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l. INTRODUCTION 

1 

Almost 250 years ago, in 1742, Goldbach wrote a letter to Euler where he proposed the conjecture 
that every even number 2m is the sum of two odd primes (Goldbach considered 1 as a prime 
number). 
In 1922, HARDY and LrrrLEwooo wrote ([3]): 'There is no reasonable doubt that the theorem is 
correct, and that the number of representations is large when m is large, but all attempts to obtain a 
proof have been completely unsuccessful.' The best theoretical result known at present was established 
in 1966 by the Chinese mathematician CHEN JING RUN ([6]) who proved that every sufficiently large 
integer is the sum of a prime and a product of at most two primes. For the literature and history 
leading to this result, we refer the reader to [ 6}. 

The best numerical result, known to us, was established by STEIN and STEIN ([4]) who verified the 
conjecture up to IOS. They found that for all even numbers n with 4<n.,.;;l0S, there exists a partition 
n = p +q, where p and q are odd primes, such that p.,.;;1093. The 'worst' case is n = 60,119,912 
which has p = 1093 as the smallest prime p for which n = p + q. In [ 5], Stein and Stein have com
puted the number of such partitions for all even numbers n.,.;; 150,000 (and, later, up to 200,000). 
BoHMAN and FROBERG ([2]) have computed the number of partitions n = p + q for all even numbers 
n.,.;; 350, OOO and compared them to theoretical estimates. 

We will use the following terminology: a Goldbach partition of an even number n is a representation 
n = p +q, p::r;;;,,q, where p and q are odd primes. A Goldbach partition n = p +q with smallest p is 
called the minimal Goldbach partition of n; the smallest prime in the minimal Goldbach partition of 
n is denoted by p(n). The number of Goldbach partitions of the even number n will be denoted by 
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G (n ). For a odd prime q we define 
In particular, we are interested in 

to be the smallest even number n for which p (n) = q. 
is defined as the number of positive even integers n 

between l and x such that p(n) = q. 
Some examples: the minimal Goldbach partition of 30 is 7 + 23, hence p(30) = 7; G(l4) = 2; 

S = 12; L (3,x) = 'IT(x - 3)- 1 where 'IT(x) is the number of primes is;;;;x. 
In this paper we give an account of our verification of the Goldbach conjecture up to 2* 1010 • 

In our computations (on a Cyber 205) up to , we have also collected data concerning the func
tions p(n), S and We have not computed the function G(n) since finding all Goldbach 
partitions of n much more time-consuming than finding the minimal Goldbach partition. In Section 
2 we describe the algorithms we have used and give some details about their implementation on the 
I-pipe Cyber 205 of SARA (Academic Computer Centre Amsterdam). In Section 3 we present a selec
tion of various numerical data. Theoretical results related to the numerical data, and based on the 
Prime k-tuplets conjecture of Hardy and Littlewood, are given in Section 4. Section 5 presents some 
results and conjectures obtained by the first named author, which are related to the Goldbach conjec
ture. 

2. ALGORITHMS AND IM.PLEMEll.'TATIONS 

An obvious approach to verify the Goldbach conjecture up to some large bound is to split the work 
into smaller portions of a suitable length. Here, we describe our algorithms to verify the Goldbach 
conjecture (i.e., to compute p(N)), for all even numbers N in the interval [N l,N2]. The functions S (q) 
and L(q,x) are updated after the interval [Nl,N2] has been dealt with. 

For each even N in [N l,N2] we compute the minimal Goldbach partition by successively subtract
ing the odd primes 3,5, ... from N and by checking if the difference is prime. This may be expressed in 
FORTRAN as follows. The array PR(l) is the I-th odd prime and PRIME(M) is a logical function 
yielding .TRUE. if Mis prime and .FALSE. otherwise. PIND(Nl:N2) is an integer array such that 
upon completion of the algorithm we have PIND(N) = I, where p(N) = PR(I), for N = Nl, 
N l + 2, ... , N2. The number lMAX I is the index of the largest (odd) prime used in the search for a 
Goldbach partition. 

Goldbach algorithm I 

c 
C WE ASSUME THE INTEGER ARRAY PIND(N) HAS BEEN INITIALIZED TO ZERO 
c 

DO 20 N = NI, N2, 2 
c 
C WE SUPPOSE THAT N 1 AND N2 ARE EVEN; 
C WE SEARCH FOR THE MINIMAL GOLDBACH PARTITION OF N 
c 

DO 10 I = 1, IMAXl 
IF( PRIME( N-PR(I) } )THEN 

PIND(N) =I 
GOT020 

END IF 
10 CONTINUE 

c 
C NO GOLDBACH PARTITION N = P + Q FOUND WITH P..;; PR(IMAXI) 
C INCREASE THE VALUE OF IMAXl 
c 
20 CONTINUE 



It turns out that IMA.Xl need n~)t 
even 
with N. 

runs at scalar 
achieved indeed. The 

too Stem. results ({4J) 
is sufficient and this number to 

""400. 

PRlME is called various times for the same value 
Therefore. it is much more efficient to 
PR(IMAX l) and N2 - 3 in order to 
This can be done efficiently by means of the sieve 
porated in Algorithm H, which is much more efficient on vector 
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can 
function 

Algorithm n be described as foiiows. First the integer PINO and the integer array 
ODD PR : = l if !\1 is and : = 0 otl1erwise for ME [NI • PR(IMA.X l ). N2 · 3] 
). The algorithm then determines all even N E [NI, N2J with = 3; next all those p(N) 
= 5, and so on. The of this de.creases, because the minimal Goldbach 
partitions more and more v.'ill have been as the algorithm proceeds. Therefore, besides 
IMAX i, a second parameter HviAX2 is which is the maximum number of steps taken to find all 
the even N with the same p(N). After L1iese IMA)(2 steps. those N for which no Goldbach partitions 
have been found yet are treated as in I. In our range (N .;;;;; 2 * lOH\ IMAX2 = 20 
turned out to yield the highest efficiency. 84.5 % of all N .;;;;; have p(N) .;;;;; PR(20) (where 
PR(20) = 73). 

c 
C WE ASSUME THE INTEGER ARRAYS PIND AND ODDPR HAVE BEEN INITIALIZED 
c 

DO 20 I = 1, HviAX2 
PRI = PR(I} 
DO 10 N = NL N2, 2 

IF( PIND(N).EQ.O .AND. ODDPR( N-PRI ) .EQ. l l PIND(N) = I 
10 CONTINUE 
20 CONTINUE 
c 
C TREAT THE EVEN N FOR WHICH PIND(N) IS STILL ZERO, 
C I.E., FOR WHICH NO GOLDBACH PARTITION HAS BEEN FOUND YET 
c 

DO 40 N = Nl, N2, 2 
IF ( PIND(N).GT.O ) GOTO 40 
DO 30 I = IMAX2 + l, lMAXi 

IF( ODDPR( N-PR(I) ).EQ.1 )THEN 
PIND(N) = I 
GOT040 

END IF 
30 CONTINUE 
40CONTINUE 

The 10-loop in Algorithm H runs through the arrays PINO and ODDPR with increment 2. Of course, 
by a simple transformation this can easily be converted into a loop with increment l, which is pro
cessed more efficiently on the Cyber 205. In our actual implementation we indeed worked with step l, 
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LLOOP = (N2 - N l + l 
PRIH = (PRl-1 

we have expressed the algorithm here in 
for another reason: the 10-loop can only be 

it in terms of a WHERE-statement (we assume that 
us to run through the arrays \Vith step l ): 

WHERE ( PIND(NI; LLOOPJ.EQ.O .AND. ODDPR(Nl-PRIH; LLOOP).EQ.l ) 
PIND(Nl; ""' l 

END WHERE 

PIND(Nl: LLOOP) is the vector with first element PIND(N second element PIND(Nl + 1), and 
so on, and its length is LLOOP = (N2 - Nl)/2 + l. When the above piece of FORTRAN 200 is 
executed, a so-called bit vector length LLOOP is generated \J\.ith a 1 on those places where the con
dition in the WHERE-statement is true and a 0 otherwise. Next, the constant I is assigned to those 
elements of PIND which correspond to a 1 in that bit vector. 

With algorithm H we have verified the Goldbach conjecture up to ww in about 15 hours CPU-time 
on the Cyber 205 (checking the known range up to lo& took about 5 minutes CPU-time). We pro
cessed. l0,000 ( = LLOOP) even numbers at a time. The time to process the WHERE-statement above 
amounted to about * 3 dock cvdes = 10,000 * 3 * 20 nsec. = 0.6 msec. Since IMAX2 = 20, 
and 5* l09 even numbers had to be processed, the total time spent in the WHERE-statement part 
amounted to 20 * 0.0006 * 5* I09 /1D4 = 6000 sec. The remainder of the 15 CPU-hours was spent on 
the processing (with scalar speed) of the even numbers N with p(N) > 73 and to the generation of the 
integer array ODDPR. 

As suggested by Walter Lioen, Algorithm II can be speeded up further by changing the integer 
arrays PIND and ODDPR into bit arrays. The elements of bit arrays can have the values 0 or l and 
64 elements are packed in one word of 64 bits. The Cyber 205 is able to perform binary operations on 
these vectors (like AND, OR) with a speed of 16 elements per clock cycle of 20 nsec. However, there 
is a price to pay, namely: if we convert the array PIND into a bit array, we can no longer store the 
index of the prime in the minimal Goldbach partition into this array, so that we have to be satisfied 
with the binary information: a l if a Goldbach partition has been found, a 0 if not (yet). The 20-loop 
now looks as follows (PIND has been converted into bit array PBIT and ODDPR into bit array 
ODDPRBIT): 

BIT-VECTOR VERSION OF 20-LOOP IN ALGORITH U 

DO 20 I = l, IMA.X2 
PRIH = (PR(I)- l )/2 
PBIT(NI; LLOOP) = PBIT(Nl; LLOOP) .OR. ODDPRBIT(Nl-PRIH; LLOOP) 

20 CONTINUE 

Since this loop is executed much faster than the WHERE-statement above, the value of IMAX2 must 
be increased, in order to reach the optimal performance for this loop. We found IMAX2 = 100 to 
yield the best results. After this loop, the remaining even N for which p(N) > PR( l 00) were processed 
with the 40-loop of Algorithm II (with PIND replaced by PBIT). 
For those N which have p(N) > 547 ( = PR(lOO)). we have, of course, collected the same data as we 
did in the original version of Algorithm U. 

With the help of the bit vector version of Algorithm n we have extended the verification of the 
Goldbach conjecture from 1010 to 2*!010 in about 9000 sec. CPU-time on the Cyber 205. We have 



5 

checked 50,000 even numbers at a time. The time needed to run the bit vector statement above was 
about 50,000 * 20/ 16 = 0.0625 msec. The total range of even numbers between 1010 and 2* 1010 took 
0.0625 * 100 * 5* 10915* 10'4 = 625 sec. 
The scalar processing of the remaining even N took only 130 sec. and the generation of the (large) 
primes required about 8245 sec. (this means an average prime generation speed of more than 50,000 
primes per second in the interval (1010 , 2* 1010]). 

3. NUMERICAL RESULTS 

In this section we present some tables of numerical results selected from our computations. Table I 
presents q, S(q) and L(q, 1010 ) for the odd primes q below 100 and similar data for some selected 
primes > 100. In addition, the cumulative frequency percentages are given of the numbers of even 
numbers N below l 010 for which p (N)..;_q. 

Table 1 

I PR(!)=: q S(q) L(q, 1010) % of even N ~ 1010 

for which l!. (N)~q_ 
I 3 6 455,052,510 9.10 
2 5 12 427 ,649,831 17.65 
3 7 30 400,229,833 25.66 
4 11 124 350,840,599 32.68 
5 13 122 320,898,559 39.09 
6 17 418 276,936,926 44.63 
7 19 98 267,951,521 49.99 
8 23 220 226,031,30 l 54.51 
9 29 346 199,319,687 58.50 

10 31 308 201,862,574 62.54 
11 37 1,274 170,425,547 65.94 
12 41 1,144 147,748,455 68.90 
13 43 962 138,381,620 71.67 
14 47 556 118,054,048 74.03 
15 53 2,512 l 01,504,888 76.06 
16 59 3,526 90,311,298 77.86 
17 61 1,382 106,906,523 80.00 
18 67 1,856 91,418,970 81.83 
19 71 4,618 68,641,994 83.20 
20 73 992 69,457,153 84.59 
21 79 3,818 69,182,416 85.98 
22 83 7,432 53,268,347 87.04 
23 89 12,778 47,140,891 87.98 
24 97 5,978 51,345,000 89.01 

29 113 19,696 26,537,015 92.63 
30 127 6,008 31,047,922 93.25 

55 263 485,326 2,842,690 99.00 
56 269 407,128 2,524,569 99.05 
57 271 137,708 4,557,244 99.14 

65 317 686,638 1,351,658 99.51 
66 331 128,168 2,447,734 99.56 
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103 
104 

108 
109 

569 
571 

599 
601 

17,726,098 
4,493,498 

15,860,818 
1,077,422 

65,419 
169,264(2.59) 

41,965 
122,261 (2.91) 

99.97 
99.97 

99.98 
99.98 

Table 2 presents counts of L(q,.) in the intervals (1010 , 1010 +109] and (2*1010 -109 , 2*1010 ], for 
some odd primes q >PR ( 100) (in Section 2 we have explained why we have chosen not to collect 
such data for the first 100 odd primes). The numbers in parentheses in columns 3 and 4 are quotients 
of consecutive elements in these columns. A comparison of these two columns shows that these quo
tients are reasonably stable (also compare the quotients in Table l on the lines with I = 104 and 
I = 109). 

Table 2 

I PR(!) =:q L(q, 11· 109) -

L(q, 10* 109 ) 

L(q, 20* 109)-

L(q_, 19.109 ) 

101 557 12,981 15,822 
102 563 10,284 (1.26) 12,438 (1.27) 
103 569 9,057 (0.88) 11,101 (0.89) 
104 571 22,794 (2.52) 26,904 (2.42) 
105 577 14,957 (0.66) 18,089 (0.67) 
106 587 8,511 (0.57) 10,718 (0.59) 
107 593 6,651 (0. 78) 8,349 (0.78) 
108 599 5,898 (0.89) 7,476 (0.90) 
109 601 16,661 (2.82) 19,696 (2.63) 
110 607 11,148 (0.67) 13,421 (0.68) 

151 881 358 540 
152 883 539 (1.51) 736 (1.36) 
153 887 309 (0.57) 374(0.51) 
154 907 499 (l.61) 693 (1.85) 
155 911 250 (0.50) 385 (0.56) 
156 919 538 (2.15) 702 (1.82) 
157 929 217 (0.40) 293 (0.42) 
158 937 337 (1.55) 447 (1.53) 
159 941 207 (0.61) 242 (0.54) 
160 947 177 (0.86) 250 (1.03) 

In Table 3 we give even numbers n with correspondingp(n) such thatp(m)<p(n) for all even m<n. 
This is an extension of a table presented by BOHMAN and FROBERG ([2]). We also list the quotients 
log(n )/log(p (n ))2• After a dear decreasing trend in the beginning of this table, this quotient shows an 
increasing tendency at the end of the table. Table 3 implies that for all even n ~2* 1010 we have 
p(n)~2029. 
It should be added that the lar§er primes occur extremely rarely as p (n )-values. For example, there 
are only six even n below 2* 101 for which p(n)> 1861, viz., the three given in Table 3 and the three 
given by:p(18,ll3,547,184) = 1871,p(l9,326,123,574) = 2003 andp(15,317,795,894) = 2017. 
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Table 3 

n e. (n) quot n e. (nl quot n e.~n} quot 
6 3 1.485 113672 313 0.353 113632822 1163 0.372 

12 5 0.959 128168 331 0.349 187852862 1321 0.369 
30 7 0.898 194428 359 0.352 335070838 1427 0.372 
98 19 0.529 194470 383 0.344 419911924 1583 0.366 

220 23 0.549 413572 389 0.364 721013438 1789 0.364 
308 31 0.486 503222 523 0.335 1847133842 1861 0.376 
556 47 0.426 1077422 601 0.339 7473202036 1877 0.400 
992 73 0.375 3526958 727 0.347 11001080372 1879 0.407 

2642 103 0.367 3807404 751 0.346 12703943222 2029 0.401 
5372 139 0.353 10759922 829 0.359 
7426 173 0.336 24106882 929 0.364 

43532 211 0.373 27789878 997 0.360 
54244 233 0.367 37998938 1039 0.362 
63274 293 0.343 60119912 1093 0.366 

4. THE ASYMPTOTIC BEHAVIOUR OF L(q,N) 
A look at Table 1 shows that the function L(q, 1010 ) is generally decreasing, as may be expected, 
although not monotonically: in particular, we often see that, when q and q +2 are (twin) primes, then 
L(q, 1010)<L(q+2,1010)! In fact, our counts show that for all twin primes (q,q+2) with q<1800 
we have L(q, 1010)<L(q +2,1010), except for the pairs (3, 5), (5, 7), (11, 13), (17, 19) and (41, 43). 
More general, a similar behaviour can be observed for primes q and q +d, where d = 2 (mod 6). 

In this Section we present a theoretical result, based on the truth of the Prime k-tuplets conjecture 
of Hardy and Littlewood, which explains, at least asymptotically, this behaviour of the function 
L(q,N). We recall 

The Prime k-tuplets conjecture (HARDY and LiTTLEWOOD [3]) 
Suppose that bl>b2, ... ,bk are given integers, and let Pb,,b,, ... ,b,(N) be the number of positive integers n 
with 1.s;;;;n:s;;;;N such that n +bi,n +b2, •.. ,n +bk are all prime numbers. Then, as N~oo, 

N 

where 

C(b1>···•bk) = IJ (l-1-)-k(l- wb,,b,, ... ,b,(p)) 
pprime P P 

and wb.,b,, ... ,b.(p) is the number of distinct residue classes (modp) which contain some b;. 
Now, we have the following 

THEOREM. Suppose the Hardy-Littlewood Prime k-tuples conjecture is true. Then, for a given odd prime 
q, we have 

where 

E(q) = ~ II (p-1)/(p-2) 
r odd prime plq-r 

r<q p--.3 
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{l - l }. 

and L(q,N)<L ,N) if! E(q)>E(q'). 

PROOF OF nm Suppose p I = 3, 
=#{even r.~ N: n -pr is prime and n 

.. is the sequence of odd primes. Then 
is not prime, °'f/j-.<;,.r -1} = 

"'] 

by the combinatorial 
ture, we have 

where D(J) = {O} U : i eJ}. Now, by the Prime k-tuplets conjec-

- Ol N 'f I lVI - ,--,- l 1.n.1 
log'N 

Pt·i."·(N) = _]:!_{!+011)} "" log2 N ' . 

where 

C ='.'I II i-2/p, . dD - n.l::J!.e. - an k- l,, 
pr;,,,..,(1-llpY plk -~Ip 

p>2 p:;;.J 

and P0(N) = 11(N). 
Therefore, 

L(p,,N) = 
N r-1 N 

C-,- 2; Dp-p +o(-2-). 
log-N Fl ' ' log N 

0 
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Table 4 

q E(q) q E(q) q E(q) q E(q) 
3 0.000 103 41.202 239 85.013 389* 127.790 
5 l.000 107 43.468 241 85.705 397 129.358 
7 2.000 109* 43.104 251 88.854 401 132.535 

11 4.000 113 47.569 257 91.997 409* 132.082 
13 5.333 127 47.715 263 93.586 419 135.539 
17 7.533 131 51.l24 269 95.451 421* 133.988 
19 8.200 137 53.070 271** 92.937 431 139.807 
23 10.667 139* 51.532 277 95.223 433* 139.480 
29 12.535 149 56.154 281 100.355 439 140.896 
31 12.824 151* 54.716 283* 99.417 443 145.233 
37 15.358 157 58.547 293 104.247 449 146.239 
41 17.437 163 60.156 307* 102.477 457* 145.811 
43 18.683 167 62.532 311 108.060 461 150.366 
47 21.111 173 65.574 313* 106.448 463* 149.524 
53 23.292 179 66.425 317 110.897 467 154.053 
59 25.050 181* 64.879 331* 107.856 479 156.574 
61* 24.340 191 70.000 337 111.243 487* 154.574 
67 26.695 193 70.375 347 116.850 491 158.973 
71 30.084 197 73.578 349* 113.385 499* 156.746 
73 30.825 199* 71.979 353 119.700 503 163.340 
79 31.494 211 74.249 359 120.019 509 165.522 
83 35.046 223 78.235 367 120.386 521 168.123 
89 37.066 227 80.539 373 122.004 523* 164.724 
97 37.321 229* 80.291 379* 121.753 541 164.872 

101 40.689 233 83.535 383 128.371 547 167.976 

In order to compare the Corollary with our numerical data, we have computed E(q) for the first 2000 
odd primes. In Table 4 we present these values for the first 100 odd primes. An asterisk indicates that 
the corresponding £-value is smaller than the previous one. In one case, viz., q = 271, E(q) is also 
smaller than the 'pre-previous' one (cf. the corresponding entries in Table 1). 

With respect to the various prime differences d among the first 2000 odd primes, we have counted in 
Table 5 how often E(q)<E(q +d) and how often E(q)>E(q +d). We have grouped the counts 
according to the residues of d (mod 6). In the cases where one of the two categories is small compared 
to the other, we have explicitly given all the prime pairs belonging to the smaller category. 
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5 

# of prime pairs(q,q with 
d E(q)<E~q_ +d) E(ql>E~q +d) exceptional cases 
" 12 290 (3,5) (56,7) (l l,13) (17,19) (29,31) "' (101,103) (191,193) 

(239,241) (187U873) (2381.2383) 
8 3 i67 (359,367) (389J97) 

14 3 93 ( 1l3, 127) (839,853) (2039,2053) 
20 0 33 
26 0 lO 
32 0 2 
44 0 I 

4 316 I (1867,1871) 
10 185 0 
16 58 0 
22 32 0 
28 15 0 
34 6 0 

6 330 141 
12 130 46 
18 49 24 
24 23 5 
30 17 2 
36 2 2 
42 l 0 

For the first 100 odd primes, we have counted how often our actual counts of L(q, 1010 ) match with 
our Corollary (for consecutive primes q and q'). In 87 of the 99 cases we observe a perfect match 
between theory and practice. In the 12 remaining cases we find L(q, 1010 )<L(q', 1010 ) and 
E(q)<E(q'). Of these l2 prime pairs, 9 occur as exceptional cases in Table 5. 

5. DISCUSSION 
A simple explanation of our empirical observation that E(q)>E(q +2) for so many of the small 
prime pairs q,q +2 (and, more general, for prime pairs q,q +d with d = 2 (mod 6) ) reads as follows. 
Recall that 

E(q) = ~ Dq-r. 
r<q 

r odd prime 

If 31 k then Dk;;.. 2. However, if 3t k then it is easy to see that in order to have Dk;;.. 2, k should satisfy 
k;;..5.7.ll.l3.17 (= 85085). Hence, we may expect Dk to contribute a lot more to E(q) in those cases 
where 31 k, than when 3/k. Now let, as usual, ?i(x ;a,b) be the number of primes :o;;;;;x which are 
congruent to b (mod a). It is well-known that 'IT(x ;3,2)>'/T(x ;3, l) for x <6* 1012 ([l]). So, if q is a 
prime =b (mod 3) there are 'IT(q-1;3,b) primes r<q such that 3lq-r. This number is greater 
(when q is small) when b = 2, than when b = I. Now, for any prime pair q, q + d = p where d = 2 
(mod 6) we must have q = 2 (mod 3) andp = l (mod 3), and we should expect E(q)>E(p). 
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On the Prime k-tuplets conjecture, we can prove that, on average, we have 
E(q) = C?T(q){ I +o(l)}, where 

l 
C = p !le {l + (p- l)(p- 2)} ( = 1.742725 ... ). 

p;;;.3 

An inspection of the values of E(q)lw(q) for the first 2000 odd primes shows a good agreement with 
this result: from the 271-st odd prime q (= 1747) onwards, E(q)!w(q) fluctuates between l.70 and 
1.75. 

On probabilistic grounds we conjecture that \fn>IO, p(n) << log2n loglog n. From Table 3 we 
derive thatp(n)/ (log2nloglog n)<l.603 for all n.;;;;2*1010. 

On the Prime k-tuplets conjecture, we have 

where 

#{n.;;;;N: p(n).;;;;Q} = w(Q)w(N)(l- c;w(Q) {1 +o(l)}) 
ogN 

c· = 2 II {1-(p -1)-3 } < = i.110784 ... ). 
p prime 

p;;.3 

Let p 1 = 3, P2 = 5, ... be the successive odd primes, and define 

Fk(N) := #{no;;;;N: E(pn).;;;;E(pn+k)}. 

CONJECTURE: For any fixed integer k=/=O, Fk(N)"'N 12, as N~oo. 

If we define, slightly different from G(n) in Section l, G*(n) := #{p<q bothprime:p+q=n}, 
then, trivially, we have Q.;;;;G*(n).;;;;w(n)-w(n/2). Now G*(210) = '1T(210)-w(l05) and Pomerance 
conjectured that: 

'v'n>212, G*(n),,,;;;'1T(n)-w(n/2)- l. 

We can prove that if n>IG520 then G*(n).;;;;w(n)-'IT(n/2)-1. 
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