
e Ctntrum voor Wtstunde en lnfor~
~p RTRAPPORT

Parallel experiments with simple linear algebra
operations on a Cray S-MP System 500 matrix
coprocessor

C.-H. Lai, HJJ. te Riele, A. Ualit

Department of Numerical Mathematics

Note NM·N9301 June 1993

CWI is the National Research Institute for Mathematics and Computer Science. CWI is part
of the Stichting Mathematisch Centrum (SMC), the Dutch foundation for promotion of
mathematics and computer science and their applications. SMC is sponsored by the
Netherlands Organization for Scientific Research (NWO). CWI is a member of ERCIM, the
European Research Consortium for Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 4079, 1009 AB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

Parallel experiments
with simple linear algebra operations

on a Cray S-MP System 500 matrix coprocessor

C.-H. Lai, H.J.J. te Riele and A. Ualit

CWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract

The main characteristics of the Cray S-MP System 500 matrix coprocessor are
described and the results are presented of parallel experiments with matrix-vector
and matrix-matrix operations on a coprocessor configuration consisting of twenty­
eight processing elements. The performance results are compared with a theoretical
model involving computing and communication time, and cache size characteristics.

1991 Mathematics Subject Classification: 65Y05, 69Cl2.
Keywords & Phrases: MIMD computer, parallel matrix coprocessor,

linear algebra operations.

Note: This research was done while the first author was visiting CWI as an ERCIM
fellow. His current address is: School of Mathematics, Statistics and Computing, Uni­
versity of Greenwich, Wellington Street, Woolwich, London SE18 6PF, UK. Email
address: c.h.lai@greenwich.ac. uk.

Note NM-N930 l
ISSN 0169-0388
CWI
P.O. Box 4079, l 009 AB Amsterdam, The Netherlands

1

1 Introduction

In 1991 C\'\:I acquired an FPS System 500 64-bit distributed memory multiprocessor
-:ystem involving one 72 :\IIPS SPARC scalar processor and a matrix coprocessor with
twenty-eight 40 '.\IIPS i860 processors, configured in seven buses, each consisting of four
processing elements. In December 1991, Cray took over the FPS System 500 production
and maintenance, and since then the machine is called the Cray S-MP System 500. Figure
1 gives a schematic picture of the system, taken from [FPS9lb], where the structure of
the matrix coprocessor is enlarged. The vector coprocessor is not part of the C\VI con­
figuration. '.\lore information about this system is given in Appendix A to this paper.

Scalar
Processor

Scalar
reg!e.tfllra an.d

cache•

Vector
a processor

Procoaalng
Element

Matrix Coprocessor

Matrix Registers

Scalable interconnect Architecture (SIA)

System Memory

Figure 1: Cray S-'.\IP System 500 :\latrix Coprocessor Architecture

In order to acquainted with this machine, we have carried out several experiments
with simple linear algebra operations (matrix-vector and matrix-matrix). Based on the
\·endor·s information we have designed a theoretical performance model and compared
this with t actual performance figures. As can be expected, algorithms with high data
iocality. i.e .. with many floating-point operations for each data access, perform best on the
matrix coprocessor. TLen:· is one restrictive characteristic of the System 500 which should
be mentioned name:y that at a time, only one processing element on each bus
can access the matrix registers for dma transport. So while one processing element on
a bus is transporting data. the others should spend their cycles on computing, otherwise
they have to wait. This means that low locality algorithms can only run efficiently on a
one processing element per bus configuration.

The organization of the paper is as follows. In Section 2 we describe, by means of

2

an example

3

2 An example of parallel programming on the Sys­
tem 500 matrix coprocessor

By means of an example of the computation of the vector dot-product we illustra; e
how a subroutine can be parallelized on the System 500 matrix coprocessor. To that end,
one has to insert the so-called mpp and pfp comment directives. Their meanings are
explained shortly in additional comment lines. Details about mpp and pfp directives are
given in Appendix A.1.

The dot-product loop is executed in parallel on the available processing elements (the
number of available processing elements is set in the calling program), and after completion
of the loop the partial sums are collected in the output parameter c.

c
C Parallel dotproduct
c
C Four mpp directive lines follow which indicate that this subroutine
C should be executed on the matrix coprocessor, and which specify the
C use of the subroutine's parameters
CMCP subroutine dotproduct (a, b, c, n)
CMCP input real*S a(n), b(n)
CMCP output rea1*8 c
CMCP input integer*4 n

subroutine dot product (a, b, c, n)
real*B a(*), b(*),
integer*4 n
rea1*8 psum

c
C Initialize c

c = O.ODO
c

c

C pfp directive: start of parallel region in this subroutine
CPCF PARALLEL
c
C pfp directive: psum is local to each process
CPCF PRIVATE psum
c
C Initialize psum on each processor

psum = O.ODO
c
C pfp directive:
c
c

iterations of the following loop are to be executed in
parallel, where the iterations of the do-loop are split
into equal blocks among all available processors.

4

c
c
c

There is an implicit barrier (synchronization point)
at the end of the loop: this option can be switched off
by means of the NOWAIT pfp directive.

CPCF PDO BLOCKED

c

do 20 i = 1, n
psum = pswn + a(i)*b(i)

20 continue

C Compute total result from partial results in each processor
c
C pfp directive: the code which follows is processed by one processor
C at a time
CPCF CRITICAL SECTION

c = c + psum
c
C pfp directive: end of section of code that was started by the
C CRITICAL SECTION directive
CPCF END CRITICAL SECTION
c
C pfp directive: end of section of code that was started by the
C PARALLEL directive
CPCF END PARALLEL

return
end

5

3 Some experimental results for the matrix-vector

product

Suppose the matrix A is of size n1 x n2 , partitioned in blocks of size a 1 x a 2 , and
b c are vectors of n2 , n1 and partitioned in segments of size a: 2 , a 1 respectively.

Furthermore, we assume that n1 = a 1N1, n2 = o: 2.iv'2 . Consider the matrix-vector product
N2

c = Ab, where A= (Ai~,), b =) (k = 1, I'v'2) and c = (ci) = I: Aikbk (i = 1, Ni). \Ve
k=l

assume that a 1• a2 are chosen so that the block matrix A.ik, and the vector segments bk
and c; can be stored completely in the cache (each processing element has a data cache of

8 KBytes), i.e. n 1a: 2 + o:2 + 0: 1 :::;: SL, where SL = 2048 for single precision arithmetic and

SL = 1024 for double precision arithmetic.
\Ve discuss three different implementations for the matrix-vector multiplication.

first implementation is a standard block-dot product approach and the second imple­

mentation is a standard block-saxpy prod'uct approach for matrix-vector multiplication. The

third implementation is a standard non-blocked dot product approach.
(l\ote: in the sequel, the superscripts and the subscripts d or s indicate the block-dot and

the block-saxpy algorithm. respectively. In what follows, AL, bL and cL are cache work­
space arrays and the superscript L means local.)

First implementation:
• Block-dot algorithm: ik-version
(A;k is a block matrix, bk and ci are segments of the vectors b and c)

r-cpcf ___ paraflef-·-- ---- -
cpcf pdo

For i=l:N1

cL(l : ai) = 0.0dO
For k=l:/\·2

cpcf critical section bus
load Aik and bk into the cache arrays AL and bL, respectively.

: cpcf end critical section
CL = CL + AL * bL

End
cpcf critical section bus

store array cL = ci into the main memory.
• cpcf end critical section

End
cpcf end parallel

The algorithm is parallelized over the i-loop. So at a given time, each processor is com­

puting independently on different segments ci, i = 1, .. ., N1 , of c (see appendix B, locality

example l matrix-vector multiplication). In the inner k-loop of the algorithm, the segment

6

is kept
algorithm is

(1)

So

T\ote that the matrix A is read once,
stored once. Td is independent of 0:2

vector b is read 1 times
fixed order of matrix

Second implementation:
• Block-saxpy algorithm:
(A;k is a block matrix, bk and c1 are

cpcf
cpcf

cpcf

cpcf

'cpcf

_,. ' ---

1: n 1 = O.OdO
parallel
pdo

For k=l:JV2

critical section bus
load bk into the cache array bL.

end critical section
For i=l:.V1

critical section bus

of vectors b

cpcf
load Aik into the cache array AL.

end critical section

cpcf

I
cpcf

1
cpcf

CL= AL* bL
critical section

Ci = Ci +CL

end critical section
End

End
end parallel

c)

the vector c is

This algorithm is parallelized over the k-loop. The segment bL is kept in cache during
execution of the i-loop. In this loop, the segments ci, i = 1, ... , Ni- of the global variable c
are updated. The pfp directive cpcf critical section ensures that no two processors can
do this update at the same time (i.e. the directive specifies that only a single process will
execute this section of code at a time). So at a given time, each processor is computing de­
pendently on segment ci (see appendix B, locality example 2 matrix-vector multiplicatwn).
In a similar way, as in the previous algorithm, the total number Ts of reads and stores
between the main memory and the cache in the block-saxpy algorithm is approximately
given by

(2)
')

Ts::::::: N2{0:2 + Ni(0:10:2 + 20:i)} = n2 + n1n2(l + :-_)
Cl'.2

7

We notice that Ts is independent of the value of a 1 for fixed order of the matrix A. The
matrix A and the vector b are read once and the vector c is loaded N2 times and stored
N2 times.

We have carried out various experiments in double precision with these implementa­
tions. We measured the MFLOP-rates of the first and the second implementation for
a 1 = a 2 = 30 and n = i * 30, i = 1, ... , 30, on the following configurations of the matrix
coprocessor: p = nb x nP processors (where n6 denotes the number of buses and np the
number of processors per bus), for nb = 7, np = 1, ... , 4, and for np = 4, nb = 1,. .. , 7.
The results are displayed in figures 3.1-3.4. The peak performance of both implementations
is reached when n = 840 and also the performance increases with the number of processors
muse.

We measured the total computing time varying nb and keeping fixed np and the total
computing time varying np and keeping fixed n 6. The results are given in tables 3.1 and
3.2. We also have computed the speedups for the various configurations given above. These
are given in figures 3.5 and 3.6.

If a certain task for one processor requires tc seconds computing time and tm seconds
communication time, then the parallel execution of N such tasks on a configuration of p
processors (with nb buses and np processors per bus) requires r ;1 tc seconds computing
time, and r ~ l tm seconds communication time (since processors on the same bus can not
communicate with the matrix registers concurrently). The total execution (computing and
communication) time depends on the ratio between tc and tm. If tc ~ tm then most of
the processor communication on a single bus will be done while the other processors on
that bus are busy with computing. If tc « tm then the computing on the bus processors
will be done while one of them is busy with communication. In all other cases the total
execution time depends on the extent to which the computing and communication parts
can be overlapped, and this in turn depends on the precise place(s) in the algorithm where
communication has to be carried out.

For the parallel execution of our matrix-vector algorithm, let Cd and Cs denote the
computing times for the block-dot and the block-saxpy versions, respectively, and let A1d
and Ms denote the corresponding communication times. If R is the number of floating
point operations per second and r the rate, in words per seconds, by which a block matrix
or a segment vector can be read or stored then we have the following (optimistic) estimat~s
(lxl is the smallest integer 2:: x, lxJ is the largest integers :s; x):

(3)

(4)

(5)

Cd~ fNifpl2a1n2/R

Md ~ f Ni/nbl{(l + a1)n2 + ai}/r

Cs ~ I N2/ p l 2a2ni/ R + N2ni/ R

8

(6)

The terms N2ni/ R in Cs and 2N2ni/r in Ms are due to the fact that no two processors
are allowed to execute the update statement ci = ci + cL concurrently. From (3)-(6) it fol­
lows that if we increase the value of nb, while keeping all other parameters (including np)
fixed, then the computing and the communication times will decrease. However, if we in­
crease np, we see that the computing times will decrease, but not the communication times.

We have carried out a number of experiments in double precision to verify these prop­
erties. We measured the total computing times and the corresponding MF LOP-rates of the
two implementations varying the block sizes of the matrix A. For the block-dot algorithm,
we took rectangular blocks of size: a 1 = 6, a 2 = 36; a 1 = 18, a 2 = 36; a1 = 18, a 2 = 42;
a1 = 36, a 2 = 18; a 1 = 36, a 2 = 24. For the block-saxpy algorithm, we took similar blocks,
but with a1 and a 2 interchanged. We fixed the configuration of the matrix coprocessor at
p = 28 processors, i.e. nb = 7, and np = 4. The results are displayed in figures 3.7 and 3.8.

Third implementation:
The matrix-vector algorithm is a standard dot product approach, so that c = Ab, where
A= (Aik) is a matrix of size n1 x n2, b = (bk), c = (ci) are two vectors of size n2, n1 respec-

n2
tively, and ci = I: Aikbk, i = 1, ... , n1 . A is stored by means of a row storage scheme. This

k=l
algorithm is parallelized over the i-loop in such a way that different processors will treat
different iterations of the loop (see appendix B, example 3 matrix-vector multiplication).
We measured the MFLOP-rates of this implementation for n1 = n2 = 200 * i, i = 1, ... ,
9 by varying the values of np and keeping nb fixed, and by varying the values of nb and
keeping np fixed. The results are displayed in figures 3.9 and 3.10.

9

II

Table 3.1: The total computing time for the block-dot
algorithm (in seconds) with n 1 = n2 = n.

nb x np
n 1x1 2 x 1 3 x 1 4 x 1 5 x 1 6 x 1 7 x 1

210 1.200 0.695 0.528 0.362 0.362 0.363 0.195
420 4.718 2.378 1.706 1.374 1.041 1.042 0.709
630 10.600 5.585 3.561 3.056 2.572 2.063 1.563
840 18.820 9.428 6.756 4.751 4.09 3.427 2.746

n 1x2 2x2 3x2 4x2 5 x 2 6x2 7 x 2
210 0.729 0.384 0.375 0.208 0.208 0.210 0.201
420 2.447 1.413 1.056 0.732 0.715 0.715 0.379
630 5.694 3.116 2.094 1.604 1.569 1.088 1.070
840 9.602 4.836 3.455 2.769 2.101 2.094 1.433
n lx3 2x3 3x3 4x3 5x3 6x3 7x3

210 0.577 0.391 0.223 0.213 0.213 0.214 0.206
420 1.792 1.088 0.733 0.726 0.391 0.405 0.382
630 3.690 2.128 1.592 1.088 1.085 1.080 0.583
840 ! 6.919 3.487 2.791 2.139 1.440 1.439 1.448

r--------+---

n . 1x4 2x4 3x4 4x4 5x4 6x4 7x4
210 0.453 0.272 0.2171 0.208 0.209 0.208 0.201

11420 1.741 0.851 0.837 0.503 0.395 0.395 0.385
. 630 3.896 1.921 1.249 1.267 1.246 0.747 0.600

840 6.276 3.416 2.544 1.665 1.666 1.664 1.008

10

xlO ·2

x10-2

x10-2

x10-2

x10-2

x10-2

x10-2

x10-2

x10-2

x10-2

x10-2

x10-2

x10-:.!
x10-2

x10-2

x10-2

n

210
420
630
840
n

210
420
630
840
n

210
420
630
840
n

210
420
630
840

Table 3.2: The total computing time for the block-saxpy
algorithm (in seconds) with n1 = n2 = n.

nb x np
1 x 1 2 x 1 3 x 1 4 x 1 5 x 1 6 x 1 7xl
1.215 0.699 0.535 0.368 0.368 0.365 0.204
4.667 2.354 1.692 1.363 1.035 1.044 0.707
10.434 5.481 3.521 3.013 2.516 2.022 1.537
18.469 9.255 6.647 4.658 4.006 3.347 2.694
1 x 2 2x2 3 x 2 4x2 5 x 2 6x2 7x2
0.843 0.458 0.417 0.251 0.249 0.260 0.211
2.949 1.618 1.209 0.876 0.802 0.808 0.487
6.715 3.631 2.406 1.915 1.807 1.307 1.198
11.538 5.799 4.176 3.197 2.558 2.408 1.757
1x3 2x3 3 x 3 4x3 5x3 6x3 7x3
0.723 0.466 0.297 0.257 0.254 0.252 0.217
2.459 1.375 0.967 0.883 0.558 0.559 0.488
5.238 2.888 2.037 1.547 1.429 1.355 0.858
9.561 4.814 3.668 2.704 2.058 1.922 1.765
lx4 2x4 3x4 4x4 5x4 6x4 7x4
0.614 0.357 0.305 0.260 0.258 0.259 0.219
2.278 1.164 0.995 0.665 0.568 0.568 0.491
5.011 2.594 1.719 1.593 1.483 0.988 0.865
8.339 4.453 3.312 2.277 2.139 2.028 1.402

11

x10-2

x10-2

x10-2

x10-2

x10-2

x10-2

x10-2

x 10-2

x10-:l
x10-2

x10-2

x10-2

x10-2

x10-2

x10-2

x10-2

[/,
0..
"" I..;

1

~

~

U'..
0... ,-..
v
.....l
.:..
~

of the block algorithm (matvec)
-··----.-------~- -----, -----,---····-·-·-·-,

l40' 0 ,,
0

~
() "

l 20'- MCPCONFIG- nh= 7, np =l, ... A t..
l)

!'> ()

++ 7xl 0 !'.;

xx r.
JOO· • •• (I • ~

K 0

no• ~ l
80 .~- ¥

~ ~

" x

60,
I\

II
+ + +

~ +

~ + + +
+ + + 40· +

~

~

20~ ,..
1i

II

0 ----
Iii

--~---.--·-··-·---- -- _...,._ ·---------·---·····
() 100 200 300 400 500 600 700 800 900

order n

Figure 3.2: The speed of the parallel block dot algorithm (matvec)
' Sq-uare blocks !40'

Blocksize=30x30

120 , MCPCONFIG: np =4. nh=l. 7

100:

80 r

60~

40:

20·

()

0

++

xx

**

00

Ill

nb*npb=lx4

nb*npb=2x4

nb*npb=3x4

nb*npb=4x4

nb*npb=5x4

nb*npb=6x4

nb*npb=7x4
~ •'

~--

}'

100 :::on

"'
~

()

'
"

x
R

*

+

300 400 500

order n

12

0

0
l)

0 0

"

~

!!
!t

!f
!t +

lJ

"

600 700 800 900

Figure 3.3: The speed of the parallel block saxpy algorithm (matvec)

140 ~ Square 'blocks

J Blocksize=30x30
i

120 ~ MCPCONFIG: nb=7, np =L4

I ++ nb*npb=7xl

JOO L xx nb*nph= 7x2

I ** I nb*npb=7x3

i 80 ~ oo nb*nph=7x4

I
60l

40r

I
2lH-

+

I\ ll

+
+

"
(\

"

+
+ ,.

+
+

I

1
I
i b ~

1
I
l

+ '
~

1
I

I
o~ft~~_.__~~~~~~-'-~~~~~~~~~~~~-'-~~__.._~~---'

() 100 200 300 -WO 500 600 700 800 900

order n

Figure 3.4: The speed of the parallel hlock saxpy algorithm (matvec)

140 ~ Square hlocks

l Blocksize=30x30
I

120 ~ MCPCONFIG: np =4, nh=l. 7

I -. nb*npb=lx4

100 ~ -- nb*npb=2x4

1 - nb*npb=3x4

80 ~ ++ nb*npb=4x4

I xx nb*npb=5x4

I " 601 ** nb*npb=6x4
11

11 x

I oo nb*npb=7x4 • ~ +
+

..
0

()

+

{l ll
() ,,

I
_j

i

1
1
I

. 1
... + J

':: ·\~
40~ "·~ I " • / -· ---·------ _______ J I • ~---. __ -------· · .. ____________ . __ .---- I

2~ fL....::_I /___,/:_--·_ -_---------'-:~ - - - -_-·--'---_-- --------'--~___.___-- _.___-- - -_-- ~J
0 I 00 200 300 400 500 600 700 800 900

order n

13

Q.
(/)

Q.
:I
-0
8
Q.

(/)

Q.
(/)

Q.
::I

13
M.

(/)

Figure 3.5: The speedups Sp of the parallel block algorithms
30-··· ----T------·- --~ ,----·,.--·r- --1

Suuare hlocks

25

20

15

10

5

It

Bf ocksize=30x30
ndim(n)=840
MCPCONFIG: nb=7, np =I. ... ,4
xx paralle! block <lot algorithm
oo parallel block saxpy algorithm

13.149 12.<!~rr
X· • · • • • - • • • • • • ·IC

0 0

6.809 . ..

18.661
.x

0

o~--~-----'-------~--~~---'------~--'-------~~~--~~
0

30

I 2sr
I
I

20~
I

1J
I

I
I

10~
i
I
I

Sr
II'

0
0

5 10 15 20 25

Number of processors p

Figure 3.6: The speedups Sp of the parallel block algorithms

Souare blocks
Bf ocksize=30x30
ndim(n)=840
MCPCONFIG: np =4l nb=I, ... ,7
xx parallel block dot a gorithm
oo parallel block saxpy algorithm

18.661
)C

11.298 11.298 11:308
0

7.395
X- • • • - - - ·X- • - - • • • -X

0
0

5.508 0
• I(

.x- 0

2.997
()

()

5 10 15 20 25

Number of processors p

14

30

30

CJ')
0... ,-.,
~

....l
~

2

Figure 3.7: The speed of the paraiiel hlock dot algorithm
f"'"'"'"'~ ... ~~~~=~--- --.,.-,

I .-<I L Rectangular blocks 140, ~ x •• ••• x 4
I 00 Blocksizes=6x 126, l 26x 1,6x I . x .. x I
I ' I x I \ ** Blocksizes= l 8x36,36x 1, I 8x I " x

120~
x I . ·x

" tl x

I Blocksizes= l 8x42,42x I, I 8x 1
+ ++ . \ i

* • x I

100~ xx Blocksizes=36x 18, 18x 1,36x I .. J
I • .1

J
i -- Biocksizes=36x24,24x I ,36x 1 •

-~ i

80 I MCPCONFIG' nb=7,np =4 . + •
i . i I "' £ 0 ~;

() ll () 0 i 601 -~

.x ,,

40t
\i"

J .x

;.(. ~ .. l
I . x l

20~ I

~- -1

I
x'

0 I

0 200 400 600 800 1000

order n

Figure 3.8: The speed of the parallel block saxpy algorithm

140 ~ Rectan gul"' hi ocks

I oo Blocksizes= l 26x6,6x l, I 26x I

I 20 r ** Blocksizes=36x 18, 18x l,36x I

1 ++ Blocksizes=42x 18, 18x I .42x l

100 ~ xx Blocksizes= l 8x36,36x I, l 8x l

j -- Blocksizes=24x36,36x I ,24x I

SO~ MCPCONFIG: nb=7, np =4

+

60 + •
• • x

•.• x
•• x

40
0

0
+ .1<

+

. x

() 0

order n

15

x
x + .

0

x x

t

0

Figure 3.9: matvec3

. ~
I

lOO-

---·---------------·1 _____,~----------- ~

I

60>·

1
I

- 7 huses x I = 7 pro i

--- 7 buses x 2 = 14 pro

-.- 7 buses x 3 = 21 pro

20- 7 buses x 4 = 28 pro

I)!.._ _______________ _______ ·- ---------

;) 2!11! -H l!l

l 20 :---------·------------.. -----

JOO-

60-

40:-

!II-
ill

!II
It·

I~ o'L-_____ _
0 200 400 600

!UOO 1200 1400 1600

n - Dimension of Vector

Figure 3.10: matvec3.

+ 5 buses x 4 = 20 pro

o 6 huses x 4 = 24 pro

800 1000

n - Dimension of Vector

16

1800

1800

4 Some experimental results for the matrix-matrix
product

In this section \Ve discuss three different at for m
plication. We assume that the matrices A.,B and Care of sizes nix n 2. n2 x n:3, n 1 x n3

are partitioned in blocks of size a: 1 x a 2 , 0:2 x 0t3 , a 1 x 0: 3 and we assume that

n; = o.iNi. Consider the matrix-matrix product C = A..B, where A = , B = Bk1).

N2
C = (C;J) and Cij = L: AikBkJ• i = L ... , N1; j = 1, ... , N3 . We also assume <x 1, 0: 2 •

k=l

o:3 are chosen so that one block from one from B. and one block C can be

stored completely in the cache (each processing element has a data cache of 8 KBytes), i.e.

0:1a2 + 0:20:3 + 0:1a3:::; 5L where 5L = 2048 for single precision arithmetic and 5L = 1024
for double precision arithmetic. \Ve proceed as follows (here AL. BL and are the cache

work-space arrays and the superscript L means local):

First implementation:
• Block-dot algorithm: ijk-version
(A,k, Bkj, and CJ are block matrices)

cpcf
1 cpcf
'

'cpcf

, cpcf

cpcf

cpcf

parallel
pdo

For i=l:N1
For j=l:.:V3

CL(l : O:i, 1 : 03) = O.OdO
For k=l:N2

critical section bus
load Aik and BkJ into the cache arrays AL and EL, respectively.

end critical section
CL =CL+ AL* BL

End
critical section bus

store array CL = Cij into the main memory.

end critical section
End

End

lc~cf ____ end)(~~!!~-------·····---------------------------······--
The algorithm operates on blocks. The matrices are stored columwise (ordinary Fortran

way) in two-dimensional arrays. In the innermost k-loop, the array CL is kept in cache.

The algorithm is parallelized over the i-loop in such a way that different processors will
treat different iterations of the loop. So at a given time, each processor is computing in­

dependently on different rows of blocks Ci1, j = 1, ... , N3 , of C (see appendix B, locality

example 1 matrix-matrix multiplication). The computation of each block C;1 of C requires

17

k = L .. , and a column of blocks Bkj, k = 1. ... , N2· If we compute
bet\!1/ePn main memory and cache, we find that the matrix A is read

matrix Bis read .V1 tirnes and the matrix C is stored once, so that the
and stores in the block-dot algorithm is given by

1 l
Td = N1 ;V2(a102 + 0:20:3) + a1a3) = n1n3 + n1n2n3(c;; + ;;~).

The total number of operations (additions and multiplications) in the block-dot algorithm
is n2n3. Further. we notice that Td is independent of 02 (for fixed n1, n2 and n3).

Second implementation:
• algorithm: jki-version

Bkr and are block matrices)

cpcf
'. cpcf

parallel
pdo

For j=LV3
For k=l:X2

i cpcf critical section bus

cpcf

cpcf

load BkJ into the cache array BL.

end critical section
For i=l:N1

critical section bus

, cpcf

load Aik and Cij into the cache arrays AL and CL, respectively.
end critical section

I
cpcf

cpcf

CL= er+ AL* EL
critical section bus

store array C1 =CiJ into the main memory.
end critical section

End
End

End
cpcf end parallel

-----~·-··-------·---

the inner loop over k, the block Bkj is kept in the cache. The algorithm is parallelized
over the j-loop. So at a given time, each processor is computing independently on different
columns of blocks , i = l, .. ., N1, of C. We have regrouped the load and store instruc­
tions inside the i-loop of the algorithm in one critical section bus. This eliminates the
overhead caused by having more than one critical section bus in the i-loop (see appendix
B, locality example 2 matrix-matrix multiplication). In a similar way, as in the previous
algorithm. the total number T5 of reads and stores between the main memory and the

18

cache in the block-saxpy algorithm is given by

(8) 1 2
Ts = N3N2(N1(0.1a:2 + 20.10:3) + D:2D:3) = n2n3 + nin2n3(---- + ---).

D:3 0:2

The total number of operations in this algorithm is 2n 1n2n3 , and Ts is independent of a: 2

for fixed ni, n2 and n3. The matrix A is read N3 times, the matrix B is read once and the
matrix C is loaded N2 times and stored N2 times.

Remark:
The choice made in the earlier described algorithms on the loop parallelized is somewhat
arbitrary because the three loops are entirely interchangeable and offer similar opportuni­
ties for parallelization.

We have carried out various experiments in double precision with the block-dot and
block-saxpy algorithms. First, we took o. 1 = o.2 = 0:3 = 18, and n 1 = n2 = n3 = n. We
measured the MFLOP-rates of our implementations for n = i * 18, i = 1, ... , 30, on the
following configurations of the matrix coprocessor: p = nb x np processors, for nb = 7,
nP = 1, .. ., 4, and for np = 4, nb = 1, ... , 7. The results are displayed in figures 4.1-4.4. We
see for example that the maximal performance is reached when n = 28 x 18 = 504, and
for both algorithms, the performance increases with the number of processors in use.

We measured the total computing time varying nb and keeping fixed np and the total
computing varying np and keeping fixed nb. The results are given in tables 4.1 and 4.2.
For a matrix of size n = 504, we have computed the speedups (with respect to the wall
clock time, on one processor) for the various configurations given above. There are given
in figures 4.5-4.6. Since the block size is 18 x 18, there are 504/18 = 28 iterations of
the outermost loop of both algorithms, so we have 28 independent tasks for the available
number p of processors. This means that if 28 is divisible by p, we expect a speedup by
a factor of about p. Otherwise, this speedup factor will be smaller. The results in figures
4.5 and 4.6 confirm this.

So far we have considered (square) matrices of order that are multiples of the (square)
block size. If now the block matrices have different sizes 01 x 0:2, 02 x 0:3 and 0:1 x a3

respectively, then the computing time Cd, the communication time Md, and their quotient
for the block-dot algorithm can be estimated by

(9)

(10)

(11)

19

For the block-saxpy algorithm, the computing time Cs, the communication time Ms, and
their quotient can be estimated by

(12)
a3

(13) Ms~ f N3/nbl{n1n2(l + 2-) + a3n2}/r
a2

(l4) Ms ~ f N3/nbl 1 { ~ + 2_ + ~ }R/r
Cs fN3/pl 2 0:3 0:2 nl

Similar to the matrix-vector case discussed in Section 3, we see that the computing time
can be decreased by increasing nb or np, but that the communication time can be decreased
only by increasing nb (and not by increasing np)·
From (11), if o:1 and a3 increase for fixed order of the matrices A and B then the ratio ~
decreases. Similarly, from (14) if o:2 and a3 increase for fixed order of the matrices A and
B then the ratio ~: decreases and this leads of course to a better performance.
We have performed tests to demonstrate these properties, which are discussed more in
details in Section 5. So we measured the total computing time and the MFLOP-rates of
our implementations, varying the processor's cache block sizes.

For the first implementation, we took square blocks of size o:1 = 18, o:2 = 18, o:3 = 18
and rectangular blocks of size o: 1 = 18, o: 2 = 36, o:3 = 6; a 1 = 18, o:2 = 6, o:3 = 36; a 1 = 6,
0:2 = 36, 0:3 = 18 and a 1 = 6, o:2 = 18, a3 = 36 respectively, for n1 = n2 = n3 = n, where
n = i * 36, for i = 1 , ... , 15. For the second implementation, we took the same square
blocks and rectangular blocks of size a 1 = 18, a 2 = 36, a 3 = 6; o:1 = 6, a2 = 36, a3 = 18;
0:1 = 6, 0:2 = 18, 0:3 = 36; a 1 = 36, 0:2 = 18, 0:3 = 6 respectively. For both algorithms,
we fixed the configuration of the matrix coprocessor at p = 28 processors, i.e, nb = 7, and
np = 4. The results are displayed in figures 4. 7 and 4.8.

Third implementation:
The algorithm used here, is implemented in terms of a call to level 3 BLAS on the matrix
coprocessor. The level 3 BLAS incorporates matrix-matrix operations. The level 3 BLAS
used here is: RGMMUL for multiplying two matrices (see Appendix B, locality example
3 matrix-matrix multiplication). We measured the MFLOP-rates of this implementation
for n = i * 100, i = 1, ... , 10, on the following configurations of the matrix coprocessor: for
nb = 7, np = 1, ... , 4, and for np = 4, nb = 1, ... , 7. The results are displayed in figures
4.9 and 4.10. The maximal performance is reached round n = 500, and increases with the
number of processors in use.

20

Table 4.1: The total computing time for the block-dot
algorithm (in seconds) with n1 = n2 = n3 = n.

------ ··-- ---- ---------------·--~!

.1 nb x np i
'i n ! 1 x 1 2 x 1 3 x 1 4 x 1 5 x 1 6 x 1 7 x 1 ii
rt-----~---------------------------------- -- - -------------- "------ ----------- --------------n
:1 126 I 0.439 0.251 0.188 0.125 0.125 0.125 0.0632 ,:
11 252 i 3.501 1.750 1.250 1.001 0.750 0.750 0.500 11

11 'I II
11 378 11.799 6.181 3.933 3.372 2.810 2.248 1.686 !i

1

,,,:

1

1

.. 5~4 ! 2
1
7.x94

2
6 13.973 9.982 6.988 5.989 4.991 3.993

11

""" 2x2 3x2 4x2 5x2 6x2 7x2
0T26 i 0.253 0~121 0.126 0.064 ----o~cf64"o~o~o.o~
![252 i 1. 767 1.008 0. 755 0.505 0.503 0.503 0.253 11

:: 378 i 6.228 3.396 2.262 1.700 1.696 1.134 1.129 i,

:! 504 I 14.085 7.044 5.031 4.018 3.019 3.011 2.014 ii
1

; I 1 3 2 x 3 3 x 3 4 x 3 5 x 3 6 x 3 7 x 3 ,I n : x __________ 11

:1 126 I 0.191 0.121 0.064 0.064 0.064 0.064 0.063 ii
1

1 252 I 1.269 0. 759 0.505 0.504 0.254 0.254 0.253 i1

1j 378 I 3.987 2.276 1.702 1.140 1.137 1.132 0.571 :1
], ' ,1

,~, 504 I 10.096 5.051 4.032 3.021 2.023 2.018 2.010 ii
----,------------------------ -----------------ti

!, n : 1 x 4 2 x 4 3 x 4 4 x 4 5 x 4 6 x 4 7 x 4 I!
~-t------ ----------· -------------· --ji
Ii 126 ; 0.129 0.065 0.064 0.064 0.064 0.064 0.063 11

11 I I ~
1! 252 I i.020 o.510 o.506 0.256 0.254 0.254 0.253 :1
![I '!

i! 378 I 3.424 I.714 i.142 i.140 1.136 o.572 o.570 11

~~o~_LI·10_4 4.051 3.031 2.026 2.022 2.014 i.016 J

21

Table 4.2: The total computing time for the block-saxpy
algorithm (in seconds) with n 1 = n 2 = ns = n.

nb x np
n 1 x 1 2 x 1 3 x 1 4xl 5 x 1 6 x 1 7 x 1

126 0.443 0.253 0.189 0.126 0.126 0.126 0.063
252 3.525 1.763 1.259 1.007 0.756 0.755 0.504
378 11.882 6.224 3.962 3.395 2.829 2.264 1.698
504 28.143 14.072 10.053 7.036 6.032 5.027 4.021
n 1 x 2 2x2 3x2 4x2 5x2 6x2 7 x 2

---------~---~-------

126 0.258 0.129 0.128 0.0653 0.065 0.065 0.063
252 1.792 1.020 0.764 0.512 0.509 0.508 0.257
378 6.300 3.434 2.288 1.721 1.714 1.147 1.141
504 14.239 7.121 5.089 4.060 3.054 3.040 2.038
n 1 x 3 2x3 3x3 4x3 5x3 6x3 1><3

----·-
126 0.195 0.129 0.066 0.065 0.065 0.065 0.064
252 1.291 0.769 0.516 0.511 0.259 0.259 0.257
378 4.046 2.308 1.723 1.156 1.151 1.146 0.579
504 10.223 5.113 4.078 3.054 2.048 2.044 2.031
n 1 x 4 2x4 3x4 4x4 5x4 6)(4-7·-x-4-

126 0.133 0.067 0.066 0.065 0.065 0.065 0.063
252 1.040 0.520 0.514 0.262 0.259 0.259 0.253
378 3.478 1.743 1.163 1.155 1.149 0.583 0.570
504 7.207 4.107 3.078 2.055 2.048 2.038 1.016

----- --

So far we have studied different block algorithm techniques applied to the simple matrix­
vector and matrix-matrix operations. If now we examine the behavior of the numerical
results of our implementations, which are given in the figures 3.1-3.6 and 4.1-4.6, it can be
seen that the total computing time follows the same pattern in all the given figures. For
the matrix-matrix product the measured MFLOP-rates for the block-dot (resp. block-saxpy)
algorithm are linear with the order of the matrices if the processor configuration is used
once i.e., Nif p ~ 1 (respectively Ns/P ~ 1). If Nif p > 1 (respectively N3 /p > 1) then the
MFLOP-rates become non-linear as a function of the order n and drop after each use of
the processor configuration, and this happens lNif pJ times (respectively lN3 /pJ times).
For fixed n 1 , n 2 and n 3 , we generally expect for all algorithms that the total computing
time decreases as nb increases for fixed value of np and decreases slightly as nP increases
for fixed value of nb. The information of the following tables support this. The tables 3.1,
3.2, 4.1 and 4.2 show the computing time obtained by varying nb and keeping fixed nP and
the total computing time obtained by varying nP and keeping fixed nb. For the tables 3.1
and 3.2, we took n = 30 * i, i = 7, 14, 21, 28 and blocks of size 30 x 30. For the tables 4.1

22

and 4.2, we took n = 18 * i, i = 7, 14, 21, 28 and blocks of size 18 x 18.
It is observed in view of the given tables that the total computing time on the matrix

coprocessor configuration with nb = a and np = b where a > b is slightly less than that on
a configuration with nb = b and np = a (for a given order n). This again illustrates the
communication problem if more than one processors are configured on the same bus. We
conclude that we have to choose the value of nb as close as possible to the maximum of
the matrix coprocessor bus configuration in order to minimize the total computing time.

23

C/l
Q.

0
..J
t.I...
::E

Figure 4.1: The speed of the parallel block dot algorithm
··- ··--------·-·· -···-····-····-- -·- --·;------~-----·;--------

250,
Square blocks
Blocksize= I 8x 18
MCPCONFIG: nb=7.np =I. ... A
++ nb*npb=7xl "

200f- xx nb*npb=7x2
** nb*npb=7x3 0

I

00 nb*npb=7x4 •
•

150 •
•

•
1001 •

•

•
+

50'- • +
+ + ..

•
I

0 c_ ·---·-·--------·

0 100 200 300 400

order n

Figure 4.2: The speed of the parallel block dot algorithm
250 ,--------

Square blocks
Blocksize= I 8x 18
MCPCONFIG: np =4. nb=I, ... ,7
-. nb*npb=lx4

200 ~.- -- nb*npb=2x4
nb*npb=3x4

++ nb*npb=4x4
xx nb*npb=5x4
** nb*npb=6x4

150 ~ oo nb*npb=7x4
I

100~

I

50~
I

I
I OL__ ___ _
0 100 200

II

II

•
Ill

300 400

order n

24

...,.---~ -·-
0

()

•
•

+
+

500

0

()

500

rJ'J
~
q
ii:
2

Figure 4.3: The speed of the parallel block saxpy algorithm

250 Square blocks ()

Blocksize= l 8x 18
MCPCONFIG: nb=7, nr =1, ... ,4

ll

++ nb*npb=7xl ll

200
xx nb*npb=7x2
** nb*npb=7x3 0

00 nb*npb=7x4
•

ft

150
•

•
•

• 100
• x

•
+

+
soL • + +

• +

•
()--··-- ---- --- _.._____-~-- _________i..___. ____

() 100 200 300 400 500

order n

Figure 4.4: The speed of the parallel block saxpy algorithm
~--------------~----~----~-------,-----,

250- Square blocks
Blocksize= 18x 18
MCPCONFIG: np =4. nb= I, ... ,7

: nb*npb=lx4
200 L -- nb* npb=2x4

nh*npb=3x4
++ nb*npb=4x4
xx nb*npb=5x4
** nb*npb=6x4

ISO oo nb*npb=7x4

100

50

()

0

•
•

II

•
•

Ill • •

order n

25

25

20

0..
C/l
0..
::I 15 -0
<!.)
<!.)
0..

C/l

10

5

I
ol~
0

25

20

0..
C/l
0.
::I 15 -0
<!.)
<!.)
0..

C/l

IQ~
5l

LI If

0 .
0

Figure 4.5: The speedups Sp of the parallel block algorithms
- --, - --·---~-····- -· --r~ ·-~ ---·-----r-- ----- --- --,--- ---------- ---·-- '"y-------- ----- --J

~?g~~~i~~~cf'Jx18 2 '·51} \
ndim(n)=504
MCPCONFIG: nb=7, np =1, ... ,4
xx parallel hlock dot algorithm
oo parallel block saxpy algorithm

13.867 13:898
& • - - •• - - •• - •• - -u

6.997
.If

5 10 15 20 25 30

Number of processors p

Figure 4.6: The speedups Sp of the parallel block algorithms

Square blocks
Bfocksize= 18x 18
ndim(n)=504
MCPCONFIG: op =4, nb= 1, ... ,7
xx parallel block dot algorithm
oo parallel block saxpy algorithm

27.513
11

13.791 13.823)3.823
!i• -----tt-······-11

9.205

6.898'
. ".

3~934
8

-----'-------
5 10 15 20 25

Number of processors p

26

30

'.f'l
0...
(""';
'-'

' -~

;r.
c...
""' ~
r.

~

Figure 4.7: The speed of the Id block dot algorithm

Square blocks
:!SO~ oo Blocksize= I 8x 18

200

150

100

50

Rectangular blocks
* * Blocksizes= l 8x36,36x6, 18x6
++ Biocksizes= I 8x6,6x36, l 8x36
xx Blocksizes=6x36.36x 18,6x 18
-- Biocksizes=6x 18, ! 8x36.6x36
MCPCONFIG: nb= 7, np =4

\,

" "
l

~-

~

\I

~

•
oi___

0 100 200

" K'
u
x

300

order n

,,

"
.~

;JI;

400

+ .

-~.

+

.x·

Figure 4.H: The speed of the parallel block saxpy algorithm

Square hlocks

250r oo Blocksize= 18x 18
I -------------

Rectangular blocks v I * * Blocksizes= I 8x3o.36x6, I 8x6
I ++ Blocksizes=6x36.36x l K6x 18

~· 200~ xx Blocksizes=6xl8, l 8x36.6x36
! -- Blocksizes=36X"f-8. I 8x6,36x6 \/

MCPCONFIG: nh= 7, nr =4
\/

i
150 ~ +

I () +

+
' " I +

" IOOf- +
I " ! +

I " +

50~ ()

I +
I + I " I
I +
I n

+

0
x

0 100 200 300 400

order n

r _(

0

+ .

x

.,
!

i
j
I

__j

500

~\ ~
I
I

1
+

1

1
I x

I
i
I

1
I

500

Figure 4.9: rgmmul
1000

900

800

700

600
rJJ
0..
0 500 <;::::

~

400

''
/,ii / II

/I ' I

/ 1 I I
11 I I

/\ ,' ._ ., ~ _, I I

I I 1, I I~ I .. I \1'"
/ \ _1 1,' I\ I ,',

;:v/· ...
300

-: _7~4 --- -
200 - - - 7x3

100 ... 7x2

- . - 7xl
0
0 100 200 300 400 500 600 700 800 900 1000

n - Dimension of Vector

Figure 4.10: rgmmul, 4 processors per bus
I OOO,-----------,.-

900 f "'· !· ;\ ' '\ .A Pi\.~~\ /\ I \ /_/ \._; 'J'~ I/ '-"'\ I x __,.,., •/
/ v'

800

700

600

500

400

300

200

100

100 200 300 400 500 600 700 800 900 1000

n - Dimension of Vector

28

5 A performance model for matrix-vector and matrix­
matrix product

In this section we model the total cost of communication, i.e. the cost of sending
or receiving messages (like load, store instructions) and the time spent in computing. We
assume that the sending or receiving of n floating point numbers between one processor
and the global memory takes ~ seconds, where r is the rate by which a message can be
transferred, expressed in words per second.
We assume that a reasonable estimate of the time T pa required to execute a program of
N-equal processes on a shared parallel MIMD computer of matrix configuration p = nb x np
processors (if we assume that the algorithm uses only the pfp directives cpcf critical
section bus) is as follows:

N N
(15) Tpa ~ f - lTcomp + f - lTcomm seconds,

p nb

where, Tcomp and Tcomm are respectively the computing time and the communication over­
head required to execute one process on one processor. We neglect the idle time of a
processing element waiting when another one is accessing the memory, since this very much
depends on the ratio between Tcomp and Tcomm, and on the places in the algorithm where
communication is performed. The MFLOP-rate, the speedup and the efficiency are defined,
as usual, by

(16)

the speed-up by

(17)

MFLOP _ the total number of operations .
- rate - T, ,

pa

where T1 is the time on one processor, and the efficiency by

(18)
Sp ~ Ep = - x 10010.
p

Furthermore, since each matrix bus has a peak bandwidth of 160 MBytes per second, we
haver= 2 x 107 words (of 8 bytes) per second. At any time only one processing element
along a matrix bus is allowed to access the shared storage area, and each processing ele­
ment produces up to 40 MFLOPS of double precision multiply and add performance. So
we have R = 4 x 107 flops per second.

The performance model for matrix-vector product:
For each iteration step of the k-loop of the block-dot algorithm, one block Ak from matrix
A and one segment from vector b are sent to each processor; after k iterations one array cL

is sent to the main memory. Thus, we have a 1 * a2 + a2 data transfers and 2a1 * a2 ft.ops

29

performed on different iterations k. If the computation proceeds at R flops per second and
the communication proceeds at r words per seconds then the cost of each step of the i-loop
of the block- dot algorithm requires a communication time Tcomm d and a computing time
Tcomp d given by

For the block-saxpy algorithm, the cost of each step of the k-loop requires a communication
time Tcomm 8 and a computing time Team/ given by

In particular, if n1 = n2 = n, and a 1 = a:2 = a, with n = aN, then each step of i-loop of
the block-dot algorithm requires: 2N a:2 j R + { N a 2 + (N + 1)a:}/ r seconds and each step of
j-loop of the block-saxpy algorithm requires: N(2a:2+a:)/ R+{ N a:2 + (2N + l)a:} /r seconds.
Thus, the ratio of the computing time to the communication time on one processor for the
block-dot algorithm is: {l+d+~nr/ R ~ 1.
The ratio of the computing time to the communication time on one processor for the block-

saxpy algorithm is: {l+~i~~)} r / R ~ 1.
If now the computing time and the communication time are modeled as given above, then
an estimate of the time Ti d (resp. Ti 8) required to execute the program on one processor
and the time Tpad (resp. Tpas) required to execute the program on p processors for the
block-dot (resp. block-saxpy) algorithm looks as follows:

(21)

(22)

(23)

d 1
T1 ~ 2n1n2/R+ {n1 +n1n2(l + -)}/r

0:1

T1 s ~ ni n2 (2 + ~) / R + { n2 + ni n2 (1 + ~)} / r
0::2 0:2

Tpad ~ Cd + Md and Tpas ~Cs+ Ms

where Cd, Md, Cs and Ms are given in section 3, formulas (3)-(6). The MFLOP-rates are
given by

(24) MFLO n 2n1 n2 d MFLOP 2n1 n2
r d ~ -;:;:;d an s ~ --s-

i pa Tpa

In tables 5.1 and 5.2 we present the model and observed values of T1 T, S and MFLOP
' pa, p '

for the block-dot and the block-saxpy version of the matrix-vector algorithm, respectively.

30

Table 5.1: Theoretical and observed times (in seconds), speedups and
MFLOP-rates for the block-dot version of the matrix-vector
algorithm with n 1 = n2 = n = 1008 and p = 28.

-·

~n~~~!_ I
--· M.4-

001, 002 cd Md __ Qi},__

6,126 6 0.181 x 10-2 0.84 7 x 10-2- 4.670
18,36 2 0.181 x 10..:.i o. 766 x lo-i 4.226
18,42 2 0.181 x 10-2 0.766 x 10-2 4.226

~·

36,18 1 0.181 x 10-2 o.746 x 10-2 4.115
36,24 1 0.181 x 10-2 0.746 x 10-2 4.115
~--- :l4 0.211 x 10-2 o.867 x 10-2 42,18 2R 4.099

126,6 8 0.635 x 10-:l J l.~~l x 10-:l 2.017
- .2£.
T1d Tpad sa

p MF LO Pd
model exp model exp model exp model exp

I--------------------------·-----

i.028 x 10-2 0.298 x lo=r
--··· ---~-------- ----

197.510--06S:-i60 0.110 0.486 10.700 16.308
0.104 0.311 o.948 x 10-2 0.175 x 10-1 10.970 17.771 214.307 116.140
0.104 0.309 0.948 x 10-2 0.112 x 10-1 10.970 17.965 214.307 117.820
0.103 0.265 0.928 x 10-2 0.141 x 10-1 11.099 18.794 218.962 143.800
0.103 0.261 o.928 x 10-2 0.135 x 10-1 11.099 19.333 218.962 150.070
0.1028 0.256 fo79 x 10-2 0.153 x 10-1 09.527 16. 732 1188.264 132.54~
0.102 0.229 i.915 x 10-2- 0.294 x 10-1 - 05.323 07.789 106.035 069.020

-----·-- ·-- -- ----

31

Ii

11

Table 5.2: Theoretical and observed times (in seconds), speedups and
MFLOP-rates for the block-saxpy version of the matrix­
vector algorithm with n1 = n2 = n = 1008 and p = 28.

0:1, a2 n a2 Cs Ms !ef.A.
'D c.

126,6 6 0.604 x 10-:.: 2.419 x 10-~ 4.005
36,18 2 0.322 x 10-i 1.291 x 10-i 4.009
42,18 2 0.322 x 10-2 1.291 x 10-2 4.009
18,36 1 0.252 x 10-2 1.008 x 10 ·2 4.000
24,36 1 0.252 x 10-2 1.008 x 10-2 4.000
18,42 ~4 0.272 x 10-i 1.089 x 10-~ 4.003 28

6,126 ~ 0.655 x 10-:.i 1.352 x 10-~ 2.064 28

T1s Tpas s s p MFLOPs
model exp model exp model exp model exp
0.122 0.289 3.023 x 10-:.: 0.589 x 10-1 4.035 04.906 067, 222 034.476
0.108 0.272 1.613 x 10-2 0.243 x 10-1 6.695 11.193 125, 984 083.619
0.108 0.265 1.613 x 10-2 0.237 x 10-1 6.695 11.181 125, 984 085.642
0.105 0.295 1.260 x 10-2 0.212 x 10-1 8.333 13.915 161.280 095.502
0.105 0.276 1.260 x 10-2 0.196 x 10-1 8.333 14.081 161.280 103.410
0.104 0.293 1.361 x 10-2 0.231 x 10-1 7.641 12.683 149.311 087.998
0.102 0.470 2.007 x 10-:.i 0.788 x 10-1 5.082 05.964 101.250 025.769

In general, as long as t;- ~ 1 the observed total computing times decrease (respectively
MFLOP-rates increase) for the block-dot version as a 1 increases. Similarly, as long as
!f;- ~ 1 the observed total computing times decrease for the block-saxpy version as a 2 in­
creases. Moreover, the block-dot algorithm has a better performance than the block-saxpy
algorithm. This is due to the fact that the first algorithm uses critical section bus
directives, while the second algorithm uses critical section and critical section bus
directives.

The performance model for matrix-matrix product:
We proceed as in the previous performance model for matrix-vector product. We consider
firstly the block-dot algorithm. For each iteration step of the k-loop, two blocks Aik and
Bkj are sent to each processor; after k iterations one array CL is sent to main memory.
Thus, we have a 1 * a2 + a2 * a 3 data transfers and 2o:1 * a 2 * a 3 flops are performed on
different iterations k. If the computation proceeds at R flops per second and the commu­
nication proceeds at r words per second then the cost of each step of the i-loop requires a
communication time Tcomm d and a computing time Tcomp d given by

32

In the similar way, for the block-saxpy algorithm, the cost of each step of the requires
a communication time Tcomm s and a computing s given

s = 2o /R
In particular, if n1 = n2 = n3 = n, and Cl' 1 = a 2 = n3 = a, n, = .Y,n,, = L 2, 3
the cost of each step of the i-loop of the block-dot algorithm requires: 2o3 N2 / R + l +
2N seconds and the cost of each step of of the algorithm
requires: 2o:3 "V2 / R + N(l + 3N /r) seconds. Thus, the ratio of the computing time to
the communication time on one processor for the block-dot algorithm is: r / R, and the
ratio of the computing time to the communication time on one processor f~r t'he
a1aorithm is rriven bv -1.-2 ' r/R 1 b b +~ ..
If now the computing tim~ and the communication time are modeled as given above. t a
reasonable estimate of T1 d, (resp. T15), T pad (resp. Tp/) and the .\lFLOP-rates M FLO Pd,

(resp . .:\!FLO Ps) for the block-dot (resp. block-saxpy) algorithm looks as follows:

d 1 1
T1 ~{n1n3+n1n2n3(+--)}/r+2n1n2n3/R

0'3 <11
(27)

(28) T1s ~ {n2n3 + n1n2n3(1 + 2)}/r + 2n1n2n3/R
0'3 0'2

(29) Tpa d ~ Cd + ~'vf d and Tpa s ~ Cs + ;\1"

where Cd, Md, Cs and Afs are given in section 4, formulas (9)-(14).

(30)

The model and observed values of T1 , Tpa, SP and ~1FLOP are given in Tables 5.3 and 5.4,
for the block-dot and the block-saxpy version of the matrix-matrix algorithm, respectively.

33

Table 5.3: Theoretical and observed times (in seconds), speedups and
MFLOP-rates for the block-dot version of the matrix-matrix
algorithm with n1 = n2 = n3 = n = 504 and p = 28.

a1, a2, a3 ~ cd Md MA
1' cd

6,36,18 3 0.228 0.205 0.896
6,18,36 3 0.228 0.179 0.785
18,36, 6 1 0.228 0.205 0.896
18,18,18 1 0.228 0.103 0.452
18, 6,36 1 0.228 0.078 0.341
36,6,18 l4 0.457 0.078 0.170

f ~ 36,18,6 '8 0.457 0.179 0.392
T1d Tpad sd

p MFLOPd
model exp model exp model exp model exp
7.836 43.463 0.433 1.597 18.097 27.215 590.460 160.010
7.658 43.663 0.408 1.600 18.769 27.289 627.200 160.270
7.836 29.108 0.433 1.075 18.097 27.077 590.460 238.020
7.125 27.946 0.332 1.018 21.460 27.451 771.148 251.510
6.947 28.581 0.306 1.049 22. 702 27.246 835.030 243.970
6.947 24.429 0.535 1.771 12.985 13.793 478.372 144.580
7.658 25.015 0.636 1.807 12.041 13.843 402.051 141.700

34

Table 5.4: Theoretical and observed times (in seconds), speedups and
MF LOP-rates for the block-saxpy version of the matrix­
matrix algorithm with n 1 = n2 = n3 = n = 504 and p = 28.

a1, a2, a3 ~ Cs Ms M.
D c.

36,18, 6 3 0.228 0.255 1.563
18,36, 6 3 0.228 0.068 0.896
36, 6,18 1 0.228 0.357 1.563
18,18,18 1 0.228 0.154 0.674
6,36,18 1 0.228 0.103 0.452
18,6,36 14 0.457 0.332 0.726

r~ 6,18,36
·~R

0.457 0.128 0.281
T1s Tpas ss p MFLOPs

model exp model expl exp2 model expl exp2 model expl exp2
7.303 25.399 0.484 1.144 0.964 15.08 22.20 26.34 528.540 223.820 270.520
7.125 28.607 0.296 1.234 1.048 24.07 23.18 27.29 862.241 207.370 244.130
8.903 26.521 0.586 1.208 1.010 15.19 21.95 26.25 436.904 211.370 253.480
7.480 28.143 0.382 1.140 1.032 19.58 24.68 27.27 668.815 224.520 247.960
7.836 42.389 0.332 1.665 1.543 23.60 25.45 27.47 771.147 153.720 165.880
8.903 30.501 0.789 2.357 2.257 11.28 12.94 13.51 324.413 108.620 113.450
8.192 43.203 0.586 3.199 3.156 13.97 13.50 13.69 436.904 080.025 081.111

Note: expl (resp. exp2) denotes the numerical experiment performed without (resp. with)
critical section bus regrouping technique, see Section 4.

In the same way as in the previous model, we expect that as long as tv;- ~ 1 the ob­
served total computing time will decrease for block-dot algorithm if a 1, a 3 increase. This
is supported by the information of Table 5.3. We expect also that as long as &. ~ 1
the observed total computing time decreases for block-saxpy if a2, a3 increase. This is
supported by the information of Table 5.4. So the property given in Section 4 is verified
now for the block-dot algorithm (except for blocks of size a 1 = 18, a1 = 6 and a3 = 36).
Furthermore, the property given in Section 4 is not verified for the block-saxpy algorithm.
What this suggests is that the total idle time becomes more significant. Therefore, the
total computing time is affected more and more, particularly if the number of processes is
increased, and this causes a degraded performance.
For RGMMUL, the subroutine has been programmed to achieve as close as possible to
the theoretical values of the MFLOP-rates. In our implementations, we have reached the
theoretical results. The figures 4.9 and 4.10 confirm this.

35

Remark: The choice made on the processor's cache block sizes is not arbitrary. The
block sizes have to satisfy some constraints, due to some cache characteristics. Firstly,
the block sizes have to satisfy: 0!1 = 0 [mod 2), a2 = 0 [mod 2) (with 0!3 arbitrary) if we
compute with double precision arithmetic. Secondly, the block sizes must be chosen so
that the block matrices can be stored completely in the cache. Finally, the block sizes have
to satisfy: ni = ai x Ni, i = 1, 2, 3. The two last conditions are also mentioned in the
previous sections.

Conclusions and remarks:
We have carried out several experiments with simple linear algebra operations on the Cray
S-MP System 500 matrix coprocessor. In particular, we have studied different block algo­
rithm techniques applied to the matrix-vector and matrix-matrix operations. A number of
characteristics related to the matrix coprocessor configurations and the block size influence
on the matrix-vector and matrix-matrix product have been studied. Furthermore, we have
presented a performance model for both operations concerning the total computing time
and the MFLOP-rates. We have compared this with our experiments. It turned out that
the numerical results are worse than what is predicted by the performance model. This
can partly be explained by the fact that
•The block algorithms are not implemented in terms of calls to Optimal Hand Coded Math
Routines (Matrix Coprocessor's vector primitives), like useful routines as _ dvmv and _
dvmm (FPS9la). These routines are designed to operate on data that have been put in
cache. The subroutine _ dvmv (resp. _ dvmm) multiplies the elements of a matrix and
a vector (resp. a matrix) in the cache.
• Processing elements on the same bus can compute in parallel, but can not communicate
with the main memory at the same time. Our performance model only roughly accounts
for the idle time induced by this bottleneck. (This idle time is a complicated function of
the number of processing elements per bus, of the ratio of computing to communication
time, of the places in the algorithm where communication has to be carried out, and of the
synchronization points in the algorithm.)
• Our performance model does not account for overhead caused by loops, the use of mpp
and pfp directives, and data initialization.

36

APPENDIX A: Some hardware and software characteristics of the System 500
matrix coprocessor

A.1 mpp and pfp directives
mpp and pfp comment directives have to be used for parallelizing programs. For either
type a preprocessor is invoked which interprets these directives creates special Fortran
code for the matrix coprocessor, to be compiied and executed subsequently by the Fortran
compiler.

• mpp directives
The scope of an mpp (matrix procedure preprocessor) directive is a subroutine or a
function. The directive informs the preprocessor that the subroutine or function
follows has to be executed on the matrix coprocessor. It specifies the type and use
(e.g., INPUT, OUTPUT, or INOUT) of the parameters of the subroutine or
function, and of common blocks, if appropriate. An mpp directive has the general
form:

CMCP directive [modifiers]

where directive may be one of the following:

SUBROUTINE
FUNCTION
INPUT
OUTPUT
IN OUT
CLIENT
SERVER

modifiers supplies one or more additional arguments to the directive. For details
see [FPS91a, pp. 6-1/6-9].

• pfp directives
The scope of a pfp (parallel fortran preprocessor) directive is the code that imme­
diately follows the directive. It specifies which loops in a Fortran program have to
be executed in parallel. A pfp directive has the following general form:

CPCF directive [modifiers]

where directive may be one of the following:

PARALLEL
END PARALLEL
SINGLE PROCESS

37

END SINGLE PROCESS
PDO
CRITICAL SECTION
CRITICAL SECTION BUS
END CRITICAL SECTION
PRIVATE
BARRIER

supplies one or more additional arguments to the directive. For details
see [FPS9la. pp. 7-1/

38

APPENDIX B: The listings of our parallel Fortran block subroutines for matrix­
vector and matrix-matrix multiplication.

c * * * Locality example 1 matrix-vector multiplication

c Fortran matrix-vector multiply executed in cache
c
CMCP SUBROUTINE Block-dot(A,B,C,n,alpha1,alpha2,lda)
CMCP INPUT REAL*B A(lda,n),B(n)
CMCP OUTPUT REAL*B C(n)
CMCP INPUT INTEGER*4 n,alpha1,alpha2,lda
c
c Parallel Fortran matrix-vector multiplication
c

c***
Subroutine Block-dot(A,B,C,n,alpha1,alpha2,lda)

c***
ccccc PURPOSE:
c---
c This subroutine determines matrix-vector multiplication with block dot
c approach ik-version, Ci=Ci+Aik*Bk. Aik is a block matrix of size
c alpha1*alpha2, Bk and Ci are segment vectors of size alpha2, alpha1
c respectively, where
c Aik = A((i-1)*alpha1+1:i*alpha1,(k-1)*alpha2+1:k*alpha2),
c Bk= B((k-1)*alpha2+1:k*alpha2) and Ci= C((i-1)*alpha1+1:i*alpha1).
c The subroutine is parallelized over the i-loop in a such way that
c different processors will perform different iterations of the loop.
c Each processor, at a given time will compute independently on different
c segments Ci, i=l, ... , N1, of C.
c--
ccccc VARIABLES IDENTIFICATION:
c
c On entry:
c
c A real*B(lda,*) the matrix A.
c B real*B(*) the vector B.
c n integer*4 the order of A, B; n must be
c less than lda.
c alpha1,alpha2 integer*4 the sizes of the block
c matrices Aik,Bk and Ci.
c lda integer*4 the row dimension of array A
c CA, CB real*8 storage allocations for the
c transferred block matrices Aik,

39

c Bk from the matrix registers
c into the cache.
c On exit:
c
c
c
c
c
c

cc

c

c Local variables:
c
c
c
c
c
c
c
c

ib, kb
i,k
bound1,bound2
KVL
volume

real*8

integer*4
integer*4
integer*4
integer*4
integer*4

storage allocation for the
multiplication of the vectors
CA by CB in the cache.
the matrix A by B multiplication.

specify the number of block matrices.

specifies the cache size.
specifies the total number of
data transferred into the cache.

ccccc TYPE DECLARATION AND STORAGE ALLOCATION:
c

integer*4
real*8
real*8
integer*4
integer*4

n,alpha1,alpha2,lda
A(lda,*),B(*),C(*)
CA(1),CB(1),CC(1)
ib,kb,i,k,bound1,bound2
KVL,volume

c---
ccccc EQUIVALENCES:
c A non-constant expression is not allowed as an index in the array
c MCP_DREG of the EQUIVALENCE-statements given below where a constant
c expression is required. For this reason, we illustrate in this algorithm
c by means of an example how the cache can be divided into three cache
c arrays of 64-bit elements.
c Suppose the block matrix Aik is of size 18x36 and the segment vectors
c Bk, Ci are of size 36, 18 respectively.
CCC CC

c

INCLUDE
PARAMETER

'mcpreg.h'
(KVL=((MCP_DREG_SIZE)/2)*2)

c CA is a cache array of length KVL-(18+36)=970.
EQUIVALENCE (CA(1),MCP_DREG(1))

c
c CB is a cache array of length alpha2=36.

EQUIVALENCE (CB(1),MCP_DREG(1+KVL-54))

40

c
c CC is a cache array of length alpha1=18.

EQUIVALENCE (CC(1),MCP_DREG(1+KVL-18))
c--

c
CPCF
CPCF
CPCF
c

c

bound1=n/ alpha1
bound2=n/alpha2
volume=alpha1*alpha2+alpha2+alpha1
if ((n.NE.alpha1*bound1).0R.

$ (n.NE.alpha2*bound2).0R.
$ (volume.GT.1024)) then

$

print
print

print
stop

endif

PARALLEL
PRIVATE
PDQ

*·
*·

*·

'alpha1 or alpha2 is not a divisor of n'
'alpha1 =', alpha1,'alpha2 =', alpha2,

' n =', n
'or data does not fit in the cache'

i,k,kb

do 120 ib=1,bound1

c Initialize the matrix CC in the cache:
c

c

c

do 10 i=1,alpha1
CC(i)=O.OdO

10 continue

do 100 kb=1,bound2

CPCF CRITICAL SECTION BUS
c
c Read the strip Bk using utility routine;
c Bk= B((kb-1)*alpha2+1:kb*alpha2)
c

call _DVLOAD(B((kb-1)*alpha2+1),
$ 1,CB,1,alpha2)

c
c Read the block Aik using utility routine;
c Aik= A((ib-1)*alpha1+1:ib*alpha1,(kb-1)*alpha2+1:kb*alpha2)

c
call _DMLOAD (A((ib-1)*alpha1+1,(kb-1)*alpha2+1),

41

$ 1,lda,CA,1,alpha1,alpha1,alpha2)
c
CPCF END CRITICAL SECTION
c
c Compute the result: Ci=Ci+Aik*Bk;
c Ci= C((ib-1)*alpha1+1:ib*alpha1)
c

c

c

do 80 k=1,alpha2
do 70 i=1,alpha1

CC(i)=CA((k-1)*alpha1+i)*CB(k)
$ +CC(i)

70 continue
80 continue

100 continue

CPCF CRITICAL SECTION BUS
c
c Store the output Ci strip into memory using utility routine;
c Ci=C((ib-1)*alpha1+1:ib*alpha1)
c

c
$

call _DVSTOR (CC,1,C((ib-1)*alpha1+1),
1, alpha1)

CPCF END CRITICAL SECTION
c

120 continue
c
CPCF END PARALLEL
c

return
end

42

c * * * Locality example 2 matrix-vector multiplication

c Fortran matrix multiply executed in cache
c
CMCP SUBROUTINE Block-saxpy(A,B,C,n,alpha1,alpha2,lda)
CMCP INPUT REAL*8 A(lda,n),B(n)
CMCP OUTPUT REAL*8 C(n)
CMCP INPUT INTEGER*4 n,alpha1,alpha2,lda
c
c Parallel Fortran matrix-vector multiplication
c***

Subroutine Block-saxpy(A,B,C,n,alpha1,alpha2,lda)
C***
ccccc PURPOSE:
c---
c This subroutine determines matrix-vector multiplication with block saxpy
c approach ki-version, Ci=Ci+Aik*Bk. Aik is a block matrix of size
c alpha1*alpha2, Bk and Ci are segment vectors of size alpha2, alpha!
c respectively, where
c Aik = A((i-1)*alpha1+1:i*alpha1,(k-1)*alpha2+1:k*alpha2),
c Bk = B((k-1)*alpha2+1:k*alpha2) and Ci= C((i-1)*alpha1+1:i*alpha1).
c The subroutine is parallelized over the k-loop in a such way that
c different processors will perform different iterations of the loop.
c For each iterations step of the i-loop the segment Ci (i=1, ... , N1)
c of C is updated, and this is processed by one processor at a time.
c--
ccccc VARIABLES IDENTIFICATION:
c
c On entry:
c
c
c
c
c
c
c
c
c
c
c

A
B
n

alpha1,alpha2

lda
CA, CB

real*8(lda,*) the matrix A.
real*8(*) the vector B.
integer*4 the order of A, B; n must be

less than lda.
integer*4

integer*4
real*8

the sizes of the block
matrices Aik,Bk and Ci.
the row dimension of array A
storage allocations for the
transferred block matrices Aik,
Bk from the matrix registers

c into the cache.
c On exit:
c

43

c
c
c
c

c

cc

c

real*8 storage allocation for the
multiplication of the vectors
CA by CB in the cache.
the matrix A by B multiplication.

c Local variables:
c
c
c
c
c
c
c
c

kb, ib
i ,k
bound1,bound2
KVL
volume

integer*4
integer*4
integer*4
integer*4
integer*4

specify the number of blocks.

specifies the cache size.
specifies the total number of
data transferred into the cache.

ccccc TYPE DECLARATION AND STORAGE ALLOCATION:
c

integer*4
rea1*8
real*8
integer*4
integer*4

n,alpha1,alpha2,lda
A(lda,*),B(*),C(*)
CA(1),CB(1),CC(1)
ib,kb,i,k,bound1,bound2
KVL,volume

c---
ccccc EQUIVALENCES:
c A non-constant expression is not allowed as an index in the array
c MCP_DREG of the EQUIVALENCE-statements given below where a constant
c expression is required. For this reason, we illustrate in this algorithm
c by means of an example how the cache can be divided into three cache
c arrays of 64-bit elements.
c Suppose the block matrix Aik is of size 18x36 and the segment vectors
c Bk, Ci are of size 36, 18 respectively.
ccccc

c

INCLUDE
PARAMETER

'mcpreg.h'
(KVL=((MCP_DREG_SIZE)/2)*2)

c CA is a cache array of length KVL-(18+36)=970.
EQUIVALENCE (CA(1),MCP_DREG(1))

c
c CB is a cache array of length alpha2=36.

EQUIVALENCE (CB(1),MCP_DREG(1+KVL-54))
c
c CC is a cache array of length alpha1=18.

EQUIVALENCE (CC(1),MCP_DREG(1+KVL-18))

c--

44

bound1=n/alpha1
bound2=n/alpha2
volume=alpha1*alpha2+alpha2+alpha1
if ((n.NE.alpha1*bound1).0R.

$ (n.NE.alpha2*bound2).0R.
$ (volume.GT.1024)) then

print
print

*,
*•

'alpha1 or alpha2 is not a divisor of n'
'alpha1 =', alpha1,'alpha2 =', alpha2,

$ ' n =', n
print *, 'or data does not fit in the cache'
stop

end if
CPCF PARALLEL
CPCF PDO
c
c Initialize the vector C:
c

c

do 11 i=1,n
C(i)=O.OdO

11 continue

CPCF END PARALLEL
c
CPCF PARALLEL
CPCF PRIVATE i,k,ib
CPCF PDQ

do 110 kb=1,bound2
c
CPCF CRITICAL SECTION BUS
c
c Read the strip Bk using utility routine;
c Bk=B((kb-1)*alpha2+1:kb*alpha2)
c

call _DVLOAD(B((kb-1)*alpha2+1),
$ 1,CB,1,alpha2)

c
CPCF END CRITICAL SECTION
c

do 100 ib=1,bound1
c
CPCF CRITICAL SECTION BUS
c
c Read the block Aik using utility routine;

45

c

c

c
$

Aik=A((ib-1)•alpha1+1:ib•alpha1,(kb-1)•alpha2+1:kb•alpha2)

call DMLOAD (ib-1)•alpha1+1,(kb-1)•alpha2+1),
1,lda,CA,1,alpha1,alpha1,alpha2)

CPCF END CRITICAL SECTION
c
c Compute the result: Ci=Ci+Aik•Bk;
c Ci=C((ib-1)•alpha1+1:ib•alpha1)
c

do 10 i=1,alpha1
CC(i)=O.OdO

10 continue
do 80 k=1,alpha2

do 70 i=1,alpha1
CC(i)=CA((k-1)•alpha1+i)•CB(k)

$ +CC(i)
70 continue
80 continue

CPCF CRITICAL SECTION
c
c add the result to the ib-th segment of C.
c

c

do 90 i=l, alpha1
C((ib-1)•alpha1+i)=C((ib-1)•alpha1+i)+CC(i)

90 continue

CPCF END CRITICAL SECTION
c

100 continue
110 continue

c
CPCF END PARALLEL
c

return
end

46

c
c
c
c

c

c * * * Example 3 matrix-vector multiplication

Matrix data structure (row storage scheme)
a1,1 a1,2 a1,3 a1,n a2,1

a2,n a3,1 a3,2

CMCP SUBROUTINE MATVEC3(A, B, C, N)
CMCP INPUT REAL*S A(N*N), B(N)
CMCP OUTPUT REAL*S C(N)
CMCP INPUT INTEGER*4 N

a2,2 a2,3

C**
SUBROUTINE MATVEC3(A, B, C, N)

C**
c
ccccc TYPE DECLARATION AND STORAGE ALLOCATION:
c

c

REAL*S
INTEGER*4
INTEGER*4

A(*), B(*), C(*)
N
i, j

CPCF PARALLEL
CPCF PDO

do 10 i = 1, n
c(i) = O.OdO
do 20 j = 1, n
c(i) = c(i) + A((i-l)*n+j)*B(j)

20 continue
10 continue
CPCF END PARALLEL
c

RETURN
END

47

c * * * Locality example 1 matrix-matrix multiplication

c Fortran Block matrix multiply executed in cache
c
CMCP SUBROUTINE Block-dot(A,B,C,n,alpha1,alpha2,alpha3,lda,ldb,ldc)
CMCP INPUT REAL*8 A(lda,n),B(ldb,n)
CMCP OUTPUT REAL*8 C(ldc,n)
CMCP INPUT INTEGER*4 n,alpha1,alpha2,alpha3,lda,ldb,ldc
c
c Parallel Fortran Block matrix-matrix multiplication
C**

Subroutine Block-dot(A,B,C,n,alpha1,alpha2,alpha3,lda,ldb,ldc)
C**
ccccc PURPOSE:
c---
c The subroutine determines matrix-matrix multiplication with block dot
c approach ijk-version, Cij=Cij+Aik*Bkj. Aik is a block matrix of size
c alpha1*alpha2, Bkj is a block matrix of size alpha2*alpha3 and Cij is
c a block matrix of size alpha1*alpha3, where
c Aik = A((i-1)*alpha1+1:i*alpha1,(k-1)*alpha2+1:k*alpha2),
c Bkj = B((k-1)*alpha2+1:k*alpha2,(j-1)*alpha3+1:j*alpha3) and
c Cij = C((i-1)*alpha1+1:i*alpha1,(j-1)*alpha3+1:j*alpha3).
c The subroutine is parallelized over the i-loop in a such way that
c different processors will perform different iterations of the loop.
c Each processor, at the same time will compute independently on
c different rows of blocks Cij, j=1, ... , N3, of C.
c--
ccccc VARIABLES IDENTIFICATION:
c
c On entry:
c
c A real*8(lda,*)
c B real*8(ldb,*)
c n integer*4
c
c alpha1,alpha2,alpha3 integer*4
c
c lda,ldb,ldc integer*4
c
c CA, CB real*8
c
c
c

48

the matrix A.
the matrix B.
the order of A, B; n must be
less than lda, ldb and ldc.
the sizes of the block
matrices Aik,Bkj and Cij.
the row dimensions of arrays A, B
and C.
storage allocations for the
transferred block matrices Aik,
Bkj from the matrix registers
into the cache.

c On exit:
c
c
c
c
c
c

cc

c

real*8 storage allocation for the
multiplication of the vectors
CA by CB in the cache.

real*8(ldc,*) the matrix A by B multiplication.

c Local variables:
c
c
c
c
c
c
c
c

ib,jb,kb
i,j,k
bound1,bound2,bound3
KVL
volume

integer*4
integer*4
integer*4
integer*4
integer*4

specify the number of blocks.

specifies the cache size.
specifies the total number of
data transferred into the cache.

ccccc TYPE DECLARATION AND STORAGE ALLOCATION:
c

integer*4
real*B
real*B
integer*4
integer*4

n,alpha1,alpha2,alpha3,lda,ldb,ldc
A(lda,*),B(ldb,*),C(ldc,*)
CA(1), CB(1),CC(1)
ib,jb,kb,i,j,k,boundl,bound2,bound3
KVL,volume

c--
ccccc EQUIVALENCES:
c A non-constant expression is not allowed as an index in the array
c MCP_DREG of the EQUIVALENCE-statements given below where a constant
c expression is required. For this reason, we illustrate in this algorithm
c by means of an example how the cache can be divided into three cache
c arrays of 64-bit elements.
c Suppose the block matrices Aik, Bkj, Cij are of size 18x36, 36x6 and
c 18x6 respectively.
CCC CC

c

INCLUDE
PARAMETER

'mcpreg.h'
(KVL=((MCP_DREG_SIZE)/2)*2)

c CA is a cache array of length KVL-(36x6+18x6)=700.
EQUIVALENCE (CA(1),MCP_DREG(1))

c
c CB is a cache array of length alpha2xalpha3=36x6.

EQUIVALENCE (CB(l),MCP_DREG(l+KVL-324))
c
c CC is a cache array of length alpha1xalpha3=18x6.

49

EQUIVALENCE (CC(l),MCP_DREG(l+KVL-108))
c--

c

bound1=n/ alpha1
bound2=n/alpha2
bound3=n/alpha3
volume=alpha1*alpha2+alpha2*alpha3+alpha1*alpha3
if ((n.NE.alpha1*bound1).0R.

$ (n.NE.alpha2*bound2).0R.
$ (n.NE.alpha3*bound3).0R.
$ (volum.e.GT.1024)) then

print
print

$
print
stop

endif

*,
*•

*•

'alpha1 or alpha2 or alpha3 is not a divisor of n'
'alpha1 =', alpha1,'alpha2 =', alpha2,'alpha3 ='
al pha3 , ' n = ' , n

'or data does not fit in the cache'

CPCF PARALLEL
CPCF PRIVATE i,j,k,jb,kb
CPCF PDO
c

do 120 ib=1,bound1
do 110 jb=1,bound3

c
c Initialize the matrix CC in the cache:
c

c

c

do 10 j=1,alpha3
do 10 i=1,alpha1

CC((j-1)*alpha1+i)=O.Od0
10 continue

do 100 kb=1,bound2

CPCF CRITICAL SECTION BUS
c
c Read the block
c
c

call
$

c
c Read the block
c

Aik using utility routine;
Aik=A((ib-1)*alpha1+1:ib*alpha1,(kb-1)*alpha2+1:kb*alpha2)

_DMLOAD(A((ib-1)*alpha1+1,(kb-1)*alpha2+1),
1,lda,CA,1,alpha1,alpha1,alpha2)

Bkj using utility routine;
Bkj=B((kb-1)*alpha2+1:kb*alpha2,(jb-1)*alpha3+1:jb*alpha3)

50

c
call _DMLOAD(B((kb-1)*alpha2+1,(jb-1)*alpha3+1),

$ 1,ldb,CB,1,alpha2,alpha2,alpha3)
c
CPCF END CRITICAL SECTION
c
c Compute the result: Cij=Cij+Aik*Bkj;
c Cij=C((ib-1)*alpha1+1:ib*alpha1,(jb-1)*alpha3+1:jb*alpha3)
c

c

c

do 90 j=1,alpha3
do 80 k=1,alpha2

do 70 i=1,alpha1
CC((j-1)*alpha1+i)=CA((k-1)*alpha1+i)*CB((j-1)*alpha2+k)

$ +CC((j-1)*alpha1+i)
70 continue
80 continue
90 continue

100 continue

CPCF CRITICAL SECTION BUS
c
c Store the output Cij block into memory using utility routine;
c Cij=C((ib-1)*alpha1+1:ib*alpha1,(jb-1)*alpha3+1:jb*alpha3)
c

$
call _DMSTOR(CC,1,alpha1,C((ib-1)*alpha1+1,

(jb-1)*alpha3+1),1,ldc,alpha1,alpha3)
c
CPCF END CRITICAL SECTION
c

110 continue
120 continue

c
CPCF END PARALLEL
c

return
end

51

c * * * Locality example 2 matrix-matrix multiplication

c Fortran Block matrix multiply executed in cache
c
CMCP SUBROUTINE Block-saxpy(A,B,C,n,alpha1,alpha2,alpha3,lda,ldb,ldc)
CMCP INPUT REAL*8 A(lda,n),B(ldb,n)
CMCP OUTPUT REAL*8 C(ldc,n)
CMCP INPUT INTEGER*4 n,alpha1,alpha2,alpha3,lda,ldb,ldc
c
c Parallel Fortran Block matrix-matrix multiplication
c

C**
Subroutine Block-saxpy(A,B,C,n,alpha1,alpha2,alpha3,lda,ldb,ldc)

C**
ccccc PURPOSE:
c--
c The subroutine determines matrix-matrix multiplication
c with block saxpy approach jki-version, Cij=Cij+Aik*Bkj,Aik is a block
c matrix of size alpha1*alpha2, Bkj is a block matrix of size alpha2*alpha3
c and Cij is a block matrix of size alpha1*alpha3, where
c Aik = A((i-1)*alpha1+1:i*alpha1,(k-1)*alpha2+1:k*alpha2),
c Bkj = B((k-1)*alpha2+1:k*alpha2,(j-1)*alpha3+1:j*alpha3) and
c Cij = C((i-1)*alpha1+1:i*alpha1,(j-1)*alpha3+1:j*alpha3).
c The subroutine is parallelized over the j-loop in a such way that
c different processors will perform different iterations of the loop.
c Each processor, at the same time will compute independently on
c different columns of blocks Cij, i=1, ... , Ni, of C.
c--·
ccccc VARIABLES IDENTIFICATION:
c
c On entry:
c
c
c
c
c
c
c
c
c
c
c
c

A
B
n

real*8(lda,*) the matrix A.
real*8(ldb,*) the matrix B.
integer*4 the order of A, B; n must be

less than lda, ldb and ldc.
alpha1,alpha2,alpha3 integer*4 the sizes of the block

matrices Aik,Bkj and Cij.
lda,ldb,ldc integer*4

CA, CB real*8

52

the row dimensions of arrays A, B
and C.
storage allocations for the
transferred block matrices Aik,
Bkj from the matrix registers

c
c
c
c
c
c
c
c
c

On exit:

cc

c

from the matrix registers
into the cache.

real*8 storage allocation for the
multiplication of the vectors
CA by CB in the cache.

real*8(ldc,*) the matrix A by B multiplication.

c Local variables:
c
c
c
c

c

c

c

c

ib,jb,kb

i 'j 'k
bound1,bound2,bound3
KVL, lastib
volume

integer*4
integer*4
integer*4
integer*4
integer*4

specify the number of blocks.

specifies the cache size.
specifies the total number of
data transferred into the cache.

ccccc TYPE DECLARATION AND STORAGE ALLOCATION:
c

integer*4
real*8
REAL*8
integer*4
integer*4

n,alpha1,alpha2,alpha3,lda,ldb,ldc
A(lda,*),B(ldb,*),C(ldc,*)
CA(1), CB(1),CC(1)
ib,jb,kb,i,j,k,bound1,bound2,bound3,lastib
KVL,volume

c--
cc ccc EQUIVALENCES:
c A non-constant expression is not allowed as an index in the array
c MCP_DREG of the EQUIVALENCE-statements given below where a constant
c expression is required. For this reason, we illustrate in this algorithm
c by means of an example how the cache can be divided into three cache
c arrays of 64-bit elements.
c Suppose the block matrices Aik, Bkj, Cij are of size 18x36, 36x6 and
c 18x6 respectively.
CC CCC

c

INCLUDE
PARAMETER

'mcpreg.h'
(KVL=((MCP_DREG_SIZE)/2)*2)

c CA is a cache array of length KVL-(36x6+18x6)=700.
EQUIVALENCE (CA(1),MCP_DREG(1))

c
c CB is a cache array of length alpha2xalpha3=36x6.

EQUIVALENCE (CB(1),MCP_DREG(1+KVL-324))

53

c
c CC is a cache array of length alpha1xalpha3=18x6.

EQUIVALENCE (CC(1),MCP_DREG(1+KVL-108))

c--

c
c
CPCF
CPCF
CPCF
c

bound1=n/alpha1
bound2=n/alpha2
bound3=n/alpha3
volume=alpha1*alpha2+alpha2*alpha3+alpha1*alpha3
if ((n.NE.alpha1*bound1).0R.

$ (n.NE.alpha2*bound2).0R.
$ (n.NE.alpha3*bound3).0R.
$ (volume.GT.1024)) then

print *•
print *·

$
print *·
stop

endif
Initialize

PARALLEL
PRIVATE i
PDO

do 10 j=1,n

'alpha1 or alpha2 or alpha3 is not a divisor of n'
'alpha1 =', alpha1,'alpha2 =', alpha2,'alpha3 ='
alpha3, 'n =', n

'data does not fit in the cache'

the matrix C:

do 10 i=1,n
c(i,j)=O.OdO

10 continue
c
CPCF END PARALLEL
c
CPCF PARALLEL
CPCF PRIVATE i,k,j,kb,ib,lastib
CPCF PDO
c

do 120 jb=1,bound3
do 110 kb=1,bound2

c
CPCF CRITICAL SECTION BUS
c
c Read the block Bkj using utility routine;
c Bkj=B((kb-1)*alpha2+1:kb*alpha2,(jb-1)*alpha3+1:jb*alpha3)
c

54

call _DMLOAD(B((kb-1)*alpha2+1,(jb-1)*alpha3+1),
$ 1,ldb,CB,1,alpha2,alpha2,alpha3)

c
CPCF END CRITICAL SECTION
c

lastib=-1
do 100 ib=1,bound1

c
CPCF CRITICAL SECTION BUS
c

c
c
c
c

c
c
c

c
c
c
c

c

IF (lastib.EQ.-1) THEN

Read the block Aik using utility routine;
Aik=A((ib-1)*alpha1+1:ib*alpha1,(kb-1)*alpha2+1:kb*alpha2)

$

Read

$

Store

$

$

$

call _DMLOAD(A((ib-1)*alpha1+1,(kb-1)*alpha2+1),
1,lda,CA,1,alpha1,alpha1,alpha2)

the block Cij using utility routine;
Cij=C((ib-1)*alpha1+1:ib*alpha1,(jb-1)*alpha3+1:jb*alpha3)

call _DMLOAD(C((ib-1)*alpha1+1,(jb-1)*alpha3+1),
1,ldc,CC,1,alpha1,alpha1,alpha3)

ELSE

output Cij block into memory using utility routine;
Cij=C((ib-1)*alpha1+1:ib*alpha1,(jb-1)*alpha3+1:jb*alpha3)

call _DMSTOR(CC,1,alpha1,C((lastib-1)*alpha1+1,
(jb-1)*alpha3+1),1,ldc,alpha1,alpha3)

call _DMLOAD(A((ib-1)*alpha1+1,(kb-1)*alpha2+1),
1,lda,CA,1,alpha1,alpha1,alpha2)

call _DMLOAD(C((ib-1)*alpha1+1,(jb-1)*alpha3+1),
1,ldc,CC,1,alpha1,alpha1,alpha3)

END IF

CPCF END CRITICAL SECTION
c
c Compute the result: Cij=Cij+Aik*Bkj;
c Cij= C((ib-1)*alpha1+1:ib*alpha1,(jb-1)*alpha3+1:jb*alpha3D
c

do 90 j=1,alpha3
do 80 k=1,alpha2

55

c

c

c

c

do 70 i=1,alpha1
CC((j-1)*alpha1+i)=CA((k-1)*alpha1+i)*CB((j-1)*alpha2+k)

$ +CC((j-1)*alpha1+i)
70 continue
80 continue
90 continue

lastib=ib

100 continue

IF (lastib.NE.-1) THEN

CPCF CRITICAL SECTION BUS
c
c Store the last output Cij block into memory using utility routine;
c Cij=C((ib-1)*alpha1+1:ib*alpha1,(jb-1)*alpha3+1:jb*alpha3)

$
call _DMSTOR(CC,1,alpha1,C((lastib-1)*alpha1+1,

(jb-1)*alpha3+1),1,ldc,alpha1,alpha3)
c
CPCF END CRITICAL SECTION
c

END IF
c

110 continue
120 continue

c
CPCF END PARALLEL
c

return
end

56

c
c
c

c

c

c

c * * * Locality example 3 matrix~matrix multiplication

Locality of the user written routine "rgmmul'.

PROGRAM MMtime

EXTERNAL DTIME64
REAL*8 DTIME64
REAL*8 DTARRAY(2)
REAL*8 DT

INTEGER*4 VEC_LEN
PARAMETER (VEC_LEN = 1000)
REAL*8 A(VEC_LEN*VEC_LEN), B(VEC_LEN*VEC_LEN)
REAL*8 C(VEC_LEN*VEC_LEN)
INTEGER*4 N
REAL*8
INTEGER*4
INTEGER*4
REAL*4

ex, mflops
NBUS, NCPUBUS
NOPS, NWORDS
COMP I

c---
wri te (6, 601)

60i format(/ix,'***',
* /ix,'* *',
* /ix,'* Benchmark Study for User Routine rgmmul *',
* /1x, '* *',
* /1x,'***')

NERRDRS = 0
c
C Get the current MCP configuration
c

NBUS = MCP_NBUS()
NCPUBUS = MCP_NCPUBUS()
write(6,6i1) nbus,ncpubus,nbus*ncpubus

61i format(//ix,'MCP Configuration :',
* /6x,'Number of Processors= ',i1,
* '(buses) * ',i2,'(processors/bus) = ',i2,
* //6x,'Double precision: DTIME64, 50 nanosec resolution',
* ///1x,' Dim', 3x,3x, 'Timings (sec.)', 3x, iOx, 'Mflops', 3x,
* 2x, 'Num of Op' ,3x,3x, 'Locality')

c

57

C Initialize the input data
c

DO 100 I = 1, VEC_LEN
DO 100 J = 1, VEC_LEN
A(I+(J-1)*vec_len) = 2.0dO * dfloat(I + J)
B((I-1)*vec_len+J) = 3.0dO*dfloat(J) + 4.0dO*dfloat(I)

100 CONTINUE
c

open(unit=2,file='tmp.mat')
do 400 n = 10, VEC_LEN, 10

c n = 1000
c
C Calculate the compute intensity for the DOTP operation
c
c
c
c
c
c
c

c

rgmmul:

A:
B:
C:

NOPS = 2*(N**3)

operations

1 * N*N words
1 * N*N words
2 * N*N words

NWORDS = (1+1+2) * N*N
COMPI = FLDAT(NOPS) / FLOAT(NWORDS)

C Call the routine.
c

DT = DTIME64 (DTARRAY)
do 170 iloop = 1, 5
CALL rgmrnul(O,n,n,n,a,1,n,b,n,1,c,n,1)

170 continue
DT = DTIME64 (DTARRAY)

dt = dt I 5.0dO
mflops = dfloat(NOPS)/dt * 1.0d-06
write(6,615) n,dt,mflops,float(nops),compi

615 format(1x,i4,3x,d16.10,3x,d16.10,3x,e11.5,3x,e11.5)
write(2,290) n, mflops

290 format(1x,i4,1x,e11.4)
RETURN
END

58

References

[FPS91a] FPS Computing. Matrix Coprocessor Programmer's Guide, April 1991. FPS
Computing has been taken over in December 1991 by Cray Research Super­
servers, Inc.

[FPS9lb] FPS Computing. System 500 Matrix Coprocessor Overview, February 1991.
FPS Computing has been taken over in December 1991 by Cray Research Su­
perservers, Inc.

59

