
P.J. VAN DER HOUWEN \& H.J.J. TE RIELE

LINEAR MULTISTEP METHODS FOR VOLTERRA INTEGRAL EQUATIONS OF THE SECOND KIND

Preprint

stichting mathematisch
 centrum

[^0]Printed at the Mathematical Centre, 413 Kruislaan, Amsterdam.
The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).
lear multistep methods for Volterra integral equations of the second kind *)
J. van der Houwen \& H.J.J. te Riele

3TRACT
A general class of linear multistep methods for second kind Volterra inteal equations is discribed which include the conventional direct quadrature thods. A convergence theorem is presented and stability is investigated with spect to the linear convolution equation. Examples are given of V_{0}-stable thods. The theory is illustrated by a few numerical examples.

Y WORDS \& PHRASES: numerical analysis; Volterra integral equations of the second kind; linear multistep methods; Vo-stability; convergence
) This report will be submitted for publication elsewhere.

1. INTRODUCTION

The simplest linear multistep (LM) method for solving the Volterra integral equation of the second kind

$$
\begin{equation*}
y(t)=g(t)+\int_{t_{0}}^{t} k(t, \tau, y(\tau)) d \tau, t \in I:=\left[t_{0}, T\right] \tag{1.1}
\end{equation*}
$$

is obtained by writing down this equation in a sequence of equidistant points

$$
\begin{equation*}
t_{n}:=t_{0}+n h, n=0(1) N\left(h \text { fixed and } t_{N}=T\right) \tag{1.2}
\end{equation*}
$$

and by approximating the integral term by some suitably chosen quadrature formula. Such a method is called a direct quadrature (DQ) method for (1.1). Recently, several other LM methods for solving (1.1) have been proposed (cf. the indirect backward differentiation method in [5] and the multilag and modified multilag methods in [9](see also[12]).

In this paper a general class of linear multistep methods is presented which includes all these methods, and many others (Section 2). This enables us to give a uniform treatment of the problems of consistency (Section 3), of convergence (Section 4) and of stability (Section 6). Since the ordinary differential equation $d y / d t=f(t, y), y\left(t_{0}\right)=y_{0}$, is a special case of the differentiated version of (1.1), the relation with linear multistep methods for ODEs is analyzed and fixed terms recurrence relations are derived for a class of convolution kernels(Section 5). Finally, two numerical experiments are reported (Section 7).

Space prevents us to include the detailed proofs of the theorems presented here. These may be found in [6]. A number of additional numerical experiments which support and confirm the theory, may also be found in [6].

The work presented here can easily be extended to Volterra integral equations of the first kind, and to Volterra integrodifferential equations (cf.[6]).
2. A GENERAL CLASS OF LM METHODS FOR SOLVING (1.1)

Let us associate with (1.1) the so-called lag term

$$
\begin{equation*}
Y(t, s):=g(t)+\int_{t_{0}}^{s} K(t, \tau, y(\tau)) d \tau \tag{2.1}
\end{equation*}
$$

for $(t, s) \in S:=\left\{(t, s): t_{0} \leq s \leq t \leq T\right\}$. Note that $Y(t, t) \equiv y(t)$. Let y_{n} and $Y_{n}(t)$ denote numerical approximations to $y\left(t_{n}\right)$ and to $Y\left(t, t_{n}\right)$, respectively, and let

$$
\begin{equation*}
k_{n}(t):=k\left(t, t_{n}, y_{n}\right), n \geq 0 \tag{2.2}
\end{equation*}
$$

Usually, $Y_{n}(t)$ will be computed by a quadrature formula of the form

$$
\begin{equation*}
Y_{n}(t)=g(t)+h \sum_{j=0}^{n} w_{n, j} K_{j}(t), n \geq n_{0} \tag{2.3}
\end{equation*}
$$

where the $W_{n, j}$ are given weights and n_{0} is sufficiently large to ensure the required order of accuracy. We assume that this quadrature formula is of order r, i.e.,

$$
\begin{gather*}
E_{n}(h ; t):=\int_{t_{0}}^{t_{n}} k(t, \tau, y(\tau)) d \tau-h \sum_{j=0}^{n} w_{n, j} k\left(t, t_{j}, y\left(t_{j}\right)\right)= \tag{2.4}\\
=O\left(h^{r}\right)
\end{gather*}
$$

as $h \rightarrow 0, n \rightarrow \infty$, with $t_{n}=t_{0}+n h$ fixed. Our general LM method for (1.1) consists of the quadrature formula (2.3) and the LM formula

$$
\begin{align*}
& \begin{aligned}
\sum_{i=0}^{k} \alpha_{i} y_{n-i} & +\sum_{i=0}^{k} \sum_{j=-k}^{k} \beta_{i j} Y_{n-i}\left(t_{n+j}\right)= \\
& =h \sum_{i=0}^{k} \sum_{j=-k}^{k} \gamma_{i j} k_{n-i}\left(t_{n+j}\right), n=k(1) N, k \text { fixed, }
\end{aligned} \\
& \text { ere the parameters } \alpha_{i}, \beta, \text { and } \gamma_{2}, \quad, i=0(1) k, j=-k(1) k \text {, are to } \tag{2.5}
\end{align*}
$$

where the parameters $\alpha_{i}, \beta_{i j}$ and $\gamma_{i j}, i=0(1) k, j=-k(1) k$, are to be prescribed. From this scheme the quantities $y_{k}, y_{k+1}, \ldots, y_{N}$ can be computed successively. The quantities y_{1}, \ldots, y_{k-1} and $Y_{1}(t), \ldots, Y_{k-1}(t)$ are assumed to be precomputed by some starting method. Since the kernel $K(t, \tau, y)$ is not necessarily defined
outside S, we usually require (cf. Figure 1) that $\beta_{i j}=\gamma_{i j}=0$, for $j<-i$.

FIG. 1. Points in the (t, s) - plane needed in (2.5) for $k=2$
Furthermore, it will be assumed that the points t_{j} are equally spaced (cf. (1.2)) although most of the analysis can be carried through for non-uniform spacing (compare a similar situation in the analysis of $L M$ methods for ODEs). It is convenient to characterize the formula (2.5) by the matrices

$$
\begin{equation*}
A=\left(\alpha_{i}\right), B=\left(\beta_{i j}\right), C=\left(\gamma_{i j}\right) \tag{2.6}
\end{equation*}
$$

where the row index i assumes the values $0(1) k$ and the column index j the values $-k(1) k$. We now describe four subclasses of (2.5) from which we will borrow several illustrating examples in this paper.

2.1 Direct quadrature methods

Consider the LM formula defined by the (lxl) matrices

$$
\begin{align*}
& A=1, B=-1, C=0, \text { for which (2.5) reduces to } \tag{2.7}\\
& y_{n}=Y_{n}\left(t_{n}\right)
\end{align*}
$$

Evidently, this is the direct quadrature (DQ) method, described in the introduction.

2.2 Indirect Zinear multistep methods

We formally derive this subclass by applying a linear multistep method for ODEs with coefficients α_{i} and $\gamma_{i}, i=0(1) k$, to the differentiated version of (1.1) (cf. [5]) :

$$
\begin{equation*}
y^{\prime}(t)=K(t, t, y(t))+Y_{t}(t, t), \tag{2.8}
\end{equation*}
$$

where $Y_{t}(t, t)$ denotes the partial derivative of $Y(t, s)$ with respect to its first variable t, in the point (t, t). This yields the scheme

$$
\sum_{i=0}^{k} \alpha_{i} y_{n-i}=h \sum_{i=0}^{k} \gamma_{i} k_{n-i}\left(t_{n-i}\right)+h \sum_{i=0}^{k} \gamma_{i} Y_{t}\left(t_{n-i}, t_{n-i}\right)
$$

Now we approximate the derivative Y_{t} of Y by the k-step forward differentiation formula (cf. [1, Table 25.2])

$$
\begin{equation*}
Y_{t}\left(t_{n-i}, t_{n-i}\right) \approx-\frac{1}{h} \sum_{\ell=0}^{k} \delta_{\ell} Y\left(t_{n+\ell-i}, t_{n-i}\right) \tag{2.10}
\end{equation*}
$$

Using (2.3) we obtain

$$
\sum_{i=0}^{k} \alpha_{i} y_{n-i}+\sum_{i=0}^{k} \sum_{j=-i}^{k-i} \gamma_{i} \delta_{i+j} Y_{n-i}\left(t_{n+j}\right)=h \sum_{i=0}^{k} \gamma_{i} K_{n-i}\left(t_{n-i}\right)
$$

$$
n \geq k, \quad(2.11 a)
$$

or, equivalently, the generating matrices

$$
A=\left(\begin{array}{c}
\alpha_{0} \tag{2.11b}\\
\alpha_{1} \\
\vdots \\
\alpha_{k}
\end{array}\right), B=\left(\begin{array}{ccccc}
0 & \gamma_{0} \delta_{0} & \gamma_{0} \delta_{1} & \cdots & \gamma_{0} \delta_{k} \\
\gamma_{1} \delta_{0} & \gamma_{1} \delta_{1} & \cdots & \gamma_{1} \delta_{k} \\
. & . & & & . \\
\dot{C}_{k} \delta_{0} & \gamma_{k} \delta_{1} & \cdots & \gamma_{k} \delta_{k} & 0
\end{array}\right), C=\left(\begin{array}{ccc}
& & \gamma_{0} \\
0 & \gamma_{1} & 1 \\
& . & \\
. & . & \\
\gamma_{k} & & \\
\gamma_{k} & &
\end{array}\right)
$$

These matrices generate an indirect linear multistep (ILM) method. When the α_{i} and γ_{i} are the coefficients of a backward differentiation method, (2.11) represents the IBD (indirect backward differentiation) method, analyzed in [5]. We notice that for this IBD method we have $\gamma_{i}=0, i=1(1) k$, and $\gamma_{0} \delta_{j}=\alpha_{j}, j=0(1) k$.

2.3 Multilag methods

In Wolkenfelt et.al. [12] we find methods which can be characterized by the matrices

$$
A=\left(\begin{array}{l}
\alpha_{0} \tag{2.12}\\
0 \\
\vdots \\
0
\end{array}\right), B=\left(\begin{array}{ccc}
0 & \\
& \alpha_{1} & \\
0 & \vdots & 0 \\
& \alpha_{k} &
\end{array}\right), C=\left(\begin{array}{ccc}
& \gamma_{0} & \\
& \gamma_{1} & \\
0 & \vdots & 0 \\
& & \gamma_{k}
\end{array}\right)
$$

Here, the α_{i} and $\gamma_{i}, i=0(1) k$, may be the coefficients of any LM
method for ODEs. If the lag term $Y_{n}(t)$ is computed by using a quadrature rule which is (α, γ)-reducible (see Section 2.5), then the resulting method turns out to be equivalent to a $D Q$ method based on the same (α, γ)-reducible quadrature rule (provided, of course, that the starting values are identical). Thus, a different implementation of the same method was used for the stability analysis of $D Q$ methods. However, as was pointed out by Wolkenfelt [9], this implementation requires a lot of additional arithmetic operations and, although suitable for theorerical analysis, it is not recommendable in actual computations. In order to avoid this disadvantage, he proposed to compute the lag term simply by a quadrature rule of the form (2.3) to obtain the multilag (ML) methods.

2.4 Modified multilag methods

In [9] Wolkenfelt also introduced a modification of the ML methods, viz., the so-called modified multilag (MML) methods, characterized by the matrices

$$
A=\left(\begin{array}{c}
\alpha_{0} \tag{2.13}\\
\alpha_{1} \\
\vdots \\
\alpha_{k}
\end{array}\right), B=\left(\begin{array}{cccc}
& & & \\
0 & -\alpha_{1} & \alpha_{1} & \\
& . & & \vdots \\
-\alpha_{k} & & & \alpha_{k}
\end{array}\right), C=\left(\begin{array}{r}
\gamma_{0} \\
\gamma_{1} \\
0 \\
0 \\
\vdots \\
\gamma_{k}
\end{array}\right)
$$

The α_{i} and γ_{i} are, again, the coefficients of any LM method for ODEs.

2.5 The quadrature weights of the lag term

In order to define a specific LM method for (1.1) we have not only to specify the generating matrices A, B and C, but also the quadrature weights $w_{n, j}$ in (2.3). An important family of quadrature formulas, including the well-known Gregory quadrature formulas, are the so-called reducible quadrature formulas [8]. The weights $w_{n, j}$ in such formulas are recursively defined by the equations

$$
\sum_{i=0}^{k^{*}} a_{i} w_{n-i, j}=\left\{\begin{array}{ll}
0 & \text { if } j=0(1) n-k^{*}-1 \tag{2.14}\\
b_{n-j} & \text { if } j=n-k^{*}(1) n
\end{array}, n=k^{*}, k^{*}+1, \ldots\right.
$$

where the a_{i} and b_{i}, $i=0(1) k^{*}$, are the coefficients of some given LM method for ODEs. Here, we define $w_{n, j}=0$ for $j>\max \left(n, k^{*}-1\right)$, and the "starting weights" $\mathrm{w}_{\mathrm{n}, \mathrm{j}}, 0 \leq \mathrm{n}, \mathrm{j} \leq \mathrm{k}^{*}-1$ are assumed to be prescribed.

Defining the characteristic polynomials

$$
\begin{equation*}
\rho(z):=\sum_{i=0}^{k^{*}} a_{i} z^{k^{*-}-i}, \sigma(z):=\sum_{i=0}^{k^{*}} b_{i} z^{k^{*-i}}, \tag{2.15}
\end{equation*}
$$

the quadrature formulas generated by (2.14) are said to be (ρ, σ)-reducible. We note that the characteristic polynomials of the Adams-Moulton methods generate the weights of the Gregory formulas. The backward differentiation methods generate rather unconventional quadrature rules, which were analysed in [11].
3. CONSISTENCY OF THE LM FORMULA (2.5)

Let us associate with the LM formula (2.5) the differencedifferential operator L_{n} defined by

$$
\begin{align*}
L_{n}(Y):= & \sum_{i=0}^{k}\left\{\alpha_{i} Y\left(t_{n-i}, t_{n-i}\right)+\right. \\
& \left.+\sum_{j=-k}^{k}\left[\beta_{i j}-\gamma_{i j} h \frac{\partial}{\partial s}\right] Y\left(t_{n+j}, t_{n-i}\right)\right\} \tag{3.1}
\end{align*}
$$

where $Y(t, s)$ is an arbitrary function, differentiable with respect to s on $t_{0} \leq s \leq T$. As in the case of $L M$ methods for ODEs, the operator L_{n} is introduced in order to operate on test functions Y of sufficient differentiability (cf. e.g. Lambert [7,p.23]). Unlike the ODE case, the relation of the operator L_{n} with the LM formula (2.5) is not immediate, and needs some explanation. Suppose that $Y(t, s)$ is defined by (2.1) with $y(t)$ the exact solution of (1.1). Observing that $Y(t, t)=y(t)$ and $\frac{\partial Y}{\partial s}(t, s)=K(t, s, y(s))$, and using (2.4) we find, on substitution of $y(t)$ into (2.5), the equation

$$
\begin{align*}
\sum_{i=0}^{k}\left\{\alpha_{i} y\left(t_{n-i}\right)\right. & \left.+\sum_{j=-k}^{k}\left[\beta_{i j} Y_{n-i}\left(t_{n+j}\right)-h \gamma_{i j} K_{n-i}\left(t_{n+j}\right)\right]\right\}= \\
& =L_{n}(Y)-\sum_{i=0}^{k} \sum_{j=-k}^{k} \beta_{i j} E_{n-i}\left(h ; t_{n+j}\right) \tag{3.2}
\end{align*}
$$

Thus, the exact solution of (1.1) satisfies the method \{(2.3)(2.5)\} apart from the residual terms in the right-hand side of (3.2). In this section, we concentrate on the first residual term.

Definition 3.1 The operator (3.1) and the associated LM formula (2.5) are said to be consistent of order p if for all $\mathrm{Y} \in \mathrm{C}^{\mathrm{P}+1}[\mathrm{~S}], L_{\mathrm{n}}(\mathrm{Y})=0\left(\mathrm{~h}^{\mathrm{p}+1}\right)$ as $\mathrm{h} \rightarrow 0$ with nonvanishing error constant. If Y corresponds to the theoretical solution of (1.1), then $L_{n}(Y)$ will be called the local truncation error of (2.5).
Δ

The following theorem provides the consistency conditions in terms of the parameters $\alpha_{i}, \beta_{i j}$ and $\gamma_{i j}$.
Theorem 3.1 The operator (3.1) and the associated LM formula (2.5) are consistent of order pif

$$
\begin{equation*}
\sum_{i=0}^{k}\left[(-i)^{q} \alpha_{i}-\sum_{j=-k}^{k} j^{q-\ell}(-i)^{\ell-1}\left(i \beta_{i j}+\ell \gamma_{i j}\right)\right]=: c_{q \ell}=0 \tag{3.3}
\end{equation*}
$$

for $q=0(1) p$ and $\ell=0(1) q$ (with $(-i)^{\ell-1} \ell:=0$ if $\ell=i=0$). 》 Corollary 3.1 Let \tilde{p} be the order of consistency of the LM method for ODEs defined by the coefficients $\left\{\alpha_{i}, \gamma_{i}\right\}$ employed in the sections 2.2, 2.3 and 2.4. Then the order of consistency p of the LM formula (2.5) for (1.1) is given by $p=\infty$ for the $D Q$ method, $p=\min \{k, \tilde{p}\}$ for the ILM method, and $p=\tilde{p}$ for both the ML method and the MML method.

If the LM formula (2.5) is consistent of order p, then the local truncation error $L_{n}(Y)$ can be expressed in terms of the constants defined in (3.3) as follows:

$$
\begin{array}{r}
L_{n}(Y)=\left.h^{p+1} \sum_{\ell=0}^{p+1} C_{p+1, \ell}\binom{p+1}{\ell}\left(\frac{\partial}{\partial t}\right)^{p+1-\ell}\left(\frac{\partial}{\partial s}\right)^{\ell} Y(t, s)\right|_{t=s=t_{n}}+ \\
+0\left(h^{p+2}\right) \text { as } h \rightarrow 0 . \tag{3.4}
\end{array}
$$

It is of some interest now to compare the values of the error constants $C_{p+1, \ell}, \ell=0(1) p+1$, for the various subclasses given in Section 2. We have evaluated and simplified the expressions for these constants as much as possible:
For the ILM method Corollary 3.1 gives $p=k$, under the (reasonable) assumption that $\tilde{p} \geq k$. We then find

$$
\begin{equation*}
\left.C_{p+1, \ell}=(-1)^{p-1} \sum_{i=0}^{k}\left[i^{p_{\{i \alpha}}+(p+1) \gamma_{i}\right\}-R\right], \tag{3.5}
\end{equation*}
$$

where $R=k!\gamma_{i}$ if $\ell=0$ and $R=0$ if $\ell=1(1) p+1$.
For both the ML and MML method we find

$$
C_{p+1, \ell}= \begin{cases}0, & \text { if } \ell=0(1) p \tag{3.6}\\ (-1)^{p-1} \sum_{i=0}^{k} i^{p}\left\{i \alpha_{i}+(p+1) \gamma_{i}\right\}, & \text { if } \ell=p+1\end{cases}
$$

We have computed the numerical values of the error constants for two usual choices of the coefficients $\left\{\alpha_{i}, \gamma_{i}\right\}_{i=0}^{k}$, viz., the backward differentiation (BD) method ${ }_{2}$ for which $\tilde{p}=k$, and the Adams-Moulton (AM) method for which $p=k+1$. Table 1 gives the values of the relevant constants $C_{p+1, \ell}$ where p is prescribed by Corollary 3.1.Note that the (M) $M-A M$ methods have $p=k+1$, whereas the other methods have $p=k$.

TABLE 1
Error constants in (3.4) for various choices of $\left\{\alpha_{i}, \gamma_{i}\right\}$ in (2.5)

The order of convergence of the LM method is dictated not only by its order of consistency, but also, of course, by the quadrature error (2.4) and by the errors in the starting values y_{1}, \ldots, y_{k-1}. In the next Section we shall analyze the convergence of the LM method $\{(2.3)-(2.5)\}$.

4. CONVERGENCE

Similarly as with LM methods for ODEs, a necessary condition for convergence of the LM method $\{(2.3)-(2.5)\}$ is that the characteristic polynomial

$$
\begin{equation*}
\alpha(z):=\sum_{i=0}^{k} \alpha_{i} z^{k-i} \tag{4.1a}
\end{equation*}
$$

satisfies the root condition, i.e., its roots are on the unit disk, those on the unit circle being simple.

In the sufficient conditions for convergence the parameters $\beta_{i j}$ and $\gamma_{i j}$ are also involved. We define

$$
\begin{align*}
& \beta(z):=\sum_{i=0}^{k} \beta_{i} z^{k-i}, \beta_{i}:=\sum_{j=-k}^{k} \beta_{i j} ; \tag{4.1b}\\
& \gamma(z):=\sum_{i=0}^{k} \gamma_{i} z^{k-i}, \gamma_{i}:=\sum_{j=-k}^{k} \gamma_{i j} . \tag{4.1c}
\end{align*}
$$

Furthermore, we will use the notation

$$
\begin{aligned}
& \Delta K_{n}(t)=K\left(t, t_{n}, y\left(t_{n}\right)\right)-K\left(t, t_{n}, y_{n}\right) \\
& \Delta E_{n}(h)=\max _{\substack{i \leq j \leq n \\
\ell \leq k}}\left|E_{i}\left(h ; t_{j+\ell}\right)-E_{i}\left(h ; t_{j}\right)\right|,
\end{aligned}
$$

$$
\begin{aligned}
& E_{n}(h)=\max _{i \leq j \leq n}\left|E_{i}\left(h ; t_{j}\right)\right|, \\
& T_{n}(h)=\max _{i \leq n}\left|L_{i}(Y)\right| \text { and } \delta(h)=\max _{j \leq k-1}\left|y\left(t_{j}\right)-y_{j}\right|
\end{aligned}
$$

$E_{n}(h)$ is the maximal error arising in the approximation of the lag terms $Y\left(t, t_{n}\right.$) by $Y_{n}(t)$ (cf. (2.4)). $T_{n}(h)$ may be considered as the maximal local truncation error of the LM formula, and $\delta(h)$ is the maximal starting error. We now formulate a general convergence theorem which provides an estimate for the global error

$$
\begin{equation*}
\varepsilon_{n}=y\left(t_{n}\right)-y_{n} \tag{4.2}
\end{equation*}
$$

We assume that K satisfies the Lipschitz conditions

$$
\left|\Delta \mathrm{K}_{\ell}(\mathrm{t})\right| \leq \mathrm{L}_{1}\left|\varepsilon_{\ell}\right| \text { and }\left|\Delta \mathrm{K}_{\ell}(\mathrm{t})-\Delta \mathrm{K}_{\ell}\left(\mathrm{t}^{*}\right)\right| \leq \mathrm{L}_{2}\left|\mathrm{t}-\mathrm{t}^{*}\right|\left|\varepsilon_{\ell}\right|
$$

where L_{1} and L_{2} are the Lipschitz constants.
Theorem 4.1 Let $\alpha(z)$ satisfy the root condition.
(i) If $\alpha(z)=\alpha_{0} z^{k}$ then there exists a constant $C>0$ such that

$$
\begin{equation*}
\left|\varepsilon_{n}\right| \leq C\left[h \delta(h)+E_{N}(h)+\Delta E_{N}(h)+T_{N}(h)\right], n=k(1) N \tag{4.3a}
\end{equation*}
$$

(ii) If $\beta(z) \equiv 0$ then there exists a constant $C>0$ such that

$$
\begin{equation*}
\left|\varepsilon_{n}\right| \leq C\left[\delta(h)+h^{-1}\left\{\Delta E_{N}(h)+T_{N}(h)\right\}\right], n=k(1) N \tag{4.3b}
\end{equation*}
$$

Now it is easy to derive the following
Corollary 4.1 Let $\delta(h)=O\left(h^{q}\right), E_{N}(h)=O\left(h^{r}\right)$ (as in (2.4)), $\Delta E_{N}(h)=O\left(h^{r+1}\right)$ as $h \rightarrow 0$ and let $\left\{\alpha_{i}, \gamma_{i}\right\}$ in (2.5) be the coefficients of a \tilde{p} - th order consistent LM method for ODEs. Then the order of convergence p^{*} of the LM method for (1.1) is given by: $p^{*}=\min (q+1, r)$ for the $D Q$ method, $p^{*}=$ $\min (q, r, p)$ for the ILM method, $p^{*}=\min (q+1, r, p+1)$ for the $M L$ method and $p^{*}=\min (q, r, p)$ for the $M M L$ method, where p is the order of consistency of (2.5), given by Corollary 3.1.
5. RELATION WITH LM METHODS FOR ODEs

The Volterra equation (1.1) contains the classes of ordinary differential equations as special cases. For example, if in (1.1) $g(t) \equiv$ constant then

$$
\begin{align*}
& \mathrm{K}(\mathrm{t}, \tau, \mathrm{y})=\mathrm{f}(\tau, \mathrm{y}) \tag{5.1a}\\
& \mathrm{K}(\mathrm{t}, \tau, \mathrm{y})=(\mathrm{t}-\tau) \mathrm{f}(\tau, \mathrm{y}) \rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{f}(\mathrm{t}, \mathrm{y}) \tag{5.1b}\\
& \mathrm{d}^{2} \mathrm{~d} \mathrm{t}^{2}
\end{align*} \mathrm{f}(\mathrm{t}, \mathrm{y}) \quad \text {, etc. }
$$

Therefore, it is natural to ask to what method the LM formula (2.5) reduces when it is applied to the special cases (5.1). Furthermore, one may ask for the relationship with LM methods for ODEs of the form(5.1). In order to formulate this relationship we introduce, in addition to the polynomials $\alpha(z), \beta(z)$ and $\gamma(z)$ (cf. (4.1)), the polynomials

$$
\begin{align*}
& \bar{\beta}(z):=\sum_{i=0}^{k} \bar{\beta}_{i} z^{k-i}, \bar{\beta}_{i}:=\sum_{j=-k}^{k} j \beta_{i j} ; \tag{5.2a}\\
& \bar{\gamma}(z):=\sum_{i=0}^{k} \bar{\gamma}_{i} z^{k-i}, \bar{\gamma}_{i}:=\sum_{j=-k}^{k} j \gamma_{i j} . \tag{5.2b}
\end{align*}
$$

We shall also employ the shift operator E defined by $E y_{n}=y_{n+1}$.
Theorem 5.1 Let $g(t) \equiv$ constant.
(i) If $K(t, \tau, y) \equiv f(\tau, y)$ then the formula (2.5) reduces to

$$
\begin{equation*}
\alpha(E) y_{n}+\beta(E) Y_{n}\left(t_{n}\right)=h \gamma(E) f\left(t_{n}, y_{n}\right), n \geq 0 \tag{5.3a}
\end{equation*}
$$

(ii) If $K(t, \tau, y) \equiv(t-\tau) f(\tau, y), \beta(z) \equiv 0$, and if the weights $w_{n, j}$ in (2.3) are (ρ, σ)-reducible, then the formula (2.5) reduces to

$$
\left.\begin{array}{rl}
\alpha(E) \rho(E) y_{n}+ & h^{2}[
\end{array}\right) \quad \sigma(E) \bar{\beta}(E)-\rho(E) \bar{\gamma}(E),
$$

From part (i) of this theorem it follows that the LM formula (2.5), when applied to the integrated form of the first order equation $d y / d t=f(t, y)$, reduces to a linear multistep method $\{\alpha, \gamma\}$ for this equation, provided that $\beta(z) \equiv 0$. This statement holds, irrespective of the weights $w_{n, j}$ used in the definition of the lag term $Y_{n}(t)$. In other words, if the matrix B is chosen such that the row sums vanish $\left(\beta_{i}=0\right)$ then our linear method is in fact an LM method for ODEs whenever the Volterra equation (1.1) is a (first order) ODE. Such linear methods will be called (α, γ)-reducible. The recurrence relation (5.3a) plays an important rôle in the stability analysis of Volterra equations with (5.1a) as test kernel. In particular, for (α, γ)-reducible methods, the ODE-stability theory directly applies and may suggest suitable polynomials α and γ for the construction of stable numerical methods for solving equation (1.1).
Example 5.1 The ILM and the MM methods are (α, γ)-reducible, whereas the $D Q$ and the ML methods are not.

Part (ii) of Theorem 5.1 provides us with further information about how we should choose the weights $w_{n, j}$ and the matrices A, B and C in order to construct a suitable integration method. Observe, that here the structure of the matrices B and C is such,
that the same set of polynomials $\{\rho, \sigma, \alpha, \gamma\}$ may lead to different recurrence relations.

Example 5.2 Let both $\{\alpha, \gamma\}$ and $\{\rho, \sigma\}$ be the trapezoidal rule, i.e., $\alpha(z)=\rho(z)=z-1$ and $\gamma(z)=\sigma(z)=\frac{1}{2}(z+1)$. Now it is a simple calculation to find that (5.3b) reduces to a LM method \{ $\left.\rho^{*}, \sigma^{*}\right\}$ for second order ODEs with $\rho^{*}(z)=(z-1)^{2}$ both for the ILM and the MML method, but with $\sigma^{*}(z)=\frac{1}{4}(z+1)^{2}$ for the ILM and $\sigma^{*}(z)=z$ for the MML method, respectively. (Note that both methods have order 2 (cf. [7, p.253]), with error constant $-1 / 6$ for the ILM and $1 / 12$ for the MML method, respectively.)

For an extension of Theorem 5.1 to the case of a general convolution kernel $K(t, \tau, y)=\sum_{\ell=0}^{m}(t-\tau)^{\ell} f_{\ell}(\tau, y)$, the reader is referred to [6].

6. V_{0}-STABILITY

Definition 6.1 A discretization method for (1.1) is said to be $V_{0}-s t a b l e$ if $y_{n} \rightarrow 0$ as $n \rightarrow \infty$ whenever it is applied, with fixed n stepsize $h>0$, to the test equation

$$
\begin{equation*}
y(t)=y_{0}+\int_{0}^{t}\{\lambda+\mu(t-\tau)\} y(\tau) d \tau \tag{6.1}
\end{equation*}
$$

with arbitrary $(\lambda, \mu) \in Q_{\lambda, \mu}:=\{(\lambda, \mu): \lambda<0, \mu \leq 0\}$.
区
Wolkenfelt[10] has shown that the $D Q$ method (2.7) can not be $V_{0}{ }^{-}$ stable when the quadrature weights in (2.3) are (ρ, σ)-reducible. This negative result raised the question of whether V_{0}-stable methods for (1.1) do exist at all. Brunner, N ϕ rsett and Wolkenfelt[4] answered this question affirmatively for a certain class of so-called one-stage implicit Runge-Kutta methods. In the class of $L M$ methods analysed in the present paper, V_{0}-stable methods do also exist. In particular, they occur in the subclass of ILM methods. To see this, we observe that for the ILM methods we have

$$
\begin{equation*}
\bar{\beta}(z)=-\gamma(z), \quad \bar{\gamma}(z)=-k \gamma(z)+z \gamma^{\prime}(z), \tag{6.2}
\end{equation*}
$$

and from Theorem 5.1 we derive the following result.
Theorem 6.1 Let the conditions of Theorem 5.1 part (ii) be satisfied, then the LM method, when applied to the test equation (6.1), assumes the form

$$
\begin{align*}
& \{\rho(E)[\alpha(E)-h \lambda \gamma(E)]+ \\
& \left.+h^{2} \mu\left[\sigma(E) \bar{\beta}(E)-\rho(E)\left(\bar{\gamma}(E)+k \gamma(E)-E \gamma^{\prime}(E)\right)\right]\right\} y_{n}=0 \tag{6.3}
\end{align*}
$$

In the ILM case this equation reduces to

$$
\left\{\rho(E)[\alpha(E)-h \lambda \gamma(E)]-h^{2} \mu \sigma(E) \gamma(E)\right\}_{y_{n}}=0
$$

Since equation (6.3') is identical to the one obtained by Brunner and Lambert ([3]) in their stability analysis of
numerical methods for the test integro-differential equation

$$
\begin{equation*}
\frac{d y}{d t}(t)=\lambda y(t)+\mu \int_{0}^{t} y(\tau) d \tau \tag{6.4}
\end{equation*}
$$

we may find examples of V_{0}-stable ILM methods just by inspecting the stability regions given by Brunner and Lambert. In this way, we immediately conclude from [3] that the four combinations, with $\{\alpha, \gamma\}$ and $\{\rho, \sigma\}$ defining either the trapezoidal rule or the backward Euler rule, are V_{0}-stable methods. It turns out that the $M M L$ versions of these methods are not V_{0}-stable. (In fact, as communicated to us by S. Amini, no MML methods can be V_{0}-stable.) In Figure 2 the stability regions of both the IML and the MML methods are given. Evidently, the ILM methods have considerably larger regions of stability.

FIG. 2. Stability regions for $M M L(/ / /)$ and $\operatorname{ILM}(\backslash \backslash V)$ methods

7. NUMERICAL EXPERIMENTS

In this Section we illustrate by a few numerical experiments the convergence theorem 4.1 and the improved stability behaviour of the ILM and the MML methods. In the tables of results we list the accuracy obtained, by

$$
\begin{equation*}
A(h):=-\log _{10}(|r e l a t i v e ~ e r r o r ~ a t ~ t h e ~ e n d ~ p o i n t ~|), ~ \tag{7.1}
\end{equation*}
$$

i.e., the number of correct digits in the numerical solution. The pair $\{\rho, \sigma\}$ used for computing the lag term will always define a Gregory formula of order r; the pair $\{\alpha, \gamma\}$ defines either an Adams-Moulton or a backward differentiation formula of order p. Methods are denoted by, e.g., $\operatorname{ILM}\left(\mathrm{G}_{\mathrm{r}}-\mathrm{BD} \underset{\mathrm{p}}{ }\right)$.

7.1 Order of convergence

In the first experiment we integrated the equation

$$
\begin{equation*}
y(t)=1+\sin (t)-\cos (t)-\int_{0}^{t} y(\tau) d \tau, 0 \leq t \leq 2 \tag{7.2}
\end{equation*}
$$

The starting values were taken from the exact solution $y(t)=$ $\sin (t)$. The generating characteristic polynomials $\{\rho, \sigma, \alpha, \gamma\}$ were chosen such that, according to Corollary 4.1 , all methods listed in Table 2 are just of order $\mathrm{p}^{*}=5$. In this Table the values of $A(h)$ and the corresponding effective order $p_{\text {eff }}^{*}$ are presented, where $p_{\text {eff }}^{*}=[A(h)-A(2 h)] / \log _{10} 2$.

TABLE 2

Tests of order of convergence

h^{-1}	$\mathrm{DQ}\left(\mathrm{G}_{5}\right)$	$\operatorname{ILM}\left(\mathrm{G}_{5}-\mathrm{AM}_{6}\right)$	$\mathrm{ML}\left(\mathrm{G}_{5}-\mathrm{AM}_{4}\right)$	MML ($\mathrm{G}_{5}-\mathrm{AM}_{5}$)
4	5.0	3.8	4.7	5.3
) 5.7) 5.0) 5.5) 5.1
8	6.7	5.3	6.3	6.8
) 5.4) 5.2) 5.3) 5.1
16	8.3	6.9	7.9	8.4
) 5.2) 5.1) 5.2) 5.1
32	9.9	8.5	9.5	9.9

From the results we see that the effective order tends to the asymptotic order as h decreases. We also see that the ILM method is less accurate than the other methods, which may be explained by its larger error constants (cf. Table 1).

7.2 Stabizity

In the second experiment we chose an example in which the
kernel has a large Lipschitz constant (obtained by modifying an example given by Bownds[2]):

$$
\begin{equation*}
y(t)=50\left(1-t^{2}\right) 2 n(1+t)+75 t^{2}-51 t+1-100 \int_{0}^{t} \ln (1+t-\tau) y(\tau) d \tau \tag{7.3}
\end{equation*}
$$

$0 \leq t \leq 4$.
Again, the starting values were taken from the exact solution $y(t)=1-t$. The results listed in Table 3 clearly show the better stability properties of the ILM method (a negative A(h)-value may be interpreted as an unstable behaviour). In particular, we observe the only marginally better performance of the $M M$ methods when compared with the ML methods.

TABLE 3
Stability tests

REFERENCES

1. ABRAMOWITZ, M. \& I.A. Stegun (Eds.), Handbook of mathematical functions, Nat. Bureau of Standards, Washington D.C., (1964).
2. BOWNDS, J.M., Theory and performance of a subroutine for solving Volterra integral equations, to appear in Computing.
3. BRUNNER, H. \& J.D. LAMBERT, Stability of numerical methods for Volterra integro-differential equations, Computing 12, 75-89 (1974).
4. BRUNNER, H., S.P. NøRSETT \& P.H.M. WOLKENFELT, On V $\mathrm{V}^{-s t a b-}$ ility of numerical methods for Volterra integral equations of the second kind, Report NW 84/80, Mathematical Centre, Amsterdam (1980).
5. HOUWEN, P.J. VAN DER \& H.J.J. TE RIELE, Backward differentiation type formulas for Volterra integral equations of the second kind, Numer. Math. 37, 205-217 (1981).
6. HOUWEN, P.J. VAN DER \& H.J.J. TE RIELE, Linear multistep methods for Volterra integral and integro-differential equations, Report NW /82, Mathematical Centre, Amsterdam (1982).
7. LAMBERT, J.D., Computational methods in ordinary differential equations, John Wiley \& Sons, London etc. (1973).
8. MATTHYS, J., A-stable linear multistep methods for Volterra integro-differential equations, Numer. Math. 27, 85-94 (1976).
9. WOLKENFELT, P.H.M., Modified multilag methods for Volterra functional equations, to appear in Math. Comp..
10. WOLKENFELT, P.H.M., Stability analysis of reducible quadrature methods for Volterra integral equations of the second kind, ZAMM 61, 399-401(1981).
11. WOLKENFELT, P.H.M., The construction of reducible quadrature rules for Volterra integral and integro-differential equations, to appear in IMA J. Numer. Anal..
12. WOLKENFELT, P.H.M., P.J. VAN DER HOUWEN \& C.T.H. BAKER, Analysis of numerical methods for second kind Volterra equations by imbedding techniques, J. Integral Eq. 3, 61-82 (1981).

[^0]: AFDELING NUMERIEKE WISKUNDE
 NW 134/82
 AUGUSTUS
 (DEPARTMENT OF NUMERICAL MATHEMATICS)
 P.J. VAN DER HOUWEN \& H.J.J. TE RIELE

 LINEAR MULTISTEP METHODS FOR VOLTERRA INTEGRAL EQUATIONS
 OF THE SECOND KIND

 Preprint

