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1 Introduction 

In 1991 C\'\:I acquired an FPS System 500 64-bit distributed memory multiprocessor 
-:ystem involving one 72 :\IIPS SPARC scalar processor and a matrix coprocessor with 
twenty-eight 40 '.\IIPS i860 processors, configured in seven buses, each consisting of four 
processing elements. In December 1991, Cray took over the FPS System 500 production 
and maintenance, and since then the machine is called the Cray S-MP System 500. Figure 
1 gives a schematic picture of the system, taken from [FPS9lb], where the structure of 
the matrix coprocessor is enlarged. The vector coprocessor is not part of the C\VI con­
figuration. '.\lore information about this system is given in Appendix A to this paper. 

Scalar 
Processor 

Scalar 
reg!e.tfllra an.d 

cache• 

Vector 
a processor 

Procoaalng 
Element 

Matrix Coprocessor 

Matrix Registers 

Scalable interconnect Architecture (SIA) 

System Memory 

Figure 1: Cray S-'.\IP System 500 :\latrix Coprocessor Architecture 

In order to acquainted with this machine, we have carried out several experiments 
with simple linear algebra operations (matrix-vector and matrix-matrix). Based on the 
\·endor·s information we have designed a theoretical performance model and compared 
this with t actual performance figures. As can be expected, algorithms with high data 
iocality. i.e .. with many floating-point operations for each data access, perform best on the 
matrix coprocessor. TLen:· is one restrictive characteristic of the System 500 which should 
be mentioned name:y that at a time, only one processing element on each bus 
can access the matrix registers for dma transport. So while one processing element on 
a bus is transporting data. the others should spend their cycles on computing, otherwise 
they have to wait. This means that low locality algorithms can only run efficiently on a 
one processing element per bus configuration. 

The organization of the paper is as follows. In Section 2 we describe, by means of 
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an example 
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2 An example of parallel programming on the Sys­
tem 500 matrix coprocessor 

By means of an example of the computation of the vector dot-product we illustra; e 
how a subroutine can be parallelized on the System 500 matrix coprocessor. To that end, 
one has to insert the so-called mpp and pfp comment directives. Their meanings are 
explained shortly in additional comment lines. Details about mpp and pfp directives are 
given in Appendix A.1. 

The dot-product loop is executed in parallel on the available processing elements (the 
number of available processing elements is set in the calling program), and after completion 
of the loop the partial sums are collected in the output parameter c. 

c 
C Parallel dotproduct 
c 
C Four mpp directive lines follow which indicate that this subroutine 
C should be executed on the matrix coprocessor, and which specify the 
C use of the subroutine's parameters 
CMCP subroutine dotproduct (a, b, c, n) 
CMCP input real*S a(n), b(n) 
CMCP output rea1*8 c 
CMCP input integer*4 n 

subroutine dot product (a, b, c, n) 
real*B a(*), b(*), 
integer*4 n 
rea1*8 psum 

c 
C Initialize c 

c = O.ODO 
c 

c 

C pfp directive: start of parallel region in this subroutine 
CPCF PARALLEL 
c 
C pfp directive: psum is local to each process 
CPCF PRIVATE psum 
c 
C Initialize psum on each processor 

psum = O.ODO 
c 
C pfp directive: 
c 
c 

iterations of the following loop are to be executed in 
parallel, where the iterations of the do-loop are split 
into equal blocks among all available processors. 
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c 
c 
c 

There is an implicit barrier (synchronization point) 
at the end of the loop: this option can be switched off 
by means of the NOWAIT pfp directive. 

CPCF PDO BLOCKED 

c 

do 20 i = 1, n 
psum = pswn + a(i)*b(i) 

20 continue 

C Compute total result from partial results in each processor 
c 
C pfp directive: the code which follows is processed by one processor 
C at a time 
CPCF CRITICAL SECTION 

c = c + psum 
c 
C pfp directive: end of section of code that was started by the 
C CRITICAL SECTION directive 
CPCF END CRITICAL SECTION 
c 
C pfp directive: end of section of code that was started by the 
C PARALLEL directive 
CPCF END PARALLEL 

return 
end 
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3 Some experimental results for the matrix-vector 

product 

Suppose the matrix A is of size n1 x n2 , partitioned in blocks of size a 1 x a 2 , and 
b c are vectors of n2 , n1 and partitioned in segments of size a: 2 , a 1 respectively. 

Furthermore, we assume that n1 = a 1N1, n2 = o: 2.iv'2 . Consider the matrix-vector product 
N2 

c = Ab, where A= (Ai~,), b = ) (k = 1, I'v'2 ) and c = (ci) = I: Aikbk (i = 1, Ni). \Ve 
k=l 

assume that a 1• a2 are chosen so that the block matrix A.ik, and the vector segments bk 
and c; can be stored completely in the cache (each processing element has a data cache of 

8 KBytes), i.e. n 1a: 2 + o:2 + 0: 1 :::;: SL, where SL = 2048 for single precision arithmetic and 

SL = 1024 for double precision arithmetic. 
\Ve discuss three different implementations for the matrix-vector multiplication. 

first implementation is a standard block-dot product approach and the second imple­

mentation is a standard block-saxpy prod'uct approach for matrix-vector multiplication. The 

third implementation is a standard non-blocked dot product approach. 
(l\ote: in the sequel, the superscripts and the subscripts d or s indicate the block-dot and 

the block-saxpy algorithm. respectively. In what follows, AL, bL and cL are cache work­
space arrays and the superscript L means local.) 

First implementation: 
• Block-dot algorithm: ik-version 
(A;k is a block matrix, bk and ci are segments of the vectors b and c) 

r-cpcf ___ paraflef-·-- ---- -
cpcf pdo 

For i=l:N1 

cL(l : ai) = 0.0dO 
For k=l:/\·2 

cpcf critical section bus 
load Aik and bk into the cache arrays AL and bL, respectively. 

: cpcf end critical section 
CL = CL + AL * bL 

End 
cpcf critical section bus 

store array cL = ci into the main memory. 
• cpcf end critical section 

End 
cpcf end parallel 

The algorithm is parallelized over the i-loop. So at a given time, each processor is com­

puting independently on different segments ci, i = 1, .. ., N1 , of c (see appendix B, locality 

example l matrix-vector multiplication). In the inner k-loop of the algorithm, the segment 
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is kept 
algorithm is 

(1) 

So 

T\ote that the matrix A is read once, 
stored once. Td is independent of 0:2 

vector b is read 1 times 
fixed order of matrix 

Second implementation: 
• Block-saxpy algorithm: 
(A;k is a block matrix, bk and c1 are 

cpcf 
cpcf 

cpcf 

cpcf 

'cpcf 

_,. ' ---

1: n 1 = O.OdO 
parallel 
pdo 

For k=l:JV2 

critical section bus 
load bk into the cache array bL. 

end critical section 
For i=l:.V1 

critical section bus 

of vectors b 

cpcf 
load Aik into the cache array AL. 

end critical section 

cpcf 

I 
cpcf 

1 
cpcf 

CL= AL* bL 
critical section 

Ci = Ci +CL 

end critical section 
End 

End 
end parallel 

c) 

the vector c is 

This algorithm is parallelized over the k-loop. The segment bL is kept in cache during 
execution of the i-loop. In this loop, the segments ci, i = 1, ... , Ni- of the global variable c 
are updated. The pfp directive cpcf critical section ensures that no two processors can 
do this update at the same time (i.e. the directive specifies that only a single process will 
execute this section of code at a time). So at a given time, each processor is computing de­
pendently on segment ci (see appendix B, locality example 2 matrix-vector multiplicatwn). 
In a similar way, as in the previous algorithm, the total number Ts of reads and stores 
between the main memory and the cache in the block-saxpy algorithm is approximately 
given by 

(2) 
') 

Ts::::::: N2{0:2 + Ni(0:10:2 + 20:i)} = n2 + n1n2(l + :-_ ) 
Cl'.2 
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We notice that Ts is independent of the value of a 1 for fixed order of the matrix A. The 
matrix A and the vector b are read once and the vector c is loaded N2 times and stored 
N2 times. 

We have carried out various experiments in double precision with these implementa­
tions. We measured the MFLOP-rates of the first and the second implementation for 
a 1 = a 2 = 30 and n = i * 30, i = 1, ... , 30, on the following configurations of the matrix 
coprocessor: p = nb x nP processors (where n6 denotes the number of buses and np the 
number of processors per bus), for nb = 7, np = 1, ... , 4, and for np = 4, nb = 1,. .. , 7. 
The results are displayed in figures 3.1-3.4. The peak performance of both implementations 
is reached when n = 840 and also the performance increases with the number of processors 
muse. 

We measured the total computing time varying nb and keeping fixed np and the total 
computing time varying np and keeping fixed n 6. The results are given in tables 3.1 and 
3.2. We also have computed the speedups for the various configurations given above. These 
are given in figures 3.5 and 3.6. 

If a certain task for one processor requires tc seconds computing time and tm seconds 
communication time, then the parallel execution of N such tasks on a configuration of p 
processors (with nb buses and np processors per bus) requires r ;1 tc seconds computing 
time, and r ~ l tm seconds communication time (since processors on the same bus can not 
communicate with the matrix registers concurrently). The total execution (computing and 
communication) time depends on the ratio between tc and tm. If tc ~ tm then most of 
the processor communication on a single bus will be done while the other processors on 
that bus are busy with computing. If tc « tm then the computing on the bus processors 
will be done while one of them is busy with communication. In all other cases the total 
execution time depends on the extent to which the computing and communication parts 
can be overlapped, and this in turn depends on the precise place( s) in the algorithm where 
communication has to be carried out. 

For the parallel execution of our matrix-vector algorithm, let Cd and Cs denote the 
computing times for the block-dot and the block-saxpy versions, respectively, and let A1d 
and Ms denote the corresponding communication times. If R is the number of floating 
point operations per second and r the rate, in words per seconds, by which a block matrix 
or a segment vector can be read or stored then we have the following (optimistic) estimat~s 
(lxl is the smallest integer 2:: x, lxJ is the largest integers :s; x): 

(3) 

(4) 

(5) 

Cd~ fNifpl2a1n2/R 

Md ~ f Ni/nbl{(l + a1)n2 + ai}/r 

Cs ~ I N2/ p l 2a2ni/ R + N2ni/ R 
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(6) 

The terms N2ni/ R in Cs and 2N2ni/r in Ms are due to the fact that no two processors 
are allowed to execute the update statement ci = ci + cL concurrently. From (3)-(6) it fol­
lows that if we increase the value of nb, while keeping all other parameters (including np) 
fixed, then the computing and the communication times will decrease. However, if we in­
crease np, we see that the computing times will decrease, but not the communication times. 

We have carried out a number of experiments in double precision to verify these prop­
erties. We measured the total computing times and the corresponding MF LOP-rates of the 
two implementations varying the block sizes of the matrix A. For the block-dot algorithm, 
we took rectangular blocks of size: a 1 = 6, a 2 = 36; a 1 = 18, a 2 = 36; a1 = 18, a 2 = 42; 
a1 = 36, a 2 = 18; a 1 = 36, a 2 = 24. For the block-saxpy algorithm, we took similar blocks, 
but with a1 and a 2 interchanged. We fixed the configuration of the matrix coprocessor at 
p = 28 processors, i.e. nb = 7, and np = 4. The results are displayed in figures 3.7 and 3.8. 

Third implementation: 
The matrix-vector algorithm is a standard dot product approach, so that c = Ab, where 
A= (Aik) is a matrix of size n1 x n2, b = (bk), c = (ci) are two vectors of size n2, n1 respec-

n2 
tively, and ci = I: Aikbk, i = 1, ... , n1 . A is stored by means of a row storage scheme. This 

k=l 
algorithm is parallelized over the i-loop in such a way that different processors will treat 
different iterations of the loop (see appendix B, example 3 matrix-vector multiplication). 
We measured the MFLOP-rates of this implementation for n1 = n2 = 200 * i, i = 1, ... , 
9 by varying the values of np and keeping nb fixed, and by varying the values of nb and 
keeping np fixed. The results are displayed in figures 3.9 and 3.10. 
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Table 3.1: The total computing time for the block-dot 
algorithm (in seconds) with n 1 = n2 = n. 

nb x np 
n 1x1 2 x 1 3 x 1 4 x 1 5 x 1 6 x 1 7 x 1 

210 1.200 0.695 0.528 0.362 0.362 0.363 0.195 
420 4.718 2.378 1.706 1.374 1.041 1.042 0.709 
630 10.600 5.585 3.561 3.056 2.572 2.063 1.563 
840 18.820 9.428 6.756 4.751 4.09 3.427 2.746 

n 1x2 2x2 3x2 4x2 5 x 2 6x2 7 x 2 
210 0.729 0.384 0.375 0.208 0.208 0.210 0.201 
420 2.447 1.413 1.056 0.732 0.715 0.715 0.379 
630 5.694 3.116 2.094 1.604 1.569 1.088 1.070 
840 9.602 4.836 3.455 2.769 2.101 2.094 1.433 
n lx3 2x3 3x3 4x3 5x3 6x3 7x3 

210 0.577 0.391 0.223 0.213 0.213 0.214 0.206 
420 1.792 1.088 0.733 0.726 0.391 0.405 0.382 
630 3.690 2.128 1.592 1.088 1.085 1.080 0.583 
840 ! 6.919 3.487 2.791 2.139 1.440 1.439 1.448 

r--------+---

n . 1x4 2x4 3x4 4x4 5x4 6x4 7x4 
210 0.453 0.272 0.2171 0.208 0.209 0.208 0.201 

11420 1.741 0.851 0.837 0.503 0.395 0.395 0.385 
. 630 3.896 1.921 1.249 1.267 1.246 0.747 0.600 

840 6.276 3.416 2.544 1.665 1.666 1.664 1.008 

10 

xlO ·2 

x10-2 

x10-2 

x10-2 

x10-2 

x10-2 

x10-2 

x10-2 

x10-2 

x10-2 

x10-2 

x10-2 

x10-:.! 
x10-2 

x10-2 

x10-2 



n 

210 
420 
630 
840 
n 

210 
420 
630 
840 
n 

210 
420 
630 
840 
n 

210 
420 
630 
840 

Table 3.2: The total computing time for the block-saxpy 
algorithm (in seconds) with n1 = n2 = n. 

nb x np 
1 x 1 2 x 1 3 x 1 4 x 1 5 x 1 6 x 1 7xl 
1.215 0.699 0.535 0.368 0.368 0.365 0.204 
4.667 2.354 1.692 1.363 1.035 1.044 0.707 
10.434 5.481 3.521 3.013 2.516 2.022 1.537 
18.469 9.255 6.647 4.658 4.006 3.347 2.694 
1 x 2 2x2 3 x 2 4x2 5 x 2 6x2 7x2 
0.843 0.458 0.417 0.251 0.249 0.260 0.211 
2.949 1.618 1.209 0.876 0.802 0.808 0.487 
6.715 3.631 2.406 1.915 1.807 1.307 1.198 
11.538 5.799 4.176 3.197 2.558 2.408 1.757 
1x3 2x3 3 x 3 4x3 5x3 6x3 7x3 
0.723 0.466 0.297 0.257 0.254 0.252 0.217 
2.459 1.375 0.967 0.883 0.558 0.559 0.488 
5.238 2.888 2.037 1.547 1.429 1.355 0.858 
9.561 4.814 3.668 2.704 2.058 1.922 1.765 
lx4 2x4 3x4 4x4 5x4 6x4 7x4 
0.614 0.357 0.305 0.260 0.258 0.259 0.219 
2.278 1.164 0.995 0.665 0.568 0.568 0.491 
5.011 2.594 1.719 1.593 1.483 0.988 0.865 
8.339 4.453 3.312 2.277 2.139 2.028 1.402 

11 

x10-2 

x10-2 

x10-2 

x10-2 

x10-2 

x10-2 

x10-2 

x 10-2 

x10-:l 
x10-2 

x10-2 

x10-2 

x10-2 

x10-2 

x10-2 

x10-2 



[/, 
0.. 
"" I..; 

1 

~ 

~ 

U'.. 
0... ,-.. 
v 
.....l 
.:.. 
~ 

of the block algorithm (matvec) 
-··----.-------~- -----, -----,---····-·-·-·-, 

l40' 0 ,, 
0 

~ 
() " 

l 20'- MCPCONFIG- nh= 7, np =l, ... A t.. 
l) 

!'> () 

++ 7xl 0 !'.; 

xx r. 
JOO· • •• (I • ~ 

K 0 

no• ~ l 
80 .~- ¥ 

~ ~ 

" x 

60, 
I\ 

II 
+ + + 

~ + 

~ + + + 
+ + + 40· + 

~ 

~ 

20~ ,.. 
1i 

II 

0 ----
Iii 

--~---.--·-··-·---- -- _...,._ ·---------·---····· 
() 100 200 300 400 500 600 700 800 900 

order n 

Figure 3.2: The speed of the parallel block dot algorithm (matvec) 
' Sq-uare blocks !40' 

Blocksize=30x30 

120 , MCPCONFIG: np =4. nh=l. .... 7 

100: 

80 r 

60~ 

40: 

20· 

() 

0 

++ 

xx 

** 

00 

Ill 

nb*npb=lx4 

nb*npb=2x4 

nb*npb=3x4 

nb*npb=4x4 

nb*npb=5x4 

nb*npb=6x4 

nb*npb=7x4 
~ •' 

~--

}' 

100 :::on 

"' 
~ 

() 

' 
" 

x 
R 

* 

+ 

300 400 500 

order n 

12 

0 

0 
l) 

0 0 

" 

~ 

!! 
!t 

!f 
!t + 

lJ 

" 

600 700 800 900 



Figure 3.3: The speed of the parallel block saxpy algorithm (matvec) 
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Figure 3.9: matvec3 
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4 Some experimental results for the matrix-matrix 
product 

In this section \Ve discuss three different at for m 
plication. We assume that the matrices A.,B and Care of sizes nix n 2. n2 x n:3, n 1 x n3 

are partitioned in blocks of size a: 1 x a 2 , 0:2 x 0t3 , a 1 x 0: 3 and we assume that 

n; = o.iNi. Consider the matrix-matrix product C = A..B, where A = , B = Bk1 ). 

N2 
C = ( C;J) and Cij = L: AikBkJ• i = L ... , N1; j = 1, ... , N3 . We also assume <x 1, 0: 2 • 

k=l 

o:3 are chosen so that one block from one from B. and one block C can be 

stored completely in the cache (each processing element has a data cache of 8 KBytes), i.e. 

0:1a2 + 0:20:3 + 0:1a3:::; 5L where 5L = 2048 for single precision arithmetic and 5L = 1024 
for double precision arithmetic. \Ve proceed as follows (here AL. BL and are the cache 

work-space arrays and the superscript L means local): 

First implementation: 
• Block-dot algorithm: ijk-version 
(A,k, Bkj, and CJ are block matrices) 

cpcf 
1 cpcf 
' 

'cpcf 

, cpcf 

cpcf 

cpcf 

parallel 
pdo 

For i=l:N1 
For j=l:.:V3 

CL(l : O:i, 1 : 03) = O.OdO 
For k=l:N2 

critical section bus 
load Aik and BkJ into the cache arrays AL and EL, respectively. 

end critical section 
CL =CL+ AL* BL 

End 
critical section bus 

store array CL = Cij into the main memory. 

end critical section 
End 

End 

lc~cf ____ end )(~~!!~-------·····---------------------------······--
The algorithm operates on blocks. The matrices are stored columwise (ordinary Fortran 

way) in two-dimensional arrays. In the innermost k-loop, the array CL is kept in cache. 

The algorithm is parallelized over the i-loop in such a way that different processors will 
treat different iterations of the loop. So at a given time, each processor is computing in­

dependently on different rows of blocks Ci1, j = 1, ... , N3 , of C (see appendix B, locality 

example 1 matrix-matrix multiplication). The computation of each block C;1 of C requires 
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k = L .. , and a column of blocks Bkj, k = 1. ... , N2· If we compute 
bet\!1/ePn main memory and cache, we find that the matrix A is read 

matrix Bis read .V1 tirnes and the matrix C is stored once, so that the 
and stores in the block-dot algorithm is given by 

1 l 
Td = N1 ;V2(a102 + 0:20:3) + a1a3) = n1n3 + n1n2n3( c;; + ;;~ ). 

The total number of operations (additions and multiplications) in the block-dot algorithm 
is n2n3. Further. we notice that Td is independent of 02 (for fixed n1, n2 and n3). 

Second implementation: 
• algorithm: jki-version 

Bkr and are block matrices) 

cpcf 
'. cpcf 

parallel 
pdo 

For j=LV3 
For k=l:X2 

i cpcf critical section bus 

cpcf 

cpcf 

load BkJ into the cache array BL. 

end critical section 
For i=l:N1 

critical section bus 

, cpcf 

load Aik and Cij into the cache arrays AL and CL, respectively. 
end critical section 

I 
cpcf 

cpcf 

CL= er+ AL* EL 
critical section bus 

store array C1 =CiJ into the main memory. 
end critical section 

End 
End 

End 
cpcf end parallel 

-----~·-··-------·---

the inner loop over k, the block Bkj is kept in the cache. The algorithm is parallelized 
over the j-loop. So at a given time, each processor is computing independently on different 
columns of blocks , i = l, .. ., N1, of C. We have regrouped the load and store instruc­
tions inside the i-loop of the algorithm in one critical section bus. This eliminates the 
overhead caused by having more than one critical section bus in the i-loop (see appendix 
B, locality example 2 matrix-matrix multiplication). In a similar way, as in the previous 
algorithm. the total number T5 of reads and stores between the main memory and the 
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cache in the block-saxpy algorithm is given by 

(8) 1 2 
Ts = N3N2(N1(0.1a:2 + 20.10:3) + D:2D:3) = n2n3 + nin2n3( ---- + --- ). 

D:3 0:2 

The total number of operations in this algorithm is 2n 1n2n3 , and Ts is independent of a: 2 

for fixed ni, n2 and n3. The matrix A is read N3 times, the matrix B is read once and the 
matrix C is loaded N2 times and stored N2 times. 

Remark: 
The choice made in the earlier described algorithms on the loop parallelized is somewhat 
arbitrary because the three loops are entirely interchangeable and offer similar opportuni­
ties for parallelization. 

We have carried out various experiments in double precision with the block-dot and 
block-saxpy algorithms. First, we took o. 1 = o.2 = 0:3 = 18, and n 1 = n2 = n3 = n. We 
measured the MFLOP-rates of our implementations for n = i * 18, i = 1, ... , 30, on the 
following configurations of the matrix coprocessor: p = nb x np processors, for nb = 7, 
nP = 1, .. ., 4, and for np = 4, nb = 1, ... , 7. The results are displayed in figures 4.1-4.4. We 
see for example that the maximal performance is reached when n = 28 x 18 = 504, and 
for both algorithms, the performance increases with the number of processors in use. 

We measured the total computing time varying nb and keeping fixed np and the total 
computing varying np and keeping fixed nb. The results are given in tables 4.1 and 4.2. 
For a matrix of size n = 504, we have computed the speedups (with respect to the wall 
clock time, on one processor) for the various configurations given above. There are given 
in figures 4.5-4.6. Since the block size is 18 x 18, there are 504/18 = 28 iterations of 
the outermost loop of both algorithms, so we have 28 independent tasks for the available 
number p of processors. This means that if 28 is divisible by p, we expect a speedup by 
a factor of about p. Otherwise, this speedup factor will be smaller. The results in figures 
4.5 and 4.6 confirm this. 

So far we have considered (square) matrices of order that are multiples of the (square) 
block size. If now the block matrices have different sizes 01 x 0:2, 02 x 0:3 and 0:1 x a3 

respectively, then the computing time Cd, the communication time Md, and their quotient 
for the block-dot algorithm can be estimated by 

(9) 

(10) 

(11) 
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For the block-saxpy algorithm, the computing time Cs, the communication time Ms, and 
their quotient can be estimated by 

(12) 
a3 

(13) Ms~ f N3/nbl{n1n2(l + 2-) + a3n2}/r 
a2 

(l4) Ms ~ f N3/nbl 1 { ~ + 2_ + ~ }R/r 
Cs fN3/pl 2 0:3 0:2 nl 

Similar to the matrix-vector case discussed in Section 3, we see that the computing time 
can be decreased by increasing nb or np, but that the communication time can be decreased 
only by increasing nb (and not by increasing np)· 
From (11 ), if o:1 and a3 increase for fixed order of the matrices A and B then the ratio ~ 
decreases. Similarly, from (14) if o:2 and a3 increase for fixed order of the matrices A and 
B then the ratio ~: decreases and this leads of course to a better performance. 
We have performed tests to demonstrate these properties, which are discussed more in 
details in Section 5. So we measured the total computing time and the MFLOP-rates of 
our implementations, varying the processor's cache block sizes. 

For the first implementation, we took square blocks of size o:1 = 18, o:2 = 18, o:3 = 18 
and rectangular blocks of size o: 1 = 18, o: 2 = 36, o:3 = 6; a 1 = 18, o:2 = 6, o:3 = 36; a 1 = 6, 
0:2 = 36, 0:3 = 18 and a 1 = 6, o:2 = 18, a3 = 36 respectively, for n1 = n2 = n3 = n, where 
n = i * 36, for i = 1 , ... , 15. For the second implementation, we took the same square 
blocks and rectangular blocks of size a 1 = 18, a 2 = 36, a 3 = 6; o:1 = 6, a2 = 36, a3 = 18; 
0:1 = 6, 0:2 = 18, 0:3 = 36; a 1 = 36, 0:2 = 18, 0:3 = 6 respectively. For both algorithms, 
we fixed the configuration of the matrix coprocessor at p = 28 processors, i.e, nb = 7, and 
np = 4. The results are displayed in figures 4. 7 and 4.8. 

Third implementation: 
The algorithm used here, is implemented in terms of a call to level 3 BLAS on the matrix 
coprocessor. The level 3 BLAS incorporates matrix-matrix operations. The level 3 BLAS 
used here is: RGMMUL for multiplying two matrices (see Appendix B, locality example 
3 matrix-matrix multiplication). We measured the MFLOP-rates of this implementation 
for n = i * 100, i = 1, ... , 10, on the following configurations of the matrix coprocessor: for 
nb = 7, np = 1, ... , 4, and for np = 4, nb = 1, ... , 7. The results are displayed in figures 
4.9 and 4.10. The maximal performance is reached round n = 500, and increases with the 
number of processors in use. 

20 



Table 4.1: The total computing time for the block-dot 
algorithm (in seconds) with n1 = n2 = n3 = n. 

------ ··-- ---- ---------------·--~! 

.1 nb x np i 
'i n ! 1 x 1 2 x 1 3 x 1 4 x 1 5 x 1 6 x 1 7 x 1 ii 
rt-----~---------------------------------- -- - -------------- "------ ----------- --------------n 
:1 126 I 0.439 0.251 0.188 0.125 0.125 0.125 0.0632 ,: 
11 252 i 3.501 1.750 1.250 1.001 0.750 0.750 0.500 11 

11 'I II 
11 378 11.799 6.181 3.933 3.372 2.810 2.248 1.686 !i 

1

,,,:

1

1 

.. 5~4 ! 2
1
7.x94

2
6 13.973 9.982 6.988 5.989 4.991 3.993 

11 

""" 2x2 3x2 4x2 5x2 6x2 7x2 
0T26 i 0.253 0~121 0.126 0.064 ----o~cf64"o~o~o.o~ 
![ 252 i 1. 767 1.008 0. 755 0.505 0.503 0.503 0.253 11 

:: 378 i 6.228 3.396 2.262 1.700 1.696 1.134 1.129 i, 

:! 504 I 14.085 7.044 5.031 4.018 3.019 3.011 2.014 ii 
1

; I 1 3 2 x 3 3 x 3 4 x 3 5 x 3 6 x 3 7 x 3 ,I n : x __________ 11 

:1 126 I 0.191 0.121 0.064 0.064 0.064 0.064 0.063 ii 
1

1 252 I 1.269 0. 759 0.505 0.504 0.254 0.254 0.253 i1 

1j 378 I 3.987 2.276 1.702 1.140 1.137 1.132 0.571 :1 
], ' ,1 

,~, 504 I 10.096 5.051 4.032 3.021 2.023 2.018 2.010 ii 
----,------------------------ -----------------ti 

!, n : 1 x 4 2 x 4 3 x 4 4 x 4 5 x 4 6 x 4 7 x 4 I! 
~-t------ ----------· -------------· --ji 
Ii 126 ; 0.129 0.065 0.064 0.064 0.064 0.064 0.063 11 

11 I I ~ 
1! 252 I i.020 o.510 o.506 0.256 0.254 0.254 0.253 :1 
![ I '! 

i! 378 I 3.424 I.714 i.142 i.140 1.136 o.572 o.570 11 

~~o~_LI·10_4 4.051 3.031 2.026 2.022 2.014 i.016 J 
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Table 4.2: The total computing time for the block-saxpy 
algorithm (in seconds) with n 1 = n 2 = ns = n. 

---

nb x np 
n 1 x 1 2 x 1 3 x 1 4xl 5 x 1 6 x 1 7 x 1 

126 0.443 0.253 0.189 0.126 0.126 0.126 0.063 
252 3.525 1.763 1.259 1.007 0.756 0.755 0.504 
378 11.882 6.224 3.962 3.395 2.829 2.264 1.698 
504 28.143 14.072 10.053 7.036 6.032 5.027 4.021 
n 1 x 2 2x2 3x2 4x2 5x2 6x2 7 x 2 

---------~---~-------

126 0.258 0.129 0.128 0.0653 0.065 0.065 0.063 
252 1.792 1.020 0.764 0.512 0.509 0.508 0.257 
378 6.300 3.434 2.288 1.721 1.714 1.147 1.141 
504 14.239 7.121 5.089 4.060 3.054 3.040 2.038 
n 1 x 3 2x3 3x3 4x3 5x3 6x3 1><3 

----·-
126 0.195 0.129 0.066 0.065 0.065 0.065 0.064 
252 1.291 0.769 0.516 0.511 0.259 0.259 0.257 
378 4.046 2.308 1.723 1.156 1.151 1.146 0.579 
504 10.223 5.113 4.078 3.054 2.048 2.044 2.031 
n 1 x 4 2x4 3x4 4x4 5x4 6)(4-7·-x-4-

126 0.133 0.067 0.066 0.065 0.065 0.065 0.063 
252 1.040 0.520 0.514 0.262 0.259 0.259 0.253 
378 3.478 1.743 1.163 1.155 1.149 0.583 0.570 
504 7.207 4.107 3.078 2.055 2.048 2.038 1.016 

----- --

So far we have studied different block algorithm techniques applied to the simple matrix­
vector and matrix-matrix operations. If now we examine the behavior of the numerical 
results of our implementations, which are given in the figures 3.1-3.6 and 4.1-4.6, it can be 
seen that the total computing time follows the same pattern in all the given figures. For 
the matrix-matrix product the measured MFLOP-rates for the block-dot (resp. block-saxpy) 
algorithm are linear with the order of the matrices if the processor configuration is used 
once i.e., Nif p ~ 1 (respectively Ns/P ~ 1). If Nif p > 1 (respectively N3 /p > 1) then the 
MFLOP-rates become non-linear as a function of the order n and drop after each use of 
the processor configuration, and this happens lNif pJ times (respectively lN3 /pJ times). 
For fixed n 1 , n 2 and n 3 , we generally expect for all algorithms that the total computing 
time decreases as nb increases for fixed value of np and decreases slightly as nP increases 
for fixed value of nb. The information of the following tables support this. The tables 3.1, 
3.2, 4.1 and 4.2 show the computing time obtained by varying nb and keeping fixed nP and 
the total computing time obtained by varying nP and keeping fixed nb. For the tables 3.1 
and 3.2, we took n = 30 * i, i = 7, 14, 21, 28 and blocks of size 30 x 30. For the tables 4.1 
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and 4.2, we took n = 18 * i, i = 7, 14, 21, 28 and blocks of size 18 x 18. 
It is observed in view of the given tables that the total computing time on the matrix 

coprocessor configuration with nb = a and np = b where a > b is slightly less than that on 
a configuration with nb = b and np = a (for a given order n). This again illustrates the 
communication problem if more than one processors are configured on the same bus. We 
conclude that we have to choose the value of nb as close as possible to the maximum of 
the matrix coprocessor bus configuration in order to minimize the total computing time. 
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Figure 4.9: rgmmul 
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5 A performance model for matrix-vector and matrix­
matrix product 

In this section we model the total cost of communication, i.e. the cost of sending 
or receiving messages (like load, store instructions) and the time spent in computing. We 
assume that the sending or receiving of n floating point numbers between one processor 
and the global memory takes ~ seconds, where r is the rate by which a message can be 
transferred, expressed in words per second. 
We assume that a reasonable estimate of the time T pa required to execute a program of 
N-equal processes on a shared parallel MIMD computer of matrix configuration p = nb x np 
processors (if we assume that the algorithm uses only the pfp directives cpcf critical 
section bus) is as follows: 

N N 
(15) Tpa ~ f - lTcomp + f - lTcomm seconds, 

p nb 

where, Tcomp and Tcomm are respectively the computing time and the communication over­
head required to execute one process on one processor. We neglect the idle time of a 
processing element waiting when another one is accessing the memory, since this very much 
depends on the ratio between Tcomp and Tcomm, and on the places in the algorithm where 
communication is performed. The MFLOP-rate, the speedup and the efficiency are defined, 
as usual, by 

(16) 

the speed-up by 

(17) 

MFLOP _ the total number of operations . 
- rate - T, , 

pa 

where T1 is the time on one processor, and the efficiency by 

(18) 
Sp ~ Ep = - x 10010. 
p 

Furthermore, since each matrix bus has a peak bandwidth of 160 MBytes per second, we 
haver= 2 x 107 words (of 8 bytes) per second. At any time only one processing element 
along a matrix bus is allowed to access the shared storage area, and each processing ele­
ment produces up to 40 MFLOPS of double precision multiply and add performance. So 
we have R = 4 x 107 flops per second. 

The performance model for matrix-vector product: 
For each iteration step of the k-loop of the block-dot algorithm, one block Ak from matrix 
A and one segment from vector b are sent to each processor; after k iterations one array cL 

is sent to the main memory. Thus, we have a 1 * a2 + a2 data transfers and 2a1 * a2 ft.ops 
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performed on different iterations k. If the computation proceeds at R flops per second and 
the communication proceeds at r words per seconds then the cost of each step of the i-loop 
of the block- dot algorithm requires a communication time Tcomm d and a computing time 
Tcomp d given by 

For the block-saxpy algorithm, the cost of each step of the k-loop requires a communication 
time Tcomm 8 and a computing time Team/ given by 

In particular, if n1 = n2 = n, and a 1 = a:2 = a, with n = aN, then each step of i-loop of 
the block-dot algorithm requires: 2N a:2 j R + { N a 2 + ( N + 1 )a:}/ r seconds and each step of 
j-loop of the block-saxpy algorithm requires: N(2a:2+a:)/ R+{ N a:2 + (2N + l)a:} /r seconds. 
Thus, the ratio of the computing time to the communication time on one processor for the 
block-dot algorithm is: {l+d+~nr/ R ~ 1. 
The ratio of the computing time to the communication time on one processor for the block-

saxpy algorithm is: {l+~i~~)} r / R ~ 1. 
If now the computing time and the communication time are modeled as given above, then 
an estimate of the time Ti d (resp. Ti 8 ) required to execute the program on one processor 
and the time Tpad (resp. Tpas) required to execute the program on p processors for the 
block-dot (resp. block-saxpy) algorithm looks as follows: 

(21) 

(22) 

(23) 

d 1 
T1 ~ 2n1n2/R+ {n1 +n1n2(l + -)}/r 

0:1 

T1 s ~ ni n2 (2 + ~) / R + { n2 + ni n2 ( 1 + ~)} / r 
0::2 0:2 

Tpad ~ Cd + Md and Tpas ~Cs+ Ms 

where Cd, Md, Cs and Ms are given in section 3, formulas (3)-(6). The MFLOP-rates are 
given by 

(24) MFLO n 2n1 n2 d MFLOP 2n1 n2 
r d ~ -;:;:;d an s ~ --s-

i pa Tpa 

In tables 5.1 and 5.2 we present the model and observed values of T1 T, S and MFLOP 
' pa, p ' 

for the block-dot and the block-saxpy version of the matrix-vector algorithm, respectively. 
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Table 5.1: Theoretical and observed times (in seconds), speedups and 
MFLOP-rates for the block-dot version of the matrix-vector 
algorithm with n 1 = n2 = n = 1008 and p = 28. 

-· 

~n~~~!_ I 
--· M.4-

001, 002 cd Md __ Qi},__ 

6,126 6 0.181 x 10-2 0.84 7 x 10-2- 4.670 
18,36 2 0.181 x 10..:.i o. 766 x lo-i 4.226 
18,42 2 0.181 x 10-2 0.766 x 10-2 4.226 

~· 

36,18 1 0.181 x 10-2 o.746 x 10-2 4.115 
36,24 1 0.181 x 10-2 0.746 x 10-2 4.115 
~--- :l4 0.211 x 10-2 o.867 x 10-2 42,18 2R 4.099 

126,6 8 0.635 x 10-:l J l.~~l x 10-:l 2.017 
- .2£. 
T1d Tpad sa 

p MF LO Pd 
model exp model exp model exp model exp 

I--------------------------·-----

i.028 x 10-2 0.298 x lo=r 
--··· ---~-------- ----

197.510--06S:-i60 0.110 0.486 10.700 16.308 
0.104 0.311 o.948 x 10-2 0.175 x 10-1 10.970 17.771 214.307 116.140 
0.104 0.309 0.948 x 10-2 0.112 x 10-1 10.970 17.965 214.307 117.820 
0.103 0.265 0.928 x 10-2 0.141 x 10-1 11.099 18.794 218.962 143.800 
0.103 0.261 o.928 x 10-2 0.135 x 10-1 11.099 19.333 218.962 150.070 
0.1028 0.256 fo79 x 10-2 0.153 x 10-1 09.527 16. 732 1188.264 132.54~ 
0.102 0.229 i.915 x 10-2- 0.294 x 10-1 - 05.323 07.789 106.035 069.020 

-----·-- ·-- -- ----
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Table 5.2: Theoretical and observed times (in seconds), speedups and 
MFLOP-rates for the block-saxpy version of the matrix­
vector algorithm with n1 = n2 = n = 1008 and p = 28. 

0:1, a2 n a2 Cs Ms !ef.A. 
'D c. 

126,6 6 0.604 x 10-:.: 2.419 x 10-~ 4.005 
36,18 2 0.322 x 10-i 1.291 x 10-i 4.009 
42,18 2 0.322 x 10-2 1.291 x 10-2 4.009 
18,36 1 0.252 x 10-2 1.008 x 10 ·2 4.000 
24,36 1 0.252 x 10-2 1.008 x 10-2 4.000 
18,42 ~4 0.272 x 10-i 1.089 x 10-~ 4.003 28 

6,126 ~ 0.655 x 10-:.i 1.352 x 10-~ 2.064 28 

T1s Tpas s s p MFLOPs 
model exp model exp model exp model exp 
0.122 0.289 3.023 x 10-:.: 0.589 x 10-1 4.035 04.906 067, 222 034.476 
0.108 0.272 1.613 x 10-2 0.243 x 10-1 6.695 11.193 125, 984 083.619 
0.108 0.265 1.613 x 10-2 0.237 x 10-1 6.695 11.181 125, 984 085.642 
0.105 0.295 1.260 x 10-2 0.212 x 10-1 8.333 13.915 161.280 095.502 
0.105 0.276 1.260 x 10-2 0.196 x 10-1 8.333 14.081 161.280 103.410 
0.104 0.293 1.361 x 10-2 0.231 x 10-1 7.641 12.683 149.311 087.998 
0.102 0.470 2.007 x 10-:.i 0.788 x 10-1 5.082 05.964 101.250 025.769 

In general, as long as t;- ~ 1 the observed total computing times decrease (respectively 
MFLOP-rates increase) for the block-dot version as a 1 increases. Similarly, as long as 
!f;- ~ 1 the observed total computing times decrease for the block-saxpy version as a 2 in­
creases. Moreover, the block-dot algorithm has a better performance than the block-saxpy 
algorithm. This is due to the fact that the first algorithm uses critical section bus 
directives, while the second algorithm uses critical section and critical section bus 
directives. 

The performance model for matrix-matrix product: 
We proceed as in the previous performance model for matrix-vector product. We consider 
firstly the block-dot algorithm. For each iteration step of the k-loop, two blocks Aik and 
Bkj are sent to each processor; after k iterations one array CL is sent to main memory. 
Thus, we have a 1 * a2 + a2 * a 3 data transfers and 2o:1 * a 2 * a 3 flops are performed on 
different iterations k. If the computation proceeds at R flops per second and the commu­
nication proceeds at r words per second then the cost of each step of the i-loop requires a 
communication time Tcomm d and a computing time Tcomp d given by 
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In the similar way, for the block-saxpy algorithm, the cost of each step of the requires 
a communication time Tcomm s and a computing s given 

s = 2o /R 
In particular, if n1 = n2 = n3 = n, and Cl' 1 = a 2 = n3 = a, n, = .Y,n,, = L 2, 3 
the cost of each step of the i-loop of the block-dot algorithm requires: 2o3 N2 / R + l + 
2N seconds and the cost of each step of of the algorithm 
requires: 2o:3 "V2 / R + N( l + 3N /r) seconds. Thus, the ratio of the computing time to 
the communication time on one processor for the block-dot algorithm is: r / R, and the 
ratio of the computing time to the communication time on one processor f~r t'he 
a1aorithm is rriven bv -1.-2 ' r/R 1 b b ... . +~ .. 
If now the computing tim~ and the communication time are modeled as given above. t a 
reasonable estimate of T1 d, (resp. T15 ), T pad (resp. Tp/) and the .\lFLOP-rates M FLO Pd, 

(resp . .:\!FLO Ps) for the block-dot ( resp. block-saxpy) algorithm looks as follows: 

d 1 1 
T1 ~{n1n3+n1n2n3( +--)}/r+2n1n2n3/R 

0'3 <11 
(27) 

(28) T1s ~ {n2n3 + n1n2n3( 1 + 2 )}/r + 2n1n2n3/R 
0'3 0'2 

(29) Tpa d ~ Cd + ~'vf d and Tpa s ~ Cs + ;\1" 

where Cd, Md, Cs and Afs are given in section 4, formulas (9)-(14). 

(30) 

The model and observed values of T1 , Tpa, SP and ~1FLOP are given in Tables 5.3 and 5.4, 
for the block-dot and the block-saxpy version of the matrix-matrix algorithm, respectively. 
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Table 5.3: Theoretical and observed times (in seconds), speedups and 
MFLOP-rates for the block-dot version of the matrix-matrix 
algorithm with n1 = n2 = n3 = n = 504 and p = 28. 

a1, a2, a3 ~ cd Md MA 
1' cd 

6,36,18 3 0.228 0.205 0.896 
6,18,36 3 0.228 0.179 0.785 
18,36, 6 1 0.228 0.205 0.896 
18,18,18 1 0.228 0.103 0.452 
18, 6,36 1 0.228 0.078 0.341 
36,6,18 l4 0.457 0.078 0.170 

f ~ 36,18,6 '8 0.457 0.179 0.392 
T1d Tpad sd 

p MFLOPd 
model exp model exp model exp model exp 
7.836 43.463 0.433 1.597 18.097 27.215 590.460 160.010 
7.658 43.663 0.408 1.600 18.769 27.289 627.200 160.270 
7.836 29.108 0.433 1.075 18.097 27.077 590.460 238.020 
7.125 27.946 0.332 1.018 21.460 27.451 771.148 251.510 
6.947 28.581 0.306 1.049 22. 702 27.246 835.030 243.970 
6.947 24.429 0.535 1.771 12.985 13.793 478.372 144.580 
7.658 25.015 0.636 1.807 12.041 13.843 402.051 141.700 
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Table 5.4: Theoretical and observed times (in seconds), speedups and 
MF LOP-rates for the block-saxpy version of the matrix­
matrix algorithm with n 1 = n2 = n3 = n = 504 and p = 28. 

a1, a2, a3 ~ Cs Ms M. 
D c. 

36,18, 6 3 0.228 0.255 1.563 
18,36, 6 3 0.228 0.068 0.896 
36, 6,18 1 0.228 0.357 1.563 
18,18,18 1 0.228 0.154 0.674 
6,36,18 1 0.228 0.103 0.452 
18,6,36 14 0.457 0.332 0.726 

r~ 6,18,36 
·~R 

0.457 0.128 0.281 
T1s Tpas ss p MFLOPs 

model exp model expl exp2 model expl exp2 model expl exp2 
7.303 25.399 0.484 1.144 0.964 15.08 22.20 26.34 528.540 223.820 270.520 
7.125 28.607 0.296 1.234 1.048 24.07 23.18 27.29 862.241 207.370 244.130 
8.903 26.521 0.586 1.208 1.010 15.19 21.95 26.25 436.904 211.370 253.480 
7.480 28.143 0.382 1.140 1.032 19.58 24.68 27.27 668.815 224.520 247.960 
7.836 42.389 0.332 1.665 1.543 23.60 25.45 27.47 771.147 153.720 165.880 
8.903 30.501 0.789 2.357 2.257 11.28 12.94 13.51 324.413 108.620 113.450 
8.192 43.203 0.586 3.199 3.156 13.97 13.50 13.69 436.904 080.025 081.111 

Note: expl (resp. exp2) denotes the numerical experiment performed without (resp. with) 
critical section bus regrouping technique, see Section 4. 

In the same way as in the previous model, we expect that as long as tv;- ~ 1 the ob­
served total computing time will decrease for block-dot algorithm if a 1, a 3 increase. This 
is supported by the information of Table 5.3. We expect also that as long as &. ~ 1 
the observed total computing time decreases for block-saxpy if a2, a3 increase. This is 
supported by the information of Table 5.4. So the property given in Section 4 is verified 
now for the block-dot algorithm (except for blocks of size a 1 = 18, a1 = 6 and a3 = 36). 
Furthermore, the property given in Section 4 is not verified for the block-saxpy algorithm. 
What this suggests is that the total idle time becomes more significant. Therefore, the 
total computing time is affected more and more, particularly if the number of processes is 
increased, and this causes a degraded performance. 
For RGMMUL, the subroutine has been programmed to achieve as close as possible to 
the theoretical values of the MFLOP-rates. In our implementations, we have reached the 
theoretical results. The figures 4.9 and 4.10 confirm this. 
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Remark: The choice made on the processor's cache block sizes is not arbitrary. The 
block sizes have to satisfy some constraints, due to some cache characteristics. Firstly, 
the block sizes have to satisfy: 0!1 = 0 [mod 2), a2 = 0 [mod 2) (with 0!3 arbitrary) if we 
compute with double precision arithmetic. Secondly, the block sizes must be chosen so 
that the block matrices can be stored completely in the cache. Finally, the block sizes have 
to satisfy: ni = ai x Ni, i = 1, 2, 3. The two last conditions are also mentioned in the 
previous sections. 

Conclusions and remarks: 
We have carried out several experiments with simple linear algebra operations on the Cray 
S-MP System 500 matrix coprocessor. In particular, we have studied different block algo­
rithm techniques applied to the matrix-vector and matrix-matrix operations. A number of 
characteristics related to the matrix coprocessor configurations and the block size influence 
on the matrix-vector and matrix-matrix product have been studied. Furthermore, we have 
presented a performance model for both operations concerning the total computing time 
and the MFLOP-rates. We have compared this with our experiments. It turned out that 
the numerical results are worse than what is predicted by the performance model. This 
can partly be explained by the fact that 
•The block algorithms are not implemented in terms of calls to Optimal Hand Coded Math 
Routines (Matrix Coprocessor's vector primitives), like useful routines as _ dvmv and _ 
dvmm (FPS9la). These routines are designed to operate on data that have been put in 
cache. The subroutine _ dvmv (resp. _ dvmm) multiplies the elements of a matrix and 
a vector (resp. a matrix) in the cache. 
• Processing elements on the same bus can compute in parallel, but can not communicate 
with the main memory at the same time. Our performance model only roughly accounts 
for the idle time induced by this bottleneck. (This idle time is a complicated function of 
the number of processing elements per bus, of the ratio of computing to communication 
time, of the places in the algorithm where communication has to be carried out, and of the 
synchronization points in the algorithm.) 
• Our performance model does not account for overhead caused by loops, the use of mpp 
and pfp directives, and data initialization. 
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APPENDIX A: Some hardware and software characteristics of the System 500 
matrix coprocessor 

A.1 mpp and pfp directives 
mpp and pfp comment directives have to be used for parallelizing programs. For either 
type a preprocessor is invoked which interprets these directives creates special Fortran 
code for the matrix coprocessor, to be compiied and executed subsequently by the Fortran 
compiler. 

• mpp directives 
The scope of an mpp (matrix procedure preprocessor) directive is a subroutine or a 
function. The directive informs the preprocessor that the subroutine or function 
follows has to be executed on the matrix coprocessor. It specifies the type and use 
(e.g., INPUT, OUTPUT, or INOUT) of the parameters of the subroutine or 
function, and of common blocks, if appropriate. An mpp directive has the general 
form: 

CMCP directive [modifiers] 

where directive may be one of the following: 

SUBROUTINE 
FUNCTION 
INPUT 
OUTPUT 
IN OUT 
CLIENT 
SERVER 

modifiers supplies one or more additional arguments to the directive. For details 
see [FPS91a, pp. 6-1/6-9]. 

• pfp directives 
The scope of a pfp (parallel fortran preprocessor) directive is the code that imme­
diately follows the directive. It specifies which loops in a Fortran program have to 
be executed in parallel. A pfp directive has the following general form: 

CPCF directive [modifiers] 

where directive may be one of the following: 

PARALLEL 
END PARALLEL 
SINGLE PROCESS 
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END SINGLE PROCESS 
PDO 
CRITICAL SECTION 
CRITICAL SECTION BUS 
END CRITICAL SECTION 
PRIVATE 
BARRIER 

supplies one or more additional arguments to the directive. For details 
see [FPS9la. pp. 7-1/ 
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APPENDIX B: The listings of our parallel Fortran block subroutines for matrix­
vector and matrix-matrix multiplication. 

c * * * Locality example 1 matrix-vector multiplication 

c Fortran matrix-vector multiply executed in cache 
c 
CMCP SUBROUTINE Block-dot(A,B,C,n,alpha1,alpha2,lda) 
CMCP INPUT REAL*B A(lda,n),B(n) 
CMCP OUTPUT REAL*B C(n) 
CMCP INPUT INTEGER*4 n,alpha1,alpha2,lda 
c 
c Parallel Fortran matrix-vector multiplication 
c 

c***************************************************************************** 
Subroutine Block-dot(A,B,C,n,alpha1,alpha2,lda) 

c***************************************************************************** 
ccccc PURPOSE: 
c-----------------------------------------------------------------------------
c This subroutine determines matrix-vector multiplication with block dot 
c approach ik-version, Ci=Ci+Aik*Bk. Aik is a block matrix of size 
c alpha1*alpha2, Bk and Ci are segment vectors of size alpha2, alpha1 
c respectively, where 
c Aik = A((i-1)*alpha1+1:i*alpha1,(k-1)*alpha2+1:k*alpha2), 
c Bk= B((k-1)*alpha2+1:k*alpha2) and Ci= C((i-1)*alpha1+1:i*alpha1). 
c The subroutine is parallelized over the i-loop in a such way that 
c different processors will perform different iterations of the loop. 
c Each processor, at a given time will compute independently on different 
c segments Ci, i=l, ... , N1, of C. 
c------------------------------------------------------------------------------
ccccc VARIABLES IDENTIFICATION: 
c 
c On entry: 
c 
c A real*B(lda,*) the matrix A. 
c B real*B(*) the vector B. 
c n integer*4 the order of A, B; n must be 
c less than lda. 
c alpha1,alpha2 integer*4 the sizes of the block 
c matrices Aik,Bk and Ci. 
c lda integer*4 the row dimension of array A 
c CA, CB real*8 storage allocations for the 
c transferred block matrices Aik, 
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c Bk from the matrix registers 
c into the cache. 
c On exit: 
c 
c 
c 
c 
c 
c 

cc 

c 

c Local variables: 
c 
c 
c 
c 
c 
c 
c 
c 

ib, kb 
i,k 
bound1,bound2 
KVL 
volume 

real*8 

integer*4 
integer*4 
integer*4 
integer*4 
integer*4 

storage allocation for the 
multiplication of the vectors 
CA by CB in the cache. 
the matrix A by B multiplication. 

specify the number of block matrices. 

specifies the cache size. 
specifies the total number of 
data transferred into the cache. 

ccccc TYPE DECLARATION AND STORAGE ALLOCATION: 
c 

integer*4 
real*8 
real*8 
integer*4 
integer*4 

n,alpha1,alpha2,lda 
A(lda,*),B(*),C(*) 
CA(1),CB(1),CC(1) 
ib,kb,i,k,bound1,bound2 
KVL,volume 

c-------------------------------------------------------------------
ccccc EQUIVALENCES: 
c A non-constant expression is not allowed as an index in the array 
c MCP_DREG of the EQUIVALENCE-statements given below where a constant 
c expression is required. For this reason, we illustrate in this algorithm 
c by means of an example how the cache can be divided into three cache 
c arrays of 64-bit elements. 
c Suppose the block matrix Aik is of size 18x36 and the segment vectors 
c Bk, Ci are of size 36, 18 respectively. 
CCC CC 

c 

INCLUDE 
PARAMETER 

'mcpreg.h' 
(KVL=((MCP_DREG_SIZE)/2)*2) 

c CA is a cache array of length KVL-(18+36)=970. 
EQUIVALENCE (CA(1),MCP_DREG(1)) 

c 
c CB is a cache array of length alpha2=36. 

EQUIVALENCE (CB(1),MCP_DREG(1+KVL-54)) 
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c 
c CC is a cache array of length alpha1=18. 

EQUIVALENCE (CC(1),MCP_DREG(1+KVL-18)) 
c------------------------------------------------------------------

c 
CPCF 
CPCF 
CPCF 
c 

c 

bound1=n/ alpha1 
bound2=n/alpha2 
volume=alpha1*alpha2+alpha2+alpha1 
if ((n.NE.alpha1*bound1).0R. 

$ (n.NE.alpha2*bound2).0R. 
$ (volume.GT.1024)) then 

$ 

print 
print 

print 
stop 

endif 

PARALLEL 
PRIVATE 
PDQ 

*· 
*· 

*· 

'alpha1 or alpha2 is not a divisor of n' 
'alpha1 =', alpha1,'alpha2 =', alpha2, 

' n =', n 
'or data does not fit in the cache' 

i,k,kb 

do 120 ib=1,bound1 

c Initialize the matrix CC in the cache: 
c 

c 

c 

do 10 i=1,alpha1 
CC(i)=O.OdO 

10 continue 

do 100 kb=1,bound2 

CPCF CRITICAL SECTION BUS 
c 
c Read the strip Bk using utility routine; 
c Bk= B((kb-1)*alpha2+1:kb*alpha2) 
c 

call _DVLOAD(B((kb-1)*alpha2+1), 
$ 1,CB,1,alpha2) 

c 
c Read the block Aik using utility routine; 
c Aik= A((ib-1)*alpha1+1:ib*alpha1,(kb-1)*alpha2+1:kb*alpha2) 

c 
call _DMLOAD (A((ib-1)*alpha1+1,(kb-1)*alpha2+1), 
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$ 1,lda,CA,1,alpha1,alpha1,alpha2) 
c 
CPCF END CRITICAL SECTION 
c 
c Compute the result: Ci=Ci+Aik*Bk; 
c Ci= C((ib-1)*alpha1+1:ib*alpha1) 
c 

c 

c 

do 80 k=1,alpha2 
do 70 i=1,alpha1 

CC(i)=CA((k-1)*alpha1+i)*CB(k) 
$ +CC(i) 

70 continue 
80 continue 

100 continue 

CPCF CRITICAL SECTION BUS 
c 
c Store the output Ci strip into memory using utility routine; 
c Ci=C((ib-1)*alpha1+1:ib*alpha1) 
c 

c 
$ 

call _DVSTOR (CC,1,C((ib-1)*alpha1+1), 
1, alpha1) 

CPCF END CRITICAL SECTION 
c 

120 continue 
c 
CPCF END PARALLEL 
c 

return 
end 
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c * * * Locality example 2 matrix-vector multiplication 

c Fortran matrix multiply executed in cache 
c 
CMCP SUBROUTINE Block-saxpy(A,B,C,n,alpha1,alpha2,lda) 
CMCP INPUT REAL*8 A(lda,n),B(n) 
CMCP OUTPUT REAL*8 C(n) 
CMCP INPUT INTEGER*4 n,alpha1,alpha2,lda 
c 
c Parallel Fortran matrix-vector multiplication 
c***************************************************************************** 

Subroutine Block-saxpy(A,B,C,n,alpha1,alpha2,lda) 
C***************************************************************************** 
ccccc PURPOSE: 
c-----------------------------------------------------------------------------
c This subroutine determines matrix-vector multiplication with block saxpy 
c approach ki-version, Ci=Ci+Aik*Bk. Aik is a block matrix of size 
c alpha1*alpha2, Bk and Ci are segment vectors of size alpha2, alpha! 
c respectively, where 
c Aik = A((i-1)*alpha1+1:i*alpha1,(k-1)*alpha2+1:k*alpha2), 
c Bk = B((k-1)*alpha2+1:k*alpha2) and Ci= C((i-1)*alpha1+1:i*alpha1). 
c The subroutine is parallelized over the k-loop in a such way that 
c different processors will perform different iterations of the loop. 
c For each iterations step of the i-loop the segment Ci (i=1, ... , N1) 
c of C is updated, and this is processed by one processor at a time. 
c------------------------------------------------------------------------------
ccccc VARIABLES IDENTIFICATION: 
c 
c On entry: 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

A 
B 
n 

alpha1,alpha2 

lda 
CA, CB 

real*8(lda,*) the matrix A. 
real*8(*) the vector B. 
integer*4 the order of A, B; n must be 

less than lda. 
integer*4 

integer*4 
real*8 

the sizes of the block 
matrices Aik,Bk and Ci. 
the row dimension of array A 
storage allocations for the 
transferred block matrices Aik, 
Bk from the matrix registers 

c into the cache. 
c On exit: 
c 
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c 
c 
c 
c 

c 

cc 

c 

real*8 storage allocation for the 
multiplication of the vectors 
CA by CB in the cache. 
the matrix A by B multiplication. 

c Local variables: 
c 
c 
c 
c 
c 
c 
c 
c 

kb, ib 
i ,k 
bound1,bound2 
KVL 
volume 

integer*4 
integer*4 
integer*4 
integer*4 
integer*4 

specify the number of blocks. 

specifies the cache size. 
specifies the total number of 
data transferred into the cache. 

ccccc TYPE DECLARATION AND STORAGE ALLOCATION: 
c 

integer*4 
rea1*8 
real*8 
integer*4 
integer*4 

n,alpha1,alpha2,lda 
A(lda,*),B(*),C(*) 
CA(1),CB(1),CC(1) 
ib,kb,i,k,bound1,bound2 
KVL,volume 

c-------------------------------------------------------------------
ccccc EQUIVALENCES: 
c A non-constant expression is not allowed as an index in the array 
c MCP_DREG of the EQUIVALENCE-statements given below where a constant 
c expression is required. For this reason, we illustrate in this algorithm 
c by means of an example how the cache can be divided into three cache 
c arrays of 64-bit elements. 
c Suppose the block matrix Aik is of size 18x36 and the segment vectors 
c Bk, Ci are of size 36, 18 respectively. 
ccccc 

c 

INCLUDE 
PARAMETER 

'mcpreg.h' 
(KVL=((MCP_DREG_SIZE)/2)*2) 

c CA is a cache array of length KVL-(18+36)=970. 
EQUIVALENCE (CA(1),MCP_DREG(1)) 

c 
c CB is a cache array of length alpha2=36. 

EQUIVALENCE (CB(1),MCP_DREG(1+KVL-54)) 
c 
c CC is a cache array of length alpha1=18. 

EQUIVALENCE (CC(1),MCP_DREG(1+KVL-18)) 

c------------------------------------------------------------------
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bound1=n/alpha1 
bound2=n/alpha2 
volume=alpha1*alpha2+alpha2+alpha1 
if ((n.NE.alpha1*bound1).0R. 

$ (n.NE.alpha2*bound2).0R. 
$ (volume.GT.1024)) then 

print 
print 

*, 
*• 

'alpha1 or alpha2 is not a divisor of n' 
'alpha1 =', alpha1,'alpha2 =', alpha2, 

$ ' n =', n 
print *, 'or data does not fit in the cache' 
stop 

end if 
CPCF PARALLEL 
CPCF PDO 
c 
c Initialize the vector C: 
c 

c 

do 11 i=1,n 
C(i)=O.OdO 

11 continue 

CPCF END PARALLEL 
c 
CPCF PARALLEL 
CPCF PRIVATE i,k,ib 
CPCF PDQ 

do 110 kb=1,bound2 
c 
CPCF CRITICAL SECTION BUS 
c 
c Read the strip Bk using utility routine; 
c Bk=B((kb-1)*alpha2+1:kb*alpha2) 
c 

call _DVLOAD(B((kb-1)*alpha2+1), 
$ 1,CB,1,alpha2) 

c 
CPCF END CRITICAL SECTION 
c 

do 100 ib=1,bound1 
c 
CPCF CRITICAL SECTION BUS 
c 
c Read the block Aik using utility routine; 
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c 

c 

c 
$ 

Aik=A((ib-1)•alpha1+1:ib•alpha1,(kb-1)•alpha2+1:kb•alpha2) 

call DMLOAD (ib-1)•alpha1+1,(kb-1)•alpha2+1), 
1,lda,CA,1,alpha1,alpha1,alpha2) 

CPCF END CRITICAL SECTION 
c 
c Compute the result: Ci=Ci+Aik•Bk; 
c Ci=C((ib-1)•alpha1+1:ib•alpha1) 
c 

do 10 i=1,alpha1 
CC(i)=O.OdO 

10 continue 
do 80 k=1,alpha2 

do 70 i=1,alpha1 
CC(i)=CA((k-1)•alpha1+i)•CB(k) 

$ +CC(i) 
70 continue 
80 continue 

CPCF CRITICAL SECTION 
c 
c add the result to the ib-th segment of C. 
c 

c 

do 90 i=l, alpha1 
C((ib-1)•alpha1+i)=C((ib-1)•alpha1+i)+CC(i) 

90 continue 

CPCF END CRITICAL SECTION 
c 

100 continue 
110 continue 

c 
CPCF END PARALLEL 
c 

return 
end 

46 



c 
c 
c 
c 

c 

c * * * Example 3 matrix-vector multiplication 

Matrix data structure (row storage scheme) 
a1,1 a1,2 a1,3 a1,n a2,1 

a2,n a3,1 a3,2 

CMCP SUBROUTINE MATVEC3(A, B, C, N) 
CMCP INPUT REAL*S A(N*N), B(N) 
CMCP OUTPUT REAL*S C(N) 
CMCP INPUT INTEGER*4 N 

a2,2 a2,3 

C****************************************************************************** 
SUBROUTINE MATVEC3(A, B, C, N) 

C****************************************************************************** 
c 
ccccc TYPE DECLARATION AND STORAGE ALLOCATION: 
c 

c 

REAL*S 
INTEGER*4 
INTEGER*4 

A(*), B(*), C(*) 
N 
i, j 

CPCF PARALLEL 
CPCF PDO 

do 10 i = 1, n 
c(i) = O.OdO 
do 20 j = 1, n 
c(i) = c(i) + A((i-l)*n+j)*B(j) 

20 continue 
10 continue 
CPCF END PARALLEL 
c 

RETURN 
END 
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c * * * Locality example 1 matrix-matrix multiplication 

c Fortran Block matrix multiply executed in cache 
c 
CMCP SUBROUTINE Block-dot(A,B,C,n,alpha1,alpha2,alpha3,lda,ldb,ldc) 
CMCP INPUT REAL*8 A(lda,n),B(ldb,n) 
CMCP OUTPUT REAL*8 C(ldc,n) 
CMCP INPUT INTEGER*4 n,alpha1,alpha2,alpha3,lda,ldb,ldc 
c 
c Parallel Fortran Block matrix-matrix multiplication 
C****************************************************************************** 

Subroutine Block-dot(A,B,C,n,alpha1,alpha2,alpha3,lda,ldb,ldc) 
C****************************************************************************** 
ccccc PURPOSE: 
c-----------------------------------------------------------------------------
c The subroutine determines matrix-matrix multiplication with block dot 
c approach ijk-version, Cij=Cij+Aik*Bkj. Aik is a block matrix of size 
c alpha1*alpha2, Bkj is a block matrix of size alpha2*alpha3 and Cij is 
c a block matrix of size alpha1*alpha3, where 
c Aik = A((i-1)*alpha1+1:i*alpha1,(k-1)*alpha2+1:k*alpha2), 
c Bkj = B((k-1)*alpha2+1:k*alpha2,(j-1)*alpha3+1:j*alpha3) and 
c Cij = C((i-1)*alpha1+1:i*alpha1,(j-1)*alpha3+1:j*alpha3). 
c The subroutine is parallelized over the i-loop in a such way that 
c different processors will perform different iterations of the loop. 
c Each processor, at the same time will compute independently on 
c different rows of blocks Cij, j=1, ... , N3, of C. 
c------------------------------------------------------------------------------
ccccc VARIABLES IDENTIFICATION: 
c 
c On entry: 
c 
c A real*8(lda,*) 
c B real*8(ldb,*) 
c n integer*4 
c 
c alpha1,alpha2,alpha3 integer*4 
c 
c lda,ldb,ldc integer*4 
c 
c CA, CB real*8 
c 
c 
c 
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the matrix A. 
the matrix B. 
the order of A, B; n must be 
less than lda, ldb and ldc. 
the sizes of the block 
matrices Aik,Bkj and Cij. 
the row dimensions of arrays A, B 
and C. 
storage allocations for the 
transferred block matrices Aik, 
Bkj from the matrix registers 
into the cache. 



c On exit: 
c 
c 
c 
c 
c 
c 

cc 

c 

real*8 storage allocation for the 
multiplication of the vectors 
CA by CB in the cache. 

real*8(ldc,*) the matrix A by B multiplication. 

c Local variables: 
c 
c 
c 
c 
c 
c 
c 
c 

ib,jb,kb 
i,j,k 
bound1,bound2,bound3 
KVL 
volume 

integer*4 
integer*4 
integer*4 
integer*4 
integer*4 

specify the number of blocks. 

specifies the cache size. 
specifies the total number of 
data transferred into the cache. 

ccccc TYPE DECLARATION AND STORAGE ALLOCATION: 
c 

integer*4 
real*B 
real*B 
integer*4 
integer*4 

n,alpha1,alpha2,alpha3,lda,ldb,ldc 
A(lda,*),B(ldb,*),C(ldc,*) 
CA(1), CB(1),CC(1) 
ib,jb,kb,i,j,k,boundl,bound2,bound3 
KVL,volume 

c------------------------------------------------------------------------------
ccccc EQUIVALENCES: 
c A non-constant expression is not allowed as an index in the array 
c MCP_DREG of the EQUIVALENCE-statements given below where a constant 
c expression is required. For this reason, we illustrate in this algorithm 
c by means of an example how the cache can be divided into three cache 
c arrays of 64-bit elements. 
c Suppose the block matrices Aik, Bkj, Cij are of size 18x36, 36x6 and 
c 18x6 respectively. 
CCC CC 

c 

INCLUDE 
PARAMETER 

'mcpreg.h' 
(KVL=((MCP_DREG_SIZE)/2)*2) 

c CA is a cache array of length KVL-(36x6+18x6)=700. 
EQUIVALENCE (CA(1),MCP_DREG(1)) 

c 
c CB is a cache array of length alpha2xalpha3=36x6. 

EQUIVALENCE (CB(l),MCP_DREG(l+KVL-324)) 
c 
c CC is a cache array of length alpha1xalpha3=18x6. 
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EQUIVALENCE (CC(l),MCP_DREG(l+KVL-108)) 
c------------------------------------------------------------------------------

c 

bound1=n/ alpha1 
bound2=n/alpha2 
bound3=n/alpha3 
volume=alpha1*alpha2+alpha2*alpha3+alpha1*alpha3 
if ((n.NE.alpha1*bound1).0R. 

$ (n.NE.alpha2*bound2).0R. 
$ (n.NE.alpha3*bound3).0R. 
$ (volum.e.GT.1024)) then 

print 
print 

$ 
print 
stop 

endif 

*, 
*• 

*• 

'alpha1 or alpha2 or alpha3 is not a divisor of n' 
'alpha1 =', alpha1,'alpha2 =', alpha2,'alpha3 =' 
al pha3 , ' n = ' , n 

'or data does not fit in the cache' 

CPCF PARALLEL 
CPCF PRIVATE i,j,k,jb,kb 
CPCF PDO 
c 

do 120 ib=1,bound1 
do 110 jb=1,bound3 

c 
c Initialize the matrix CC in the cache: 
c 

c 

c 

do 10 j=1,alpha3 
do 10 i=1,alpha1 

CC((j-1)*alpha1+i)=O.Od0 
10 continue 

do 100 kb=1,bound2 

CPCF CRITICAL SECTION BUS 
c 
c Read the block 
c 
c 

call 
$ 

c 
c Read the block 
c 

Aik using utility routine; 
Aik=A((ib-1)*alpha1+1:ib*alpha1,(kb-1)*alpha2+1:kb*alpha2) 

_DMLOAD(A((ib-1)*alpha1+1,(kb-1)*alpha2+1), 
1,lda,CA,1,alpha1,alpha1,alpha2) 

Bkj using utility routine; 
Bkj=B((kb-1)*alpha2+1:kb*alpha2,(jb-1)*alpha3+1:jb*alpha3) 
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c 
call _DMLOAD(B((kb-1)*alpha2+1,(jb-1)*alpha3+1), 

$ 1,ldb,CB,1,alpha2,alpha2,alpha3) 
c 
CPCF END CRITICAL SECTION 
c 
c Compute the result: Cij=Cij+Aik*Bkj; 
c Cij=C((ib-1)*alpha1+1:ib*alpha1,(jb-1)*alpha3+1:jb*alpha3) 
c 

c 

c 

do 90 j=1,alpha3 
do 80 k=1,alpha2 

do 70 i=1,alpha1 
CC((j-1)*alpha1+i)=CA((k-1)*alpha1+i)*CB((j-1)*alpha2+k) 

$ +CC((j-1)*alpha1+i) 
70 continue 
80 continue 
90 continue 

100 continue 

CPCF CRITICAL SECTION BUS 
c 
c Store the output Cij block into memory using utility routine; 
c Cij=C((ib-1)*alpha1+1:ib*alpha1,(jb-1)*alpha3+1:jb*alpha3) 
c 

$ 
call _DMSTOR(CC,1,alpha1,C((ib-1)*alpha1+1, 

(jb-1)*alpha3+1),1,ldc,alpha1,alpha3) 
c 
CPCF END CRITICAL SECTION 
c 

110 continue 
120 continue 

c 
CPCF END PARALLEL 
c 

return 
end 
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c * * * Locality example 2 matrix-matrix multiplication 

c Fortran Block matrix multiply executed in cache 
c 
CMCP SUBROUTINE Block-saxpy(A,B,C,n,alpha1,alpha2,alpha3,lda,ldb,ldc) 
CMCP INPUT REAL*8 A(lda,n),B(ldb,n) 
CMCP OUTPUT REAL*8 C(ldc,n) 
CMCP INPUT INTEGER*4 n,alpha1,alpha2,alpha3,lda,ldb,ldc 
c 
c Parallel Fortran Block matrix-matrix multiplication 
c 

C****************************************************************************** 
Subroutine Block-saxpy(A,B,C,n,alpha1,alpha2,alpha3,lda,ldb,ldc) 

C****************************************************************************** 
ccccc PURPOSE: 
c------------------------------------------------------------------------------
c The subroutine determines matrix-matrix multiplication 
c with block saxpy approach jki-version, Cij=Cij+Aik*Bkj,Aik is a block 
c matrix of size alpha1*alpha2, Bkj is a block matrix of size alpha2*alpha3 
c and Cij is a block matrix of size alpha1*alpha3, where 
c Aik = A((i-1)*alpha1+1:i*alpha1,(k-1)*alpha2+1:k*alpha2), 
c Bkj = B((k-1)*alpha2+1:k*alpha2,(j-1)*alpha3+1:j*alpha3) and 
c Cij = C((i-1)*alpha1+1:i*alpha1,(j-1)*alpha3+1:j*alpha3). 
c The subroutine is parallelized over the j-loop in a such way that 
c different processors will perform different iterations of the loop. 
c Each processor, at the same time will compute independently on 
c different columns of blocks Cij, i=1, ... , Ni, of C. 
c------------------------------------------------------------------------------· 
ccccc VARIABLES IDENTIFICATION: 
c 
c On entry: 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

A 
B 
n 

real*8(lda,*) the matrix A. 
real*8(ldb,*) the matrix B. 
integer*4 the order of A, B; n must be 

less than lda, ldb and ldc. 
alpha1,alpha2,alpha3 integer*4 the sizes of the block 

matrices Aik,Bkj and Cij. 
lda,ldb,ldc integer*4 

CA, CB real*8 
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the row dimensions of arrays A, B 
and C. 
storage allocations for the 
transferred block matrices Aik, 
Bkj from the matrix registers 



c 
c 
c 
c 
c 
c 
c 
c 
c 

On exit: 

cc 

c 

from the matrix registers 
into the cache. 

real*8 storage allocation for the 
multiplication of the vectors 
CA by CB in the cache. 

real*8(ldc,*) the matrix A by B multiplication. 

c Local variables: 
c 
c 
c 
c 

c 

c 

c 

c 

ib,jb,kb 

i 'j 'k 
bound1,bound2,bound3 
KVL, lastib 
volume 

integer*4 
integer*4 
integer*4 
integer*4 
integer*4 

specify the number of blocks. 

specifies the cache size. 
specifies the total number of 
data transferred into the cache. 

ccccc TYPE DECLARATION AND STORAGE ALLOCATION: 
c 

integer*4 
real*8 
REAL*8 
integer*4 
integer*4 

n,alpha1,alpha2,alpha3,lda,ldb,ldc 
A(lda,*),B(ldb,*),C(ldc,*) 
CA(1), CB(1),CC(1) 
ib,jb,kb,i,j,k,bound1,bound2,bound3,lastib 
KVL,volume 

c------------------------------------------------------------------------------
cc ccc EQUIVALENCES: 
c A non-constant expression is not allowed as an index in the array 
c MCP_DREG of the EQUIVALENCE-statements given below where a constant 
c expression is required. For this reason, we illustrate in this algorithm 
c by means of an example how the cache can be divided into three cache 
c arrays of 64-bit elements. 
c Suppose the block matrices Aik, Bkj, Cij are of size 18x36, 36x6 and 
c 18x6 respectively. 
CC CCC 

c 

INCLUDE 
PARAMETER 

'mcpreg.h' 
(KVL=((MCP_DREG_SIZE)/2)*2) 

c CA is a cache array of length KVL-(36x6+18x6)=700. 
EQUIVALENCE (CA(1),MCP_DREG(1)) 

c 
c CB is a cache array of length alpha2xalpha3=36x6. 

EQUIVALENCE (CB(1),MCP_DREG(1+KVL-324)) 
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c 
c CC is a cache array of length alpha1xalpha3=18x6. 

EQUIVALENCE (CC(1),MCP_DREG(1+KVL-108)) 

c------------------------------------------------------------------------------

c 
c 
CPCF 
CPCF 
CPCF 
c 

bound1=n/alpha1 
bound2=n/alpha2 
bound3=n/alpha3 
volume=alpha1*alpha2+alpha2*alpha3+alpha1*alpha3 
if ((n.NE.alpha1*bound1).0R. 

$ (n.NE.alpha2*bound2).0R. 
$ (n.NE.alpha3*bound3).0R. 
$ (volume.GT.1024)) then 

print *• 
print *· 

$ 
print *· 
stop 

endif 
Initialize 

PARALLEL 
PRIVATE i 
PDO 

do 10 j=1,n 

'alpha1 or alpha2 or alpha3 is not a divisor of n' 
'alpha1 =', alpha1,'alpha2 =', alpha2,'alpha3 =' 
alpha3, 'n =', n 

'data does not fit in the cache' 

the matrix C: 

do 10 i=1,n 
c(i,j)=O.OdO 

10 continue 
c 
CPCF END PARALLEL 
c 
CPCF PARALLEL 
CPCF PRIVATE i,k,j,kb,ib,lastib 
CPCF PDO 
c 

do 120 jb=1,bound3 
do 110 kb=1,bound2 

c 
CPCF CRITICAL SECTION BUS 
c 
c Read the block Bkj using utility routine; 
c Bkj=B((kb-1)*alpha2+1:kb*alpha2,(jb-1)*alpha3+1:jb*alpha3) 
c 
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call _DMLOAD(B((kb-1)*alpha2+1,(jb-1)*alpha3+1), 
$ 1,ldb,CB,1,alpha2,alpha2,alpha3) 

c 
CPCF END CRITICAL SECTION 
c 

lastib=-1 
do 100 ib=1,bound1 

c 
CPCF CRITICAL SECTION BUS 
c 

c 
c 
c 
c 

c 
c 
c 

c 
c 
c 
c 

c 

IF (lastib.EQ.-1) THEN 

Read the block Aik using utility routine; 
Aik=A((ib-1)*alpha1+1:ib*alpha1,(kb-1)*alpha2+1:kb*alpha2) 

$ 

Read 

$ 

Store 

$ 

$ 

$ 

call _DMLOAD(A((ib-1)*alpha1+1,(kb-1)*alpha2+1), 
1,lda,CA,1,alpha1,alpha1,alpha2) 

the block Cij using utility routine; 
Cij=C((ib-1)*alpha1+1:ib*alpha1,(jb-1)*alpha3+1:jb*alpha3) 

call _DMLOAD(C((ib-1)*alpha1+1,(jb-1)*alpha3+1), 
1,ldc,CC,1,alpha1,alpha1,alpha3) 

ELSE 

output Cij block into memory using utility routine; 
Cij=C((ib-1)*alpha1+1:ib*alpha1,(jb-1)*alpha3+1:jb*alpha3) 

call _DMSTOR(CC,1,alpha1,C((lastib-1)*alpha1+1, 
(jb-1)*alpha3+1),1,ldc,alpha1,alpha3) 

call _DMLOAD(A((ib-1)*alpha1+1,(kb-1)*alpha2+1), 
1,lda,CA,1,alpha1,alpha1,alpha2) 

call _DMLOAD(C((ib-1)*alpha1+1,(jb-1)*alpha3+1), 
1,ldc,CC,1,alpha1,alpha1,alpha3) 

END IF 

CPCF END CRITICAL SECTION 
c 
c Compute the result: Cij=Cij+Aik*Bkj; 
c Cij= C((ib-1)*alpha1+1:ib*alpha1,(jb-1)*alpha3+1:jb*alpha3D 
c 

do 90 j=1,alpha3 
do 80 k=1,alpha2 
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c 

c 

c 

c 

do 70 i=1,alpha1 
CC((j-1)*alpha1+i)=CA((k-1)*alpha1+i)*CB((j-1)*alpha2+k) 

$ +CC((j-1)*alpha1+i) 
70 continue 
80 continue 
90 continue 

lastib=ib 

100 continue 

IF (lastib.NE.-1) THEN 

CPCF CRITICAL SECTION BUS 
c 
c Store the last output Cij block into memory using utility routine; 
c Cij=C((ib-1)*alpha1+1:ib*alpha1,(jb-1)*alpha3+1:jb*alpha3) 

$ 
call _DMSTOR(CC,1,alpha1,C((lastib-1)*alpha1+1, 

(jb-1)*alpha3+1),1,ldc,alpha1,alpha3) 
c 
CPCF END CRITICAL SECTION 
c 

END IF 
c 

110 continue 
120 continue 

c 
CPCF END PARALLEL 
c 

return 
end 
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c 
c 
c 

c 

c 

c 

c * * * Locality example 3 matrix~matrix multiplication 

Locality of the user written routine "rgmmul'. 

PROGRAM MMtime 

EXTERNAL DTIME64 
REAL*8 DTIME64 
REAL*8 DTARRAY(2) 
REAL*8 DT 

INTEGER*4 VEC_LEN 
PARAMETER (VEC_LEN = 1000) 
REAL*8 A(VEC_LEN*VEC_LEN), B(VEC_LEN*VEC_LEN) 
REAL*8 C(VEC_LEN*VEC_LEN) 
INTEGER*4 N 
REAL*8 
INTEGER*4 
INTEGER*4 
REAL*4 

ex, mflops 
NBUS, NCPUBUS 
NOPS, NWORDS 
COMP I 

c---------------------------------------------------------------------
wri te (6, 601) 

60i format(/ix,'*************************************************', 
* /ix,'* *', 
* /ix,'* Benchmark Study for User Routine rgmmul *', 
* /1x, '* *', 
* /1x,'*************************************************') 

NERRDRS = 0 
c 
C Get the current MCP configuration 
c 

NBUS = MCP_NBUS() 
NCPUBUS = MCP_NCPUBUS() 
write(6,6i1) nbus,ncpubus,nbus*ncpubus 

61i format(//ix,'MCP Configuration :', 
* /6x,'Number of Processors= ',i1, 
* '(buses) * ',i2,'(processors/bus) = ',i2, 
* //6x,'Double precision: DTIME64, 50 nanosec resolution', 
* ///1x,' Dim', 3x,3x, 'Timings (sec.)', 3x, iOx, 'Mflops', 3x, 
* 2x, 'Num of Op' ,3x,3x, 'Locality') 

c 
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C Initialize the input data 
c 

DO 100 I = 1, VEC_LEN 
DO 100 J = 1, VEC_LEN 
A(I+(J-1)*vec_len) = 2.0dO * dfloat(I + J) 
B((I-1)*vec_len+J) = 3.0dO*dfloat(J) + 4.0dO*dfloat(I) 

100 CONTINUE 
c 

open(unit=2,file='tmp.mat') 
do 400 n = 10, VEC_LEN, 10 

c n = 1000 
c 
C Calculate the compute intensity for the DOTP operation 
c 
c 
c 
c 
c 
c 
c 

c 

rgmmul: 

A: 
B: 
C: 

NOPS = 2*(N**3) 

operations 

1 * N*N words 
1 * N*N words 
2 * N*N words 

NWORDS = (1+1+2) * N*N 
COMPI = FLDAT(NOPS) / FLOAT(NWORDS) 

C Call the routine. 
c 

DT = DTIME64 (DTARRAY) 
do 170 iloop = 1, 5 
CALL rgmrnul(O,n,n,n,a,1,n,b,n,1,c,n,1) 

170 continue 
DT = DTIME64 (DTARRAY) 

dt = dt I 5.0dO 
mflops = dfloat(NOPS)/dt * 1.0d-06 
write(6,615) n,dt,mflops,float(nops),compi 

615 format(1x,i4,3x,d16.10,3x,d16.10,3x,e11.5,3x,e11.5) 
write(2,290) n, mflops 

290 format(1x,i4,1x,e11.4) 
RETURN 
END 
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