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Linear multistep methods for Volterra integral and integro-differential 
. *) equations 

by 

P.J. van der Houwen & H.J.J. te Riele 

ABSTRACT 

A general class of linear multistep methods is presented for numerical

ly solving first and second kind Volterra integral equations, and Volterra 

integro-differential equations. These so-called VLM methods, which include 

the well-known direct quadrature methods, allow for a unified treatment of 

the problems of consistency and convergence, and have a pendant in linear 

multistep methods for ODEs, as treated in any textbook on computational 

methods in ordinary differential equations. 

General consistency and convergence results are presented (and proved 

in an Appendix), together with results of numerical experiments which sup

port the theory. 

KEY WORDS & PHRASES: nwneriaaZ anaiysis; VoZterra integral and integro-dif

ferentiaZ equations; iinear muZtistep methods; aon

sistenay; aonvergenac 

*) This report will be submitted for publication elsewhere. 



1 • INTRODUCTION 

(1. 1) 

We consider Volterra integral equations of the form 

t 

0y(t) = g(t) + I K(t,r,y(T))dT, tE I:= [to,T], 0 = 0,1. 

to 
This equation is called of the first kind if e = 0 and of the second kind 

if e = 1. Furthermore, we consider Volterra integro-differentiaZ equations 

t 

( 1 • 2) :~ = f(t,y(t),z(t)), z(t) = g(t) + J K(t,T,y(T))dT, t EI, 

to 

where y(t0) = y0 . In these equations y(t) is the unknown function and g, 

K and .f are given, nonsingular functions on I, S x lR and Ix JR x JR, respec-

tively, where S := {(t,T), t 0 ~ T ~ t ~ T}. In order to ensure the existence 

of a unique, continuous solution of (1.1) and (1.2), the following conditions 

should be satisfied, respectively: 

Conditions for the existence of a unique solution y(t) E C(I) of (1.1) with 

e = 1 

- K(t,T,y) is continuous with respect tot and T, for all (t,T) ES; 

- K satisfies a (uniform) Lipschitz condition with respect toy, i.e., 

IK(t,r,y) - K(t,T,z) I ~ L1 I y- zl, for all (t,T) E S, for all finite 

y,z E JR; 

- g ( t) E C (I) • D 

Conditions for the existence of a unique solution y(t) E C (I) of (I. 1) with 

e = o 
1 - K(t,T,y) E C (SxJR); 

- fort= T the derivative aK/ay is bounded away from zero: 

laK(t,t,y)/ay1;,:.ro>O for all t EI, y E JR; 

- K(t,T,y) satisfies a (uniform) Lipschitz condition with respect toy 

on S x JR; 

- g(t) E c1 (I) with g(to) = o. • 
Conditions for the existence of a unique solution y(t) E c1(I) of (1.2), 

for given initial value y(t0) = Yo 
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The following three (uniform) Lipschitz conditions: 

- if(t,y 1,z) - f(t,y2 ,z) J sL 1 I y 1 -y2 j, for all tE I, for all finite 

z,y1,Y2 E IR; 

- lf(t,y,z 1) - f(t,y,z 2) I sL 2 I z1 - z2 1, for all tE I, for all finite 

y, z 1 , z2 E IR; 

- jK(t,T,y 1) - K(t,T,y2) I s13 j y 1 -y2 1, for all (t,r) ES, for all finite 

y 1' y 2 E JR, • 
A connnon, simple way of solving (1.1) numerically is obtained by writing 

these equations down in a sequence of equidistant points 

(1. 3) tn := t 0 + nh, n = O(l)N, h fixed and tN = T, 

approximating the integral term by some suitably chosen quadrature formula, 

and solving the resulting equation for y(tn), successively for n = n0 (1)N, 

where n0 is some suitable starting index. Equation (1.2) is connnonly solved 

by integrating the differential equation in the points (1 .3) (say), using 

an LM formula for ODEs, thereby approximating z(t.) with some suitably 
] 

chosen quadrature formula. All these methods are called Zinea:P rrrultistep 

(LM) direct quadratu.re (DQ) methods. DQ methods may give satisfactory results, 

but sometimes the results with DQ are completely worthless as was demonstrated 

for first kind equations by LINZ [9, p. 67], where he applied a fourth order 

Gregory quadrature method to the very simple integral equation 

( 1. 4) 

t 

0 = -sint + J cos(t-T)y(T)dT, I 

0 

= [0,2], with exact solution 

y(t) = 1. 

The "approximate" values obtained for y(2) were 8.4 and 1.5 x 107 for 

h = 0.1 and h ~ 0.05, respectively. For second kind equations too the Gregory 

rules will fail if large Lipschitz constants for the kernel function with 

respect toy are involved, 

In this paper we present a general class of linear multistep methods 

for (I.I) and (1.2) which includes the DQ methods. (It should be remarked 

that such methods for second kind Volterra integral equations were already 

introduced in [6] and results were presented without proof). A characteristic 
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feature of this class is that it involves linear .combinations, not only 

of y - and K - values, but also of values of the auxiliary function (called 

the Zag term) 

s 

( 1 • 5) Y(t,s) := g(t) + J K(t,r,y(,:))d-r, 

to 
for (t,s) ES. Note that we may write (1.1) as 8y(t) = Y(t,t). 

This general class will be called Volte1'1"a Zinea;p multistep (VLM) 

methods. VLM methods allow for a uniform treatment of the problems of con

sistency and convergence, and have a pendant in linea~ multistep methods for 

ordina:Py differential equations, as treated, e.g., by LAMBERT in [8]. 

In Section 2 of this paper we treat VLM methods for Volterra integral 

equat~ons of the second and of the first kind jointly. Numerical experiments 

with several examples of VLM methods are reported. In a similar way as is 

done in Section 2, Section 3 treats VLM methods for integro-differential 

equations. It turns out that several results of Section 2 for second kind 

Volterra integral equations can be used in Section 3. The proofs of the 

theorems presented in Sections 2 and 3 are given, as far as they are non

trival, in an Appendix to this paper. 

2. VLM METHODS FOR VOLTERRA INTEGRAL EQUATIONS 

2.1. The general VLM method 

In order to state our general VLM method for ( 1 • 1) we introduce numerical 

approximations y to y(t) and Y (t) to Y(t,t ), and we let 
n n n n 

(2.1.1) K (t) := K(t,t ,y ), n ~ 0. n n n 

We assume that Y (t), t ~ t, will be computed by a quadrature formula of n n 
the form 

(2. 1. 2) y (t) 
n 

n 
:= g(t) + h l w .K.(t), 

j=O nJ J 



4 

where thew. are given weights and n 1 is sufficiently large in order to 
nJ 

ensure the required order of accuracy. When we say that the order of this 

quadrature forrmi.7,a is r, we mean that for any t ;?: t 

t 
n n 

n 

(2. l. 3) E (h; t) 
n 

:= I K(t,.:,y(t))d, - h I w .K(t,t.,y(t.)) = O(hr) 
j=O nJ J J 

to 

ash+ O, n + 00 , with tn = t 0 + nh fixed. An important class of quadrature 

formulas, which includes the well-known Gregory formulas, are the so-called 

(p,cr) - reducible quadrature formulas [14]. 

Our general VLM method for (I.I) consists of 

(i) the VLM formula 

k k k 
(2. 1.4) e 

k k 
I a..y . + I 

i=O 1. n-1. i=O 
I s .. Y .ct .)=h I I y .. K .(t .), 

. k l.J n-1. n+J . 0 • k J.J n-1. n+J J=- 1.= J=-

* n= k ( 1 )N, . 
(k* fixed) where a.., S .. and y .. , i=O(l)k, j =-k(l)k, are to be prescribed, 

]. l.J l.J 
and 

(ii) the quadrature formul,a (2.1.2) for the computation of Y • (t +·). n-1. n J 
In the VLM method the quantities y 1 , ••• ,Y with k * = k + n 1 are assumed 

k*-1 
to be precomputed by some starting method. Then y , ••• ,yN can be succesively 

k* 
computed using (2.1.4). Since the kernel K(t,,,y) is not necessarily 

defined outside S, we require f3 •• = y .. = 0 for j < -i. Furthermore, if 
l.J l.J 

f3, ., y .. IO for j = l(l)k we assume that the domain of definition of K 
]. J l.J 

can be extended to points (t,,) with t:::; T+kh, , :::; T. It is convenient to 

characterize (2.1.4) by the matrices 

(2.1.5) A= (a..), B = (f3 •• ), C = (y .. ) 
]. l.J l.J 

where the row index i assumes the values O(l)k and the column index j the 

values -k(l )k. (Note that for 8 = 0 the values of the coefficients a.. in 
l. 

(2.1.4) are irrelevant.) 

We now describe four subclasses of (2.1.4) used as illustrating 

examples in this paper. 



5 

Subclass 1 Direct quad:t>ature methods 

Direct quadrature methods for (I.I) are characterized by the (Ixl) matrices 

A= I, B = -I, C = O, for which (2.1.4) reduces to the simple scheme 

6y = Y (t ), n = n 1(I)N. n n n 

Subclass 2 Indirect iineo:t' muZtistep methods 

In [6] methods for (1.1) (with 6=1) were considered in which the VLM formula 

(2.1.4) is generated by the matrices 

(2.1.6) A= , B = 

0 
¾: bkoO 

0 bO 

bl 

C = 0 , 

bk 
0 

where the a. and b., i = O(l)k, are the coefficients of some LM method 
l. l. 

for ODEs and the o., i = O(l)k, are the coefficients of (k+l)-point forward 
l. 

differentiation formula (Table l of the Appendix lists these fork= 1(1)5). 

This VLM formula forms, together with (2.1. 2), a so - called indirect Unea:r> 

muitistep (ILM) method for (1.1), not only fore= 1, but also for 0 = O. 

When the a. and b. are the coefficients of a backward differentiation method 
l. l. 

(for k=l(l)5 these are listed in Table 2 of the Appendix), (2.1.4) represents 

the so-called IBD (indirect backward differentiation) method, analysed in 

[5] (in the case 6=1). For this method, we have bO = 1, b<O = 0 and 

bOoj = aj, j = O(l)k. 

It should be remarked that the ILM methods require the extension of 

the domain of definition S with the points { (t,-r) I T < t :s: T + kb, t O :s:, :s: T}. 
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In this connection we observe that if Scan also be extended to points with 

t < T we may use baakwa:t'd instead of forward differentiation coefficients 

o. in the IBD method, i.e., the matrix Bis replaced by the matrix (S .. ) 
1 1J 

all elements of which vanish, except for those in the first row, which are given 

by (bOok,bOok-I'""''bOoO,o, .•• ,o). 

Subclass 3 Multilag methods 

In [ 16,17Jwefind methods for (1.1) with 8= l which can be characterized by 

the matrices 

0 

(2. 1. 7) A= B = 0 0 C = 0 0 

0 

These methods were called multilag methods (ML) for (1.1) with 8 = 1. Here, 

the a. and b., i = 0(I)k may be the coefficients of any LM method for ODEs. 
1 1 

Wolkenfelt has pointed out that in the case that the lag term Y (t) is n 
computed by using a quadrature rule which is reducible to an LM-method for 

ODEs with the same coefficients a. and b., then the resulting method is, 
1 1 

in fact, equivalent to a DQ method based on the same quadrature rule (provided, 

of course, that identical starting values are used). 

Subclass 4 Modified multilag methods 

In [16]Wolkenfelt introduced a modification of the ML methods, viz., the 

so-called modified multilag (MML) methods for (I.I) characterized by the 

matrices 

ao 

al 

(2.1.8) A= B = 

0 

-a 
k 

. 

0 bO 

-al al bl 

0 C = o·o 
0 . 
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The a. and b. are, again, the coefficients of any LM method for ODEs. A 
l. l. 

common choice are the Adams-Moulton formulas (listed in Table 3 in the 

Appendix, for k=l(l)S). As for ML methods, the MML method is algebraically 

equivalent with the DQ method if in both methods the lag term formula is 

based on the LM formula {a. ,b.} and if the starting values would be l. l. 
identical, where Y = Y (t ) for n 1 ~ n S: n 1 + k. 

n n n 

2.2. Consistency of VLM formulas for Volterra integral equations 

l 
Let c 2(s) denote the space of continuous functions Y(t,s), differentiable 

with respect to s for all (t, s) E S. Along the lines of the theory devel

oped for LM formulas for ODEs, we associate with the VLM formula (2.1.4) the 

linear difference - differential operator 1n: c;(s) • JR, defined by 

(2.2.I) L [Y] := 
~n 

k 
'\' {ea. Y ( t . , t . ) + 

.L 1. n-1. n-1. 
1.=O 

k a I [ f3 •• -y . . h ~ ]Y ( t . 't . ) }. l.J l.J os n+J n-1. j=-k 

As is usual in the consistency analysis of numerical schemes for 

functional equations, we now substitute the exact solution y(t) of (I.I) into 

(2.1.4), and analyze the resulting residue. With the relations 0y(t) = Y(t,t) 

and clY(t,s)/cls = K(t,s,y(s)), and (2.1.3) we obtain the equation 

k { k ( n-i I (ea.y(t .) + I s .. [g(t +•)+h I w . oK(t +.,t,,,y(to)J 
i=O 1. n-1. j=-k l.J n J l=O n-1. ',(.. n J ,{.. ,<.. 

(2.2.2) 

) 
k k 

-hy .. K(t .,t .,y(t .)) } = L [Y]- I I f3 •• E .(h;t +.). 
l.J n+J n-1. n-1. ~n i=O j=-k l.J n-1. n J 

The second 

{ (2. l. 2) -

originates 

term in the residual originates from the quadrature formula 

(2.1.3)}, and is O(hr) if E (h;t) is O(hr). The first term 
n 

from the VLM formula (2.1.4) and will be called the local 

tru.ncation error of the VLM forrrruZa. In order to analyze it, we use the 

following 

Definition 2.2.1. The operator (2.2.1) and the associated VLM formula (2.1.4) 

are said to be consistent of order p with equation (I.I) if for all 

XE Cp+l(S), which in the case of first kind equations (0=0) vanish on the 

Linet= l' we have L [X] = O(hp+l) ash • 0 with nonvanishing error 
~n 

constant. D 
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The following two theorems express the p-th order consistency condi

tions in terms of the parameters occurring in (2.1.4) for (1.1) in the 

cases e = 1 and 8 = O, respectively. 

THEOREM 2. 2. l , The opez,ator L and the assoaiated VLM formu"la ( 2 .1. 4) are aonsistent 
""D. 

of order p with {(1.1), 8=1} if cql = O for q = O(l)p, l = O(l)q, where 

(2.2.3) Cqo := l I [(-i)qC4. - I jq-l(-i)l-l (is .. +ly •. )], 
,{, (q-l) !l! i=O l. j=-k l.J l.J 

with the convention tha.t (-i)l-l.t = 0 if i = l = O. • 

THEOREM 2.2.2. The operator L and the associated VLM fo'P17rU"la (2.1.4) are 
"'Il 

aonsistentoforderpwith {(1.1), 8=0} if B4,e = 0 for q = l(l)p, l = I(l)q, 

uJhere · 

(2.2.4) 
k k 

1 , , c· .)q-l-1( .. ).t:-1[ 0 (.2 .2) 
:= ( ._71)101 l l J-1. J-+l. µ •• J -1. -

q -1... ,,t,. ' 0 ' k 1.J 
1.= J=-

- y .. (qj+qi-Uj) J. D 
l.J 

The various orders of consistency of the illustrating subclasses 

introduced in Section 2.1 can now be found by substituting the relevant 

values of the parameters a., s .. and y .. into the above two theorems. The 
l. 1.J l.J 

results are summarized in the following corollary. 

Corollary 2.2.1. Let p be the order of aonsistenay of the LM formu"la for 

ODEs defining the aoeffiaients {a.,b.} in Suha"lasses 2, 3 and 4. Then the 
l. l. 

order of donsistency p of the operator L and of the associated VLM fo'P17rU"la 
""D. 

(2.1.4) with equation (1.1) is given by 

{

co for Subclass 1 (DQ); 

p = ~in {k,p/8} for Subclass 2 (ILM); 

p both for Subclasses 3 and 4 (ML resp. MML). D 

Note that fore= 0 in the ILM case this corollary gives p = k, independent 

of the order of consistency p, and, in fact, in this case the {a.,b.} need 
l. l. 
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not represent an LM method for ODEs at all. 

Let us assume in the rest of this section that the VLM formula (2.1.4) 

is consistent of order p with equation (] .1). From the proofs of Theorems 

2.2.1 resp. 2.2.2 it follows that the local truncation errror L [Y] can be 
"'D. 

expressed in terms of the constants defined in (2.2.3) resp. (2.2.4) as 

follows: 

(2.2.5) 
p+l 

L [Y] = hp+l l C Y(p+l-l,l) + O(hp+Z), ash • O, 
"'Il l=O p+ 1 ,.e. 

resp. 

(2.2.6) 
p+l 

L [Y] = hp+l I B Z(p+l-l,l) + 0(hp+2), ash+ O, 
"'Il l= I p+ 1 ,.e. 

where 

y(i,j) := (a/at)i(a/as)jY(t,s) lt=s=t , 
n 

z (i' j) := (a/au)i(a/av)jZ(u,v)lu=2t v=O' n' 

Z(u,v) := Y(u+v u-v) 
2 ' 2 • 

In order to compare the values of the error constants Cp+l,l and Bp+l,l 

for the various subclasses introduced in Section 2.1 we have evaluated and 

simplified the expressions for these constants as much as possible, and 

obtained the following results. 

Fore= 1 Corollary 2.2.1 gives for the ILM formula: p = k provided 
~· that p ~ k (which is a reasonable assumption, true, e.g., when the LM formula 

for ODEs is a Backward Differentiation formula (p=k) or an Adams-Moulton 

formula (p=k+l)). Hence, 

(-l)p-1 ~ 
C - ..,....a-,-:;.,......,,..,,.... l {iP[ia.+(p+l)b.]-R}, p = k, 
p+l,l - (p+l-l)!l! i=O 1 1 

with R = k!b. if l = 0 and R = 0 if l = 1,2, ••• ,p+l. For the (M)ML formula, 
1 ~ 

Corollary 2.2.1 gives p = p and we found 
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Cp+l ,l = r (-l)p-1 

if £. $ P, 

k p = p. 
I iP[ia.+(p+l)b. J if £. = p + I' (p+l-l) !l! i=0 l. l. 

In Table 2.2.1 the numerical values of the constants C 1 0 are p+ ,-<--
explicitly given for two popular choices of the coefficients {a. ,b.}, viz., 

l. l. 

the BD formulas and the AM formulas. 

* I Table 2,2ol, Error constants Cp+l,£. = Cp+l,£. l!(p+l-l) ~• l = 0(l)p+l 

VLM[LM] p k=l k=2 k=3 k=4 k=S 

r 72 14400 
C = -2 0 -TT 0 137 ILM[BD] k p+l ,O 

c;+ 1,l > o -1 
4 36 288 7200 

= -25 -737 3 I l 

r -6 24 C = -1 2 -120 
. ILM[AM] k p+l ,0 

c;+l,l>O = 0 0 0 0 0 

t~+i ,l < p+l = 0 0 0 0 0 
(M)ML[BD] k 

4 36 288 7200 
= -1 -rr --g- -737 p+ 1, p+ I 3 

t;+l ,l< p+l = 0 0 0 0 0 
(M)ML[AM] k+l 

c* -! -I 19 27 863 = -T p+ 1, p+ 1 2 12 

For 8 = 0 and in the case of the ILM formula, Corollary 2.2.1 gives 

p = k, while the coefficients {b.} can still be chosen freely. For the 
l. 

error constants we found 

B p+l ,l p = k. 

For the MML formula, Corollary 2.2.1 gives p = p, and for the error 



constants we found 

B p+l ,l 
(-l)p+l-l k 

= -,,---,.-.,..,....,,__... l ip[ia. + (p+l)b. ], 
(p+l-l):l: i=O 1 1 

l~l~p+l. 

In Table 2.2.2 the Bp+l,l are given for the BD formulas (cf. Table 

2.2.1). 

* I Table 2.2.2 Error constants B - B ..,,.,,.....,..---.,,,_... p+l ,l - p+l ,l t: (p+l-l):' 

- l = 1 ( l)p+l 

VLM[LM] p k=l k=2 k=3 k=4 k=S 

ILM[BD] k B* -1 4 36 288 7200 
p+l ,l = 3 -TI 25 -737 

MML[BD] · k ( -1 ) p+ 1-lB * -1 4 36 288 7200 = 3 -- 25 -737 p+l ,l 11 

2.3. Convergence 

We first give a definition of convergence. 

Definition 2.3. 1. A VLM method is said to yield a c:onvergent soZ.ution 

11 

for (1.1) if y + y(t) ash+ O, with t = t fixed, holds for all convergent 
n n n 

starting values {y.,Y.(t.)}, i= 1, ••• ,k-1, j=-i,-i+l, ••• ,k-i. D 
1 1 J 

Before considering the convergence of VLM methods for (1.1) we answer 

the question to what equation the numerical scheme'(2.1.4) converges if 

we substitute a sufficiently differentiable function y(t) (not neccessarily 

the exact solution) and if we then let h tend to zero in a fixed point. 

To that end, we define the polynomial 



12 

(2.3.1) a.(z) := 
k 

I 
i=O 

CJ.. z 
l. 

k-i 

and the quantities 

(2.3.2) A 
q 

k 
:= I 

i=O 
q = 0,1, •.•• 

We observe that AO= a.(l), A1 = a.'(1) - ka.(l), .••• 

THEOREM 2.3.1. If sufficiently differentiable functions y(t), g(t) and 

K(t,,,y) are suhstituted into the VLM method, then the method converges 

to the equation 

(2.3.3) 
m 0A dq i Aq a q-l a l } I hq{---i9,--y(t) + !., ccqt-.t!Cq-w.J<a"t) c88) Y(t,t) 

q=O q. dtq l=O 

where r is defined in (2.1.3), Cql in (2.2.3), and mis some integer~ 0 

determined by the differentiability of y, g and K. D 

Examples. In the case of the DQ method for {(I.I), 0=1} we have A0 = 1, so 

that we infer from Corollary 2.2.1 and Theorem 2.3.1 that the numerical 

scheme converges to the equation y(t) - Y(t,t) = 0 ash+ 0, which is the 

original equation (1.1). In the case of the DQ method for {(1.1), 0=0} we 

have c00 = I, so that it easily follows that the numerical scheme converges 

ash+ 0 to the equation Y(t,t) = O, also the original equation (1.1). In 

the case of the ILM method for (I.I) it is not difficult to show tHat if 

the coefficients {a.,b.} in (2.1.6) correspond to a convergent LM formula 
l. l. 

for ODEs, then the numerical scheme converges, ash+ O, to the differen-

tiated Volterra equation 0y'(t) = K(t,t,y(t)) + Yt(t,t). D 

In order to present convergence theorems for VLM methods, we need 

the following concepts and definitions: A polynomial is called simple 

van Newnann if its zeros lie on the unit disk, those on the unit circle 

being simple. A polynomial is called Schur if its zeros lie within the 
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unit circle. Besides a(z) defined above, we define 

k 
k-i k-i 

(2.3.4a) 13 (z) := I s.z where s. := I s .. ; 
i=O l. l. j=-i l.J 

k k-i k-i 
(2.3.4b) y(z) := I y.z where y. := I y ..• 

i=O l. l. j=-i l.J 

Furthermore, we need 

(2.3.5) b := maxis. -1, c := maxly .. I, w := maxlw. -1; 
• • l.J • . l.J . . l.J 
l.,J l.,J l.,J 

(2.3. 6a) { 
* * ~K(t,s::,y) := K(t:s,y) _- K(t:s,y ), 

~E(h) .- max IE.(h,t.) E.(h,t.+o) I, 
"<"<N l. J l. J ~ l.-J-

~k 

E(h) := max IE.(h;t.+l) I, 
"<'<N l. J l.-J-

f:,;k 
(2.3.6b) T(h) := max I!:, (Y) I, 

i:,;N 1 

o (h) := max ly(t.) - y. I, 
J:,;j:,;k * -1 J J 

where y(t) is the exact solution of (I.I) resp. (1.2) and Y(t,s), Y (t) 
n 

are the corresponding functions defined in (1.5) resp. (2.1.2). E(h) is 

the maximal error arising in the approximation of the lag terms Y (t) 
n 

13 

during the integration process until t = T, T(h) may be considered as the 

maximal ZoaaZ tX'U.11,aation error of the VLM formula (2.1.4) until t = T, and 

o(h) is the maximal starting error. 

2.3.1. Second kind equations 

We are now in a position to state a general convergence theorem for 

VLM methods in the case of second kind equations (0=1), which provides 

an estimate for the global error 

(2.3.7) 
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THEOREM 2.3.2. Let the conditions for the existence of a unique solution 

y E C(I) of {(1,1),8=1} be satisfied {see Section 1). 

{a) If a. (z) = a.Ozk, a O I- 0, then there exists a constant C > 0., independent 

of h, such that for h sufficiently small 

le I ~ C[ho(h) + E(h) + T(h)J, 
n 

* n = k , ••. ,N. 

(b) If a(z) is simple von Neumann, if S(z) 

(uniform) Lipschitz condition 

_ O, and if ~K satisfies the 

* * * * I I for aU (t,s,y), (t,s,y ), (t ,s,y), (t ,s,y) E sx{ y < 00 }, where the 

Lipschitz constant Lis independent of t,t*,y and y*, then there exists a 

constant C > O, independent of h., such that for h sufficiently small 

le I~ Ch- 1[ho(h) + ~E(h) + T(h)], 
n 

* n = k , •.• ,N. D 

Using Theorem 2.3.2 it is easy to derive the orders of convergence of 

the subclasses introduced in Section 2.1. The results are given in the 

following 

Corollary 2. 3. l • Let p be the order of consistency of the LM formula for OD Es de fin

ing the coefficients {a.,b.} employed in the ILM and (M)ML methods, let 
1 1 s r r+l 

o(h) = O(h ), E(h) = O(h) and ~E(h) = O(h ) ash • 0. Then the order 

of convergence p is given by 

min{s+ I, r} for the DQ method 

min{s ,r ,p,k} for the ILM method • p = 
min{s+l ,r,p+l} for the ML method 

min{s,r,p} for the MML method 

The convergence analysis of the DQ methods goes back to KOBAYASI [7], 

LINZ [9] and NOBLE [13]. The (M)ML methods were proved to be convergent 

in WOLKENFELT [16]. 
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It is known (cf. [6, 16]) that VLM methods which have 13(z) = 0 behave 

more stable then DQ methods if large Lipschitz constants for aK/ay are 

involved. The maximal attainable order of convergence of these VLM methods 

is expressed in the following 

Corollary 2.3.2. Let o(h) = O(hs), AE(h) = O(hr+l) ash+ O, let a(z) 

be simple von Neuma:nn a:nd Zet 13(z) = O. Then the order of aonvergence p 

of the k-step VLM meth.od {(2.1.4); (2.1.2)} satisfies 

p ~ {min(s,r,k+l) fork odd, 

min(s,r,k+2) fork even. 0 

From this corollary it follows that the MML methods are of 

maximal attainable order of convergence if we choose the generating LM 

formula {p,cr} to be optimal, that is, of order k + 1 when k is odd and of 

order k + 2 when k is even. We note that the restriction p ~kin the ILM 

methods is due to the use of a k-step forward differentiation formula {o.} 
l. 

. in the generating matrix B (see (2.1.6)). 

2.3.2 First kind equations 

Now we shall give convergence theorems for VLM methods for Volterra 

first kind equations (6=0). We restrict our attention here to linear 

equations, i.e., we assume in (I.I) that 

(2.3.8) 

We first give the following convergence theorem of WOLKENFELT [14] for 

(p,cr)-reducible DQ methods. 

THEOREM 2. 3. 3. Let the aondi tions for the existence of a unique so 1-ution 

y(t) E C(I) of {(1. l), 6=0} be satisfied (see Section 1), whe:t'e K(t,.,y) 

is of the form given in (2.3.B). Let A= O, B = I, C = O in (2.1.5) (DQ 

formula) a:nd Let the weights in (2.1.2) be given by a (p,a)-reduaibZe 

quadrature {ormul:a of order r ~ 1, where a is simple von Neumann. Then 

there exists a aonsta:nt C > 0, independent of h, suah that for h sufficiently 
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smaU 

le: I~ c[o(h) + E(h)J, n = k, ••• ,N. • n 

PROOF. See [14]. 

THEOREM 2,3.4. Let the oonditions for the existence of a unique solution 

ye C(I) of {(1.1), 0=0} be satisfied. Let S(z) = 0 and let y(z) be Schur. 

Then there exists a oonstant C > O, independent of h suoh that for h suffi

oient"ly smaU 

-
le: I~ Ch- 1[ho(h) + AE(h) + T(h)], n = k*, .•• ,N. • 

n 

Qbserve that this convergence result is identical to that obtained for 

VLM methods for {(1,1), 0=1} with S(z) = 0 (Theorem 2.3.2(b)). Now it is 

easy to derive from Theorems 2.3,3 and 2,3.4 the orders of convergence of 

the DQ, ILM and MML methods for {(1,1), 6=0}, The results are summarized 

in the following 

Corollary 2,3,3. Let p be the order of oonsistency of the LM formula {p~a} 

employed in the DQ Zag term formula (2.1.2) and let p be the order of 

consistency of the LM formula for ODEs employed in the MML formula (2.1.B) 
. _ s r r+l 

(mth A=0). Furthermore~ let o(h) = O(h ), E(h) = Q(h) and AE(h) = O(h ) 

ash+ 0, Then the order of convergence pis given by 

{
min{s ,p} 

p = min{s,r,~} 

min{s,r,p} 

for the DQ method with cr being simple von Neumann, 

for the ILM method with y being Schur, 

for the MML method with y being Schur. D 

WOLKENFELT [ 151 has also given a convergence theorem for MML methods 

for nonlinear equations {(1 .1), 6=0}, with the following restrictions on the 

coefficients Sij and yij: S(z) = O, y00 ~ 0 and all other yij vanish. 

2.4 Numerical experiments 

In this section we present the results of numerical experiments in 
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order to support and illustrate the convergence behaviour of VLM methods 

for (1.1) as predicted by Corollaries 2.3.1 and 2.3.3, by applying various 

DQ, ILM and (M)ML methods to a number of problems. 

The required starting values for yi, 0 ::;; i < n 1 + k, are taken from the 

exact solution y(t.) (so thats=~ in Corollaries 2.3.1 and 2.3.3), and values 
1 

of the lag term Yn(t) required in (2.1.4) for n ~ n 1 are computed with a 

Gregory quadrature rule in (2.1.2) of the proper order. The coefficients 

{a.,b.} in the ILM and (M)ML formulas are taken from Tables 2 and 3 of the 
1 1. - ~ Appendix. The values of r, p and kin Corollary 2.3.1 and of r, p, p and 

kin Corollary 2.3.3 are chosen as small as is allowed by the theoretical 

order to be tested. 

In the tables of results we present the number of correct significant 

digits in the end point T, i.e., the value of 

(2.1.4) 

Moreover, we list the effective order of the method, viz., the value of 

(sd(h)-sd(2h))/log 10z. This value should tend to the asymptotic order of 

convergence ash • 0 and will tell us therefore 

(i) whether the asymptotic, theoretical order of the numerical scheme 1s 

correct, and 

(ii) how fast the asymptotic order is reached. 

2.1.4. Second kind equations ((1. 1) with 6=1) 

Example 2. 1.4 (GAREY [2], adapted) 

K(t,-r,y) = -A•ln(l+t ... T)y, 

g(t) I - t+ H½O-t2)£.n(l+t)+¾t 
2 - ~t], = 

y(t) = 1 - t, 

[t0 ,T] = [0,4]. 
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For )..=4 and)..= 100 Tables 2.4.1 and 2.4.2 give the results obtained 

with DQ, IIM and ¢,1:)ML methods of asymptotic order 5, where for the 

coefficients {a.,b.} employed in the IIM and (M)ML methods we used the 
]. ]. 

coefficients of the Adams-Moulton formula of the proper order. G means r 
that for the lag term we used a Gregory rule of order rand AM-- means that 

p ~ a p-th order Adams-Moulton formula was used. 

Table 2.4.1 Example 2.4.1 with A= 4 

h DQ(G5) ILM(G5-AM6) ML(G5-AM4) MML(G5-AM5) 

1/4 4.6 3.4 . 4.3 6.1 
> 4.6 > 3. 8 >4.8 >3.9 

1/8 6.0 4.5 5.7 7.3 
> 5 .0 > 4. 5 >4.6 >3.2 

1/16 7.5 5.9 7. I. 8.2 
> 5 .o > 4. 7 >5.0 >4.0 

· 1 /32 9 .o. 7.3 8.6 9.4 
> 5 .0 > 4 ~ 8 >S.O >4.6 

1/64 10o5 8.8 10. I 10.8 

Table 2.4.2 Example 2.4. I with\= 100 

h DQ(G5) ILM(G5-AM6) ML(G5-AM4) MML(G5-AM5) 

1/4 -6.5 1.8 -3. 7 -2.4 
>30 >8.9 >25 >22 

1/8 2.3 4.5 3.7 4; 2 
>13 >4. 1 >8.2 >16 

1/16 603 5.8 6.2 9.0 
>5.8 >4.4 >4.7 >2.3 

1/32 8.1 7. 1 7.6 9.7 
>6.8 >6.4 >5.8 >2.5 

1/64 10. l 9.0 9.3 10.4 
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The example with A= 4 shows that the correct asymptotic order p = 5 

is reached by all methods for not too small integration steps. For relatively 

large values of h the MML method shows the most accurate results. The ILM 

method shows an accuracy about 1 - 2 digits less than the other methods, 

due to larger error constants (cf. Table 2.2.1). The example with A= 100 

shows that the ILM method is stable for "realistic" values of h (in view 

of the behaviour of the exact solution, integration steps h = 1/4 or h = 1/8 

should be small enough for representing the function y(t) = I-t), whereas. 

the other methods develop instabilities. If his decreased the (M)ML 

methods become more accurate than the ILM method. Except for the ML method 

this experiment does not yet demonstrate the asymptotic order p = 5. 

Thus, we conclude that the (M)ML methods are superior for nonstiff 

problems (hlaK/ayl small), and the ILM methods superior for stiff problems 

(hlaK/ayj large). 

2.4.2 First kind equations ((I.I) with 0=0) 

Example 2.4.2 (GLADWIN [3]) 

K(t,.,y) = cos (t-.)y, 

g(t) = -exp(t) - sin(t) + cos(t), 

y(t) = exp(t), 

[tO,TJ = [0,4]. 

Table 2.4.3 gives the results obtained with DQ, ILM and MML methods of 

asymptotic order 4 and 5, where for the coefficients {a.,b.} in the ILM 
L 1. 

and MML methods we used the coefficients of the backward differentiation 

formulas of the proper order. BDk means that a k-step (k-th order) BD 

formula was used. 
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Table 2.4.3 Example 2.4.2 

I 

h DQ(G4) ILM(G4-BD4) MML(G4-BD4) 1 DQ(G5) ILM(G5-BD5) MML(G5-BD5) 

1/10 -7.6 4.3 3.9 -11 5.6 4.9 
>4. 1 >3.8 >4.9 >4.9 

1/20 -21 5.5 5. 1 -29 7 .o 6.4 
>4.0 >3.9 >5.0 >5.0 

1/40 · -50 6.7 6.3 I -65 8.5 7.9 
>4.0 >4.0 >5.2 >5.0 

1/80 -109 7.9 7.5 I -140 10. I 9.4 

For the ILM and the MML methods the results show that the correct asymptotic 

, order is reached already for relatively large values of h. The appatent 

unstable behaviour of the DQ(G4) and DQ(G5) methods is explained by the 

fact that the Gregory quadrature formulas of order~ 3 are (p,cr)-quadrature 

formulas for which the a-polynomial is not simple von Neumann (cf. Corollary 

-2.3.3). Unlike its performance for second kind equations, the ILM method 

is here more accurate than the MML method. 

3. VLM METHODS FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS 

3.1. The general VLM method 
I 

In analogy to the VLM formula (2o1.4) for Volterra integral equations 

we formally define the VLM formula for Volterra integro-differential 

equations (1o2) as follows: 

(3.1.la) f := f(t ,Y ,z ), 
n n n n 

k k k k k 
LCL.Z .+ I I $ .. Y .(t+.)=ht I y .. K .(t .), 

i=O 1 n-1 i=O j=-k iJ n-1 n J i~O j=-k 1J n-1 n+J 
(3.lolb) 

* n = k ( 1 )N, 

where Yn(t) is defined as in (2.1.2) and fo/ity/}~=O are the coefficients 

of some LM method for ODEs. These formulas (3.1.1), combined with (2.1.2), 

will be called a VLM method for integro-differential equations. Formula 
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(3.1.lb) can be characterized by the parameter matrices A 

C = (y .. ). 

= (a.),B=(S .. ), 
l. l. J 

l.J 
When we compare (3.1.l) with (2.1.4), it is clear that all methods 

defined for second kind Volterra integral equations by specifying the 

matrices A, Band C in (2.1.5) and the quadrature weights w. in (2.1.2), 
nJ 

can be extended to methods for Volterra integro-differential equations by 

specifying the coefficients {a.*,s.*} of some LM method for ODEs. In this l. l. 

way, we define DQ, ILM, ML and "MMI.. methods for (1.2) where the matrices 

A, Band Care specified in Section 3.1, Subclasses 1, 2, 3 and 4, respec

tively. For example, any DQ method for (1.2) is specified by A= 1, B = -1, 

C = O, which gives z = Y (t) for (3.1.lb)o 
n n n 

An alternative way to arrive at the VLM formulas (3.1.1) is obtained as 

follows. We first integrate (1. 2) formally, which results in the system of 

Volterra integral equations of the second kind 

t rt) = y(to) + r f(T,y(T),z(T))di, 
J 

(3.1.2) to 
t 

z(t) = g(t) + J K(t,r,y(T))d,. 

to 

Next, we apply the VLM formula (2.1.4) to this system with parameter 
* * * matrices (A ,B ,c) and (A,B,C) for the respective components, i.e., 

k k k ** k k * l a..*y .+ l I S .. Y .(t .)=h l l y .. f(tn-iy ,,z .) 
i=O 1. n-1. i=O j=-k l.J n-1. n+J i=O j=-k 1.J n-1. n-1. 

(3.1.1 1 ) k k k k k 
l a..z . + I l s .. Y .(t .)=h l I y .. K(t .,t .,y .), 

i=O 1. n-1. i=O j=-k 1.J n-i n+J i~O j=-k 1.J n+J n-1. n-1. 

* where Y (t.) is an approximation to 
n J 

s 

y* (t,s) := y(to) + I f(-r,y(,) ,z(,))dT 

to 

* at t = t., s = t. Here, however, both Y and f do not depend on t so that, 
.J * n k * . . * k * by putting S. := E. k S .. = O and wr1.t1.ng y. := E y .. we have reduced 

i J=- l.J i. j=-k l.J 
(3.1.1') to (3.1.I). 
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3.2. Consistency of VLM formulas for integro-differential equations 

With the numerical schemes (3.1.1) we associate the linear difference

differential operators ~ : C 1 (I) + JR and ¾ : c; (S) + JR, defined by 

(3.2.la) * L [y] := 
"'Il 

k * * d l [o.. - y. h -dt J y ( t . ) • 0 1 1 n-1 1= 

and 

(3.2.lb) k { k a } 1 [YJ : = I a. Y ( t . , t • ) + l [ e .. - y .. h -a J Y < t . , t . ) , 
"'Il i=O 1 n-1 n-1 j=-k 1J 1J s n+J n-1 

where y and Y are arbitrary functions from c1(I) and c;(s), respectively. 

Now we substitute the exact solution y(t) and z(t) of (1.2) into (3.2.1) 

and obtain (cf. (2.2.2)) 

k * * * 1 [a.y(t .)-y.hf(t .,y(t .),z(t .))] = L [y], 
i=O 1 n-1 1 n-1 n-1 n-1 ~ 

k k r {a . z ( t . ) + l [ a .. y . ( t + . ) - y .. hK . ( t . ) J} = 
i=O 1 n-1 j=-k iJ n-1 n J 1J n-1 n+J 

k k 
= 1 CY J - I I a .. E . (h; t +. ) 

""Il • 0 . k 1J n-1 n J 
1= J=-

= L [Y] + 0 (hr) as h + 0 , 
"'Il 

where Y .(t +·) and K .(t +·> are defined by (2.1.1) and (2.1.2) with y n-1 n J n-1 n J n 
replaced by y(t) and when r is the order of the quadrature error E o n n 
This shows the connection of the operators (3.2.1) with the VLM formula 

(3.1.1). The quantities 1*[y] and L [Y], with y and Y corresponding to the 
""Il "'Il 

exact solution of (1.3), are called the ZocaZ truncation errors of the 

VLM formulas (3.1.1). In analogy to Section 2.2 we use the following 

Definition 3.2.1. The operators (3.2.1) and the associated VLM formulas 

(3ol.1) are said to be consistent of order p* and p with the equations 
p*+l p+l · * p*+l (1.2) if for all ye: C (I) and for all Ye: C (S), we have!:: [y] = O(h ) and 

L [Y] =O(hp+l) as h+O, with non-vanishing error constants. 0 
n 
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Since L* is of the same form as the linear operator L occurring in ~n ~n 
ODE theory (compare LAMBERT [8, p. 23]) the consistency conditions for 

* L are also of the same form. (It should be remarked that in the derivation ~n 
of the consistency conditions we expand y(t .) and y'(t .) as Taylor n-1. n-1. 
series about t , whereas Lambert 

n expands about t k.) Similarly, since L n- '""Il 

defined in (3.2.lb) is identical to the operator defined in (2.2.1), the 

consistency conditions for L are also known already. Therefore, the following 
~n 

consistency theorem is immediate. 

THEOREM 3.2.1. The operators 1* and L and the associated 
~n ~n 

(3.1.1) are consistent of order p* and p with (1.2) if C 

VLM formulas 

= 0 for 
* - q 

q = O, I , ••• , p and C ql = O for q = O, 1 , ••• , p, .t = O, I , ••• ,q, where 

C 
q 

(-1) q 
:= -~-q! 

k 

I 
i=O 

q-1 * * i [ia.. + qy. J 
1. 1. 

and where Cql is defined in (2.2.3). • 
. * . Evidently, p equals the order of consistency of the LM method for 

· ODEs with coefficients {a.~,y:}. Furthermore, in the case of the DQ, ILM, 
1. 1. . 

ML and MML formulas, pis determined by the expressions as derived for the 

operator L for second kind Volterra integral equations in Corollary 2.2.1. ~n 
The values of the error constants C and C 1 '" 0 s l s p + 1, 

Q*+I p+ ',{.. 
follow easily from those given in Table 2.2.1 (for a number of popular 

methods for second kind Volterra integral equations). 

3.3. Convergence 

As we did for the Volterra equations of first and second kind we first 

consider the continuous problem to which the VLM method {(3.1.1); (2.1.2)} 

converges as h + 0. We assume that the LM formulas in (3. 1. 1) are consistent 

and that A1 = a'(I) - ka(l) ~ 0 (see Section 2.3). Then, for sufficiently 

smooth functions g, Kand f the VLM method converges to the equations 

y' (t) = f(t,y(t),z(t)) 

(3.3. 1) 

a (l ) [ z ( t) - Y ( t , t) J + ( ct ' (I ) - kct (I ) ) h [ z ' ( t) - Y t ( t , t) - Y / t , t) J = 0 
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ash+ 0 (see the proof of Theorem 2.3.l). Thus, if a(l) f O (DQ and ML 

method), then the VLM method is a direct discretization of (1.3). If a(l) = 0 

(ILM and MML) (and a' ( 1 )/0 by assumption), then the linear method converges 

to the system 

y' (t) = f(t,y(t),z(t)) 

(3.3.2) t 

z'(t) = K(t,t,y(t)) + g'(t) + J Kt(t,r,y(-r))d-r, 

to 
that is the system (1.3) where the expression for z(t) is differentiated 

with respect tot. 

Next we present a general convergence theorem. In the proof it is convenient 

to use, in addition to the notation introduced in Section 2. 3, the notations 

(3.3.3) 

TJ = z(t) - z , n n n 

!:,f := f(t ,y(t ) ,z(t )) - f(t ,Y ,z ) , n n n n nnn 

T*(h) 

* a (z) 

:= max 
i~N 

·- k .- L, 0 1= 

I!/ [ y J I , ti* (h) : = max I z ( t . ) - z • I , 
1.. j~-1 . J J 

* k-i a. z 
1 

where z and y correspond to the exact solution. 

THEOREM 3.3.1. Let the conditions for the existence of a unique solution 

y E c1(I) of (1.2) be satisfied {see Section 1). Let a(z) and a*(z) be 

simple von Neumann. 

{a) If a(z) = a 0zk, a0 ~ O, then there exists a constant C > O, independent 

of h such that for h sufficiently small 

Is I ~ C[o(h) +M*(h) +E(h) +T(h) +h- 1r*(h)], n = k*, ••• ,N. 
n 

{b) If S(z) = O, then there exists a constant C > O, independent of h such 

that for h sufficiently small 

* n = k , ••• ,N. • 
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Using this theorem, it is easy to derive the orders of convergence 

of the various examples of VLM methods for Volterra integro-differential 

equations described in Section 3.1. The results are given in the following 

* ~ Corollary 3.3.1. Let p and p be the order of aonsistenay of the VLM 

formu.Za {a~,y~} empZoyed in (3.1.la) and of the LM fo1'1'1'rUla {a.,b.} employed 
1 1 1 1 . . * 

in the (M)ML and ILM methods., respeativeZy; 1,et o (h) = O(hs), o* (h) = O(hs ) , 

E(h) = O(hr), ~E(h) = O(hr+l) as h+O, Then the order of aonvergenae p of the 

VLM method {(3.1.1); (2.1.2)} is given by 

. ( * *) min s,s +1,r,p for the DQ methgd 
* * ~ min(s,s +l,r,p ,p+l) for the ML method 

p = * * ~ min(s,s ,r,p ,p) for the MML method 
* * ~ min(s,s ,r,p ,p,k) for the ILM method. D 

The convergence of the conventional DQ method has already been 

studied by L1NZ [10] and MOCARSKY [12]. The convergence results for the 

(M)ML methods has already been given in WOLKENFELT [16]. 

3.4. Numerical experiments 

In order to illustrate the convergence behaviour of VLM methods for 

(1.2) we have tested the DQ, ILM and (M)ML methods of orders 2, 3 and 4. 

For the two ODE-LM formulas involved in (3.1.1) we chose the backward 

differentiation formulas. As in the experiments for ( 1.1), the lag term 

Y (t) was evaluated with a Gregory quadrature rule of the proper order. 
n 

Example 3.4.1. (LINZ [10], MOCARSKY [12], MAKROGLOU [11]) 

f(t,y,z) 2 2z, y(O) o, = 1-t•exp(-t) + y - = 

K(t,r ,y) 2 g(t) o, = t,exp(-y ) , = 

y(t) = t, [t0 ,TJ = [0,2] 

Table 3.4. 1 gives the results of our experiments. The ILM method is the 

less accurate one, the DQ and (M)ML methods exhibit a varying accuracy 

behaviour. 

j 
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Table 3.4.1 Example 3.4.1 

second order methods (with {a~,y~}=BD2 in (3.1.la)) 
l. ]. 

h DQ(G2) ILM(G2-BD2) ML(G2-Bn 1) 

1/10 2.2 3.3 2.2 
>2.0 >-2 >2.2 

1/20 2.8 2.6 2.8 
>2.0 > 1.3 >2.0 

1/40 3.4 3.0 3.5 

third order methods (with BD3 in (3.1.la)) 

h DQ(G3) ILM(G3-Bn3) ML(G3-BD 2) 

1/10 3.6 2.4 2.9 
>2.8 >2.3 >2.7 

1/20 4.5_ 3. 1 3. 7. 
>3.9 >2.8 >3.0 

1/40 5.4 3.9 4.6 

fowth order methods (with BD4 in (3.1.la)) 

h DQ(G4) ILM(G4-BD4) ML(G4-Bn3) 

1/10 4.0 3.2 3.6 
>3.7 >4.5 >4.0 

1/20 5. I 4.6. 4.8 
>3.9 >6.2 >4. 1 

1/40 6.3 6.4 6. I 

MML(G2-BD2) 

1. 8 
>2.0 

2.4 
>2.0 

3.0 

MML(G3-BD3) 

3.3 
>4.7 

4.7 
>4~1 

6.0 

MML(G4-BD4) 

3.6 
>3.1 

4.6 
>3.9 

5.7 
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APPENDIX 

In this appendix we present, successively, 

(i) three tables of coefficients of forward differentiation formulas, and 

of two common LM formulas for ODEs, viz., backward differentiation 

formulas and Adams-Moulton formulas; 

(ii) two lennnas which are needed in: 

(iii) proofs of the main results of this paper, as far as they are non

trival (in the opinion of the authors). 
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Table 1 Coefficients of forward differentiation formulas 

t o = t + lh n+,t, n 

k ,co 01 02 03 04 05 

-1 

2 3/2 -2 1/2 

3 11/6 -3 3/2 -1/3 

4 25/12 -4 3 -4/3 1/4 

5 137/60 -5 5 -10/3 5/4 -1 /5 

Table 2 Coefficients of the backward differentiation formulas 

. k 
for ODEs f'(t) = g(t): l a.f . ~ b0g • 0 1. n-1. n 

1.= 

k ao al a2 a3 a4 as bO 

1 -1 

2 -4/3 1/3 2/3 

3 -18/11 9 I 11 -2/11 6/11 

4 -48/25 36/25 -16/25 3/25 12/25 

5 -300/137 300/137 -200/137 75/137 -12/137 60/137 



Table 3 Coefficients of the Adams-Moulton formulas · 
k 

k 

2 

3 

4 

for ODEs f'(t) = g(t): f - f l = ' b.g . n n- • L. 1 n-1. 
1=0 

bO bl b2 b3 

1/2 1/2 

5/12 213 -1 /12 

3/8 19/24 -5/24 1/24 

251 /720 323/360 -11 /30 53/360 

b4 

-19/720 

5 95/288 1427/1440 -133/240 241 /720 -137/1440 

LEMMA A.I. Let z ~ 0 for n = 0,1, ••• ,N, and suppose that 
n 

n-1 
Zn s hCl l zi + c2, n = k,k+l, ••• ,N, 

i=O 

where k > O, h > 0 and c. > 0 (i=l,2). Suppose, moreover, that z. s z/k 
1 J 

for j = 0,1, ••• ,k-l. Then 

PROOF. See [ 4 ]. 

LEMMA A.2. Consider the Linear inhomogeneous difference equation with 

constant coefficients 1;.: 
J 

(A. I) 
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b5 

3/160 

where {g} is a given sequence, independent of they. 

(i) Iff ~he characteristic poLynomiaL ,(z) := -i::}=oi;j zf-j is simpLe van 

Neumann (cf. Section 2.3) then the soLution of (A.1) satisfies the inequaLity 



32 

n 
IY Is C{ max IY-1 + l Jg.j}, n 2:: k, 

n 0:Sj:Sk-1 J j=k J 

where C is independent of u. 

(ii) Iff s(z) is Schur (cf. Section 2.3) then the soiution of (A.1) satisfies 

the inequaUty 

IY Is C{ max IY-1 + max lg.I}, n ~ k, 
n Osjsk-1 J k~jsn J 

where C is independent of n. 

PROOF. See [ 4 ]. 

PROOF .OF THEOREM 2.2.1. Taylor expansion of Y(t .,t .) around (t ,t) 
n+J n-1 n n 

yields 

L [Y] = 
""'Il 

k 

t {ai 
i=O 

p q 
\' ~ hq(-i_!_-i2_) Y(t s) 
L q at as ' q=O • 

k p q 

+ l [(3 •• -y .. hf-J l -d-rhq(jaat_if-) Y(t,s)}lct t) 
j=-k l.J l.J s q=O q. s n' n 

+ O(hp+l) ash • O. 

Writing this formula in the form 

L [Y] 
"'11 

and expanding the differential operator D by the binomial theorem we find 
q 

k { q k q-1} 
D == l a. (-i-J.-- i-J.-) + I [jf3 .. "at - (if3 .. +qy .. )-J.-J[j"at _ i-J.-J 

q . O l. ot oS • k l.J o l.J l.J oS o oS 
1.= J=-



h ( · ).l-l O • d b . 0 0 . 11 were -1 ~ is assume to e zero for 1 = ~ = • Equating to zero a 

terms in the ~i=O yields the order equations (2.2.3) and at the same time 

1n_(Y) = O(hp+l) as required in Definition 2.2.1. 0 

PROOF OF THEOREM 2.2.2. Taylor expansion of Y(t .,t .) around (t ,t) 
n+J n-1 n n 

yields 

p 

Y(t +·,t .) = I :!-r. h4[j.._at-i"3sJ4Y(t,s) l(t t) + 
n J n-1 q=O q a a n, n 

+ O(hp+l) ash+ O. 

In order to exploit the fact that Y(t,t) = 0 (see definition 2.2.1), we 

introduce the variables u = t +sand v = t - sand write 

Y(t,s) = Y(u;v, u;v) =: Z(u,v) • 
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. The identity Y(t,t) = 0 implies that Zand all its derivatives with respect 

to u vanish for u = 2t and ,, = O. In the following we use the notation 

By means of the binomial theorem we have 

(A.2) 

and 
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p+l + O(h ) ash+ O. 

Substitution of (A.2) and (A.3) into L [Y] and using Z(q,O) = O yields 
""Il 

where'Bql is defined in (2.2o4). This proves the theorem. D 

PROOF OF THEOREM 2.3.1. 

PROOF. Taylor expansion in a fixed point t = t yields, respectively, n . 

y(t . ) n-1. 
= I J, (-iir;.:.ddt)qy(t) + O(hm+l)' 

q=O q. n 

Y .(t .) = Y(t +·,t .) - E .(h;t +·) n-1. n+J n J n-1. n-1. n J 

a K . (t .) = K(t +"'t . ,y(t .)) = ~Y(t . ,t .) n-1. n+J n J n-1. n-1 as n+J n-1. 

= f ~hq~I ~ jq-l(-i)l-l (4)l ~q-la¾ (t t ) 
q=O q. l=O l otq-.l.a/· n' n 

+ O(h~. 
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From these expansions it is immediate that the VLM formula (2.1.4) satisfies 

the relation 

(A.4) 

where A and C O are defined by (2.3.2) and (2.2.3), respectively. Under 
q q~ 

the conditions of the theorem it is easily verified that this equation leads 

to (2.3.3). Furthermore, (2.3.3) is obviously them-times differentiated 

form of equation (1.1). D 

PROOF OF THEOREM 2.3.2. Let Y(t,s) be given by (1.6) where y(t) is the exact 

solution of (I.I), then we may write for n ~ k 

k k 
L (Y) = L (Y) - 2, fo.y .+ I (S •. Y . (t +·)-hy .. K . (t .))] 
"'Il "'ll i~O i n-1 j=-k 1J n-i n J iJ n-1 n+J 

k k 
= I {a.£ .+ I [S .• (Y(t .,t .)-Y .(t .)) 

. 0 i n-i . k 1J n+J n-i n-i n+J 
i= 3=-

- hy .. (K(t .,t .,y(t .))-K .(t .))]}. 
1J n+J n-1 n-1 n-1 n+J 

Substitution of the functions Y(t,s) and Y (t) and using (2.1.3) and (2.3.6b) 
n 

leads to 
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(A. 5) L (Y) 
""n 

k { k ( n-i 
= I a.e: _. + I [e .. \h I w _. tt.K(t +·,t,e_,Y<t,e_),y,e,) 

. 0 1 n 1 • k lJ O O n 1, n J 
1"' J=- ,{,= 

+ E .(h:t .))-hy .. t.K(t.+.,t .,y(t .),y .)]}. 
n-1 , n+J l.J n J n-1. n-1. n-1. 

Thus, we have found for the errors c the relation 
n 

(A. 
k Jo a.ie:n-i = vn' * n 2: k , where 

V = 
n 

k k n 
L (Y) - I I [hs .. I w -· nll.K(t +•,to,Y(to),yo) 
"'Il i=O j=-k 1.J l=O n 1. ',{, n J -<... -<... -<... 

+ S .. E .(h;t +·) - hy .. ll.K(t .,t .,y(t .),y .)]. 1.J n-1 n J 1.J n+J n-1 n-1 n-1. 

We now proceed with the two cases (a) and (b) separately. 

(a) ct (z) 

We want to apply the discrete Gronwall inequality stated in Lemma A.I 

in order to derive an upper bound for the solution of this linear difference 

equation, and therefore we need an upper bound.for Iv!. A straightforward 
n 

calculation yields 

(A. 7) Iv I n 

k k n 
~ T (h) + l l [bwL 1 h t I e: l I + cL 1 h Is n-i I + bE (h) J 

i=O j=-k l=O 

n 
~ c0h I le:,el + c1E(h) + T(h), 

l=O 

where c0 and c1 are constants independent of hand n (in the following 

all constants C. will be independent of hand n). From (A. 6) it follows that 
J 



n 
la0 1 lenl s c0h lf0 1ell + c1E(h) + T(h) 

so that for h sufficiently small 

n-1 
s c2h I !Ell+ c3CE(h) + T(h)J. 

l=O 

Application of Lennna A.I (with z=k*o(h)) yields 

* 
1€nl s (l+C2h)n-k (k*hc2o(h)+C3[E(h)+T(h)]), 

* n = k , ... ,N. 

·Since nh s T - t 0 , part (a) of the theorem is iI1UD.ediate. 

(b) a(z) is simple van Neumann, S(z) = O. 

Instead of directly applying Lennna A.I to the inequality (obtained 

from (Ao6)) 

k 
I la.II€ .1 s Iv I, 

i=O 1 n-1 n 

we first apply Lemma A.2 (i) to obtain the "sharper" inequality 

(A.8) I€ I n 

n 
s c0[o(h) + }: lv.lJ, 

j=k J 
* n ~ k • 

Unfortunately, if we use the upper bound (A.7) for Iv. I and then apply 
J 

Lemma A.I, we cannot prove convergence. However, by using the property 
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S(z) = O, that is S. = E~ k S .. = O, a sharper upper bound than (A.7) can 
1 J=- 1J 

be derived. To that end we write 
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k k 
I L f3, .AK(t .,t 0 ,y(t 0 ),y 0 ) I= l f3 •• [AK(t ,to,y(t 0 ),y 0 ) 
. k 1J n+J ~ ~ ~ . k 1J n ~ ~ ~ J=- J=-

+ AK(tn+j't,e_,y(t1),Y,t) - t.K(tn,tl,y(t,e_),yl)JI 

k 
$ bLh I I j El I, 

j=-k 

and, similarly, 

k 
I I f3 .. E . (h; t . ) I $ b 
. k 1J n-1 n+J J=-

k 
I AE (h). 

j=-k 

In this way we obtain instead of (A.7) the upper bound 

(A.9) 
k k 2 n 

Jv J $ T (h) + l l [bwLJj lh l ls,e_l + cL 1hJs _. I +bAE(h)] 
n n i=O j=-k l=O n 1 

k n 
$ c1h L [js _.I+ h L Js,e_lJ + c2AE(h) + T(h). 

i=O n 1 l=O 

Substitution into (A.8) yields the inequality 

It is easily verified that 

Hence, 

n k 
I I Js .. J $ 

j=-k i=O J-i 

n 
(k+ I ) I I E • I • 

j=O J 



Since nh ~ T - t O we find for h sufficiently small 

n-1 
~ c5h I le:ll + c6h~ 1Cho(h) + ~E(h) + T(h)J. 

l=O 

Finally, by applying Lemm.a A.I we arrive at the estimate 

from which part (b) of the theorem follows. D 

PROOF OF THEOREM 2.3.4. Following the first lines of the proof of Theorem 

2.3.2 we obtain the following relation, analogous to (A.5), where 

K := K(t , t ) 
rs · r s 
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(AlO) 
k k 
'\ '\ y .. K . .e: . 
L. • l l.J n+J n-1. n-1. 

i=O J=-k ' 
= I I e .. [ I w . oK +· oe:.+h- 1E .(h;t +·)] 

i=O j=~k l.J l=O n-1.,~ n J,~ J n-i n J 

* n ~ k • 

Now we write K . . = K + (K . . -K ) and K . 0 n+J,n-1. nn n+J,n-1. nn n+J,~ 
and rewrite (A.10) to obtain 

(A. I I) 

where 

k 
I y.e . = vn, 

i=O 1. n-1. 
* n ;;:: k , 

K -K . . 
, nn n+J,n-1. '\ '\ 

K v = h l y .. ( h ) e: . + l 8 .. l w • oK o e: o + nn n .. iJ n-1. .. iJ O n-i,~ n~ ~ 
1.,J i,J ~ 

K +· l-Knl 
+h Is .. Iw_. o(nJ,h ho+ . . l.J o n i ,~ ~ 

1,J ~ 

h-l '\ E (h ) - h-lL (Y). + l 8.. . ;t . . . l.J n-1 n+ J "'11 
l. ,J 
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Since y(z) is Schur, we may apply Lemma A.2 (ii) to (A.11) and find 

(A. 12) le: I s c{o(h) 
n 

+ max 
ksjsn 

lv. I}, 
J 

* n ::C: k . 

where C (and all subsequent C.) is independent of hand n. So we have to 
l. 

find bounds on Iv. I. Using the conditions of the theorem, we find 
J 

k r 
Iv I r 

s C1h I jy .. j(j+i)le: _.I+ I IS. } W _. oK oEol . . l.J r l. • 0 l. o O r l. ,,{, r,{, ,{, 1,J 1.= ,{,= 

r 
+ C2hw I jjs .. 1 I le:ol +h- 11 I s .. E .(h;t .)j+h- 11L (Y)i, 

· · l.J o O ,{, • • l.J r-1. r+J ~ 1.,J ,{,= 1.,J 

* r ::c: k • 

Now we use the condition S(z) = O, i.e., 8. = O, and (2.3.6a) to obtain (cf. 
l. 

the derivation of (A.9) in the proof of Theorem 2.3o2) 

Iv I r 
s c3{h I le:_. I +h I le:ol +h- 1tiE(h)} +h- 1T(h), 

i=O r 1. l=O ,{, 

Substituting this into (A.12) we find, for h sufficiently small, 

and application of Lemma A.I yields the result of the theorem. D 

PROOF OF THEOREM 3.3.l. Proceeding as 1.n the proof of Theorem 2.3.2 we derive 

the relations 



(A. 13) 

k 
* L [y] = 

""11 
t [a.~e - hy~ ~f .], 

i~O 1. n-1. 1 n-1 

L [y] 
""11 

= k { k [ n-i l a..ri . + L S .. (h l w _. ol'lK(t .,to,y(t 0 ),y 0 ) 
i =0 1. n-1. j =-k l.J l=O n 1. ',{, n+ J ,{, ,{, ,{, 

+ E . (h;t .)) - hy .. ~K(t +·,t . ,y(t .),y .)Jl}. n-1. n+J 1J n J n-1. n-1 n-1 

The first relation is written as (cf. (A.6)) 

k 
(A. 14) I 

i=O 
* ex.. e: • = 
1 n-1. 

* vn, 

* where v satisfies the inequality (using (1.3 1 ) and (1.3")) 
n 

Iv* I := n 

* ~ 'l' (h) + h 
n 

k 

I 
i=O 

k 
t h .* I [L 1 le.- . I + 12 I Tl • I J. ,L 1. n-1 n-1. 

1.=0 

Application of Leimna A.2 (i) yields (because a*(z) is simple von Neumann) 

(A. 15) 

where c0 is some constant independent of n and h. 

For n we derive from the second relation in (A.13) 
n 

(A. 16) 
k 
I a. .n . = v 

• 0 1 n-1 n 
1.= 

where v is defined as in (A.6). 
n k 

(a) In the case where a.(z) = a.0z we have from (A.7): 

n 
~ c1[E (h) + h l le 0 I + T (h)], 

n l=O ~ n 
* n;::: k 
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for some constant c1• Substitution into (A.15) yields 

l•nl < cz{h jrk [l,jl + h lio l•tl + Ej(h) + 

+ T.(h) + h-lT~(h)] + o(h) + ho*(h)} 
J J 

~ c 3 {h I Ir:: .1 + E (h) + T (h) + h - t T* (h) + o (h) + ho* (h)} 
• 0 J n n n 
J= 

where we11~ave used that nh ~ T - t 0• From Lenuna A.I, part (a) of the theorem 

easily follows. -

(b) Since a(z) is simple van Neumann, we apply Lemma A.2 (i) to (A.16) and 

use (A.9) (since ~(z)=O) to find 

Substitution into (A.15) and applying Lemma A.I leads to part (b) of the 

theorem. D 


