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Iteration of number-theoretic functions 
*) 

by 

Herman J.J. te Riele 

ABSTRACT 

This is a concise survey of literature on sequences which arise when 

a number-theoretic function f : 1N • 1N is iteratively applied to a given 

starting number. Many of the functions f discussed are easy to implement on 

a programmable calculator. 

Fune tions f for which f (n) > n for all n € lN , or f (n) < n for all 

n € 1N, are excluded from this survey. 

KEY WORDS & PHRASES: Number-theoretic functions, iteration 

*) This report will appear in the NieUlJJ Archief voor Wiskunde, November 1983. 



ITERATION OF NUMBER-THEORETIC FUNCTIONS 

by 

H.J.J. te Riele 

1 . INTRODUCTION 

Everyone who possesses a scientific calculator may have experi­

mented with it by repeatedly pressing one (or more) buttons. For exam­

ple, when we start with O and repeatedly press the COS button (while 

the calculator is in degree mode) we obtain 

1, 0.999847695, 0.999847742, 0.999847742, .••• Apparently, this se­

quence tends very quickly to a fixed point. Some more experimenting 

soon reveals that every iterative sequence, generated by the COS -

function tends to the same fixed point. Very recently, C.H. WAGNER 

[56] has explained this phenomenon with the Contraction Mapping Prin­

ciple [2]. More important, he showed that many topics as Newton's 

m~thod, Picard's method for showing existence and uniqueness of solu­

tions to initial value problems, as well as many other iterative 

processes, are simply different manifestations of this Principle. 

However, an essential condition for application of this Principle is 

that the function to be iterated is continuous. 

The subject of this paper is iteration of functions f which are 

not continuous, but which have as their range and domain the set JN 

of positive integers (or the set Npof p-vectors of positive integers). 

We will call the resulting sequences £-iterative sequences. We will 

not consider functions f for which f(n) > n for all n € :N or 

f ( n) < n for al 1 n E N • 

We present a concise survey of literature on f-iterative sequen­

ces for 

(i) those who are interested in and working on these sequences, but 

do not want to duplicate known theoretical or computational 
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results, and 

(ii) those who have obtained :results and want to know whether these 

are known. 

f-iterative sequences have been studied in the literature for 

f and sor.1e of the questions which have been raised, turned 

out to be extreme difficult, if not 11hopeless 11 • Nevertheless, any­

one whose calculator is y•oar•(lJ/l'ffii.IlJ can easily experiment with such 

sequences and discover surprising phenomena. In order to demonstrate 

, we give three examples. 

EXAMPLE I. 

·.-- {n/ 3 f(n) 
if n _ 0 (mod 3) 

if n t O (mod 3) 

(By [ we mean the greatest integer :5. x.) By means of an HP 41C the 

following four sequences were generated: 

I , I ; 2, 3, I; 4, 6, 2; 

s, s, n. 22, 38, 65, 112, 193, 334, 578, 1001, 1733, 3001, 5197, 9001, 

15590, 27002, 46768, 81004, 140303, 243011, 420907, 729032, 1262720, 

2187095, 3788159, 6561283, 11364475, 19683848, 34093424, 59051542~ 

!02280271, 177154626, 59051542. 

Since the HP 4JC calculates with an accuracy of about 10 decimal dig­

its, the final terms in the last sequence are doubtful. On a TI 59, 

which calculates with an accuracy of about 13 digits, it appeared that 

the term !7715462~ should be !7715462~. Proceeding with the TI 59, 

the sequence again increased monotonically until the limit of the 

precision of this calculator was reached. He, who suspects now that 

the sequence starting with 5 is monotonically increasing, is right: 

in fact, 4T.Y sequence generated with the function f of this example, 

is monotonically increasing as soon as two consecutive terms are both 

t O (mod 3); all other sequences tend to the limit 1 (see [48]). 0 

EXAMPLE 2. f (n) : = n' - n", where n' is the integer formed by arrang­

ing the decimal digits of n in descending order and n" is obtained by 

arranging them in order. 
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Starting with 1983, the following iterative sequence shows up: 1983, 

8442, 5994, 5355, 1998, 8082, 8532, 6174, 6174. Other example: 1984, 

8352, 6174. D.R. KAPREKAR (see [28] and [29]) observed that any star­

ting number with four decimal digits, not all equal, runs into 6174 

within 8 steps. This number is now known as "Kaprekar's Constant". 

It is not difficult to see that any sequence generated with this f 

remains bounded. • 

EXAMPLE 3. f(n) := cr(n) - n, where cr 1s the function denoting the sum 

of the divisors of n. 

Here, f(n) is usually called the sum of the aliquot divisors of n; the 

f-iterative sequence starting with n is called the aliquot sequence 

of n. If n = p·q, where p and q are distinct prime numbers, then we 

have f(n) = 1 + p + q. Consider, e.g., the number 9 = I+ 3 + 5, then 

f(3•5) = f(l5) = 9. Since 15 = l + 3 + 11, we have f(3· l l) = f(33) = 15. 

Tracing back in this way, we find, e.g., 

9 + 3·5 = 15 + 3•11 = 33 + 3•29 = 87 + 3•83 = 249 + 7•241 = 1687 + 

17•1669 = 28373, and so on. In this way, we are constructing monoto­

nically decreasing aliquot sequences. The existence of such sequences 

of any prescribed length easily follows from the truth of the (some­

what sharpened) Goldbach Conjecture, which says that every even number 

> 2 is the sum of two different primes. D 

2. GENERAL RESULTS 

We consider the f-iterative sequence 

(2. I) 

This sequence is called periodic when there are integers i 0 ~ 0 and 

l ~ 1 such that, for all i ~ i 0 , n. 0 = n .. The set 
1+-L 1 

{ ni • ni + 1 ' · · · • 0 0 
the cycle. 

n. 0 1} is called a cycle off and l the length of 
1 +,e_-

0 

A function f : JN + JN is called periodic if (2. l) is periodic for 

all initial values n E JN and if f has only finitely many cycles. The 

following theorem gives a necessary and sufficient criterion for 
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periodicity. 

THEOREM 2 • l • ( [SJ) • The function f : JN -+ JN is periodic if and only 

if there exists an N e: :IN and for aU n > N a k 0 = k 0 (n) such that 

for aU n > N 

(2.2) 
k 

f 0 cn) < n. 

A function f : JN -+ :N is called uniformly periodic if for all 

d f ko(n) < n. n > N there exists a k0 ~ 1, indepen ent of n, such that 

Many kno'Wll periodic functions are uniformly periodic, but it is not 

difficult to construct non-uniformly periodic functions (cf. [SJ). 

There are only a few papers which give general results on £-it­

erative sequences. STEWART [52] made a thorough study of sequences 

generated by f defined by 

(2.3) f (n) : = 
k 

2 
i=O 

P (a.)' l. 

where n has the unique representation to a given base B: 

n = rt=O ai Bl. (ak ~ 1), and where P is an arbitrary function mapping 

{O, 1, .•• ,B-1} into :N. He showed that this f is uniformly periodic 

and he gave an algorithm for the evaluation of the number N which 

has the property that f(N) ~ N and f(n) < n for all n > N. This N is 

of crucial importance for the determination of all cycles of the pe­

riodic function f. KULLMAN [32] called Stewart's paper the definitive 

theoretical work for the class of functions defined in (2.3). 

BURKARD [SJ studied periodic and uniformly periodic functions 

without mentioning Stewart's work. Cf. also HINTZ [24]. 

How can we determine cycles of an iterative sequence? Usually, 

a scientific pocket calculator has not much memory, so that storage 

of computed terms and comparison of a newly computed term with all 

previous terms is impossible when large cycles are involved. Fortu­

nately, a better method for detecting cycles is known (although in 

all the papers on iterative sequences to which we refer, this method 

has not been mentioned explicitly): start with n0 = n and, 

for i = 1,2, •.• , compute, simultaneously, 
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n. = f(n. 1) and n2 . = f(f(n2 . 2 )), and compare n. and n2 .• Only the 
1 1- l 1- 1 l 

three integers i, n., and n2 . have to be stored. If for some i = i 
l l 0 

we find n. = n2 . , then we have detected a cycle, the length of 

h . h . 1od .. io f . s . . h h 1 d. w 1c is a 1v1sor o 10 • tarting now wit nio' t e eye e an its 

length can be found by computing nio+l' ni0+2 , ••• , and comparing each 

term with n .• KNUTH [31] attributes this cycle detecting method to. 
10 

Floyd. For more about this problem, see SEDGEWICK & SZYMANSKI [49]. 

An interesting application of this method to the problem of factoriza­

tion was devised by POLLARD [40]. 

3. A CATALOGUE OF £-ITERATIVE SEQUENCES 

We present here a catalogue of functions f, iterative sequences 

of which have been studied in the literature. Of course, this list is 

by no means complete, although in our opinion the most important 

functions have been included. Also, our list of references is not com­

plete. Those marked by an asterisk(*) contain a set of valuable ad­

ditional references. I) 

For every (class of) function(s) we shall indicate whether or 

not it is known to be (uniformly) periodic and, if not, whether (ar­

bitrarily long) monotonically increasing or decreasing sequences exist. 

We classify the functions in three classes, namely 

I f(n) is some function of the digits of n in some base B represen-

tation system; 

II f(n) is a function of certain divisors of n; 

III miscellany. 

I f(n) is a function of the B-adic (k+l)-digit number n, 

k 
I 

i=O 
where 11 = i a.B , 0 ::;; a. ::;; 

l 1 
B-1 ( 0 ::;; i ::;; k- 1) , 1 ::;; ak ::;; B-1 • 

I.I f(n) = l~=O P(ai), where P maps the set {0,J, •.• ,B-1} into :N. 

STEWART [52] showed that there exists an integer N = N(P) such 

that f(N) ~ N and such that f(n) < n for every n > N. This 

I) The author would be grateful to anyone who sends him other addi­
tional material. 
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implies that all £-iterative sequences of the class I.I are 

uniformly periodic. For special choices of the function P this 

result has been rediscovered by many writers after Stewart. 

I.I.a P(a) = at, t E lN, t fixed. 

Fort= 1 the cycles are the sets {i}, 1 ~ i ~ B-1. 

For B = 10, all cycles were computed by PORGES [42] fort= 2, 

ISEKI [25] fort= 3, CHIKAWA, ISEKI & KUSAKABE [8] fort= 4, 

CHIKAWA, ISEKI, KUSUKABE & SHIB.hlIURA [9] fort= 5, AVANESOV & 

GUSEV [I] fort= 6 and t = 7, TAKADA [53] fort= 8, and, fi­

nally, ISEKI & TAKADA [26] fort= 9. 

YOSHIGAHARA [59] obtained all cycles for B = 100 and t = 2. 

For general base B, HASSE & PRICHETT [22] investigated the cy­

cles in the case t = 2. For 2 ~ B ~ 10, DEIMEL, Jr. & JONES 

[13] listed all cycles of length I for which t = k + I. 

I.l.bP(a)=a! 

For .B = 10, POOLE [41 J tracked down all cycles of length l, viz., 

{l},{2}, {145} and {40585}, and KISS [30] found all other cycles 

(viz., two of length 2 and one of length 3). 

I. 1. c P (a) = (B) 
a 

For B = 10, KISS [30] found all cycles (one of length 1 and one 

of length 2). 

B I. 1. d P (a) = a!· ( ) 
a 

For B = 10, KISS [30] found all cycles (one each of length 2,4 

26 and 39). 

k 
I.2 f(n) = .n0 P(a.), where P maps the set {0,1, ... ,B-l} into )Nu {O}. 

1.= 1. 

STEWART [52] showed that there exists an integer N > 0 for which 

f(N) ~ N and f(n) < n for every n > N, only in the case that 

1 ~ M' ~ M <Band P(a) ~ a for at least one a E {O,J, .•. ,B-1}. 

Here, M' = max P(a') and M = rnax(P(O),M'). Moreover, he 
l~a' :s;B-1 

showed that in all other cases either N = 0 or N does not exist. 



I.2.a P(a) = a+ t, t E :N u {O}, t fixed. 

For B = IO WAGSTAFF [57] made a thorough computational study 

of the ten cases O $ts 9. (Fort~ IO we have f(n) > n for 

all n E J:-I • ) He showed that for t = I and n > 18, either 

7 

f(n) <nor f(f(n)) < n, hence in this case f is uniformly pe­

riodic. For 2 st s 6 he gave numerical evidence and a heuris­

tic argument that every sequence remains bounded (and hence is 

periodic), whereas fort~ 7 virtually every sequence tends to 

infinity. 
k 

I.3 f(n) = ( l a.)\ t E ]N, t fixed. 
i=O 1 

It is not difficult to modify Stewart's proof, mentioned in I.I, 

in order to show that for any fixed Bandt this function f is 

uniformly periodic. MOHANTY & KUMAR [39] found all cycles for 

B = IO, 2 $ t $ 10. 

I. 4 f (n) = n' - n" where n' is the integer formed by arranging the 

base B digits of n in descending order and n" by arranging them 

in ascending order. 

In the definition off the following convention is generally 

adopted: if n is a k - digit number and f(n) has k-1 digits, 

then a leading zero is added to f(n). Example: 

(B=IO) n= 1121, f(n) = 2111 - 1112 =.Q.999, f(f(n)) = 9990-

0999 = 8991. When we neglect numbers all whose digits are equal, 

this means that iterating f on k-digit numbers always leads to 

k-digit numbers. 

This function is not periodic because the number of cycles is 

not finite. KAPREKAR [28,29] was the first one to discover that 

when we start with a four-digit number (base IO), not all digits 

being identical, then within 8 steps the cycle {6174} is reached. 

JORDAN [27] studied cycles of length I for any base B. 

For B = 2,3, ••• , 12, TRIGG listed all cycles for two-digit num­

bers in [54] and all those for five-digit numbers in [55]. 

HASSE [21] presented a detailed study of the problem for two­

digit numbers, for general base B. 

HASSE & PRICHETT [23] studied cycles of length I for four-digit, 
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I.5 

general base B integers. They showed that only for B = 2n5 with 

n = 0 or n odd, there exists a four-dieit integer such that 

every £-iterative sequence tends to this integer. Moreover, this 

integer is explicitly given as 

dB3 + (d'-l)B2 + (B-d'-J)B + (B-d), where (d,d') = (2n3,2n). 

PRICHETT [43] gave a complete characterization of all cycles in 

the case of five-digit B-adic integers. 
LAPENTA, LUDINGTON & PRICHETT [33] presented an algorithm for the 

calculation of cycles of length in the case of r-digit, B-adic 

integers, for all r ~ I and all B ~ 2. 

LUDINGTON [35] showed that for any fixed base B there exists an 

r 0 E JN such that for all r-digit numbers with r > r 0 there is 

no cycle of length 1. 
PRICHETT, LUDINGTON & LAPENTA [44] showed that for B = 10 the 

only cycles of length I are 495 (for 3-digit numbers) and 6174 

(for 4-digit numbers). 

* * f(n) = (n+t) , t E JN, t fixed, where m 1.s the number obtained 

by reversing the digits of m. 
~ 

According to SIERPINSKI [50], Rokowska and Schinzel showed that 

for B = 10 and t = 5 all £-iterative sequences are periodic. 

However, the function f is not periodic, since the number of 

cycles is infinite, as was shown by Gorzkowski by the following 

result: 

The £-iterative sequence starting with n = 102k+3 + lOk+I + 1 
0 

is periodic with period length 36• 1 Ok ( for any fixed k E N u { 0}) . 

SIERPINSKI [50] also gave results for other values oft 

(with B = 10), e.g., f 1.s periodic for t = I, 2, 3, 4, 7, 8, 9 

and 11. Fort= 10, f is not periodic, fort= 6 the question 

is still open. 

II f(n) is a function of certain divisors of n. 

II. 1 f(n) = a(n) - n, where a(n) denotes the sum of the divisors of 

n. f(n) is usually called the sum of the aliquot divisors of n. 

Cycles of length l are known as perfect numbers, cycles of 
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length 2 as GJrlicahle pairs. It is very plausible that this f 

is not periodic, although a proof may be difficult. H.W. Lenstra, 

Jr. showed that monotonically increasing aliquot sequences of 

any prescribed length do exist. 

Much statistical material has been collected. For odd n0 , 

aliquot sequences usually tend very quickly to l. For even n0 , 

some sequences tend to 1, whereas many more become so large that 

computation of subsequent terms is very difficult (since fac­

torization is required). 

GUY & SELFRIDGE (cf. [18])have conjectured that almost all even 

aliquot sequences tend to infinity. For references and related 

problems on cycles, consult GUY [20], in particular problems 

Bl, B4, B6 and B7. 

Very recently, the present author [47] has collected new numeri­

cal evidence for the existence of infinitely many cycles of 

length 2. Moreover, he has found new very large cycles of length 

2, the largest pair consisting of two 282-digit numbers ([46]). 

* * II.2 f(n) = a (n) - n, where a (n) denotes the sum of the unitary 

divisors of n (a divisor d of n is unitary if gcd(d,n/d) = 1). 

It is not known whether this f is periodic or not. It is known 

that monotonically increasing unitary aliquot sequences of any 

prescribed length do exist (cf. [45]). For references and per­

tinent remarks concerning the possible existence of unbounded 

unitary aliquot sequences, consult GUY [20], problems B3 and 

BS. 

II.3 f(n) = g(n) - n, where g(n) is a multiplicative function of n. 

In many cases, this f can be interpreted as the sum of certain 

divisors of n, and it includes, as special cases, the examples 

II.I and II.2. 

In his thesis, the present author ([45]) made a detailed study 

of iterative sequences generated by this f. For some specific 

choices of g he showed the existence of unbounded sequences. 

For example, if g(n) is the multiplicative function defined 
e e e-1 f by g(p) := p + p , for prime p and integer e ~ 1, then or 

the sequence starting with n0 = 318 = 2•3·53, we have 
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and moreover, it increases monotonically. 

II.4 f(n) = o(n) - n ± I. 

II.5 

It is not known whether these two fare periodic or not. For 

not too large initial values all £-iterative sequences are 

known to be bounded. See GUY [20], problem BS for some refer­

ences. 

_ {o(n/2) 
f(n) - o(n) 

if n is even 

if n is odd 

This function was recently studied by BEDOCCHI [3]. Its f-iter­

ative sequences are much easier to compute than, e.g., aliquot 

sequences, because, roughly spoken, la,rge prime divisors of n 

tend to be transformed by f into smaller prime divisors of f(n). 

Some experiments, carried out by the present author, indicate 

that most sequences tend very fast to infinity. 

k 
II.6 n = .II 

i=I Pi, p 1 $ p2 $ ••• $ pk, pi primes. 

k 
II.6.a f(n) = I P·Pk_., Po:= 1. 

i=0 i i 

GRUZEWSKI & SCHINZEL [17] proved that this f is uniformly perio­

dic and the cycles are {16}, {18}, {35,39} and {22,26,30}. 

k 
U.6.b f(n) = d + I p. , d E 1N, d fixed. 

i= I i 

II.7 

BURKARD [5] proved that this f is uniformly periodic for any 

fixed d E 1N and he gave all cycles for $ d $ 5. 

k 
n = IT 

i=l 

a. 
p. i, unique factorization of n into primes p .. 

l. l. 

k 
II. 7 .a f (n) = d + rr p . , d E 1N , d fixed. 

l. i=l 

BURKARD [5] proved that also this f is uniformly periodic for 

any fixed d E 1N. 
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k 
II. 7. b f (n) = 1 + I 

i= I 
a.p .. 

1 1 

III 

III. 1 

This function is uniformly periodic, and was studied, among 

others, by CADOGAN & CALLENDER [7] and by BELLAMY & CADOGAN [4]. 

MISCELLANY. 

{n/2 if n l.S even 
f (n) = 

3n + if n l.S odd 

This f is notorious. There is overwhelming numerical evidence 

(partly because f is so easy to compute) that it is uniformly 

periodic, but no proof of this is known. Many references are 

given in GUY [19]. Also see [12] and [16]. 

{
n/2 

III.2 f(n) = (qn+l)/Z 

if n is even 

if n is odd 
, q E lN , q odd, q fixed. 

This is a generalization of the previous example, studied by 

STEINER [SI]. Also see [II]. 

{
n/3 

III. 3 f (n) = [n/3] 

if n - 0 (mod 3) 

if n 1. 0 (mod 3) 

III.4 

The present author has shown ([48]) that as soon as two conse­

cutive terms in a sequence generated by this fare 1. 0 (mod 3), 

then this sequence tends monotonically to infinity. He has 

found that only 459 of the f-iterative sequences with initial 

value~ 100000 tend to I, all others tend to infinity. He con­

jectures that almost all sequences tend to infinity. 
j 

~: (n 1,n2, ... nk), k ~ 2, k fixed, ni E lN, 

f(n) = (jn 1-n21,ln2-n3 j, ... ,1~_ 1-~j,jnk-nlj) . 

..,. 
This is an example of a vector function f which has received 

much attention in the literature, in particular the case k = 4 . 
.... 

It is not difficult to see that this f is periodic in the sen-
..,, .... 

se that for any given initial vector n0 its f - iterative se-

quence tends to a cycle of vectors (possibly the null vector). 

CIAMBERLINI & MARENGONI [10] showed that if k is a power of 2 
.... 

then any £-iterative sequence leads to the null vector 
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(0,0, ... ,0). FREEDMAN [15] published a study which is still 

worth reading. He showed that if k is not a power of 2 then 
_.I, 

f~iteration does not generally yield the null vector. Moreover, 
.... 

he proved that for any k > 2 and any index i, there is an f-

iterative sequence with i terms before a cycle occurs. 

An interesting generalization of this problem to vectors of 

(four) real numbers was described by LOTAN [34]. He showed that 
~ .... 

the f-iterative sequence starting with any vector n0 of four 

real numbers leads within a finite number of steps to the null 
_,. ~ 2 3 

vector, except only when f(n0) is of the form (l,q,q ,q ), 

where q is the positive solution of the equation 

q3 - /- q - 1 = 0 (or of a form derived from (I, q, i, q3 ) by 

trivial transformations). 

See also the papers by BURMEISTER, FORCADE & JACOBS [6], MILLER 

[37], ZVENGROWSKI [60], DUMONT & MEEUS [14] and WEBB [58]. 

LUDINGTON FURNO [36] showed that for every k there are only a 

finite number of cycles (except for constant multiples). More­

over, she explicitly determined the vectors which belong to the 

various cycles. 
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