * P47
086 20 974+ = P34 * P52
C86 93 99— = P31 * P55
C86 58 93— = P32 * P54
C86 56 96+ = P39 * P47
C86 92 84+ = P43 * P43

P42 = 553775456930001686459646662784000439421893
P39 = 150856027763097994901861400756223948651
P42 = 587407531780545617292693056474932755332969
P43 = 1120971223480359091305712645673434758493441
P32 = 38661901037861787717347412050407

P34 = 1254200040785197567017611121581711

P35 = 57095169829153516132919139336069139

P39 = 471586815074704431240140019672222092489
P34 = 2645332912014287669339495089951567

P31 = 3466732593888008254791613360081

P32 = 75701865042739143157590250368211

P39 = 232559086557407467762901333407938321409
P43 = 2465152715658748428830880994824343639019833

Table 9: Factorizations of the numbers in Table 8

Appendix 25
nr. d B;/10° ny B,/B; | M/10% | n, nq N1 Ty Te2 T,
1 | 85.14 5 20812 20 1.5 5064 | 43981 | 4223 | 263194 | 11614 | 10.7
2 | 85.21 5 20709 20 1.5 6722 | 56788 | 6924 | 92891 7136 | 8.27
3 | 85.26 5 20859 20 1.5 5101 | 44412 | 4378 | 256996 | 11412 | 11.0
4 | 85.26 5 20768 20 1.5 7186 | 63721 | 8449 | 57739 | 5154 | 12.4
5 | 85.31 5 20812 20 1.5 5297 | 45852 | 4584 | 185169 | 10967 | 7.45
6 | 85.31 5 20576 20 1.5 6107 | 55044 | 6362 | 130553 | 8115 | 13.1
7 | 85.33 5 20709 20 1.5 6859 | 60552 | 7686 | 68840 | 6177 | 11.5
8 | 85.35 5 20923 20 1.5 6480 | 55476 | 6546 | 127090 | 7903 | 10.7
9 | 85.37 5 20672 20 1.5 7221 | 62980 | 8435 | 54345 | 5029 | 9.65
10 | 85.42 5 20672 20 1.5 5695 | 50790 | 5707 | 139604 | 9308 | 10.4
11 | 85.49 5 20772 20 1.5 7530 | 63927 | 8600 | 51034 | 4656 | 11.9
12 | 85.52 5 20634 20 1.5 5556 | H0383 | 5456 | 185347 | 9653 | 13.7
13 | 85.53 5 20711 20 2.5 5054 | 43759 | 4078 | 270308 | 11587 | 11.4

Table 10: Parameter choices and timings for numbers in the 86 decimal digits range,
factored with PPMPQS on a Cray C90 vectorcomputer

=
=

number

prime factor

—_ e
w e~ @

0 3O O W N

C86 67 99— = P34 * P52
C86 13 138+ = P29 * P57
C86 59 89— = P31 * P55
C86 21 123+ = P39 * P47
C86 38 81— = P36 * P50
C86 31 117- = P39 * P47
C86 50 96+ = P35 * P51
C86 96 95+ = P28 * P58
C86 24 130+ = P36 * P50
C86 93 53+ = P38 * P49
C86 98 59+ = P32 * P55
(86 80 65+ = P31 * P55
(86 82" + 72" = P42 * P43

P34 = 2515208214206285121254951932641469

P29 = 54836637716450236990971812089

P31 = 2689941424488348023848649808389

P39 = 380770063539669474313312691529545132713
P36 = 511662075163970762060417538436484323

P39 = 250630033376957433234617073114910871767
P35 = 36774112300765382067961168652800897

P28 = 2418476990688796014581890831

P36 = 684989928644194001785075922656446841

P38 = 19192699869550253389095978550167828173
P32 = 29037047448209810589475647292291

P31 = 3416871674919158699528742801241

P42 = 519975935060346660783986052760977025136897
(P43 = 65757674240355835167624181741955409969833473)

Table 11: Factorizations of the numbers in Table 10

Appendix 26

nr. d B;/10° ny B,/B; | M/10° e nq Te,1 Ty Nea | Ts
1 | 85.59 5 20797 20 1.5 7244 | 63668 | 8524 | 61191 | 5044 | 12.6
2 | 85.70 5 20712 20 1.5 6637 | 56910 | 6862 | 96694 | 7226 | 10.3
3 | 85.72 5 20911 20 1.5 6311 | 56349 | 6710 | 120384 | 7895 | 15.4
4 | 85.73 6 26392 2 3 16159 | 24514 | 9487 | 3153 749 | 13.8
5 | 85.92 6 26363 2 3 16376 | 24473 | 9358 7417 631 | 12.1
6 | 85.93 3 13041 20 1.5 4117 | 39602 | 5212 | 39395 | 3713 | 17.4
7 | 85.95 3 13011 20 2.5 4255 | 40517 | 5390 | 24478 | 3366 | 20.6
8 | 85.98 5 20756 2.4 2.5 10516 | 22044 | 7450 | 6610 | 2795 | 15.7
9 | 86.04 5 20840 20 2.5 7153 | 62231 | 8139 | 63273 | 5557 | 14.0
10 | 86.13 5 20838 20 2.5 7009 | 63089 | 8220 | 57513 | 5620 | 11.9
11 | 86.16 5 20787 22 2.5 7367 | 63987 | 8559 | 54708 | 4900 | 10.8
12 | 86.18 5 20688 20 2.5 7447 | 64778 | 8836 | 47154 | 4419 | 10.7
13 | 86.22 5 20852 20 2.5 6202 | 54180 | 6282 | 144069 | 8376 | 11.6
14 | 86.22 5 20947 20 2.5 7522 | 63620 | 8412 | 52191 | 5091 | 9.35

Table 12: Parameter choices and timings for numbers in the 86-87 decimal digits range,

factored with PPMPQS on a Cray C90 vectorcomputer

=
=

number

prime factor

e el
W N = O

0 3O Tk W

C86 23 83— = P38 * P49
C86 76 56+ = P40 * P47
(86 47 67— = P32 * P55
(86 67 76+ = P42 * P45
(86 39 81+ = P37 * P50
C86 22 95— = P34 * P52
C86 76 117— = P42 * P45
(86 95 80+ = P38 * P49
(87 62 65+ = P34 * P53
C87 72 99+ = P28 * P59
C87 92 85— = P32 * P56
(C87 30 95+ = P35 * p52
(87 50 100+ = P41 * P46
(C87 66 96+ = P42 * P46

P38 = 27736074503263071062950778805992164759
P40 = 4868699568817220592890920460964327586529
P32 = 21270964162538089013014983761851

P42 = 315618216027848486834301078445774290254513
P37 = 2443003616566663069989278441133518059

P34 = 9624357919068403555091512367414261

P42 = 606202897105850025527074421945484005533987
P38 = 45089758099791867831637486244759667041
P34 = 1439106922902522842484110155444391

P28 = 809754078916899091068658884 1

P32 = 14285278844357974752432939513571

P35 = 80451911996934444483653727156040931

P41 = 58951478878513071930500886762077392077601
P42 = 153055732248039041786999207837459270270017

Table 13: Factorizations of the numbers in Table 12

Appendix 27

nr. d B;/10° ny B,/B; | M/10% | n, nq Te,1 Ty Te2 T,
1 | 86.27 5 20978 40 2.5 6773 | 79489 | 8184 | 75416 | 6035 | 14.2
2 | 86.29 5 20797 40 2.5 6387 | 72868 | 6909 | 116000 | 7520 | 11.1
3 | 86.38 5 20754 40 2.5 6881 | 76861 | 7638 | 86915 | 6253 | 6.72
4 | 86.43 5 20920 40 2.5 7177 | 76854 | 7706 | 82085 | 6054 | 8.81
5 | 86.45 5 20631 40 2.5 6329 | 74485 | 7262 | 92362 | 7046 | 14.6
6 | 86.63 5 20902 80 2.5 5806 | 85167 | 6249 | 148784 | 8876 | 13.8
7 | 86.64 6 24404 100 3 7564 | 124510 | 9691 | 89594 | 7355 | 13.2
8 | 86.69 6 24573 100 3 7803 | 122935 | 9614 | 89375 | 7369 | 14.1
9 |86.70 6 24495 100 3 6571 | 105037 | 7010 | 149698 | 11272 | 12.1
10 | 86.73 6 24538 100 3 7635 | 120888 | 9389 | 99930 | 7811 | 11.5
11 | 86.75 6 24374 100 3 7827 | 126178 | 9899 | 80444 | 6862 | 14.7
12 | 86.82 6 24615 100 3 6532 | 121187 | 9864 | 167590 | 8507 | 11.8
13 | 86.96 6 24658 100 3 7762 | 116023 | 8546 | 126334 | 8798 | 7.66
14 | 87.54 5 20604 100 1 6101 | 94651 | 6605 | 108893 | 8048 | 12.1

Table 14: Parameter choices and timings for numbers in the 87-88 decimal digits range,
factored with PPMPQS on a Cray C90 vectorcomputer

nr. | number prime factor

1 | C87 19 101- = P25 * P62 | P25 = 5245647644316863182854571

2 | C87 3385+ = P33 * P54 | P33 = 249536921989169261065035112257901

3 | C87 63 65+ = P42 * P46 | P42 = 108410889974425685059575647391841055155451
4 | C87 42 99— = P33 * P55 P33 = 234373090934137193434426100841739

5 | C87 77 67— = P41 * P46 P41 = 75024943244844149373705126243013155715853
6 | C87 84 59— = P35 * P53 P35 = 11779548019122302808328920808327631

7 | C87 26 129+ = P31 * P57 | P31 = 3076814278757622588317626405309

8 | C87 33 111- = P38 * P50 | P50 = 21457939605898871224437297672972660829

9 | C87 86 84+ = P40 * P48 | P40 = 1039512269081394539159468072656199331337
10 | C87 85 65+ = P40 * P48 | P40 = 4645176624103101144238593467706089788481
11 | C87 45 85+ = P36 * P52 | P36 = 218136090485068920975060625740020221

12 | C87 87 93+ = P35 * P53 | P35 = 65234702723152738657728499902597613

13 | C87 45 714+ = P27 * P61 | P27 = 692298161874034730813881603

14 | C88 19 168+ = P42 * P47 | P42 = 261688712348581672325146786097393313497473

Table 15: Factorizations of the numbers in Table 14

