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Abstract

The bioinformatics field has encountered a data deluge over the last years, due to in-
creasing speed and decreasing cost of DNA sequencing technology. Today, sequencing
the DNA of a single genome only takes about a week, and it can result in up to a ter-
abyte of data. The sequencing data are usually stored in files, and specialized tools have
been designed to analyze and manage them. Despite of these tools, bioinformaticians are
still exposed to many data management hurdles when analyzing these files, which often
leads to excessively time consuming tasks.

In this thesis, we accurately map the needs of bioinformaticians by defining a set of
use cases that reflect the everyday analysis that is applied on genetic data. We propose a
modern-DBMS based approach, to analyze and manage genetic data file repositories. We
identify the pros and cons of this method compared to the traditional file-based approach.

Additionally, we experimented with a novel in-situ approach, where the DBMS ap-
plies Just-In-Time ETL (Extract-Transform-Load) on the original files instead of loading
all data from these files up front. A major advantage of this approach is that it greatly
reduces the data-to-query time, since not all data are loaded in the DBMS during initial-
ization. Other advantages include the decrease in storage requirements and the reduced
data duplication.

With this project, we have taken the first step towards the adaptation of the state-of-
the-art database technology to accelerate genetic data analytics. The preliminary results
presented in this thesis are highly promising and they open up a plethora of new research
opportunities.
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Chapter 1

Introduction

In the last years, the bioinformatics field has encountered a data deluge, where the rate
at which data is generated far exceeds the conventional query processing capabilities for
many applications. This is mainly due to the Human Genome Project [15], in which
DNA sequencing was industrialized. As a result of this project, it nowadays costs only
about 2000 USD and less than one week on a single sequencing device to sequence a
genome. These new high-throughput sequencing methods, also known as Next Generation
Sequencing (NGS), are applied by several projects across the world. These projects
together already sequenced tens of thousands of genomes [14], with a storage requirement
of hundreds of gigabytes per genome.

The sequencing of a genome is a process that results in millions of short sequences.
Most NGS applications therefore rely on sequence alignment techniques, where the mil-
lions of sequences are aligned to a reference genome, as a first analysis step. The result
of sequence alignment is stored in files that are often on a terabyte scale. The reason for
these huge file sizes is that they need to store the millions of sequences that follow from
the sequencing process, including meta data for every sequence. Bioinformaticians use
these files as the input for various analyses, ranging from simple consistency checking to
complex data analysis algorithms. An example of such algorithms is analyzing if there
exists a correlation between some mutations in the sequences and whether or not the
organism in question is diagnosed with cancer. Another example is searching for and an-
alyzing the differences in the sequences of two genomes. To efficiently conduct their daily
research work, bioinformaticians need easy to use and fast exploration tools to access and
analyze the sequence alignment data.

There are several reasons why a Database Management System (DBMS) would be
beneficial for doing bioinformatics data analysis. First of all, alignment data can be
easily stored in a relational database schema, since alignment data is stored in a tabular
form already in the BAM file. Furthermore, communication with a DBMS goes through
a declarative query language, such as SQL, which is widely known and heavily used
in many fields. Even those who do not have much experience with such a language
will have no problem updating their knowledge to a reasonable extent within only a
few hours. A big advantage of communicating with scientific data through a DBMS is
the significant reduction of data-to-knowledge time and the ease of maintenance. With
a declarative query language, the DBMS users only need to specify what they want
to analyze, instead of programming how the analysis should be done exactly, which is
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extremely time consuming and error-prone. Additionally, a DBMS provides users with
a transaction engine that makes it possible for multiple users to work on the same data
simultaneously, without corrupting the data.

However, applying DBMS technology on bioinformatical data analysis is not a trivial
task. The most straightforward approach is to load all genetic data directly into a DBMS.
This comes with a high data-to-query time and storage requirements, especially if the
original data is compressed and the DBMS has to store the decompressed data. Another
difficulty that rises is the consistency of the duplicated data. If something changes in the
original data, the DBMS should be updated accordingly and vice versa. To overcome
these problems, a DBMS could be set up to work directly on the external files without
loading any of this external data into its own storage structures, as is done in [1] for CSV
files. This is however not a trivial task either when working with compressed genetic
data. Parsing and decompressing large amounts of genetic data during query time slows
data analysis down tremendously. Therefore, a hybrid approach that combines the pros
and cons of both solutions would be a good aim.

1.1 Research scope

The most challenging data management issues in bioinformatics are identified in [6, 14, 9].
These challenges include coming up with proper data structures that enable easy and
efficient data management and data parallelization. This thesis will focus on using a
DBMS to tackle these data management and data parallelization challenges, by making
use of and extending the highly optimized data management techniques that DBMSs
offer. These will do the data management for the user and will parallelize the users
algorithms where possible.

The main research question of this thesis is: How can a DBMS be exploited to better
support analysis on DNA sequence alignment data? In order to answer the research ques-
tion, we first have to have an idea of the concrete use cases that exist in bioinformatics.
What are bioinformaticians doing with genetic data and what methods do they use to
perform these tasks? This information can then be used to design an implementation on a
DBMS. An important part of this design focuses on dealing with the Extract-Transform-
Load (ETL) hurdle. From where and how does the DBMS extract genetic data? How
does the DBMS transform this data before it uses it? What portions of the transformed
data are loaded into the DBMS and how is this performed exactly? Another question
that needs to be addressed is how the DBMS implementation compares to traditional
approaches, such as using third party software like Samtools [11] or Bamtools.1 What are
the pros and cons of using a DBMS? This thesis focuses on answering these questions.
These answers contribute to many fruitful insights into applying DBMS techniques to
bioinformatics.

Genetic data are often stored in SAM or BAM files [11], for instance in the Genome
of the Netherlands (GoNL) project [3]. SAM and BAM files contain the exact same data,
however BAM files are compressed using BGZF compression. For this thesis, we work
exclusively with BAM files. Therefore, we omit further mentioning of the SAM format.

1Bamtools is a library similar to Samtools, implemented in C++. It is available on http:

//sourceforge.net/projects/bamtools.
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Everything that applies to BAM files, applies trivially to SAM files as well. There are
other file formats for storing genetic data, like the FASTQ and VCF formats, which can
be derived from BAM files. BAM files can however not be derived from these other files,
as they store less data.

1.2 Outline

Chapter 2 gives an overview of other work that is related in some way with the work
presented here. Chapter 3 then gives some basic insight into how DNA sequencing is
done. It focuses mainly on explaining the terminology that is used in the remainder
of this thesis. To test any of the solutions we propose, a broad range of practically
relevant use cases are a necessity. Therefore, Chapter 4 defines such use cases textually
and formally. Chapter 5 presents the implementations that solve the earlier presented
use cases, followed by experiments done with these implementations in Chapter 6. A
possibility for improvement of our DBMS implementation is then presented in Chapter 7.
Finally, Chapter 8 mentions the conclusions that can be drawn from the work presented
here and gives an overview of interesting research areas.
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Chapter 2

Related work

There are already several tools, with which one can analyze alignment data. The most
popular tool is Samtools [11], which is a C library providing a command line interface
and an API for operations on BAM files. Using the API, Samtools provides users with
C data structures and functions that enable iterating over the alignments of a BAM file,
without requiring the users to know exactly how these are stored on disk. Therefore,
users don’t have to worry about parsing and possible data compression. Furthermore,
using these tools allows users to do some simple filtering steps when querying SAM and
BAM files. However, relying on Samtools or Bamtools is sub-optimal for more complex
needs. Users receive a collection of alignments and have to manage these alignments
themselves. If they, for example, want to group data, they will have to do so manually
in some programming or scripting language.

Another possible solution is described in [1], which extends a DBMS with the pos-
sibility to efficiently query raw data files. This technique is designed for CSV files, but
would be well applicable to SAM files since SAM files are TAB delimited files. BAM files
however are stored in a compressed manner and this breaks the assumption that every
line in the file represents a tuple. Furthermore, individual entries are not accessible in
BAM files, as all data is stored in a compressed manner.

Another possibility to work with BAM files is an extension to the popular system
Hadoop, BAM-Hadoop [13]. It enables users to express their algorithms in a map-reduce
fashion. However, translating complex use cases to a map-reduce algorithm is in many
cases not a trivial task. This will therefore require a much practice for users that are not
experienced with the map-reduce paradigm. Another downside to this approach is that
BAM files have to be split up among several nodes. This disables users from using any
other tools than Hadoop-BAM, since the original BAM files are lost.

Oracle has also been working on technology to support bioinformatics data in their
DBMS [2]. We could however not find performance results from BAM data that was
loaded into this implementation and hence this doesn’t help us in answering our research
question.

So far, we haven’t found any contributions to the bioinformatics field that answers
our research question.
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Chapter 3

DNA sequence alignment data

Section 3.1 gives a brief overview of the DNA sequencing and alignment process. The
data that result from this process and the way they are stored in BAM files is then
discussed in Section 3.2.

3.1 DNA sequencing and alignment

Today it is still impossible to simply sequence whole chromosomes. Instead, many copies
are made of every chromosome, which in turn are randomly cut into small pieces and
sequenced individually. These small pieces are called templates. Since the partitioning of
chromosomes happens randomly, heavy oversampling is required to ensure that the entire
chromosome is covered with sufficient probability. Due to this oversampling, sequencing
even the shortest human chromosome requires the generation of ~800,000 templates [14].

Figure 3.1: Part of a template, containing base pairs that are represented by letters. Every base pair
can be represented by one character. Courtesy of T. Marschall, CWI.

Every template contains an unknown number of base pairs, illustrated in Figure 3.1.
Every base pair can be represented by one character, since one character implies the other.
Modern sequencing techniques enable bioinformaticians to read the first and the last part
of every template. This results in two reads, or one read pair, for every template. The
area in between the two reads is referred to as the internal segment. Due to the stochastic
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nature of the partitioning process, the size of the internal segment is unknown. Figure
3.2 visualizes these terms.

Figure 3.2: A template (top) and its digital representation (bottom). The digital representation consists
of two reads (one read pair) and an internal segment of unknown size. Courtesy of T. Marschall, CWI.

The resulting read pairs are then run through one or more alignment algorithms. Such
algorithms try to map every read pair to its original position in a reference string, taking
into consideration the different uncertainties that the sequencing process is subject to.
Thanks to the Human Genome Project, such a reference string exists for human genomes.
The DNA of any human, which consists of ~3.2 billion base pairs, will only differ from
the reference string on a few positions. Therefore, the alignment algorithms can use the
reference string to map all alignments to a position where their SEQ match the reference
string at that position as good as possible. It is highly possible for a single read to be
aligned to multiple locations, because the reference string is long (~3.2 billion base pairs
for human genomes), while the reads are short (~100 base pairs) and typically only four
distinct characters are used to denote a read pair. Whenever a read pair gets mapped to
multiple positions, one of these positions typically is considered to be the best position.
The alignment on this position is then referred to as the primary alignment for this read
pair, while the others are referred to as secondary alignments.

Figure 3.3: The reference string (top) and the aligned read pairs. The red circles indicate base pair
mismatches. Courtesy of T. Marschall, CWI.

The resulting data from the alignment algorithm are visualized in Figure 3.3 and are
usually stored in BAM files, since BAM files store all alignment information.

3.2 The BAM file format

This section gives an overview of the information stored in BAM files.
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BAM files contain a header and a body. However, most use cases in the GoNL project
do not use the information contained in the header. Therefore, it is sufficient to know
only the most important things stored in such a header:

• The sorting order of the file, which can be one of the following:

– Unsorted

– Sortedness on the unique names of the templates of the alignments

– Sortedness on the coordinates of the alignments

• Sequence dictionary, where all chromosomes that are stored in this file are denoted.
In case this file is sorted on coordinate, the sequence dictionary gives the order in
which the different chromosomes appear within the file.

• Grouping information about the reads that are present in the file.

• Information about the programs that were used to construct the BAM file.

The body of a BAM file consists of consecutive read alignment records. Every read
alignment record stores information about a single alignment of one read. Alignment
records are stored per read instead of per read pair and hence, alignment pairs are not
stored explicitly. Instead, additional information is stored in the alignment records that
can be used to reconstruct the read pairs.

In the remainder of this thesis, we will use alignment to refer to an alignment record,
which contains data about an alignment.

3.2.1 Alignment fields

The fields contained in every alignment are described in this section.

QNAME

The QNAME field contains the unique name of the template where this alignment belongs
to.

FLAG

The FLAG field contains an integer of which 11 bits are used as bitwise flags. These flags
contain additional information about this alignment. The flags that are relevant for this
thesis are described in Table 3.1.

RNAME

The RNAME field contains the name of the chromosome to which this alignment belongs.
This field is set to ‘*’ if the chromosome is unknown.

POS

The POS field contains the integer position where the SEQ string got aligned to within
its chromosome. This field is set to 0 if the SEQ string is unmapped.
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Bit Abbreviation Description

0x4 segm unma

0 if this read is mapped, 1 if this read is unmapped.
If a read is unmapped, the alignment algorithm that
was used could not find an appropriate position in the
reference string for this read and hence, when this flag is
set no assumptions can be made on the RNAME , POS ,
CIGAR and MAPQ fields.

0x10 segm reve
1 if the reverse complement of SEQ is stored, 0 other-
wise.

0x40 firs segm 1 if this is the first read from the template, 0 otherwise.

0x80 last segm 1 if this is the last read from the template, 0 otherwise.

0x100 seco alig
0 if this alignment is primary, 1 if this alignment is sec-
ondary.

Table 3.1: All the relevant bitwise flags that are present in the FLAG field of an alignment.

MAPQ

The MAPQ field contains the mapping quality of this alignment. This field is set to 255
if the mapping quality is not available.

CIGAR

The CIGAR field contains a string that consists of the characters {‘M’, ‘I’, ‘D’, ‘N’,
‘S’, ‘H’, ‘P’, ‘X’, ‘=’}. These characters give information about the mapping to the
reference string. For instance, the ‘M’ stands for ‘alignment match’, meaning that the
corresponding character in the SEQ field matches the reference string. Other examples
are the ‘I’ and ‘D’, which stand for an insertion into and a deletion from the reference
string respectively.

Since a CIGAR string often contains many consecutive pieces of the same characters,
CIGAR is encoded by run-length encoding. It therefore fulfills the regular expression
/([0-9]+[MIDNSHPX=])+/.

An example CIGAR string would be 3M2D2I. This means that the first three char-
acters of the sequence string match with the position it is mapped to in the reference
string. The next two characters exist in the reference string but are deleted (non exis-
tent) in the sequence string. The last two characters are inserted in the sequence string,
meaning they don’t exist in the reference string.

In this thesis we only use the CIGAR field to determine the length of a SEQ field if
it is placed in the reference string.

RNEXT

The RNEXT field contains the value of the RNAME field of the mate of this alignment.
The mate is defined as the other read in the same read pair as this alignment. This field
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is set to ‘*’ if the mate is unknown.

PNEXT

The PNEXT field contains the value of the POS field of the mate of this alignment. This
field is set to 0 if the mate is unknown.

TLEN

The TLEN field contains an integer that denotes the observed template length. The
exact definition of the meaning of this field is omitted, as the field is not used any further
in this thesis.

SEQ

The SEQ field contains the actual sequence string. Every character in this string repre-
sents one base pair. This field is set to ‘*’ if it is unavailable.

QUAL

The QUAL field contains the quality string. The quality string assigns to every character
in SEQ a quality (encoded by a character) that describes the quality of this character.
This field is set to ‘*’ if it is unavailable. Otherwise, its length must equal the length of
the accompanying SEQ field.

EXTRA

The EXTRA field contains extra information about an alignment. It contains substrings
of the form TAG:TY PE:V ALUE, where TAG is a 2-character string, TY PE is a single
character and V ALUE is a string of any length. There are some predefined TAGs, but
the EXTRA string can be used to store any extra needed information.

3.2.2 Sortedness of BAM files

The header of a BAM file tells if and how a BAM file is sorted. It can indicate that it is
unsorted, sorted on query name or sorted on coordinate. In case a BAM file is sorted on
query name, it means that its alignments are ordered on their QNAME field. Whenever
a BAM file is ordered on coordinate, its alignments are ordered on (RNAME ,POS ),
meaning that they are first ordered on their RNAME fields and then on their POS fields.

BAI files are index files that allow random access on a BAM file. These BAI files are
only defined over BAM files that are ordered by coordinate. They make it possible to do
random access in a BAM file to extract exactly the alignments that lie in a given region.

The data that were explained in this section are enough to understand the remainder
of this thesis. For more elaborate information on BAM files, the SAM/BAM specification
can be consulted at http://samtools.sourceforge.net/SAM1.pdf.
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Chapter 4

Practical use cases

To sketch a realistic view of the needs of bioinformaticians, a broad range of different
use cases is a necessity. These use cases must cover a wide enough area of the most
common operations on BAM files. Since no benchmarks exist that describe use cases
that fulfill these properties, we collaborated with bioinformaticians of the GoNL project
[3] to construct useful use cases. They gave us insights into the every day analysis they
are doing on their BAM file repositories. We subdivided the resulting use cases into two
categories: simple and complex use cases. They are described in Sections 4.3 and 4.4
respectively.

Giving formal definitions of these use cases requires specific notation. Therefore,
Section 4.1 elaborates on the notation that we use. Also, the presented use cases have
some commonalities in the functionalities they need. We prettified the definitions of the
use cases by identifying these functionalities and putting them in function definitions,
presented in Section 4.2.

In some of the use cases, variables are used in filtering steps. For example, rname 2 10
is a string variable that contains an rname string for use case 2.10. These variables will
obtain concrete values in the experiments section.

4.1 Notation

Due to the formal nature of this chapter, many different notations are used. Therefore,
this section introduces all notations used throughout the remainder of this chapter.

4.1.1 General

In many cases we need to extract individual fields from given alignments. We do this by
using dot-notation, i.e. if we have an alignment a and we want to extract its QNAME
field, we write a.QNAME .

Furthermore, we will define several functions that can take arguments. We will use
the notation that is used most often in writing pseudo code, i.e. z = f(x, y) means
we evaluate function f by passing it arguments x and y and we store the result of the
function evaluation in a variable z.
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4.1.2 Set notation

For the formal definitions of our use cases we will use set notation. We will always apply
the notion of a strict set, meaning that a set always represents a collection of distinct
elements. To indicate the cardinality of a set S, we use the notation |S|.

Furthermore, we use both square brackets and parentheses to denote ranges. Square
brackets imply an inclusive and parentheses an exclusive range. For example, [2, 9) is the
equivalent of the set {2, 3, 4, 5, 6, 7, 8}.

In this chapter, we will use A to denote sets containing alignments and P to denote
sets containing alignment pairs. Af denotes a set containing all alignments from BAM
file f .

4.1.3 Result

We will use Ri.j to denote the result list of use case i.j. Such a result list uses nota-
tion similar to a set, although a result list has a given order and can in theory contain
duplicates.

4.1.4 Sorting

Almost all of our use cases sort their final result set on some of the data fields, denoted
by Ri.j = sort(a,b)(A), where the set A is sorted on sorting attributes a and b. Hence,
the input to the sorting function is a set and the output is a result list. In some cases, a
sorting attribute is ambiguous. For example, sort(QNAME)(P ) where P contains alignment
pairs, can not know if it has to sort on the QNAME of the first or the second alignment.
In that case, we use a subscript to distinguish between those two possibilities, as in for
example sort(QNAME l)(P ) to indicate that we are sorting on the QNAME field of the left
alignments.

4.1.5 Grouping

Some of our use cases create data groups. We use the notation G(i,..,k) to denote a
grouping operator that groups a set of alignments by the fields i until k. Grouping on
any number of attributes is possible but in most cases a grouping will be done just on
QNAME , yielding the notation G(QNAME). Given a set of alignments A,

G(i,..,k)(A) = {Ai′,..,k′ |Ai′,..,k′ contains all alignments from A that have i = i′,..,k = k′}

Such a group Ai′,..,k′ has two properties, the first of which is the set of values of the
grouping attributes: i′, .., k′ The other property is the set of alignments that belong to
the group, meaning they have exactly the values i′, ..k′ for their grouping attributes. For
example, if we have a set of alignments A, G(QNAME)(A) contains p groups of alignments
Aq1 , Aq2 , .., Aqp , where every group Aqj contains all alignments a with a.QNAME = qj
for j ∈ [1..p]. We extend the earlier defined sort function to also work on the result of a
grouping by sorting all data inside the groups as if they were stored in a regular set. For
instance, sort(QNAME)(G(QNAME)(A)) sorts all alignments in the grouping as if they were
stored in A and results in a sorted version of A. This is useful when groups are filtered
out of a grouping and the result has to be sorted afterwards.
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4.2 Functionality over alignments

Some of the use cases require calculations over the attributes of one or more alignments.
Table 4.1 defines functions for these calculations that will be used in the remainder of
this chapter. Some of the implementations of these functions are given in pseudo code in
Appendix A. When there exists such an implementation of a function, a reference to the
algorithm is included in the last column of the table.

4.3 Simple use cases

The simple use cases are executed to explore parts of a BAM file f . The following sections
present the simple use cases. They all give both a textual and a formal definition.

Use case 1.1

Select all primary alignments and sort the result set on QNAME .

Formal definition

A = {a | a ∈ Af ∧ PrimaryAlignment(a)}
R1.1 = sort(QNAME)(A)

Use case 1.2

Select all primary alignments and sort the result set on (RNAME ,POS ).

Formal definition

A = {a | a ∈ Af ∧ PrimaryAlignment(a)}
R1.2 = sort(RNAME ,POS)(A)

Use case 1.3

Select all alignments with RNAME = rname 1 3 and their POS field in the region
[pos 1 3 1, pos 1 3 2] and sort the result set on POS .

Formal definition

A = {a | a ∈ Af ∧ a.RNAME = rname 1 3 ∧ a.POS ∈ [pos 1 3 1, pos 1 3 2]}
R1.3 = sort(POS)(A)

Use case 1.4

Select all alignments with QNAME = qname 1 4 and sort the result set on (RNAME ,POS ).

Formal definition

A = {a | a ∈ Af ∧ a.QNAME = qname 1 4}
R1.4 = sort(RNAME ,POS)(A)
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Function Explanation Alg

ReverseSequence(String seq)
Calculates the reverse complement of se-
quence string seq.

4

ReverseQual(String qual)
Computes the reverse of quality string
qual.

5

SequenceLength(Alignment a)

Use the CIGAR string of a to calculate
the actual length of the sequence string,
which is defined as the length of the piece
of the reference string it is mapped to.

6

Distance(Alignments a1, a2)

Calculate the distance between alignments
a1 and a2, which is defined as the differ-
ence of the starting position of the right-
most alignment and the ending position of
the leftmost alignment. The starting po-
sition of the rightmost alignment is stored
explicitly in its POS field. For the compu-
tation of the end position of the leftmost
alignment, the SequenceLength function
can be used.

7

InInternalSegment(
Alignments a1, a2,
position

)
Returns True if position lies in the inter-
nal segment of alignments a1 and a2. 8

PrimaryAlignment(Alignment a)
Returns True if a is flagged as primary
alignment.

-

FirstSegment(Alignment a)
Returns True if a is flagged as first seg-
ment.

-

LastSegment(Alignment a)
Returns True if a is flagged as last seg-
ment.

-

SegmentReversed(Alignment a)
Returns True if a is flagged as being a
reversed segment.

-

SegmentUnmapped(Alignment a)
Returns True if a is flagged as being an
unmapped segment.

-

Table 4.1: Functions that define calculations over the attributes of one or more alignments. The algo-
rithms this table refers to can be found in Appendix A.

Use case 1.5

Select all alignments with MAPQ > mapq 1 5 and sort the result set on the MAPQ
values of its alignments.
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Formal definition

A = {a | a ∈ Af ∧ a.MAPQ > mapq 1 5}
R1.5 = sort(MAPQ)(A)

4.4 Advanced use cases

In this section, we define the advanced use cases both textually and formally.
For the formal definition of the advanced use cases, we define all the functions that

return True if some flag is set on a set of alignments on sets of alignments. Instead of
returning a single boolean, this function will return a set containing a boolean result for
every alignment in the input set. We also define the additional function sum that sums
the values of its input set. Suppose, for example, that we have a set of alignments A. Then,
PrimaryAlignment(a) results in a set of booleans and sum(PrimaryAlignment(a)) re-
sults in the number of True values in the set PrimaryAlignment(a), assuming that the
boolean values True and False are represented by a one and a zero respectively.

Furthermore, many use cases put the filtering constraint
FirstSegment(a) 6= LastSegment(a) on all their input alignments a. Since both func-
tions are boolean functions (see Section 4.2), this implies that the qualified alignments
must be flagged either as first segment or as last segment. Alignments that fulfill this
filter will be referred to as being flag-consistent.

Use case 2.1

Select all flag-consistent alignments with MAPQ < mapq 2 1. Reconstruct the primary
alignment pairs that exist in the resulting alignments and write the resulting left and
right reads to two aligned FASTQ1 files, sorted on QNAME .

Formal definition
Let A contain all flag-consistent primary alignments from Af that have the value of their
MAPQ field below mapq 2 1.

A = {a | a ∈ Af ∧ PrimaryAlignment(a) ∧ FirstSegment(a) 6= LastSegment(a)

∧a.MAPQ < mapq 2 1}

Then, group A on QNAME and only select the groups of size two, that have exactly one
alignment flagged as first segment and the other as last segment. Store the result of the
grouping in G.

G = {Aq |Aq ∈ G(QNAME)(A) ∧ |Aq| = 2 ∧ sum(FirstSegment(Aq)) = 1

∧sum(LastSegment(Aq)) = 1}

Now, define A′ as all alignments in A that have a QNAME that exists in G.

A′ = {a | a ∈ A ∧ Aa.QNAME ∈ G}
1For a definition of the FASTQ file format, see [4]
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A′ can then be split into A′
f and A′

l.

A′
f = {a | a ∈ A′ ∧ FirstSegment(a)}
A′

l = {a | a ∈ A′ ∧ LastSegment(a)}

The result lists are simply the sorted versions of A′
f and A′

l.

R2.11 = sort(QNAME)(A
′
f )

R2.12 = sort(QNAME)(A
′
l)

R2.11 and R2.12 can then both be written to their own FASTQ file. In case
SegmentReversed(a)= True for alignment a, ReverseSequence(a.SEQ) and
ReverseQual(a.QUAL) are written instead of a.SEQ and a.QUAL.

Use case 2.2

Calculate the distance between every flag-consistent primary alignment pair and create
a histogram that, for every occurring distance, displays the number of alignment pairs
with that distance. The output should be sorted on the number of alignment pairs.

Formal definition
Let A contain all flag-consistent primary alignments from Af .

A = {a | a ∈ Af ∧ PrimaryAlignment(a) ∧ FirstSegment(a) 6= LastSegment(a)}

Then, use A to construct G in the exact same way as we did in use case 2.1.

G = {Aq |Aq ∈ G(QNAME)(A) ∧ |Aq| = 2 ∧ sum(FirstSegment(Aq)) = 1

∧sum(LastSegment(Aq)) = 1}

Now, again as in use case 2.1, use A and G to construct A′.

A′ = {a | a ∈ A ∧ Aa.QNAME ∈ G}

Now let P be a set that contains triples. Every triple contains a pair of alignments from
A′, where every pair has the same QNAME and RNAME , and the distance between
these two alignments.

P = {(a1, a2, d) | a1, a2 ∈ A′ ∧ a1.QNAME = a2.QNAME ∧ a1.RNAME = a2.RNAME ,

d = Distance(a1, a2)}

Then build the histogram H by grouping the triples in P on their distance and inserting
a record in the histogram for every group.

H = {(d, count)|Ad ∈ G(d)(A
′′), count = |Ad|}

The result is then obtained by sorting the histogram.

R2.2 = sort(count)(H)
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Use case 2.3

Templates that have alignments neither flagged as their first segment nor as their last
segment (or both) are considered to be inconsistent. Select all alignments that belong to
such templates and sort them on QNAME .

Formal definition
Let G be the result of grouping the alignments in Af on their QNAME and only store
the groups that are inconsistent, i.e. have either no alignment flagged as first segment or
no alignment flagged as last segment.

G = {Aq |Aq ∈ G(QNAME)(Af )

∧(sum(FirstSegment(Aq)) = 0 ∨ sum(LastSegment(Aq)) = 0)}

The result set is now obtained by sorting the alignments in G.

R2.3 = sort(QNAME)(G)

Use case 2.4

All flag-consistent alignments from a template that agree on their first read and last read
flag must either be unmapped, or there should exist exactly one primary alignment. If
this doesn’t hold, this template is considered to be inconsistent. Select all alignments
that belong to such templates and sort them on QNAME .

Formal definition
Let A be defined as follows.

A = {a | a ∈ Af ∧ FirstSegment(a) 6= LastSegment(a)}

Now, letG be the result of grouping the alignments inA on QNAME and on FirstSegment.
Since the alignments in A are flag-consistent, grouping on FirstSegment implies grouping
on LastSegment. G only contains groups that are considered to be inconsistent.

G = {Aq,f |Aq,f ∈ G(QNAME FirstSegment(a))(A) ∧ sum(SegmentUnmapped(Aq,f)) < |Aq,f |
∧sum(PrimaryAlignment(Aq,f)) 6= 1}

The result set is the sorted variant of G.

R2.4 = sort(QNAME)(G)

Use case 2.5

Given two different BAM files, compute the number of QNAMEs they have in common
and the number of QNAMEs that exist in one file but not in the other (both ways).

Formal definition
Let Q1 and Q2 contain the distinct QNAME fields from file Af1 and Af2 respectively.

Q1 = {q | ∃a ∈ Af1 with a.QNAME = q}
Q2 = {q | ∃a ∈ Af2 with a.QNAME = q}
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The result is the following triple:

R2.5 = {(|Q1 ∩Q2|, |Q1 −Q2|, |Q2 −Q1|)}

Use case 2.6

Given two different BAM files, select all alignments from these files that belong to a
template that exists in both files and sort the result on QNAME .

Formal definition
Let Q1 and Q2 contain the distinct QNAME fields from file Af1 and Af2 respectively,
formally defined in use case 2.5. Then let Q be the set intersection of Q1 and Q2.

Q = Q1 ∩Q2

Now define A to contain all alignments from Af1 and Af2 that have a QNAME that
exists in Q.

A = {a | a ∈ Af1 ∪ Af2 ∧ ∃q ∈ Q with q = a.QNAME}
The result list is then obtained by sorting A.

R2.6 = sort(QNAME)(A)

Use case 2.7

Given two different BAM files, select all alignments from a file that belong to a template
that exists only in this file and sort the result on QNAME .

Formal definition
Let Q1 and Q2 contain the distinct QNAME fields from file Af1 and Af2 respectively,
formally defined in use case 2.5. Then let Q be the set intersection of Q1 and Q2.

Q = Q1 −Q2

Now define A to contain all alignments from Af1 that have a QNAME that exists in Q.

A = {a | a ∈ Af1 ∧ ∃q ∈ Q with q = a.QNAME}

The result list is again obtained by sorting A.

R2.7 = sort(QNAME)(A)

Use case 2.8

Join flag-consistent primary alignments from two files if they have the same QNAME but
are mapped to different positions and sort the result on QNAME .

Formal definition
Let Al and Ar contain flag-consistent primary alignments from file f1 and f2 respectively.

Al = {a | a ∈ Af1 ∧ PrimaryAlignment(a) ∧ FirstSegment(a) 6= LastSegment(a)}
Ar = {a | a ∈ Af2 ∧ PrimaryAlignment(a) ∧ FirstSegment(a) 6= LastSegment(a)}
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Now let P contain alignment pairs, formed from Al and Ar. The alignments in an
alignment pair in A have the same QNAME , they agree on their FirstSegment and
LastSegment value and they have either a different RNAME or a different POS .

P = {(a1, a2) | a1 ∈ Al ∧ a2 ∈ Ar ∧ a1.QNAME = a2.QNAME

∧FirstSegment(a1) = FirstSegment(a2)

∧(a1.RNAME 6= a2.RNAME ∨ a1.POS 6= a2.POS )}

The result list is obtained by sorting P .

R2.8 = sort(QNAME)(P )

Use case 2.9

Select all alignments with RNAME = rname 2 9 that have overlap with pos 2 9 and sort
the result on POS .

Formal definition
Let A contain all alignments from Af that have their RNAME equal to rname 2 9 and
that contain pos 2 9.

A = {a | a ∈ Af ∧ a.RNAME = rname 2 9

∧a.POS ≤ pos 2 9 < a.POS + SequenceLength(a.CIGAR)}

The sorted version of A now represents the result list.

R2.9 = sort(POS)(A)

Use case 2.10

Reconstruct flag-consistent primary alignment pairs, output a pair if its internal segment
overlaps pos 2 10 and sort the result on POS .

Formal definition
Let A contain all flag-consistent primary alignments from Af .

A = {a | a ∈ Af ∧ FirstSegment(a) 6= LastSegment(a) ∧ PrimaryAlignment(a)}

Then, let G be a grouping of A, similar to use case 2.1.

G = {Aq |Aq ∈ G(QNAME)(A) ∧ |Aq| = 2

∧sum(FirstSegment(Aq)) = sum(LastSegment(Aq)) = 1}

Now, define A′ as all alignments in A that have rname 2 10 as their RNAME and have
a QNAME that exists in G.

A′ = {a | a ∈ A ∧ a.RNAME = rname 2 10 ∧ Aa.QNAME ∈ G}
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Now let P contain pairs of alignments from A′, where every pair has the same QNAME
and every pair has pos 2 10 in its internal segment. Furthermore, every pair has to
contain an alignment flagged as first segment and an alignment flagged as last segment.

P = {(a1, a2) | a1, a2 ∈ A′ ∧ a1.QNAME = a2.QNAME

∧InInternalSegment(a1, a2, pos 2 10) ∧ FirstSegment(a1) ∧ LastSegment(a2)}

The result list is obtained by sorting the alignment pairs in P by the position of the left
alignments.

R2.10 = sort(POS l)(A)

Use case 2.11

Pair flag-consistent secondary alignments, based on the information contained in the
RNEXT and PNEXT fields and sort the result on QNAME .

Formal definition
Let A contain all flag-consistent secondary alignments from Af that have a known value
for their RNAME , POS , RNEXT and PNEXT fields.

A = {a | a ∈ Af ∧ FirstSegment(a) 6= LastSegment(a) ∧ ¬PrimaryAlignment(a)
∧a.RNAME 6=′ ∗′ ∧ a.POS > 0 ∧ a.RNEXT 6=′ ∗′ ∧ a.PNEXT > 0}

Now let P contain pairs of alignments from A that have the same QNAME and that have
their RNEXT and PNEXT fields pointing to each other. Furthermore, as in use case
2.10, every pair contains an alignment flagged as first segment and an alignment flagged
as last segment.

P = {(a1, a2) | a1, a2 ∈ A ∧ a1.QNAME = a2.QNAME

∧FirstSegment(a1) ∧ LastSegment(a2)
∧((a1.RNEXT =′=′ ∧a1.RNAME = a2.RNAME ) ∨ a1.RNEXT = a2.RNAME )

∧a1.PNEXT = a2.POS

∧((a2.RNEXT =′=′ ∧a1.RNAME = a2.RNAME ) ∨ a2.RNEXT = a1.RNAME )

∧a2.PNEXT = a1.POS}

Sorting P now yields the result list.

R2.11 = sort(QNAME l)(P )

Use case 2.12

Search for possible flag-consistent secondary alignment pairs based on the distance be-
tween two alignments and sort the result on the RNAME of the left alignments.

Formal definition
Let A contain all flag-consistent secondary alignments from Af that have a known value
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for their RNAME and POS fields and have an unknown value for their RNEXT and
PNEXT fields and sort the result on RNAME .

A = {a | a ∈ Af ∧ FirstSegment(a) 6= LastSegment(a) ∧ ¬PrimaryAlignment(a)
∧a.RNAME 6=′ ∗′ ∧ a.POS > 0 ∧ a.RNEXT =′ ∗′ ∧ a.PNEXT = 0}

Now let P contain pairs of alignments from A, where every pair has the same QNAME
and the same RNAME .. Only include a pair in P if the distance between the alignments
in the pair is smaller than distance 2 12.

P = {(a1, a2) | a1, a2 ∈ A ∧ a1.QNAME = a2.QNAME ∧ a1.RNAME = a2.RNAME

∧Distance(a1, a2) < distance 2 12}

The result list is now obtained by sorting P .

R2.12 = sort(RNAMEl )(P )
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Chapter 5

Implementation

This section presents two implementations that solve the use cases presented in Chapter
4. For the first implementation, explained in Section 5.1, a DBMS was applied to work
with data from BAM files. The second implementation, explained in Section 5.2, is meant
for comparison with our DBMS implementation and is based on traditional techniques
used for solving use cases on BAM files.

Throughout this chapter, use cases 1.1, 1.3 and 2.2 will be used to illustrate the
implementations.

5.1 A DBMS implementation

We developed a DBMS implementation to solve the use cases presented in 4. Section
5.1.1 shows the storage schemas that we designed for this purpose. Section 5.1.2 then
elaborates on how BAM files are loaded into these storage schemas. In order to solve
our use cases, some user defined functions need to be implemented in the DBMS, based
on Table 4.1. Section 5.1.3 shows these user defined functions. Finally, Section 5.1.4
explains how our use cases can be solved with the loaded storage schemas.

5.1.1 Database schemas

In order to apply a DBMS to data from BAM files, a storage schema has to be designed.
Since BAM data is already stored in tabular form, we chose to design our schemas for
relational database systems. The header data of the BAM files is stored in a way that
is straightforward according to the BAM specification. We won’t go into detail on the
storage schema for header data, since the use cases that we need to solve do not use it.
Those who are interested in this storage schema can find its SQL definition in Appendix
B.1.

Since most analysis in the GoNL project is done on only one or in some cases two
BAM files, we chose to maintain separate database tables for the alignments of every
BAM file. This makes the number of tables in the schema proportional to the number
of BAM files that are stored in the database. We designed two different storage schemas
for storing the alignment data of a single BAM file: a straightforward design and a
pairwise design. Both designs store the virtual offset of every alignment and use this as a
primary key. The virtual offset is an unsigned 64-bit integer, where the first part points
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to a compressed block inside the BAM file and the last part points to the start of an
alignment in the decompressed version of the block. For an exact definition of the virtual
offset, http://samtools.sourceforge.net/SAM1.pdf can be consulted.

Straightforward storage schema

The straightforward storage design simply stores all alignments of a BAM file in a single
database table. The only effort that is taken is that the EXTRA field of every alignment
is parsed and put into a separate table. Figure 5.1 shows a diagram of the tables that are
created for a single BAM file with file id i. Underlined entries denote primary keys and
entries between angle brackets denote foreign keys. Furthermore, entries are preceded by
a symbol. A filled symbol means that the field has to have a non-empty value, an empty
symbol means that the field may be empty. The symbol is a circle for normal fields and
a diamond for primary key fields.

The SQL definition of this storage schema can be found in Appendix B.2.

alignments extra i
tag String(2)
<virtual offset> BigInt
type Char
value String

1 *

alignments i
virtual offset BigInt
qname String
flag SmallInt
rname String
pos Int
mapq SmallInt
cigar String
rnext String
pnext Int
tlen Int
seq String
qual String

Figure 5.1: Straightforward storage schema.

Pairwise storage schema

Many of our use cases require some sort of alignment pair reconstruction. In most of
these cases the primary alignment pairs need to be reconstructed, but in use case 2.11
secondary pairs need to be retrieved. If a bioinformatician mainly wants to operate on
such alignment pairs, the previously presented storage schema is far from optimal, since
reconstruction of the pairs needs to be done every time. Therefore, we designed a storage
schema that explicitly stores primary and secondary alignment pairs. All the alignments
that are not part of such an alignment pair are stored in a separate table. To simplify the
required queries needed to solve our use cases, we included some views over the database
tables that extract data from the paired tables and present them in an unpaired fashion.
Figure 5.2 shows a diagram of the tables and views that are created for a single BAM
file with file id i. In this storage schema, the table that stores the extra information from
the alignments is exactly the same as before. Its foreign key relation can now however
not be connected to a physical table since the alignments are scattered across multiple
physical tables. Therefore, the foreign key relation is connected to the view that contains
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the exact same data as the alignments i table in Figure 5.1. The SQL definition of the
pairwise storage schema can be found in Appendix B.3.

alignments extra i

tag String(2)
<virtual offset> BigInt
type Char
value String

paired primary alignments i

l virtual offset BigInt
r virtual offset BigInt
qname String
l flag SmallInt
l rname String
l pos Int
l mapq SmallInt
l cigar String
l rnext String
l pnext Int
l tlen Int
l seq String
l qual String
r flag SmallInt
r rname String
r pos Int
r mapq SmallInt
r cigar String
r rnext String
r pnext Int
r tlen Int
r seq String
r qual String

paired secondary alignments i

l virtual offset BigInt
r virtual offset BigInt
qname String
l flag SmallInt
l rname String
l pos Int
l mapq SmallInt
l cigar String
l rnext String
l pnext Int
l tlen Int
l seq String
l qual String
r flag SmallInt
r rname String
r pos Int
r mapq SmallInt
r cigar String
r rnext String
r pnext Int
r tlen Int
r seq String
r qual String

unpaired alignments i

virtual offset BigInt
qname String
flag SmallInt
rname String
pos Int
mapq SmallInt
cigar String
rnext String
pnext Int
tlen Int
seq String
qual String

Physical tables

Data views
unpaired primary alignments i

virtual offset BigInt
qname String
flag SmallInt
rname String
pos Int
mapq SmallInt
cigar String
rnext String
pnext Int
tlen Int
seq String
qual String

unpaired secondary alignments i

virtual offset BigInt
qname String
flag SmallInt
rname String
pos Int
mapq SmallInt
cigar String
rnext String
pnext Int
tlen Int
seq String
qual String

unpaired all alignments i

virtual offset BigInt
qname String
flag SmallInt
rname String
pos Int
mapq SmallInt
cigar String
rnext String
pnext Int
tlen Int
seq String
qual String

1

*

Figure 5.2: Pairwise storage schema. The solid arrow indicates a foreign key relationship, while the
dotted arrows indicate the physical data sources of the data views.

5.1.2 Loading data into a storage schema

Since the BAM file format is highly specific, we developed a BAM loader that reads a
BAM file and writes its contents to the appropriate database tables. This loader uses the
Samtools API for the extraction of data from the BAM file and is able to load data in
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both the straightforward and the pairwise storage schema. For both schemas, the loader
automatically creates the appropriate database tables automatically.

The BAM loader is implemented as a user defined function an can therefore be called
from a SQL interface. It is implemented by two user defined functions. The function
definition for the first function is bam loader file(string path, smallint schema, string
mask). The path argument contains the absolute path to a BAM file and the schema
argument contains a small integer, where a zero indicates that the BAM file has to
be loaded into the straightforward storage schema and a one indicates that it has to
be loaded into the pairwise storage schema. The mask argument should contain a 12-
character string of ’0’s and ’1’s and they indicate which alignment fields have to be loaded,
by the order in which they appear in Section 3.2.1. Note however that this functionality
is only available for the straightforward storage schema. The function definition for
the second function is bam loader repos(string path, smallint schema, smallint nrthreads,
string mask). This function is meant to load a whole repository of BAM files into the
DBMS. The path argument this time has to point to a text file that contains a list of
absolute paths to BAM files. It then loads all of these BAM files into the storage schema
indicated by the schema argument, using as many threads as indicated by the nrthreads
argument. Behind the scenes, every thread calls bam loader file.

Loading the straightforward storage schema

Every alignment that is encountered in a BAM file with file id i is inserted into the
alignments i table. The EXTRA field of the alignment is parsed and interpreted and is
inserted into the alignments extra i table.

Loading the pairwise storage schema

We implemented two approaches for loading data from a BAM file with file id i into the
paired primary alignments i, paired secondary alignments i, unpaired alignments i and align-
ments extra i. The second approach turned out to be significantly faster and therefore,
if we talk about the pairwise storage schema, we always assume that the data is loaded
using this approach. However, first approach is still presented here since it uses SQL
code that gives a definition of primary and secondary alignment pairs that is used in the
second approach.

The first approach starts with inserting every alignment in the unpaired alignments i
table as if every alignment is unpaired. The techniques developed for loading data into
the straightforward storage schema is reused for this purpose. When that is done, the
primary and secondary alignment pairs can be computed with only SQL code. Appendix
B.4 shows this SQL code. After executing this SQL code, the pairwise storage schema is
filled correctly.

The second approach avoids expensive SQL operations on the data of the entire BAM
file by inserting alignments directly into the appropriate tables. The SQL code in Ap-
pendix B.4 gives a definition of what can be considered a primary or secondary alignment
pair. This approach has to respect this definition in order for the result to be the same.
As can be seen from the SQL code in Appendix B.4, constructing primary and sec-
ondary alignment pairs can be done as soon as all alignments for a QNAME are known.
Therefore, the second approach expects the input to be sorted on query name since this
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greatly simplifies the internal data management that has to be performed in our loader.
In case the BAM file isn’t sorted accordingly yet, this can be performed relatively fast
by Samtools. This approach then collects all alignments from some QNAME until an-
other QNAME is encountered. At that point, the collected alignments are evaluated.
The primary and secondary alignment pairs are detected and written to the appropri-
ate tables and the remaining alignments are written to the unpaired alignments i table.
Both approaches still simply parse, interpret and directly insert the EXTRA field of the
alignments into the alignments extra i table upon traversing the alignments.

5.1.3 User defined functions

In order to solve the use cases, some user defined functions were implemented, based on
the functions mentioned in table 4.1. These functions are mentioned in table 5.1.

Function Explanation

bam flag(smallint flag, string s)
Return a boolean indicating whether or
not the flag indicated by s is set in the
given flag

reverse seq(string seq)
Reverse sequence string seq according to
algorithm 4

reverse qual(string qual)
Reverse quality string qual according to
algorithm 5

seq length(string cigar)
Calculate sequence length using CIGAR
string cigar, according to algorithm 6

Table 5.1: User defined functions in DBMS. The algorithms this table refers to can be found in Appendix
A.

5.1.4 Solving use cases

With the data from a BAM file loaded into one of our storage schemas, solving our
use cases is simply a matter of writing SQL queries. Obviously, the SQL code for our
different storage schemas will be different, as we are querying different physical storage
architectures.

Listings 5.1, 5.2 and 5.3 give SQL code for solving use cases 1.1, 1.3 and 2.2 respec-
tively. Every listing gives exactly two queries. The first query solves the corresponding
use case for the straightforward storage schema and the last query solves it for the pair-
wise storage schema. The SQL code contains references to tables and views ending with
the variable i. This variable should be substituted with the file ID of the file that is being
queried, which can be found in the bam.files table.

It can be seen from these SQL queries that it depends on the purpose of the use
case and the desired form of its output whether or not the pairwise storage schema
will contribute to writing shorter SQL code. For instance, the SQL code for use case
1.1 is more complicated for the pairwise than for the straightforward storage schema.
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It could be simplified by writing it exactly as the query that solves this use case for
the straightforward storage schema, replacing the table bam.alignments i with the view
bam.unpaired all alignments i . This is possible for every use case, since bam.unpaired all alignments i
is a view over all alignment data, thereby making it equivalent to the bam.alignments i
table in the straightforward storage schema. Doing this would however impose a less
efficient execution in many cases, since the separation between primary and secondary
alignments and the pairing information that is already present in the pairwise storage
schema would then be neglected. The SQL code for use case 2.2 experiences an enormous
decrease in complexity thanks to the pre-processing that was done when initializing the
pairwise storage schema. For the straightforward schema, this SQL code has to filter
out consistent alignments grouped on their QNAME , followed by creating valid primary
alignment pairs from these alignments whereas these steps can be skipped by the SQL
code for the pairwise schema.

Use cases 2.1, 2.2 and 2.5 are the only use cases that define how the output should be
projected. Use case 2.1 writes its output to FASTQ files, use case 2.2 writes its output to
a histogram and use case 2.5 writes exactly three fields. The output of the other use cases
is a set of (paired) alignments. Since further analysis on these (paired) alignments might
be desirable, we project all data except for the virtual offset and the extra alignment
information for every query, as can be seen in Listings 5.1 and 5.2.

Listing 5.1: SQL queries that solve use case 1.1 for the straightforward and the pairwise storage schema
respectively.

−− s t r a i g h t f o r w a r d s t o r a g e schema
SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,

seq , qual
FROM bam. a l i g n m e n t s i
WHERE bam flag ( f l a g , ’ s e c o a l i g ’ ) = False

ORDER BY qname ;

−− p a i r w i s e s t o r a g e schema
SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,

seq , qual
FROM bam. unpa i r ed pr imary a l i gnment s i
UNION

SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,
seq , qual

FROM bam. unpa i r ed a l i gnm ent s i
WHERE bam flag ( f l a g , ’ s e c o a l i g ’ ) = False

ORDER BY qname ;

Listing 5.2: SQL queries that solve use case 1.3 for the straightforward and the pairwise storage schema
respectively.

−− s t r a i g h t f o r w a r d s t o r a g e schema
SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,

seq , qual
FROM bam. a l i g n m e n t s i
WHERE rname = rname 1 3

AND pos >= pos 1 3 1
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AND pos <= pos 1 3 2
ORDER BY pos ;

−− p a i r w i s e s t o r a g e schema
SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,

seq , qual
FROM bam. u n p a i r e d a l l a l i g n m e n t s i
WHERE rname = rname 1 3

AND pos >= pos 1 3 1
AND pos <= pos 1 3 2

ORDER BY pos ;

Listing 5.3: SQL queries that solve use case 2.2 for the straightforward and the pairwise storage schema
respectively.

−− s t r a i g h t f o r w a r d s t o r a g e schema
WITH a l i g AS (

SELECT qname , f l ag , rname , pos , c i g a r
FROM bam. a l i g n m e n t s i
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <>

bam flag ( f l a g , ’ l a s t s egm ’ )
AND bam flag ( f l a g , ’ s e c o a l i g ’ ) = False

AND qname IN (
SELECT qname
FROM bam. a l i g n m e n t s i
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <>

bam flag ( f l a g , ’ l a s t s egm ’ )
AND bam flag ( f l a g , ’ s e c o a l i g ’ ) = False

GROUP BY qname
HAVING COUNT (∗ ) = 2

AND SUM ( bam flag ( f l a g , ’ f i r s s e g m ’ ) ) = 1
AND SUM ( bam flag ( f l a g , ’ l a s t s egm ’ ) ) = 1

)
)
SELECT

CASE WHEN l . pos < r . pos
THEN r . pos − ( l . pos + s e q l e n g t h ( l . c i g a r ) )
ELSE l . pos − ( r . pos + s e q l e n g t h ( r . c i g a r ) )

END AS di s tance ,
COUNT (∗ ) AS nr a l i gnments

FROM (
SELECT qname , rname , pos , c i g a r
FROM a l i g
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) = True

) AS l JOIN (
SELECT qname , rname , pos , c i g a r
FROM a l i g
WHERE bam flag ( f l a g , ’ l a s t s egm ’ ) = True

) AS r
ON l . qname = r . qname
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AND l . rname = r . rname
GROUP BY d i s t anc e
ORDER BY nr a l i gnments DESC ;

−− p a i r w i s e s t o r a g e schema
SELECT CASE WHEN l p o s < r po s

THEN r po s − ( l p o s + s e q l e n g t h ( l c i g a r ) )
ELSE l p o s − ( r po s + s e q l e n g t h ( r c i g a r ) )

END AS di s tance ,
COUNT (∗ ) AS nr a l i gnments

FROM bam. p a i r e d p r i m a r y a l i g n m e n t s i
WHERE l rname = r rname
GROUP BY d i s t anc e
ORDER BY nr a l i gnments DESC ;

Appendices C and D give the SQL queries that solve all of our use cases for respectively
the straightforward and the pairwise storage schemas, assuming that BAM files with file
id i and j are loaded into these schemas.

5.2 The traditional approach

Bioinformaticians typically use some programming language, combined with an API for
BAM files to solve use cases that involve BAM files. To discover the pros and cons of a
DBMS implementation, we first solved the use cases mentioned in Chapter 4 using such
a traditional approach. We chose to develop a program in C that uses the Samtools API
to handle BAM file access. The reason we chose to do this in C instead of e.g. Python
is that an implementation in C will in general be more efficient, since it is a low level
programming language which gives us exact control over the data operations.

When implementing our C program, we decided that all tasks must be done as effi-
cient as possible, i.e. operations that could be done within some time bound should be
implemented accordingly. However, we did not implement parallel algorithms to solve
our use cases since this would greatly complicate the required algorithms.

In order to implement all operations that are necessary as efficient as possible, many
questions had to be answered. What intermediate data do we need to store, what updates
are done on the data, do we need deletions, will we use dynamic memory allocations?
Answering such questions finally lead to two important data structures that form the
foundation of our program. These data structures are introduced in Section 5.2.1. Section
5.2.2 describes the most important functionality that is defined over the data structures
to be able to implement our use cases. Section 5.2.3 will then go into more detail on
how the sortedness of a BAM file influences the performance of our C program. Finally,
Section 5.2.4 describes the implementation of some of our use cases.

5.2.1 Elementary data structures

To satisfy the efficiency norm mentioned earlier, we designed data structures that enable
us to manage alignment data efficiently. We designed two such data structures: data
tables and group tables.
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Data table

A data table is used to store arbitrary tabular data. A data table is implemented as a
doubly linked list, where every item in the list represents one tuple. A tuple contains
one or more data fields, where every data field has a certain type (e.g. integer or string)
and a value. A data table structure that stores alignment data is illustrated in Figure 5.3.

Tuple 1

Tuple 2

Tuple n

QNAME — FLAG — ... — SEQ — QUAL

QNAME — FLAG — ... — SEQ — QUAL

QNAME — FLAG — ... — SEQ — QUAL

Figure 5.3: Visualization of data table structure.

Look up
Efficient look up of tuples is not possible in a data table structure. If one would look
for a particular tuple, the whole linked list should be traversed. This is however not a
problem for the efficiency norm. since individual tuple look ups are never performed in
our algorithms.

Insertion
Insertion of a new tuple into a data table is in our case always done at the end of the
linked list, since we do not maintain an ordering on the tuples. This operation therefore
takes only O(1).

Deletion
Deletion of a tuple can be done in O(1) time as well, since the neighboring nodes in the
linked list can be simply linked to each other.

Group table

In many of our use cases, data needs to be grouped according to some grouping attributes
and aggregate functions need to be applied to the different groups. For this purpose, we
introduced the group table as an elementary data structure. A group table is in fact
just an array of buckets that implements dictionary encoding using a hash function. At-
tributes on which grouping is done are passed to this hash function, that hashes them to
a bucket. In this bucket a doubly linked list is maintained that stores all group attributes
that map to this bucket. Every node in this linked list remembers its grouping attributes
and maintains a data table that stores all tuple-wise data for these grouping attributes.
For further explanation in this chapter, let n be the number of distinct groups that are
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stored in a group table and let m be the number of buckets. Furthermore, we assume
that our hashing function evenly divides the groups over the buckets, yielding an expected
linked list length of n/m for the linked list in any bucket. The group table structure is
presented in Figure 5.4.

Bucket 1

Bucket 2

Bucket m

Grouping values

Data Table

Grouping values

Data Table

NIL

Grouping values

Data Table

Grouping values

Data Table

Figure 5.4: Visualization of group table structure with m buckets and a variable number of nodes in
every linked list. The number of data tables stored in this group table is n. An empty linked list inside
a bucket is represented by a NIL-pointer.

Look up
We often need to retrieve the data table that corresponds to some set of group attributes.
The hashing mechanism can do this very efficiently, since only the data tables in one linked
list have to be traversed. The efficiency then depends on the length of this linked list,
since determining which linked list to traverse is as easy as computing the hash function,
which takes O(1) time. In the worst case, a look up has to search through an entire linked
list, which has expected length n/m. Therefore, the expected worst case running time
of a look up equals O(1 + n/m).1 A look up returns either a node from a linked list, or
nothing if no node for the given group attributes was found.

Insertion
To insert a tuple, the group attributes are extracted from the tuple and used to perform a
look up into the group table. If this look up results in a node from a linked list, the tuple
can be simply inserted into the data table of this node. Otherwise, this tuple is inserted
into the data table of a newly created node and this node is prepended to the linked list
of the bucket where the group attributes of this tuple map to. The expected running
time of an insertion into a group table is dominated by the look up that is performed,
yielding an expected running time of O(1 + n/m).

Deletion
Our algorithms require the possibility to delete an entire node from a linked list of a
group table, including the clearance of the associated data table. Deleting a node from
a linked list only requires some pointer restructuring and can therefore be done in O(1).
Clearing the associated data table is done by deleting every tuple in it. This can be done
in O(q) if the data table that has to be deleted contains q tuples. Hence, the actual

1The notion of expected (worst case) running times is taken from [5].
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deletion takes O(q). If the node to remove however first has to be found in the group
table, the expected running time becomes O(q + 1 + n/m).

5.2.2 Functionality defined over data structures

This section describes the functionality that is defined over the elementary data structures
that is necessary to solve our use cases.

Transforming a data table

This functionality transforms a data table by applying a transformation on every tuple.
For example, use case 2.2 transforms every tuple in a data table by calculating the distance
and storing this in an extra field. A transformation traverses the entire data table and
applies the transformation on every tuple. If we assume the mapping operator to run
in O(1), which is always the case in solving our use cases, this operation runs in O(n),
where n is the number of tuples in the data table.

Joining data

Joining is an operation that is performed in many of our use cases. This functionality
takes two data tables as its input and produces one data table with tuples that contain
data from both input data tables. A tuple from one data table and a tuple from the other
data table form a tuple in the join result if the join condition is fulfilled. In our use cases,
there is always at least one attribute that has to be equal in both tuples. Therefore, we
chose to implement our join algorithm as an equi join; join two tuples from different in-
put tables together whenever they have the same value for a predefined set of attributes.
Since some of our join conditions are somewhat more complicated, we extended our join
algorithm to a theta join by adding the possibility to pass an additional filter to the join
algorithm. This filter determines whether or not a pair of tuples should be in the join
result. The equi join is implemented in two ways: as a hash join and a merge join. The
merge join is used when one or more of the join attributes are sorted in the input data
tables.

Hash join
Let ds be the data table with the least tuples of the two input data tables and db the one
with the most tuples. The hash join assumes that both ds and db are unsorted. It inserts
all tuples from ds into a group table gs, where the join attributes are selected as the group
attributes. This enables us to do efficient look ups when performing the equi join. We
then iterate over all tuples in db. For every tuple tb in db, we do a look up in gs using the
join attributes in tb. If these join attributes aren’t found in gs, tb doesn’t join with any
tuple from ds and hence isn’t inserted into the result. If however the join attributes are
found, we obtain a data table dgs containing all tuples from ds that join with tb. Hence, tb
can be joined with every tuple in dgs and the resulting tuples are inserted into the result.

Now let |ds| and |db| denote the number of tuples in ds and db respectively. We will
use ns to denote the number of distinct join attributes in ds and m to denote the num-
ber of buckets used in gs. Furthermore, the resulting data table is denoted by r and |r|
denotes the number of tuples in r. Building gs will then take an expected running time
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of O(|ds|(1 + ns/m)). Then doing the actual join takes |db| look ups in gs, yielding an
expected running time of O(|db|(1 + ns/m)). Traversing all the tuples in the matching
groups from gs and inserting these tuples in the result can then be done in O(|r|). The
total expected running time of our hash join then becomes O((|ds|+ |db|)(1+ns/m)+ |r|).

Merge join
The merge join assumes that both input tables are sorted on all join attributes. This
makes the joining process much easier, as the two data tables can just be merged to-
gether without reordering any of them. This is done by traversing both input tables and
constructing output tuples whenever we find a match between two tuples from the input
tables. This operation runs in O(|d1| + |d2|), where |d1| and |d2| denote the number of
tuples in the first and in the second data table respectively.

Set operations

For several of our use cases, we have to perform set operations on two data tables. The
set operations that we have implemented are set intersection and set minus. Both of
them work similarly. They expect two data tables that are both sorted and contain only
distinct values. The set operations can then be performed by simultaneously traversing
both input data tables and add tuples to the result set accordingly. Therefore, this
operation takes only O(|d1|+ |d2|), where |d1| and |d2| again denote the number of tuples
in the first and in the second data table respectively.

Sorting a table

All of our use cases need to output sorted data. Therefore, we implemented a sorting
algorithm that is able to sort a data table d on a given set of sorting attributes. For
this purpose we use a merge sort approach that works on a linked list.2 This approach
does O(log |d|) passes over the linked list, where |d| is the number of tuples in our data
table. Since every pass runs in O(|d|), the total running time of the sorting functionality
is O(|d| log |d|).

Filtering

Many use cases need some kind of filtering operators on their data. For example, use
cases 2.1, 2.2, 2.3, 2.4 and 2.10 require that as soon as a group table is filled with all the
data, groups that do not fulfill a given predicate are deleted from the group table. This
filtering results in a group table that contains a subset S of QNAMEs . The mentioned use
cases then all have to delete all alignments from a data table that do not have a QNAME
that exists in S. More formally, we have defined two different filtering operations.

The first operates on a group table g and takes a filter operator that operates on data
tables. The entire group table is then traversed and for every data table that it contains,
the filter operator is applied. In case the filter operator eliminates a data table, this data
table will be removed from the group table. The filter operators used in our algorithms
all run in O(1). Let |g| denote the number of tuples in g. The number of groups is never

2We adapted the approach described on http://www.chiark.greenend.org.uk/~sgtatham/

algorithms/listsort.html to sort our linked list
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bigger than |g|, i.e. n ≤ |g|. Furthermore, no more than |g| tuples can be deleted and
hence, this operation runs in O(|g|).

The other filtering operation takes a data table d and a group table g. It traverses the
entire data table and does a look up in g for every tuple in d. In case no match is found
in g, the tuple is removed from the data table. This filtering operation has an expected
running time of O(|d|(1 + n/m)), where |d| denotes the number of tuples in d.

5.2.3 Sortedness of the input

Our program considers every BAM file to have four different versions:

1. Unsorted version of the BAM file

2. BAM file is sorted by query name

3. BAM file is sorted by coordinate

4. BAM file is sorted by coordinate and is accompanied by a BAI index file

Our program takes these different versions into account by making all implementations of
the use cases aware of the current kind of input they are dealing with. The performance
of solving a use case depends on the version of the files it is dealing with. For example, if
in use case 2.2 the input would be sorted by QNAME , the performance could be improved
in the following ways:

• The grouping on QNAME now knows when the last tuple of a group has been
inserted. Hence, the filtering that is done on every group can now be done while
traversing the alignments of the BAM file. This saves on required storage space.

• A merge join can be done on QNAME when the second joining attribute, RNAME ,
is considered as an additional filter.

5.2.4 Use case implementations

This section illustrates how the presented data structure and the functionality that is
defined over them can be used to solve our use cases. We present pseudo code for two
of the use cases: use case 1.1 and use case 2.2. Both implementations assume unsorted
input. Table 5.2 shows some functions that are used in the algorithms in terms of the
aforementioned functionalities. We chose to show the implementation of use case 1.1 due
to its simplicity. It selects all primary alignments from a BAM file and sorts the result
on QNAME . The implementation is given in algorithm 1. Use case 2.2 is much more
complex with regard to the required data management techniques. Its implementation
can be found in algorithm 3. On lines 1-13, two functions are defined that are used in
the main algorithm as ⊕ operators for the functions from Table 5.2 that require such
an operator. On lines 15-18, empty data structures are created that will be filled by
the algorithm. Lines 20-30 display the traversal of the BAM file and the storage of
its alignments in dfirst, dlast and gqnames. The filter function is then applied to every
data table in gqnames on line 32. Lambda notation is used to indicate that the callback
function receives one argument, namely a data table upon which the filtering should be
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based. On lines 33 and 34, all alignments with a QNAME that doesn’t exist in gqnames

are eliminated from both dfirst and dlast. A join is then performed on line 35 on the
QNAME and RNAME attributes. The result from the join is then transformed on line
36 using the predefined transform function to calculate and store the distance of every
joined alignment pair. On line 37, the transformed join result is added into a group table,
which represents the final grouping that we need. This grouping can be traversed and
the result can be built from it, which is done on lines 39-41. |d| is used here to denote
the number of tuples in data table d. Finally, the result is sorted on line 43.

Function Explanation

DInsert(d, fields)
Insert all fields in fields into data table d. If
a whole alignment is given, all fields of the
alignment will be stored.

GInsert(g, gv, t)
Insert (gv, t) in group table g, where gv con-
tains the group values and t contains the val-
ues that will form a tuple in the data table.

Sort(d, attr) Sort data table d on sorting attributes attr.

GFilter(g,⊕)
Apply the first filter from the filtering ex-
planation in Section 5.2.2 on group table g,
using ⊕ as the transformation operator.

DFilter(d, g)
Apply the second filter from the filtering ex-
planation in Section 5.2.2 on data table d,
using g as the group table.

Join(d1, d2, attr)
Join data tables d1 and d2, based on the join-
ing attributes in attr.

Transform(d,⊕) Transform data table d, using ⊕ as the trans-
formation operator.

DataTableToGroupTable(d, attrs)
Create and return a group table and insert
all tuples from data table d in it, based on
group attributes attrs.

Table 5.2: Functions used in algorithms 1 and 3
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Algorithm 1: Implementation of use case 1.1.

Input : One BAM file f
Output : One CSV file

1 d← empty data table
2 foreach alignment a in f do
3 if PrimaryAlignment(a) then
4 DInsert(d, a)
5 end

6 end
7 Sort(d, {QNAME})
8 return d

Algorithm 2: Implementation of use case 1.3.

Input : One BAM file f
Output : One CSV file

1 d← empty data table
2 foreach alignment a in f do
3 if a.RNAME = rname 1 3 ∧ pos 1 3 1 ≤ a.POS ≤ pos 1 3 2 then
4 DInsert(d, a)
5 end

6 end
7 Sort(d, {POS})
8 return d
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Algorithm 3: Implementation of use case 2.2.

Input : One BAM file f
Output : One CSV file

1 Filter(Data table d) begin
2 if |d| = 2 ∧ sum(firs segm(d)) = sum(last segm(d)) = 1 then
3 return True
4 end
5 else
6 return False
7 end

8 end
9

10 GetDistance(Tuple t) begin
11 d← distance between alignments in t
12 add d as a data field to t

13 end
14

15 dfirst ← empty data table
16 dlast ← empty data table
17 gqnames ← empty group table
18 dresult ← empty data table
19

20 foreach alignment a in f do
21 if ¬seco alig(a) ∧ firs segm(a) 6= last segm(a) then
22 if firs segm(a) then
23 DInsert(dfirst, a)
24 end
25 else
26 DInsert(dlast, a)
27 end
28 GInsert(gqnames, {a.QNAME}, {a.FLAG})
29 end

30 end
31

32 GFilter(gqnames, λd→Filter(d))
33 DFilter(dfirst, gqnames)

34 DFilter(dlast, gqnames)

35 djoined ← Join(dfirst, dlast, {QNAME ,RNAME})
36 Transform(djoined, λt→GetDistance(t))
37 gdistance ← DataTableToGroupTable(djoined, {distance})
38

39 foreach tuple (distance, datatabled) in gdistance do
40 DInsert(dresult, {distance, |d|})
41 end
42

43 Sort(dresult, |d|)
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Chapter 6

Experiments

To discover the pros and cons of the approaches presented in Chapter 5, we ran exper-
iments that enable us to compare these approaches. Section 6.1 presents the details of
these experiments and Section 6.2 shows and explains the results obtained through these
experiments.

6.1 Setup

This section elaborates upon the different things that we did in order to set up our exper-
iments. The hardware and software that we used to run our experiments are described
in Section 6.1.1. To be able to do experiments, sample BAM files were needed. Section
6.1.2 presents the statistics of the BAM file repository that we used. The implementa-
tions from Chapter 5 require different kinds of initialization, elaborated upon in Section
6.1.3. After initializing, the use cases can be solved, which is explained in Section 6.1.4.
Finally, Section 6.1.5 gives details about the output that is generated when the use cases
are solved.

6.1.1 Hardware and software

All experiments were done on a machine with 32 Intelr Xeonr E5-2650 0 @ 2.00GHz
processors and 256 GB DIMM DDR3 1600 MHz (0.6 ns) RAM.

We decided to do the experiments using MonetDB.1 Thanks to its possibility to de-
velop User Defined Functions (UDFs), we could easily extend it with the appropriate
code for loading the BAM files into the database.

6.1.2 Our file repository

The Life Sciences group of the CWI provided us with a BAM file repository which we
could use to run our experiments with. To obtain this repository, a read simulator was
used to generate many reads. Different read mappers were then used to obtain different
BAM files. Furthermore, some BAM files only contain part of the original data, which

1MonetDB is a column-store DBMS, available at http://www.monetdb.org/
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results in a BAM repository with different file sizes. For more information on how the
repository was initially obtained, see [12].

All the BAM files that we work with are stored in an unsorted fashion, since this is how
they are essentially generated by the alignment process. We have run our experiments on
a total of 17 files, which can be subdivided into two groups: a group containing relatively
small BAM files and a group containing big BAM files. The first group contains 15 BAM
files, the last group contains 2 BAM files. Some statistics of both groups are shown in
Table 6.1.

ID Size SAM size Compression # Alignments Primary Unmapped Reversed

1 22M 61M 1:2.7 200,000 100.00% 0.04% 49.99%
2 22M 59M 1:2.7 197,870 100.00% 0.37% 49.82%
3 24M 67M 1:2.8 200,000 100.00% 0.16% 49.92%
4 24M 69M 1:2.9 200,000 100.00% 0.16% 49.94%
5 32M 122M 1:3.8 605,908 66.02% 0.50% 49.71%
6 115M 301M 1:2.6 831,930 100.00% 0.42% 49.79%
7 126M 464M 1:3.7 2,288,284 73.39% 0.50% 49.75%
8 1145M 3,183M 1:2.8 10,354,336 100.00% 0.04% 49.98%
9 1242M 3,468M 1:2.8 10,354,336 100.00% 0.17% 49.91%
10 1255M 3,515M 1:2.8 10,354,336 100.00% 0.05% 49.97%
11 1257M 3,560M 1:2.8 10,354,336 100.00% 0.17% 49.93%
12 1352M 3,714M 1:2.7 10,354,336 100.00% 0.14% 49.93%
13 1442M 3,793M 1:2.6 10,242,048 100.00% 0.38% 49.81%
14 1444M 3,794M 1:2.6 10,242,048 100.00% 0.38% 49.81%
15 1660M 6,353M 1:3.8 31,510,492 65.72% 0.50% 49.75%

16 92G 253G 1:2.8 848,596,934 100.00% 0.91% 49.55%
17 100G 276G 1:2.8 848,596,934 100.00% 0.99% 49.51%

Table 6.1: Some statistics of the individual BAM files in our file repository. A horizontal line is added between the small
files and the big files.

The first column shows the file identifier, which will be used to refer to individual BAM
files throughout the remainder of this chapter. The second and third column respectively
display the file size of the BAM file and the equivalent SAM file (an uncompressed version
of the BAM file). The fourth column than shows the compression ratio, which can be
calculated from the file sizes of the BAM file and the equivalent SAM file. The fifth
column shows the number of alignments. Furthermore, the sixth until the last column
show the percentage of alignments that is flagged as primary, unmapped and reversed
respectively. The percentage of secondary alignments is easy to determine, since an
alignment is always either primary or secondary. Hence, the percentage of secondary
alignments can be expressed as 100%−percentage of primary alignments.

One thing that can be seen from Table 6.1 is that there is a relation between the
compression ratio and the percentage of primary alignments. All three files that contain
secondary alignments have a much higher compression ratio. This is easily explained
by noting that secondary alignments contain the exact same SEQ and QUAL string as
their primary versions. Since the primary alignments and their corresponding secondary
alignments are often stored shortly after each other, the BGZF compression can take
advantage of this redundancy.
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Another thing that can be seen from Table 6.1 is that many BAM files have the same
number of alignments. This can be explained by the fact that all the BAM files origin
from the same set of read pairs.

6.1.3 Initialization

Before the use cases can be solved, the data in the BAM files need to be initialized.
In the case of the DBMS implementation the initialization is straightforward: all data

from the BAM file repository needs to be loaded into the storage schemas of the database.
The traditional implementation works directly on BAM files. Its running time however

depends on the sortedness of the input BAM files. Since the BAM files in our repository
are all stored in an unsorted fashion, we consider different initialization times for this
implementation. For some use cases, sorting the input will pay off, for others it won’t.
The following initialization types will be considered for our experiments:

• No sorting (will always have an initialization time of 0)

• Sorting on QNAME

• Sorting on (RNAME ,POS )

• Sorting on (RNAME ,POS ) plus the creation of a BAI file

6.1.4 Solving use cases

When the systems are initialized, our use cases can be solved.
Solving the use cases using the DBMS implementation is simply done by executing

the SQL queries for both storage schemas, displayed in Appendices C and D. We picked
the use case variables such that the queries would generate a non-empty output for at
least some BAM files. For instance, if for use case 1.3 we pick an RNAME that doesn’t
exist in any of the BAM files, the output will always be empty, which is something that
we would like to prevent. The use case variables that we used for our BAM repository
are shown in Table 6.2.

Var Value

rname 1 3 chr10
pos 1 3 1 1,000,000
pos 1 3 2 2,000,000
qname 1 4 sim Venter chr1 1 1
mapq 1 5 200
mapq 2 1 100
rname 2 9 chr1
pos 2 9 73,796,782
rname 2 10 chr1
pos 2 10 80,000,000
distance 2 12 10,000,000

Table 6.2: Use case variables used for the experiments on our BAM file repository.
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For the traditional approach, we solve every use case for all different possible orderings
of the BAM files. All use cases are applied on unsorted BAM files to get a base line
execution time. Only the orderings which possibly contribute to a faster running time
will then also be run. For instance, solving use case 1.1 on a BAM file that is ordered by
coordinate doesn’t have an advantage over solving it on an unsorted BAM file. Therefore,
we only solved use case 1.1 on an unsorted BAM file and on a BAM file that is sorted by
query name. Table 6.3 displays for every use case the different orderings that were used
as input to the use case.

Use case U Q C B

1.1 X X
1.2 X X
1.3 X X X
1.4 X X X
1.5 X
2.1 X X
2.2 X X
2.3 X X
2.4 X X
2.5 X X
2.6 X X
2.7 X X
2.8 X X
2.9 X X X
2.10 X X X X
2.11 X X
2.12 X X X

Table 6.3: The orderings that were used as input to our use cases. Meaning of the column names: ‘U’
→ unsorted, ‘Q’ → query name, ‘C’ → coordinate and ‘B’ → coordinate + BAI file.

To obtain statistically sound results, we have ran the experiments on the small files
ten times. The results in this chapter will present the averages of these ten runs, minus
the two outliers. For the big files however, running times of the experiments are quite
long. Therefore, we only ran our experiments on big files once and these results are thus
less accurate. Furthermore, we only solved use cases 1.1 - 1.5 for the big files.

6.1.5 Output

The SQL queries in Appendices C and D project almost all of the information in the
alignments. This could be desired, when for instance further analyses must be done on
all of these data. However, the user might just be interested in one column of the result
set or in the number of tuples that it contains. Therefore, we also experimented with
a version of the queries that outputs only columns on which sorting is performed, plus
the virtual offset for every tuple. These virtual offsets could then be used to retrieve the
remaining information of the tuples, if needed. This is implemented in both the DBMS
and the traditional implementation. For the DBMS implementation, this means that it
will have to do the same filtering and grouping operations, but it doesn’t have to collect
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all the columns from the alignment tables in the end. Furthermore, the amount of data
that it has to send over a TCP socket reduces. For the traditional implementation, this
means that the data structures do not have to contain all the alignment data anymore
and thus have to deal with less data. We will refer to the full projection approach as the
full-output approach and to the other approach as the minimal-output approach. Due
to the huge size of the output files for some queries, we chose to apply the full-output
approach only on the small files. The use cases on the big files are only solved using the
minimal-output approach.

To verify the results of the different implementations, the use case results are written to
CSV files. The CSV files of all different implementations are then checked for similarity
in two ways. It is checked whether or not both files contain exactly the same rows.
Furthermore, it is checked whether or not both files are ordered on the same columns by
extracting the sorting columns from the CSV files and checking them for similarity. In
case both of these checks show no differences, the two outputted CSV files are considered
to be equal. This comparison method however doesn’t work for the minimal-output
approach, since virtual offsets are included in the output then and the virtual offset of
an alignment may change whenever the ordering of a BAM file changes. Therefore, when
comparing the output files from the minimal-output approach, the virtual offset column
is removed from the result as a first step.

6.2 Results

Our experiments gave rise to many interesting results for the implementation methods
we have presented thus far. The DBMS implementation (Section 5.1) presents two of
these methods: the methods with the straightforward and the pairwise storage schema
respectively. The traditional implementation (Section 5.2) presents the remaining four
of these methods, where every possible sorting order is interpreted as a method. Section
6.2.1 presents the results for initializing these different methods. Sections 6.2.2 and 6.2.3
both present the running times obtained when solving the use cases, which focus on
the full-output approach and the minimal-output approach respectively. Section 6.2.4
presents some details on correlations that we have identified in our data. Finally, Section
6.2.5 lists the pros and cons of our implementations that can be concluded from the
results presented in this section.

6.2.1 Initialization

The timing statistics for initializing our implementations for both the small files and the
big files from our repository are plotted in Figure 6.1. Note that the presented results in
Figure 6.1a are the averages from ten runs, while Figure 6.1b presents data from a single
run.

The most important conclusion that can be drawn from these figures is that inserting
all data from the BAM files in any of our storage schemas takes significantly longer than
sorting the BAM file in any way. This is caused by several factors, one of which is that
the DBMS must store all data in a decompressed manner, causing a higher I/O load
when writing the result to disk than when another BAM file has to be written. Another
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(a) Small files (Average of ten runs) (b) Big files (Result of one run)

Figure 6.1: Required running time by different methods to initialize all BAM files in our repository.

factor is that the DBMS has to parse every field, whereas the sorting algorithm only has
to interpret the fields on which it is sorting and some minor things needed to traverse
and rebuild the BAM file.

Another thing that can be seen is that loading the data into the pairwise storage
schema takes significantly more time than loading it into the straightforward schema,
especially for the big files. This difference in loading time makes sense, since loading
these different storage schemas works in approximately the same way, although the loader
has to perform more data management tasks when loading the pairwise storage schema.
These data management tasks create an overhead on loading the alignments from every
single template, imposing a difference between loading the two storage schemas that is
proportional to the number of templates that are stored within a BAM file. This gives
rise to the much bigger difference between loading the storage schemas for big files.

6.2.2 Solving use cases using the full-output approach

Figure 6.2 presents bar charts that illustrate the average running times for solving use
cases 1.1, 1.3 and 2.2, using the full-output approach. Every chart shows the results
for all its relevant orderings, conforming Table 6.3. Furthermore, every chart shows the
results for both storage schemas of the DBMS implementation.

The results for use case 1.1, shown in Figure 6.2a, show clearly that the DBMS
implementation performs significantly worse than the traditional implementation. This
is due to the difference in how these systems write the result sets, as the result sets for use
case 1.1 are huge. The traditional implementation builds the result set and then writes
everything from main memory directly to a file, whereas the DBMS implementation has to
do an additional serialization and deserialization step, since it has to send this entire result
set over a TCP socket to the client process. Figure 6.3 visualizes this overhead by showing
the time between having calculated the result set and having the result set written to disk
for every file when executing use case 1.1. This time is significantly higher for the DBMS
implementation. Another thing that can be seen from Figure 6.2a is that sortedness on
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(a) Use case 1.1

(b) Use case 1.3

(c) Use case 2.2

Figure 6.2: Running times of solving use cases on small files using our different methods. These are the
results for the full-output approach and are the averages of ten runs.

QNAME significantly improves the performance of the traditional implementation for
every input file. This makes sense, since every file gives rise to a big output set and
when the input is already sorted by QNAME , the traditional implementation can skip
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the final sorting step. Furthermore, this figure clearly shows the overhead that is caused
by the unpairing step that needs to be done for the pairwise storage schema of the DBMS
implementation. It also shows that this overhead is somewhat smaller for files 5, 7 and 15,
as these files contain secondary alignments. Thanks to the separation between primary
and secondary alignments in the pairwise storage schema, the DBMS implementation can
discard the secondary alignment data for these files immediately.

Figure 6.3: Time required to write the result to disk for use case 1.1 using the full-output approach

Figure 6.2b shows the results for use case 1.3. It shows big differences between the
different methods. Most importantly, for all files both storage schemas from the DBMS
implementation perform better than the unsorted traditional implementation. However,
when there is an ordering on (RNAME ,POS ), the traditional approach outperforms both
storage schemas of the DBMS implementation. This is due to the fact that, whenever a
BAM file is sorted by (RNAME ,POS ), the traversal of a BAM file can be stopped as
soon as the right RNAME is found. The differences in the performance increase for this
ordering reflect how early in the BAM file the right RNAME occurs. In case the right
RNAME occurs really early in the BAM file, this method even outperforms the equivalent
method where a BAI index is used to extract the right alignments. Furthermore, it can
be easily seen from the figure that using the pairwise storage schema for this use case is
suboptimal, since it is always outperformed by the straightforward storage schema.

Finally, Figure 6.2c shows the results for use case 2.2. The DBMS implementation
outperforms the traditional implementation for every file. This is partly due to the
complex data management techniques that need to be done to solve this use case, for
which a DBMS is highly optimized. Another thing that plays a role is the relatively small
output size for this use case. As mentioned in the explanation of Figure 6.2a, writing
results using the DBMS implementation creates an overhead due to the need to send
all output over a TCP socket first. Furthermore, the pairwise storage schema imposes
a significant performance gain for this use case, since the pairing does not need to be
done anymore during query execution time. Especially for files 5, 7 and 15, the pairwise
storage schema greatly outperforms the straightforward storage schema. This can again
be explained by the fact that exactly these files contain secondary alignments. For the
pairwise storage schema, the DBMS can immediately discard the secondary alignment
data, while for the straightforward storage schema it has to consider every alignment.
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We ran these experiments on all of the use cases, which resulted in a bar chart for
every use case, which are located in Appendix E.1. Some general conclusions that can be
drawn from these charts are mentioned here.

BAM files containing secondary alignments

The patterns that can be seen in the results of files 5, 7 and 15 often differ from the
results of the other files, due to the fact that these files contain secondary alignments.
The DBMS implementation often takes advantage of the pairwise storage schema for
these files whenever it receives a query that needs to operate on paired data. However,
if a query filters out all primary or secondary alignments, the DBMS implementation
can also take advantage of the pairwise schema, since this schema already separated the
primary from the secondary alignments on initialization.

BAM files that contain secondary alignments can however also slow the DBMS imple-
mentation down. Figure 6.4 shows such an example, where the straightforward storage
schema of the DBMS implementation performs significantly worse when secondary align-
ments are involved. The reason for this performance loss is again the overhead caused
by writing the result set. Files 5, 7 and 15 are the only files that contain inconsistencies,
yielding a result set for only these use cases.

Figure 6.4: Execution time of use case 2.3 using the full-output approach

Pairwise storage schema

The pairwise storage schema obviously improves query performance whenever the query
operates on paired alignment data. However, in some other cases the pairwise storage
schema yields better performance too, for example for use case 1.4, as can be seen in
figure 6.5. A cause for these differences are the increased possibilities to operate on the
data in a multithreaded fashion, since the data is subdivided over more columns.

Comparison between the DBMS and the traditional implementation

One of the most important conclusions that have to be drawn is how the DBMS im-
plementation performs compared to the traditional implementation. In general, there
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Figure 6.5: Execution time of use case 1.4 using the full-output approach

is often a traditional method that solves a use case faster than both DBMS methods.
However, this requires a BAM file to be ordered in a specific way. Whenever the ordering
of a BAM file can not be exploited by the traditional method, the DBMS implementation
is often faster. This is especially true for the pairwise storage schema whenever a use
case needs to operate on paired alignment data.

6.2.3 Solving use cases using the minimal-output approach

Since we are mostly interested in the performance of the minimal-output approach com-
pared to the previous, full-output approach, we only plotted comparative bar charts to
show the results for the minimal-output approach. Figure 6.6 shows these charts for
respectively use case 1.1 and 1.3. Such a bar chart displays the improvement factor for
using the minimal-output approach for the running times of all different methods. So if
for a certain triple (use case, file, method) the running time is xf using the full-output
approach and xm using the minimal-output approach, the comparative bar chart shows
xf/xm for this triple. Therefore, a value higher than one indicates an improvement, since
the running time decreased for the minimal-output approach. In the same way, a value
lower than one indicates a regression. All comparative plots contain a horizontal line at
y = 1, to easily see which running times have improved.

The first thing that can be concluded from Figure 6.6a is that all running times
decrease when the minimal-output approach is used, since every bar ends above the
y = 1 line. The pairwise storage schema of the DBMS implementation benefits the most
from this approach, which is caused by the reduced complexity of the union operations
that have to be done, since the number of columns that are involved in this union are
heavily decreased. For most files, the traditional method that works on input files sorted
by their QNAME has a smaller improvement ratio than the traditional method that
works on unsorted files.

Figure 6.7 shows the effect on the difference in writing times when the minimal-output
approach is used. From comparing this figure with figure 6.3, we can easily see that the
overhead for writing is now not as big as it was for the full-output approach. This leads
to the observation that small result sets obtained by the DBMS contribute to a good
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(a) Use case 1.1

(b) Use case 1.3

Figure 6.6: Running times of solving use cases on small files using our different methods. These are the
results for the minimal-output approach and are the averages of ten runs. Results for use case 2.2 are
not presented, since the minimal-output approach is not defined for use case 2.2

performance.

Figure 6.7: Time required to write the result to disk for use case 1.1 using the minimal-output approach
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Figure 6.6b shows less consistency in the comparison patterns for the different files.
The first things that stands out from this figure is that for some files, there are methods
that perform worse than for the full-output approach. For the DBMS implementation,
this can be explained by the smaller amounts of data that have to be collected, giving
rise to fewer possibilities to exploit multithreading. For the traditional implementation
however, these events occur only if the original running time was already in the order of
milliseconds and therefore the increase in running time is still negligible. Furthermore,
the pairwise storage schema for the DBMS implementation improves the most for many
files. A cause for this improvement is the decrease in data projection needs, which frees
resources for parallelization of filtering operators.

No bar chart is included for use case 2.2, since the minimal-output approach is not
defined for use cases 2.1, 2.2 and 2.5. For all other use cases, a bar chart is included in
Appendix E.2. Many charts show that the DBMS implementation regresses for bigger
files, while the traditional implementation still improves. The charts for use cases 2.11
and 2.12 however show an enormous improvement for the DBMS implementation. In
general, we can say that all of our implementations mostly improve their running times
when they apply the minimal-output approach. However, these trends do not show as
drastically as we had hoped for.

Since we did not apply the full-output approach to the big files in our repository, we
plotted the results for the minimal-output approach on the big files similar to the way
we plotted the results for the full-output approach on the small files. Figure 6.8 shows
these plots. Note that again, results for use case 2.2 are not included, since only simple
use cases were solved on the big files.

(a) Use case 1.1 (b) Use case 1.3

Figure 6.8: Running times of solving use cases on big files using our different methods. These are the results for a single
run using the minimal-output approach. Results for use case 2.2 are not presented, since only the simple use cases were
solved on the big files of our repository.

The pattern that we see in Figure 6.8a is exactly the same as the pattern that occurs
in Figure 6.2a and hence the same explanations hold for the big files.

Figure 6.8b also has many similarities with Figure 6.2b, although there are some subtle
differences as well. Both storage schemas of the DBMS implementation still outperform
the unsorted traditional implementation in every case. However, for big files they also
outperform the traditional implementation that operates on files sorted by QNAME .
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Furthermore, the traditional method now outperforms all other methods if it is provided
with a BAI file.

Bar charts for all simple use cases, solved on big files, can be found in Appendix
E.3. One thing that really stands out is the outstanding performance of the pairwise
storage schema for use cases 1.4 and 1.5 compared to its performance for small files.
Again, this can be explained by the increased opportunities for exploiting parallel data
operations, due to the distribution of the alignment data over more columns than for the
straightforward storage schema.

6.2.4 Correlations in the results

Investigating the correlation between different possibly interesting sets of variables is a
useful tool to compare the scalability of the different methods we presented in this thesis.
Let X = {(x1, y1), (x2, y2), ...}. X is positively correlated if an increase in the x values
implies an increase in the y values. It is negatively correlated if an increase in the x
values implies a decrease in the y values. It is not correlated if such a relation doesn’t
exist. We searched for correlations by creating scatter plots and calculating the Pearson
correlation. 2 This yields a value in the range [−1, 1], where negative outcomes yield a
negative correlation and positive outcomes yield a positive correlation. The closer the
outcome is to -1 (1), the stronger the negative (positive) correlation is. Furthermore, an
outcome of 0 implies no correlation at all. In the scatter plots presented in this section,
the corresponding Pearson correlation is displayed as ρ.

BAM file size versus running time of use cases

An interesting relationship is that between the size of the BAM files and the running
times of the use cases. We expect to see a positive correlation, since a use case will
generally need more time to complete if it has to process more data. We created scatter
plots for all different methods, displayed in Figure 6.9. Note that there are measurements
in these plots with a file size bigger than the file size of any file among the small files in
our repository. This is caused by the fact that we chose to sum the file sizes of two BAM
files if they are both input to a single use case, which is the case for use cases 2.5 until
2.8.

Every scatter plot contains data from exactly one solving method, yielding mi · 15
(x, y)-tuples per scatter plot, where mi equals the number of use cases that are solved
using method i, according to Table 6.3. For the traditional implementation, this yields
255 (x, y)-tuples for the unsorted variant, 195 for the QNAME sorted variant, 90 for
the (RNAME ,POS ) sorted variant and 45 for the variant that includes a BAI file. Since
every use case is solved on both storage schemas of the DBMS implementation, the scatter
plots for these methods also include 255 points.

One thing that can be seen from comparing Figures 6.9a and 6.9b is that they have
approximately the same pattern. However, Figure 6.9b contains faster running times, as
can be seen on the scale of the y-axis. This means that the traditional approach speeds
up every use case with approximately the same factor when operating on files that are

2Weisstein, Eric W. ”Correlation Coefficient.” From MathWorld–A Wolfram Web Resource. http:

//mathworld.wolfram.com/CorrelationCoefficient.html
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(a) TD: Unsorted (b) TD: Sorted on QNAME

(c) TD: Sorted on (RNAME ,POS ) (d) TD: Sorted on (RNAME ,POS ) +BAI

(e) DB: Straightforward schema (f) DB: Pairwise schema

Figure 6.9: Scatter plots that shows BAM file size versus running times of use cases. Every plot mentions its Pearson
correlation ρ in the right top.

sorted by QNAME . The same relation exists between Figures 6.9e and 6.9f. They
have approximately the same pattern, but the results for the pairwise storage schema
are on a larger y-scale. So although the pairwise storage schema speeds the DBMS
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implementation up tremendously for some of the queries, it slows down all other queries
with approximately the same factor.

Almost all the scatter plots show a convincing positive correlation, meaning that the
bigger the input becomes, the longer the use case takes to finish. This is especially true
for the traditional implementation that works on either unsorted files or on files sorted
by QNAME , shown in Figures 6.9a and 6.9b. Both storage schemas for the DBMS
implementation and the traditional implementation on files sorted by (RNAME ,POS ),
respectively shown in Figures 6.9e, 6.9f and 6.9c, also show this correlation, although it
is not as emphatic as for the first two methods.

Figure 6.9d shows near to no correlation, meaning that the use cases that are able
to exploit a BAI file benefit so much from this that the size of the input files doesn’t
influence the running time anymore. This can be easily explained by noting that a BAI
file allows the traditional implementation to do random access in a BAM file to extract
the alignments in a certain region, thereby eliminating the size of the BAM file as a
factor.

So unless a use case can exploit a BAI file, these plots show that the straightforward
storage schema of our DBMS implementation scales the best, as its running times depend
the least on the size of the input.

Output file size versus running time of use cases

Another interesting relationship is that between the size of the output that is generated
by a use case and the time it took the use case to conclude to this output. Like for the
previous relationship, we plotted a scatter plot for every of our implementation methods.
These plots are shown in Figure 6.10. The plots contain exactly as many (x, y)-tuples as
in Figure 6.9 and every plot again displays the corresponding Pearson correlation.

The most important thing that stands out in these plots is the high correlation that
this relation has. So use cases that have a big result set take a long time to execute. This
correlation is the highest for both storage schemas of the DBMS implementation, shown
in Figures 6.10e and 6.10f, meaning that the performance of the DBMS implementation
regresses faster than the performance of the traditional approach if big output sets must
be written. This matches our expectations, since the DBMS implementation has to send
its entire result set over a TCP socket before a client application can write it.

Furthermore, the Pearson correlation is undefined for the traditional implementation
that exploits a BAI file, shown in Figure 6.10d, since all of the output sizes for this
implementation equal zero and this would yield a division by zero. We would however
expect use cases that exploit the BAI file to be positively correlated, since writing of
results would be the bottleneck of this operation due to the tiny use case execution times
thanks to the BAI file.

An overall conclusion that can be drawn from these plots is that when the DBMS
implementation is used, high selectivity of use cases tend to significantly improve the
performance. This is to a more limited extent also the case for the different methods of
the traditional implementation.
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(a) TD: Unsorted (b) TD: Sorted on QNAME

(c) TD: Sorted on (RNAME ,POS ) (d) TD: Sorted on (RNAME ,POS ) +BAI

(e) DB: Straightforward schema (f) DB: Pairwise schema

Figure 6.10: Scatter plots result set output size versus running times of use cases. Every plot mentions its Pearson
correlation ρ in the right top.
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6.2.5 Pros and cons of our implementations

This section discussed the results of many experiments. The main aim of our experiments
was however to identify the pros and cons of the implementations presented in Chapter 5.
Therefore, this section interprets the results that we just presented to conclude to these
pros and cons.

The most obvious con of the DBMS implementation is its initialization time, as is
illustrated in figure 6.1. However, a con of the traditional implementation is that it
often needs its input file sorted on some attribute in order to perform good. Whenever
such an ordering can not be exploited by the traditional approach, the DBMS often
performs better. Furthermore, the correlation plots in figure 6.9 show that the DBMS
implementation generally scales better with the size of the input files. The only exception
is if the use cases predominantly can exploit a BAI file to obtain the required results,
which is certainly not the case for the broad range of our use cases. Figure 6.10 shows
another con of the DBMS implementation. It shows that the correlation between the
size of the output and the running time of the use cases is much higher for the DBMS
implementation than it is for the traditional implementation. Thus, in order for the
DBMS implementation to perform good compared to the traditional implementation,
the use cases that are solved must have a relatively small output. This correlation is also
illustrated by comparing the writing times required for use case 1.1 using the full-output
and the minimal-output approach, as is done by figures 6.7 and 6.3.

Another pro of the DBMS implementation might be that it performs better than
the traditional implementation when the data in main memory becomes bigger than the
actual physical main memory of the system, since MonetDB might handle such queries
better than the traditional approach, which relies on the swapping mechanism of the OS
in such cases. We however didn’t have the time to perform these tests, since our machine
had 256G of main memory, which is plenty to perform our experiments in main memory.

The results presented in this section, together with the other reasons to use a DBMS
mentioned in the introduction (Chapter 1), show that a DBMS is favorable over the
traditional approach.
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Chapter 7

In-situ processing

A big disadvantage of our DBMS implementation (Section 5.1) is the required initial-
ization time when doing a full database load, since it takes significantly more time than
initializing the file repository for the traditional approach (Section 5.2). Furthermore, our
DBMS implementation has a storage requirement of up to five times the size of the orig-
inal BAM file repository, since the alignment data is stored uncompressed in the DBMS.
For these reasons, applying some form of in-situ processing is worth considering, where
part of the alignment data will be loaded from the BAM files only when it is needed. We
chose to adapt the Data Vault Framework (DVF), proposed in [8, 7, 10], to our DBMS
implementation. Section 7.1 gives a brief summary of the DVF. Section 7.2 then elab-
orates on how the DVF can be applied to our DBMS implementation, since this is far
from trivial. Finally, Section 7.3 presents some results that we obtained with our DVF
implementation.

7.1 The Data Vault Framework (DVF)

The DVF is profiled as a symbiosis between database technology and external file-based
repositories. It maintains the original data, while at the same time opening it up for
analysis and exploration through database technology [7]. It is known to largely reduce
data-to-query times and avoid redundant storage of data. Only the very basic idea of the
DVF will be explained here. For further details, [8, 7, 10] can be consulted.

The Data Vault is initialized by providing it with a link to a file repository. Every
encountered file in this repository provides the DVF with meta data, which it interprets
and stores inside a pre-loaded database schema. The DVF proposes that the majority of a
file is untouched when meta data is extracted from it, which greatly reduces initialization
time.

When a query is fired at an initialized Data Vault, it is parsed and compiled into
a relational algebra plan as is done for any regular query. At that point, the query
optimizer identifies for which parts of the relational algebra data from the original files
is necessary and adds appropriate mount functions to the relation algebra plan. Such a
mount function reads data from the original files and ‘mounts’ them to the database for
as long as the query runs, thereby providing Just-In-Time loading. The query plan can
then be executed. Hence, by executing a query on the initialized Data Vault it seems as
if all data is resident in the database.

57



Figure 7.1 illustrates the DVF, applied to MonetDB. An application can use the
initialized Data Vault by using any query language supported by the DBMS engine, for
instance SQL. This query is then parsed and compiled by the DBMS (MonetDB) and the
Data Vault makes sure that the necessary external data is mounted Just-In-Time.

Figure 7.1: Simple illustration of the architecture of the DVF, applied to MonetDB [7].

7.2 Applying the DVF to BAM data

The DVF has already proven useful for several file formats, like mSeed, GeoTIFF and
FITS [8]. Applying the DVF to BAM data however comes with two major problems.

1. The initialization step of the DVF proposes loading only meta data in the database,
without touching the other data, thereby minimizing initialization time. Since the
header of a BAM file does not contain useful information for solving our use cases,
we have to access the alignment data to get some meaningful meta data. However,
to extract fields from alignments in a BAM file, the whole BAM file has to be read,
since alignments are compressed as a whole. This makes it impossible to directly
apply the existing DVF on BAM files.

2. The DVF proposes that the mount operation operates on a per-file basis, which for
BAM files obviously is sub-optimal due to the potentially huge file sizes.

How we dealt with these problems is presented in Sections 7.2.1 and 7.2.2 respectively.

7.2.1 Initializing the Data Vault

Unfortunately, the header of a BAM file does not contain information that would make
useful meta data. Therefore, we chose to use fields from the alignments as meta data. In
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order to extract these fields, there is nothing that we can do but read all BAM files in
the repository in their entirety.

To make a deliberate choice on which fields to store in the database, we consulted the
storage requirements for every column in the alignments tables in the database imple-
mentation mentioned in Chapter 5. Figure 7.2 shows the percentage of storage taken by
the different alignment fields. This percentage was calculated over the average storage
requirements of the small BAM files in our repository. The following can be seen from
this figure:

• The fields FLAG , RNAME , MAPQ and RNEXT all have very low storage require-
ments. For the FLAG and MAPQ fields this makes sense, since these fields are
stored as 16-bit integers. The RNAME and RNEXT fields however contain chro-
mosome names, encoded as variable length strings. The small storage requirements
can however be easily accredited to the dictionary encoding mechanism that Mon-
etDB uses for strings. The RNAME and RNEXT fields always contain only a few
distinct values (mostly < 30). MonetDB will create a string heap for these values.
Every alignment will then maintain a pointer to a string inside this string heap.

• The POS , CIGAR, PNEXT and TLEN fields also have low storage requirements.
This can be easily explained for the POS , PNEXT and TLEN fields, as they are
stored as 32-bit integers. The CIGAR field again exploits the dictionary encoding
from MonetDB, as most CIGAR strings turn out to equal iM , where i equals the
length of the sequence string.

• The QNAME needs a fair amount of storage space, which seems reasonable since
many distinct string values exist inside a BAM file.

• The SEQ and QUAL fields require much storage space, which can be explained by
their many characters (somewhere between 50 and 100) and the fact that most of
these strings will be distinct.

• The EXTRA field occupies almost 50% of the total storage requirements, since
many alignments contain much extra information.

Based on these observations we chose to consider all fields except for the SEQ , QUAL
and EXTRA fields as meta data, as these three fields together make up 89.5% of the
storage requirements and they are never used in any filtering step of our use cases. Hence,
they are not even needed during execution of the queries mentioned in Appendix C until
the result set is known. The EXTRA field is even never projected when a result set is
known, so not loading this field is an obvious choice. Another field that we considered to
not load during initialization is the QNAME field, since it accounts for another 6.3% in
the storage requirements. However, since many of our use cases heavily depend on this
field during the filtering, this would decrease performance dramatically. Therefore, we
chose to accept the additional storage requirement for this field.

Figure 7.3 illustrates the storage schema that we designed for our DVF implemen-
tation. It is separated into two sections: a meta data part and an external data part.
The meta data part will be filled with all the data from the BAM file repository upon
initialization, while the external data part will remain empty. The Data Vault will apply
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Figure 7.2: Distribution of storage requirements of the different alignment fields.

Just-In-Time loading to populate the external data tables when they are required by the
queries.

In order to initialize the Data Vault, we adapted our BAM loader, described in 5.1.2,
to be able to load BAM files into the schema of our Data Vault.

7.2.2 Mounting data from BAM file repository

When a query is executed, the DBMS parses and compiles this query and then executes
it. Using the meta data that is already present in the database, some queries can be
answered directly. Most queries from Appendix C however, will at some point need the
external data. This is performed by the Data Vault by executing a mount operation
that retrieves the required external data and inserts it into the DBMS. The original DVF
expects that a file location is passed as an argument to the mount operation. The mount
operation will then open the file on this file location and insert all the external data
from this file into the database. This is however not a suitable approach for our DVF
implementation for BAM files, due to their potentially huge file size. Therefore, our
mount operation works with a file location, combined with a list of virtual offsets. The
signature of the mount operation is mount(string file location, bigint voffset[]), where the
string file location has to be an absolute path to a BAM file. During query time, all tables
that contain alignment data have a title that ends with the file id of the corresponding
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Figure 7.3: Storage schema for our DVF implementation for BAM files.

BAM file. Hence, this file id can be used to retrieve the correct absolute path from the
files table. The other argument represents an array of virtual offsets, where every virtual
offset is stored in a big integer.

The mount operation then uses Samtools [11] to extract the alignments on the loca-
tions indicated by the list of virtual offsets. The resulting alignments are then inserted
into the DBMS, and the execution of the query can finish.

7.3 Experimental results

We extended Figure 6.1 with the initialization time of our Data Vault for both the small
and the big files in our repository. The bar charts including these initialization times are
shown in Figure 7.4.

7.3.1 Initialization

What can be seen in these charts is that initializing our Data Vault takes less time
than initializing any of the other implementation methods that we presented (except
for the traditional implementation on unsorted files, since that method doesn’t need to
initialize). Furthermore, Table 7.1 shows the storage requirements of the original BAM
repository, the initialized straightforward storage schema and the Data Vault. The storage
requirements shown for the straightforward storage schema excludes the file size of the
original file repository, since the BAM files become superfluous when all their data are
stored in the DBMS. However, the presented storage requirements for the Data Vault
implementation include the file size of the original file repository, since the original files
are still needed to perform Just-In-Time loading. Table 7.1 clearly shows that the storage
requirements are much more acceptable for the Data Vault implementation. The storage
requirements could be reduced even further by using a compressed file system.
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(a) Small files (Average of ten runs) (b) Big files (Result of one run)

Figure 7.4: Required running time by different methods to initialize all BAM files in our repository.

Small files Ratio Big files Ratio
Original BAM files 11,162M 100% 192G 100%
Straightforward storage schema 54,021M 484% 944G 492%
Data Vault + original files 17,171M 154% 288G 150%

Table 7.1: Storage requirements for the original files, straightforward storage schema and the Data Vault

7.3.2 Solving use cases

Although the major problems of the DBMS implementation have been solved by the Data
Vault implementation, the Data Vault has to apply Just-In-Time loading whenever it
needs to access data that only resides in the original BAM files. This Just-In-Time loading
will generally take longer than retrieving the data from an already loaded database table.
Therefore, we expect the running times of the queries to be significantly higher for our
Data Vault implementation compared to the straightforward storage schema of the DBMS
implementation. We solved all of our use cases using the Data Vault implementation,
using the full-output approach. Due to limited time, we could however only do a single
run and thus the results aren’t as reliable as the results for the small files of the DBMS
implementation. Figure 7.5 shows bar charts that compare the running times for the
original DBMS implementation and the Data Vault implementation for use cases 1.1, 1.3
and 2.2.

The running time for the Data Vault implementation is significantly higher for use
case 1.1, as can be seen from Figure 7.5a. This can be explained by the relatively big size
of the result sets for this use case. Due to this, the Data Vault has to load many SEQ
and QUAL strings into the database during query execution.

For use case 1.3, the running time of the Data Vault implementation does not differ
much from that of the original DBMS implementation.

For use case 2.2, the running time of the Data Vault implementation is again somewhat
bigger for every file, while use case 2.2 never uses the SEQ and QUAL fields and thus
no Just-In-Time loading occurs. This regression can be explained by the difference in
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(a) Use case 1.1

(b) Use case 1.3

(c) Use case 2.2

Figure 7.5: Running times of solving use cases on small files using the straightforward storage schema
and using the Data Vault.

the query plan optimizer pipelines. For the Data Vault implementation, we use another
optimizer pipeline that enables us to perform the Just-In-Time loading. This causes
MonetDB to use somewhat different physical query operators and this can result in a
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performance gain or loss.
Bar charts for all use cases can be found in Appendix E.4. Most of these charts show

similar patterns as the ones already discussed. However, for use case 2.3 and 2.4 the
performance of the pairwise storage schema is much worse than the performance of the
straightforward storage schema, while the result set is always relatively small. This could
be due to the difference in the optimizer pipeline. Our Data Vault implementation is just
in an experimental state however and it could be the case that the custom made optimizer
unnecessarily loads external data for these use cases. Most other differences can be
ascribed to the different optimizer pipelines, irrespective of whether it is an improvement
or a regression.
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Chapter 8

Conclusions and future work

For this thesis, we looked at the possibilities of using a DBMS for analyzing and man-
aging big genome data. We formally defined a broad range of use cases that are applied
on an everyday basis by bioinformaticians on BAM files. We then developed both a
DBMS implementation, based on MonetDB, and a traditional implementation, written
in C, to solve these use cases and we compared the results of solving the use cases on
both implementations. The initialization time of the DBMS implementation is really high
compared to that of the traditional implementation, because all data have to be loaded
into the DBMS. However, in terms of running times for solving the use cases, the tra-
ditional implementation is often outperformed by the DBMS. Furthermore, experiments
show that solving use cases using the DBMS implementation scales better to bigger BAM
files than the traditional implementation. Experiments have also shown that the DBMS
implementation performs best compared to the traditional implementation when the size
of the result is relatively small.

To reduce both the initialization time and the storage requirements of the DBMS
implementation drastically, we applied the Data Vault Framework to our DBMS imple-
mentation. The query performance of our Data Vault implementation is already close to
that of the original DBMS implementation for most queries. However, our implementa-
tion is still experimental and work needs to be done to really expose the power of the
DVF.

The research question for this thesis was ‘How can a DBMS be exploited to better
support analysis on DNA sequence alignment data?’. The results of our experiments,
combined with the many advantages of using a DBMS to analyze data, show that using the
DBMS implementation is already favorable and hence the research question is answered
by our DBMS implementation.

The Data Vault implementation for BAM files would even be a better answer to the
research question, since it solves the main problems that exist for the DBMS implemen-
tation. Therefore, more research on the Data Vault implementation has the potential to
have a huge impact on the everyday analysis of bioinformaticians.

8.1 Future work

This paper presents a good start for bridging the gap between big genome data and
DBMSs. There is however much more work that can be done in addition to this start.
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This section gives an overview of things that could be done to continue this research.

8.1.1 Improving the Data Vault implementation

The most straightforward and promising future work that can be done is the improve-
ment of the Data Vault implementation, since right now there is just an experimental
implementation. Some ideas for further work on the Data Vault include:

• Create a stable version of the Data Vault implementation, that works on any SQL
query. The current implementation could for example be made more robust by
moving functionality from the physical plan optimizer to the relational algebra
optimizer.

• For the straightforward storage schema in our DBMS implementation, the user can
choose which alignment fields he/she wants to store. Do something similar for the
Data Vault implementation.

• The Data Vault implementation currently performs Just-In-Time loading as a sin-
gle operation. There is a possible performance gain by dividing this operation in
multiple independent sub-operations, that can be executed concurrently.

• Incorporate the Variant Call Format (VCF) file into the Data Vault implementation
as an extra layer of meta data. If a query is executed, the Data Vault then first
sees which information it can extract from its meta data, then it consults the VCF
file for data that it doesn’t have and only as a last resort the BAM file is consulted.

• Add a synchronization mechanism that synchronizes changes between the data in
the DBMS and in the BAM files.

• Implement a caching mechanism for the Data Vault implementation that temporar-
ily stores Just-In-Time loaded data.

• Implement a feedback mechanism that asks the user for permission whenever Just-
In-Time loading is about to load a huge amount of external data.

8.1.2 Experimenting

It would be useful to do more experiments on big BAM files, since right now we can
only speculate about the scalability of our methods. More experiments would also be
very useful for our Data Vault implementation. It would also be interesting to see what
happens to the performance of both the traditional and the DBMS implementations when
they run out of main memory. We would expect MonetDB to behave better in such an
event, since the traditional implementation has to rely on the swapping mechanism of
the OS.

Yet another possibility for experimenting would be to try to use Oracle’s technology
for bioinformatics [2] to solve our use cases and compare the results with the results
presented in this thesis.
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8.1.3 Compressed file systems

All data that we load in the DBMS is decompressed first. Therefore, data blows up
whenever it is inserted in the DBMS to almost five times its compressed size. To prevent
this, research could be done on running a DBMS on a compressed file system.

8.1.4 Querying EXTRA data

In our BAM repository, ~50% of the data is contained in the EXTRA field of the align-
ments. Currently, all of this data is stored a strings in a separate table. Whenever
use cases arise that want to use this data as a filtering step, performance might drop
drastically. Therefore, a more clever solution could perhaps be implemented and tested.

8.1.5 Data visualization

Extracting data from a DBMS is one thing, presenting it in a useful way for analyses
is another. There exist several software solutions that visualize alignment data using a
GUI, of which one of the most prominent is IGV. 1 It might be an interesting additional
feature to be able to render the output of the DBMS to such a GUI. To do this efficiently,
more research needs to be done in how query results can be outputted more efficiently.

8.1.6 Distributed file systems

Whenever a user uses a distributed file system, BAM files are scattered across multiple
nodes. It might be interesting to develop a DBMS implementation that exploits the
multithreading possibilities that a distributed file system gives rise to.

1IGV: http://www.broadinstitute.org/igv/
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Appendix A

Pseudocode for functionality over
alignments

Algorithm 4: Calculate the reverse complement of a sequence string. Simplified
version, since in practice more characters can occur, which happens if, due to uncer-
tainty in the sequencing process, multiple characters are feasible to be in a certain
position. Code assumes that a String can be accessed as a regular zero-based array.

1 ReverseSequence(String seq) begin
2 rev ← empty string of size Length(seq)
3 for i in [0, length(seq)) do
4 switch seq[i] do
5 case ‘A’ rev[Length(seq)−i− 1] = ’T’
6 case ‘T’ rev[Length(seq)−i− 1] = ’A’
7 case ‘C’ rev[Length(seq)−i− 1] = ’G’
8 case ‘G’ rev[Length(seq)−i− 1] = ’C’

9 endsw

10 end
11 return rev

12 end
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Algorithm 5: Compute the reverse of a quality string.

Input : Quality string qual
Output : The reverse of qual

1 ReverseQual(String qual) begin
2 rev ← empty string
3 for i in [0, length(qual)) do
4 rev[Length(seq)−i− 1] = qual[i]
5 Prepend c to rev

6 end
7 return rev

8 end

Algorithm 6: Calculate the actual length of the sequence string of an alignment,
which is defined as the length of the piece of the reference string it is mapped to.

1 SequenceLength(Alignment a) begin
2 count← 0
3 foreach tuple (count i, character c) in a.CIGAR do
4 if c ∈ ‘M ′, ‘D′, ‘N ′, ‘ =′, ‘X ′ then
5 count = count+ i
6 end

7 end
8 return count

9 end
10

Algorithm 7: Calculate the distance between two alignments.

1 Distance(Alignments a1, a2) begin
2 if a1.POS ≥ a2.POS then
3 Swap a1 and a2
4 end
5 return a2.POS − (a1.POS+SequenceLength(a1))

6 end

Algorithm 8: Return True if position lies in the internal segment of alignments
a1 and a2.

1 InInternalSegment(Alignments a1, a2, position) begin
2 if a1.POS ≥ a2.POS then
3 Swap a1 and a2
4 end
5 return (a1.POS+SequenceLength(a1.CIGAR)≤ position < a2.POS )

6 end
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Appendix B

SQL code for initialization of DBMS
implementations

B.1 Schema to store BAM header data

CREATE SCHEMA bam ;

CREATE TABLE ”bam” . ” f i l e s ” (
” f i l e i d ” SMALLINT NOT NULL ,
” f i l e l o c a t i o n ” STRING NOT NULL UNIQUE ,
” f o rmat ve r s i on ” VARCHAR ( 7 ) ,
” s o r t i n g o r d e r ” VARCHAR ( 10 ) ,
”comments” STRING ,
CONSTRAINT ” f i l e s p k e y f i l e i d ”

PRIMARY KEY ( f i l e i d )
) ;

CREATE TABLE ”bam” . ” sq ” (
” sn” STRING NOT NULL ,
” f i l e i d ” SMALLINT NOT NULL ,
” ln ” INT NOT NULL ,
” as ” INT ,
”m5” STRING ,
” sp” STRING ,
”ur” STRING ,
CONSTRAINT ” s q p k e y s n f i l e i d ”

PRIMARY KEY ( sn , f i l e i d ) ,
CONSTRAINT ” s q f k e y f i l e i d ”

FOREIGN KEY ( f i l e i d )
REFERENCES bam. f i l e s ( f i l e i d )

) ;

CREATE TABLE ”bam” . ” rg ” (
” id ” STRING NOT NULL ,
” f i l e i d ” SMALLINT NOT NULL ,
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”cn” STRING ,
”ds” STRING ,
”dt” TIMESTAMP ,
” f o ” STRING ,
” ks ” STRING ,
” lb ” STRING ,
”pg” STRING ,
” p i ” INT ,
” p l ” STRING ,
”pu” STRING ,
”sm” STRING ,
CONSTRAINT ” r g p k e y i d f i l e i d ”

PRIMARY KEY ( id , f i l e i d ) ,
CONSTRAINT ” r g f k e y f i l e i d ”

FOREIGN KEY ( f i l e i d )
REFERENCES bam. f i l e s ( f i l e i d )

) ;

CREATE TABLE ”bam” . ”pg” (
” id ” STRING NOT NULL ,
” f i l e i d ” SMALLINT NOT NULL ,
”pn” STRING ,
” c l ” STRING ,
”pp” STRING ,
”vn” STRING ,
CONSTRAINT ” p g p k e y i d f i l e i d ”

PRIMARY KEY ( id , f i l e i d ) ,
CONSTRAINT ” p g f k e y f i l e i d ”

FOREIGN KEY ( f i l e i d )
REFERENCES bam. f i l e s ( f i l e i d )

) ;

B.2 Schema to store alignment data of BAM file with

file ID i

CREATE TABLE bam. a l i g n m e n t s i (
v i r t u a l o f f s e t BIGINT NOT NULL ,
qname STRING NOT NULL ,
f l a g SMALLINT NOT NULL ,
rname STRING NOT NULL ,
pos INT NOT NULL ,
mapq SMALLINT NOT NULL ,
c i g a r STRING NOT NULL ,
rnext STRING NOT NULL ,
pnext INT NOT NULL ,
t l e n INT NOT NULL ,
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seq STRING NOT NULL ,
qual STRING NOT NULL ,
CONSTRAINT a l i g n m e n t s i p k e y v i r t u a l o f f s e t

PRIMARY KEY ( v i r t u a l o f f s e t )
) ;

CREATE TABLE bam. a l i g n m e n t s e x t r a i (
tag CHAR (2 ) NOT NULL ,
v i r t u a l o f f s e t BIGINT NOT NULL ,
type CHAR (1 ) NOT NULL ,
value STRING ,
CONSTRAINT a l i g n m e n t s e x t r a i p k e y t a g v i r t u a l o f f s e t

PRIMARY KEY ( tag , v i r t u a l o f f s e t ) ,
CONSTRAINT a l i g n m e n t s e x t r a i f k e y v i r t u a l o f f s e t

FOREIGN KEY ( v i r t u a l o f f s e t )
REFERENCES bam. a l i g n m e n t s i ( v i r t u a l o f f s e t )

) ;

B.3 Schema to store alignment pairs of BAM file

with file ID i

CREATE TABLE bam. p a i r e d p r i m a r y a l i g n m e n t s i (
l v i r t u a l o f f s e t BIGINT NOT NULL ,
r v i r t u a l o f f s e t BIGINT NOT NULL ,
qname STRING NOT NULL ,
l f l a g SMALLINT NOT NULL ,
l rname STRING NOT NULL ,
l p o s INT NOT NULL ,
l mapq SMALLINT NOT NULL ,
l c i g a r STRING NOT NULL ,
l r n e x t STRING NOT NULL ,
l pnex t INT NOT NULL ,
l t l e n INT NOT NULL ,
l s e q STRING NOT NULL ,
l q u a l STRING NOT NULL ,
r f l a g SMALLINT NOT NULL ,
r rname STRING NOT NULL ,
r po s INT NOT NULL ,
r mapq SMALLINT NOT NULL ,
r c i g a r STRING NOT NULL ,
r r n e x t STRING NOT NULL ,
r pnext INT NOT NULL ,
r t l e n INT NOT NULL ,
r s e q STRING NOT NULL ,
r q u a l STRING NOT NULL ,
CONSTRAINT p a i r e d p r i m a r y a l i g n m e n t s i p k e y l v o r v o
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PRIMARY KEY ( l v i r t u a l o f f s e t , r v i r t u a l o f f s e t )
) ;

CREATE TABLE bam. p a i r e d s e c o n d a r y a l i g n m e n t s i (
l v i r t u a l o f f s e t BIGINT NOT NULL ,
r v i r t u a l o f f s e t BIGINT NOT NULL ,
qname STRING NOT NULL ,
l f l a g SMALLINT NOT NULL ,
l rname STRING NOT NULL ,
l p o s INT NOT NULL ,
l mapq SMALLINT NOT NULL ,
l c i g a r STRING NOT NULL ,
l r n e x t STRING NOT NULL ,
l pnex t INT NOT NULL ,
l t l e n INT NOT NULL ,
l s e q STRING NOT NULL ,
l q u a l STRING NOT NULL ,
r f l a g SMALLINT NOT NULL ,
r rname STRING NOT NULL ,
r po s INT NOT NULL ,
r mapq SMALLINT NOT NULL ,
r c i g a r STRING NOT NULL ,
r r n e x t STRING NOT NULL ,
r pnext INT NOT NULL ,
r t l e n INT NOT NULL ,
r s e q STRING NOT NULL ,
r q u a l STRING NOT NULL ,
CONSTRAINT p a i r e d s e c o n d a r y a l i g n m e n t s i p k e y l v o r v o

PRIMARY KEY ( l v i r t u a l o f f s e t , r v i r t u a l o f f s e t )
) ;

CREATE TABLE bam. unpa i r ed a l i gn ment s i (
v i r t u a l o f f s e t BIGINT NOT NULL ,
qname STRING NOT NULL ,
f l a g SMALLINT NOT NULL ,
rname STRING NOT NULL ,
pos INT NOT NULL ,
mapq SMALLINT NOT NULL ,
c i g a r STRING NOT NULL ,
rnext STRING NOT NULL ,
pnext INT NOT NULL ,
t l e n INT NOT NULL ,
seq STRING NOT NULL ,
qual STRING NOT NULL ,
CONSTRAINT unpa i r ed a l i gnment s i pkey vo

PRIMARY KEY ( v i r t u a l o f f s e t )
) ;

CREATE TABLE bam. a l i g n m e n t s e x t r a i (
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tag CHAR (2 ) NOT NULL ,
v i r t u a l o f f s e t BIGINT NOT NULL ,
type CHAR (1 ) NOT NULL ,
value STRING ,
CONSTRAINT a l i g n m e n t s e x t r a i p k e y t a g v o

PRIMARY KEY ( tag , v i r t u a l o f f s e t )
) ;

CREATE VIEW bam. unpa i r ed pr imary a l i gnment s i AS

SELECT l v i r t u a l o f f s e t AS v i r t u a l o f f s e t , qname ,
l f l a g AS f l a g , l rname AS rname , l p o s AS pos ,
l mapq AS mapq , l c i g a r AS c igar , l r n e x t AS rnext ,
l pnex t AS pnext , l t l e n AS t l en , l s e q AS seq ,
l q u a l AS qual

FROM bam. p a i r e d p r i m a r y a l i g n m e n t s i
UNION ALL

SELECT r v i r t u a l o f f s e t AS v i r t u a l o f f s e t , qname ,
r f l a g AS f l a g , r rname AS rname , r po s AS pos ,
r mapq AS mapq , r c i g a r AS c igar , r r n e x t AS rnext ,
r pnext AS pnext , r t l e n AS t l en , r s e q AS seq ,
r q u a l AS qual

FROM bam. p a i r e d p r i m a r y a l i g n m e n t s i ;

CREATE VIEW bam. unpa i r ed s e conda ry a l i gnment s i AS

SELECT l v i r t u a l o f f s e t AS v i r t u a l o f f s e t , qname ,
l f l a g AS f l a g , l rname AS rname , l p o s AS pos ,
l mapq AS mapq , l c i g a r AS c igar , l r n e x t AS rnext ,
l pnex t AS pnext , l t l e n AS t l en , l s e q AS seq ,
l q u a l AS qual

FROM bam. p a i r e d s e c o n d a r y a l i g n m e n t s i
UNION ALL

SELECT r v i r t u a l o f f s e t AS v i r t u a l o f f s e t , qname ,
r f l a g AS f l a g , r rname AS rname , r po s AS pos ,
r mapq AS mapq , r c i g a r AS c igar , r r n e x t AS rnext ,
r pnext AS pnext , r t l e n AS t l en , r s e q AS seq ,
r q u a l AS qual

FROM bam. p a i r e d s e c o n d a r y a l i g n m e n t s i ;

CREATE VIEW bam. u n p a i r e d a l l a l i g n m e n t s i AS

SELECT ∗
FROM bam. unpa i r ed pr imary a l i gnment s i
UNION ALL

SELECT ∗
FROM bam. unpa i r ed s e conda ry a l i gnment s i
UNION ALL

SELECT ∗
FROM bam. unpa i r ed a l i gnm ent s i ;
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B.4 SQL code for dividing alignments over the paired

schema

INSERT INTO bam. p a i r e d p r i m a r y a l i g n m e n t s i (
SELECT l . v i r t u a l o f f s e t , r . v i r t u a l o f f s e t , l . qname , l . f l a g , l . rname ,

l . pos , l . mapq , l . c i gar , l . rnext , l . pnext , l . t l en , l . seq , l . qual ,
r . f l a g , r . rname ,

r . pos , r . mapq , r . c i gar , r . rnext , r . pnext , r . t l en , r . seq , r . qual
FROM (

SELECT ∗
FROM bam. unpa i r ed a l i gn ment s i
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <> bam flag ( f l ag , ’ l a s t s egm ’ )

AND bam flag ( f l a g , ’ s e c o a l i g ’ ) = False

AND bam flag ( f l a g , ’ f i r s s e g m ’ ) = True

AND qname IN (
SELECT qname
FROM bam . unpa i r ed a l i gn ment s i
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <>

bam flag ( f l a g , ’ l a s t s egm ’ )
AND bam flag ( f l a g , ’ s e c o a l i g ’ ) = False

GROUP BY qname
HAVING COUNT (∗ ) = 2

AND SUM ( bam flag ( f l a g , ’ f i r s s e g m ’ ) ) = 1
AND SUM ( bam flag ( f l a g , ’ l a s t s egm ’ ) ) = 1

)
) AS l JOIN (

SELECT ∗
FROM bam. unpa i r ed a l i gn ment s i
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <> bam flag ( f l ag , ’ l a s t s egm ’ )

AND bam flag ( f l a g , ’ s e c o a l i g ’ ) = False

AND bam flag ( f l a g , ’ l a s t s egm ’ ) = True

AND qname IN (
SELECT qname
FROM bam . unpa i r ed a l i gn ment s i
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <>

bam flag ( f l a g , ’ l a s t s egm ’ )
AND bam flag ( f l a g , ’ s e c o a l i g ’ ) = False

GROUP BY qname
HAVING COUNT (∗ ) = 2

AND SUM ( bam flag ( f l a g , ’ f i r s s e g m ’ ) ) = 1
AND SUM ( bam flag ( f l a g , ’ l a s t s egm ’ ) ) = 1

)
) AS r

ON l . qname = r . qname
) ;

DELETE FROM bam. unpa i r ed a l i gnm ent s i
WHERE v i r t u a l o f f s e t IN (
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SELECT l v i r t u a l o f f s e t
FROM bam. p a i r e d p r i m a r y a l i g n m e n t s i

) OR v i r t u a l o f f s e t IN (
SELECT r v i r t u a l o f f s e t
FROM bam. p a i r e d p r i m a r y a l i g n m e n t s i

) ;

INSERT INTO bam. p a i r e d s e c o n d a r y a l i g n m e n t s i (
SELECT l . v i r t u a l o f f s e t , r . v i r t u a l o f f s e t , l . qname , l . f l a g , l . rname ,

l . pos , l . mapq , l . c i gar , l . rnext , l . pnext , l . t l en , l . seq , l . qual ,
r . f l a g , r . rname ,

r . pos , r . mapq , r . c i gar , r . rnext , r . pnext , r . t l en , r . seq , r . qual
FROM (

SELECT ∗
FROM bam. unpa i r ed a l i gn ment s i
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <> bam flag ( f l ag , ’ l a s t s egm ’ )

AND bam flag ( f l a g , ’ s e c o a l i g ’ ) = True

AND rname <> ’ ∗ ’
AND pos > 0
AND rnext <> ’ ∗ ’
AND pnext > 0
AND bam flag ( f l a g , ’ f i r s s e g m ’ ) = True

) AS l JOIN (
SELECT ∗
FROM bam. unpa i r ed a l i gn ment s i
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <> bam flag ( f l ag , ’ l a s t s egm ’ )

AND bam flag ( f l a g , ’ s e c o a l i g ’ ) = True

AND rname <> ’ ∗ ’
AND pos > 0
AND rnext <> ’ ∗ ’
AND pnext > 0
AND bam flag ( f l a g , ’ l a s t s egm ’ ) = True

) AS r
ON l . qname = r . qname

AND ( ( l . rnext = ’=’ AND l . rname = r . rname ) OR l . rnext = r . rname )
AND l . pnext = r . pos
AND ( ( r . rnext = ’=’ AND l . rname = r . rname ) OR r . rnext = l . rname )
AND r . pnext = l . pos

) ;

DELETE FROM bam. unpa i r ed a l i gnm ent s i
WHERE v i r t u a l o f f s e t IN (

SELECT l v i r t u a l o f f s e t
FROM bam. p a i r e d s e c o n d a r y a l i g n m e n t s i

) OR v i r t u a l o f f s e t IN (
SELECT r v i r t u a l o f f s e t
FROM bam. p a i r e d s e c o n d a r y a l i g n m e n t s i

) ;
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Appendix C

SQL queries for the straightforward
storage schema

Use case 1.1

SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,
seq , qual

FROM bam. a l i g n m e n t s i
WHERE bam flag ( f l a g , ’ s e c o a l i g ’ ) = False

ORDER BY qname ;

Use case 1.2

SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,
seq , qual

FROM bam. a l i g n m e n t s i
WHERE bam flag ( f l a g , ’ s e c o a l i g ’ ) = False

ORDER BY rname , pos ;

Use case 1.3

SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,
seq , qual

FROM bam. a l i g n m e n t s i
WHERE rname = rname 1 3

AND pos >= pos 1 3 1
AND pos <= pos 1 3 2

ORDER BY pos ;

Use case 1.4

SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,
seq , qual

FROM bam. a l i g n m e n t s i
WHERE qname = qname 1 4
ORDER BY rname , pos ;
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Use case 1.5

SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,
seq , qual

FROM bam. a l i g n m e n t s i
WHERE mapq > mapq 1 5
ORDER BY mapq DESC ;

Use case 2.1

WITH a l i g AS (
SELECT qname , f l ag , seq , qual
FROM bam. a l i g n m e n t s i
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <>

bam flag ( f l a g , ’ l a s t s egm ’ )
AND bam flag ( f l a g , ’ s e c o a l i g ’ ) = False

AND mapq < mapq 2 1
) , a l i g p r o j AS (

SELECT qname , f l ag ,
CASE WHEN bam flag ( f l a g , ’ segm reve ’ )

THEN r e v e r s e s e q ( seq )
ELSE seq END AS seq ,

CASE WHEN bam flag ( f l a g , ’ segm reve ’ )
THEN r e v e r s e q u a l ( qual )
ELSE qual END AS qual

FROM a l i g
WHERE qname IN (

SELECT qname
FROM a l i g
GROUP BY qname
HAVING COUNT (∗ ) = 2

AND SUM ( bam flag ( f l a g , ’ f i r s s e g m ’ ) ) = 1
AND SUM ( bam flag ( f l a g , ’ l a s t s egm ’ ) ) = 1

)
)
SELECT l . qname , l . seq , l . qual , r . seq , r . qual
FROM (

SELECT ∗
FROM a l i g p r o j
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) = True

) AS l JOIN (
SELECT ∗
FROM a l i g p r o j
WHERE bam flag ( f l a g , ’ l a s t s egm ’ ) = True

) AS r
ON l . qname = r . qname

ORDER BY qname ;

Use case 2.2
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WITH a l i g AS (
SELECT qname , f l ag , rname , pos , c i g a r
FROM bam. a l i g n m e n t s i
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <>

bam flag ( f l a g , ’ l a s t s egm ’ )
AND bam flag ( f l a g , ’ s e c o a l i g ’ ) = False

AND qname IN (
SELECT qname
FROM bam. a l i g n m e n t s i
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <>

bam flag ( f l a g , ’ l a s t s egm ’ )
AND bam flag ( f l a g , ’ s e c o a l i g ’ ) = False

GROUP BY qname
HAVING COUNT (∗ ) = 2

AND SUM ( bam flag ( f l a g , ’ f i r s s e g m ’ ) ) = 1
AND SUM ( bam flag ( f l a g , ’ l a s t s egm ’ ) ) = 1

)
)
SELECT

CASE WHEN l . pos < r . pos
THEN r . pos − ( l . pos + s e q l e n g t h ( l . c i g a r ) )
ELSE l . pos − ( r . pos + s e q l e n g t h ( r . c i g a r ) )

END AS di s tance ,
COUNT (∗ ) AS nr a l i gnments

FROM (
SELECT qname , rname , pos , c i g a r
FROM a l i g
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) = True

) AS l JOIN (
SELECT qname , rname , pos , c i g a r
FROM a l i g
WHERE bam flag ( f l a g , ’ l a s t s egm ’ ) = True

) AS r
ON l . qname = r . qname

AND l . rname = r . rname
GROUP BY d i s t anc e
ORDER BY nr a l i gnments DESC ;

Use case 2.3

SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,
seq , qual

FROM bam. a l i g n m e n t s i
WHERE qname IN (

SELECT qname
FROM bam. a l i g n m e n t s i
GROUP BY qname
HAVING SUM ( bam flag ( f l a g , ’ f i r s s e g m ’ ) ) = 0

OR SUM ( bam flag ( f l a g , ’ l a s t s egm ’ ) ) = 0
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)
ORDER BY qname ;

Use case 2.4

SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,
seq , qual

FROM bam. a l i g n m e n t s i
WHERE qname IN (

SELECT qname
FROM (

SELECT qname , bam flag ( f l ag , ’ s e c o a l i g ’ ) AS s e c o a l i g ,
bam flag ( f l a g , ’ segm unma ’ ) AS segm unma ,
bam flag ( f l a g , ’ f i r s s e g m ’ ) AS f i r s s e g m

FROM bam. a l i g n m e n t s i
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <>

bam flag ( f l a g , ’ l a s t s egm ’ )
) AS qnames
GROUP BY qname , f i r s s e g m
HAVING SUM ( segm unma ) < COUNT (∗ )

AND ( COUNT (∗ ) − SUM ( s e c o a l i g ) ) <> 1
)
ORDER BY qname ;

Use case 2.5

WITH qnames1 AS (
SELECT DISTINCT qname
FROM bam. a l i g n m e n t s i

) , qnames2 AS (
SELECT DISTINCT qname
FROM bam. a l i g n m e n t s j

)
SELECT c o un t a i n s c t b ,

count qnames1 − c o u n t a i n s c t b AS count a minus b ,
count qnames2 − c o u n t a i n s c t b AS count b minus a

FROM (
SELECT COUNT (∗ ) AS c o u n t a i n s c t b
FROM (

SELECT ∗
FROM qnames1
INTERSECT

SELECT ∗
FROM qnames2

) AS a i n s c t b
) AS i n s c t sub , (

SELECT COUNT (∗ ) AS count qnames1
FROM qnames1

) AS qnames1 sub , (
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SELECT COUNT (∗ ) AS count qnames2
FROM qnames2

) AS qnames2 sub ;

Use case 2.6

WITH qnames insct AS (
SELECT distinct qname
FROM bam. a l i g n m e n t s i
INTERSECT

SELECT distinct qname
FROM bam. a l i g n m e n t s j

)
SELECT ’ f 1 ’ , qname , f l ag , rname , pos , mapq , c igar , rnext , pnext ,

t l en , seq , qual
FROM bam. a l i g n m e n t s i
WHERE qname IN (

SELECT ∗
FROM qnames insct

)
UNION

SELECT ’ f 2 ’ , qname , f l ag , rname , pos , mapq , c igar , rnext , pnext ,
t l en , seq , qual

FROM bam. a l i g n m e n t s j
WHERE qname IN (

SELECT ∗
FROM qnames insct

)
ORDER BY qname ;

Use case 2.7

SELECT ’ f 1 ’ , qname , f l ag , rname , pos , mapq , c igar , rnext , pnext ,
t l en , seq , qual

FROM bam. a l i g n m e n t s i
WHERE qname IN (

SELECT distinct qname
FROM bam. a l i g n m e n t s i
EXCEPT

SELECT distinct qname
FROM bam. a l i g n m e n t s j

)
ORDER BY qname ;

Use case 2.8

SELECT f 1 . qname , f 1 . f l a g , f 1 . rname , f 1 . pos , f 1 . mapq , f 1 . c i gar ,
f 1 . rnext , f 1 . pnext , f 1 . t l en , f 1 . seq , f 1 . qual ,

f 2 . f l a g , f 2 . rname , f 2 . pos , f 2 . mapq , f 2 . c i gar ,
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f 2 . rnext , f 2 . pnext , f 2 . t l en , f 2 . seq , f 2 . qual
FROM (

SELECT ∗
FROM bam. a l i g n m e n t s i
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <>

bam flag ( f l a g , ’ l a s t s egm ’ )
AND bam flag ( f l a g , ’ s e c o a l i g ’ ) = False

) AS f 1 JOIN (
SELECT ∗
FROM bam. a l i g n m e n t s j
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <>

bam flag ( f l a g , ’ l a s t s egm ’ )
AND bam flag ( f l a g , ’ s e c o a l i g ’ ) = False

) AS f 2
ON f 1 . qname = f2 . qname
AND bam flag ( f 1 . f l a g , ’ f i r s s e g m ’ ) =

bam flag ( f 2 . f l a g , ’ f i r s s e g m ’ )
AND ( f 1 . rname <> f 2 . rname OR f 1 . pos <> f 2 . pos )

ORDER BY qname ;

Use case 2.9

SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,
seq , qual

FROM bam. a l i g n m e n t s i
WHERE rname = rname 2 9

AND pos 2 9 >= pos
AND pos 2 9 < pos + s e q l e n g t h ( c i g a r )

ORDER BY pos ;

Use case 2.10

WITH a l i g AS (
SELECT ∗
FROM bam. a l i g n m e n t s i
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <>

bam flag ( f l a g , ’ l a s t s egm ’ )
AND rname = rname 2 10
AND bam flag ( f l a g , ’ s e c o a l i g ’ ) = False

AND qname IN (
SELECT qname
FROM bam. a l i g n m e n t s i
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <>

bam flag ( f l a g , ’ l a s t s egm ’ )
AND bam flag ( f l a g , ’ s e c o a l i g ’ ) = False

GROUP BY qname
HAVING COUNT (∗ ) = 2

AND SUM ( bam flag ( f l a g , ’ f i r s s e g m ’ ) ) = 1
AND SUM ( bam flag ( f l a g , ’ l a s t s egm ’ ) ) = 1
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)
)
SELECT l . qname , l . f l a g , l . rname , l . pos , l . mapq , l . c i gar ,

l . rnext , l . pnext , l . t l en , l . seq , l . qual ,
r . f l a g , r . rname , r . pos , r . mapq , r . c i gar ,

r . rnext , r . pnext , r . t l en , r . seq , r . qual
FROM (

SELECT ∗
FROM a l i g
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) = True

) AS l JOIN (
SELECT ∗
FROM a l i g
WHERE bam flag ( f l a g , ’ l a s t s egm ’ ) = True

) AS r ON l . qname = r . qname
AND CASE WHEN l . pos < r . pos

THEN ( pos 2 10 >= l . pos + s e q l e n g t h ( l . c i g a r )
AND pos 2 10 < r . pos )

ELSE ( pos 2 10 >= r . pos + s e q l e n g t h ( r . c i g a r )
AND pos 2 10 < l . pos )

END

ORDER BY l p o s ;

Use case 2.11

WITH a l i g AS (
SELECT ∗
FROM bam. a l i g n m e n t s i
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <>

bam flag ( f l a g , ’ l a s t s egm ’ )
AND bam flag ( f l a g , ’ s e c o a l i g ’ ) = True

AND rname <> ’ ∗ ’
AND pos > 0
AND rnext <> ’ ∗ ’
AND pnext > 0

)
SELECT l . qname , l . f l a g , l . rname , l . pos , l . mapq , l . c i gar ,

l . rnext , l . pnext , l . t l en , l . seq , l . qual ,
r . f l a g , r . rname , r . pos , r . mapq , r . c i gar ,

r . rnext , r . pnext , r . t l en , r . seq , r . qual
FROM (

SELECT ∗
FROM a l i g
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) = True

) AS l JOIN (
SELECT ∗
FROM a l i g
WHERE bam flag ( f l a g , ’ l a s t s egm ’ ) = True

) AS r
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ON l . qname = r . qname
AND ( ( l . rnext = ’=’ AND l . rname = r . rname ) OR

l . rnext = r . rname )
AND l . pnext = r . pos
AND ( ( r . rnext = ’=’ AND l . rname = r . rname ) OR

r . rnext = l . rname )
AND r . pnext = l . pos

ORDER BY l . qname ;

Use case 2.12

WITH a l i g AS (
SELECT ∗
FROM bam. a l i g n m e n t s i
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <>

bam flag ( f l a g , ’ l a s t s egm ’ )
AND bam flag ( f l a g , ’ s e c o a l i g ’ ) = True

AND rname <> ’ ∗ ’
AND pos > 0
AND rnext = ’ ∗ ’
AND pnext = 0

)
SELECT ∗
FROM (

SELECT l . qname , l . rname , l . f l a g , l . pos , l . mapq , l . c i gar ,
l . rnext , l . pnext , l . t l en , l . seq , l . qual ,

r . f l a g , r . pos , r . mapq , r . c i gar ,
r . rnext , r . pnext , r . t l en , r . seq , r . qual ,

CASE WHEN l . pos < r . pos
THEN r . pos − ( l . pos + s e q l e n g t h ( l . c i g a r ) )
ELSE l . pos − ( r . pos + s e q l e n g t h ( r . c i g a r ) )

END AS d i s t anc e
FROM (

SELECT ∗
FROM a l i g
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) = True

) AS l JOIN (
SELECT ∗
FROM a l i g
WHERE bam flag ( f l a g , ’ l a s t s egm ’ ) = True

) AS r
ON l . qname = r . qname
AND l . rname = r . rname

) AS a l i g j o i n e d
WHERE d i s t anc e > 0

AND d i s t anc e < d i s t a n c e 2 1 2
ORDER BY rname ;
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Appendix D

SQL queries for the pairwise storage
schema

Use case 1.1

SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,
seq , qual

FROM bam. unpa i r ed pr imary a l i gnment s i
UNION

SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,
seq , qual

FROM bam. unpa i r ed a l i gnm ent s i
WHERE bam flag ( f l a g , ’ s e c o a l i g ’ ) = False

ORDER BY qname ;

Use case 1.2

SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,
seq , qual

FROM bam. unpa i r ed pr imary a l i gnment s i
UNION

SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,
seq , qual

FROM bam. unpa i r ed a l i gnm ent s i
WHERE bam flag ( f l a g , ’ s e c o a l i g ’ ) = False

ORDER BY rname , pos ;

Use case 1.3

SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,
seq , qual

FROM bam. u n p a i r e d a l l a l i g n m e n t s i
WHERE rname = rname 1 3

AND pos >= pos 1 3 1
AND pos <= pos 1 3 2

ORDER BY pos ;
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Use case 1.4

SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,
seq , qual

FROM bam. u n p a i r e d a l l a l i g n m e n t s i
WHERE qname = qname 1 4
ORDER BY rname , pos ;

Use case 1.5

SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,
seq , qual

FROM bam. u n p a i r e d a l l a l i g n m e n t s i
WHERE mapq > mapq 1 5
ORDER BY mapq DESC ;

Use case 2.1

SELECT qname ,
CASE WHEN bam flag ( l f l a g , ’ segm reve ’ )

THEN r e v e r s e s e q ( l s e q )
ELSE l s e q END AS l s e q ,

CASE WHEN bam flag ( l f l a g , ’ segm reve ’ )
THEN r e v e r s e q u a l ( l q u a l )
ELSE l q u a l END AS l qua l ,

CASE WHEN bam flag ( r f l a g , ’ segm reve ’ )
THEN r e v e r s e s e q ( r s e q )
ELSE r s e q END AS r s eq ,

CASE WHEN bam flag ( r f l a g , ’ segm reve ’ )
THEN r e v e r s e q u a l ( r q u a l )
ELSE r q u a l END AS r q u a l

FROM bam. p a i r e d p r i m a r y a l i g n m e n t s i
WHERE l mapq < mapq 2 1

AND r mapq < mapq 2 1
ORDER BY qname ;

Use case 2.2

SELECT

CASE WHEN l p o s < r po s
THEN r po s − ( l p o s + s e q l e n g t h ( l c i g a r ) )
ELSE l p o s − ( r po s + s e q l e n g t h ( r c i g a r ) )

END AS di s tance ,
COUNT (∗ ) AS nr a l i gnments

FROM bam. p a i r e d p r i m a r y a l i g n m e n t s i
WHERE l rname = r rname
GROUP BY d i s t anc e
ORDER BY nr a l i gnments DESC ;
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Use case 2.3

SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,
seq , qual

FROM bam. u n p a i r e d a l l a l i g n m e n t s i
WHERE qname IN (

SELECT qname
FROM bam. u n p a i r e d a l l a l i g n m e n t s i
GROUP BY qname
HAVING SUM ( bam flag ( f l a g , ’ f i r s s e g m ’ ) ) = 0

OR SUM ( bam flag ( f l a g , ’ l a s t s egm ’ ) ) = 0
)
ORDER BY qname ;

Use case 2.4

SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,
seq , qual

FROM bam. u n p a i r e d a l l a l i g n m e n t s i
WHERE qname IN (

SELECT qname
FROM (

SELECT qname , bam flag ( f l ag , ’ s e c o a l i g ’ ) AS s e c o a l i g ,
bam flag ( f l a g , ’ segm unma ’ ) AS segm unma ,
bam flag ( f l a g , ’ f i r s s e g m ’ ) AS f i r s s e g m

FROM bam. u n p a i r e d a l l a l i g n m e n t s i
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <>

bam flag ( f l a g , ’ l a s t s egm ’ )
) AS qnames
GROUP BY qname , f i r s s e g m
HAVING SUM ( segm unma ) < COUNT (∗ )

AND ( COUNT (∗ ) − SUM ( s e c o a l i g ) ) <> 1
)
ORDER BY qname ;

Use case 2.5

WITH qnames1 AS (
SELECT DISTINCT qname
FROM bam. u n p a i r e d a l l a l i g n m e n t s i

) , qnames2 AS (
SELECT DISTINCT qname
FROM bam. u n p a i r e d a l l a l i g n m e n t s j

)
SELECT c o un t a i n s c t b ,

count qnames1 − c o u n t a i n s c t b AS count a minus b ,
count qnames2 − c o u n t a i n s c t b AS count b minus a

FROM (
SELECT COUNT (∗ ) AS c o u n t a i n s c t b
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FROM (
SELECT ∗
FROM qnames1
INTERSECT

SELECT ∗
FROM qnames2

) AS a i n s c t b
) AS i n s c t sub , (

SELECT COUNT (∗ ) AS count qnames1
FROM qnames1

) AS qnames1 sub , (
SELECT COUNT (∗ ) AS count qnames2
FROM qnames2

) AS qnames2 sub ;

Use case 2.6

WITH qnames insct AS (
SELECT distinct qname
FROM bam. u n p a i r e d a l l a l i g n m e n t s i
INTERSECT

SELECT distinct qname
FROM bam. u n p a i r e d a l l a l i g n m e n t s j

)
SELECT ’ f 1 ’ , qname , f l ag , rname , pos , mapq , c igar , rnext , pnext ,

t l en , seq , qual
FROM bam. u n p a i r e d a l l a l i g n m e n t s i
WHERE qname IN (

SELECT ∗
FROM qnames insct

)
UNION

SELECT ’ f 2 ’ , qname , f l ag , rname , pos , mapq , c igar , rnext , pnext ,
t l en , seq , qual

FROM bam. u n p a i r e d a l l a l i g n m e n t s j
WHERE qname IN (

SELECT ∗
FROM qnames insct

)
ORDER BY qname ;

Use case 2.7

SELECT ’ f 1 ’ , qname , f l ag , rname , pos , mapq , c igar , rnext , pnext ,
t l en , seq , qual

FROM bam. u n p a i r e d a l l a l i g n m e n t s i
WHERE qname IN (

SELECT DISTINCT qname
FROM bam. u n p a i r e d a l l a l i g n m e n t s i
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EXCEPT

SELECT DISTINCT qname
FROM bam. u n p a i r e d a l l a l i g n m e n t s j

)
ORDER BY qname ;

Use case 2.8

SELECT f 1 . qname , f 1 . f l a g , f 1 . rname , f 1 . pos , f 1 . mapq , f 1 . c i gar ,
f 1 . rnext , f 1 . pnext , f 1 . t l en , f 1 . seq , f 1 . qual ,

f 2 . f l a g , f 2 . rname , f 2 . pos , f 2 . mapq , f 2 . c i gar ,
f 2 . rnext , f 2 . pnext , f 2 . t l en , f 2 . seq , f 2 . qual

FROM (
SELECT ∗
FROM bam . unpa i r ed pr imary a l i gnment s i

) AS f 1 JOIN (
SELECT ∗

FROM bam. unpa i r ed pr imary a l i gnment s j
) AS f 2

ON f 1 . qname = f2 . qname
AND bam flag ( f 1 . f l a g , ’ f i r s s e g m ’ ) =

bam flag ( f 2 . f l a g , ’ f i r s s e g m ’ )
AND ( f 1 . rname <> f 2 . rname OR f 1 . pos <> f 2 . pos )

ORDER BY qname ;

Use case 2.9

SELECT qname , f l ag , rname , pos , mapq , c igar , rnext , pnext , t l en ,
seq , qual

FROM bam. u n p a i r e d a l l a l i g n m e n t s i
WHERE rname = rname 2 9

AND pos 2 9 >= pos
AND pos 2 9 < pos + s e q l e n g t h ( c i g a r )

ORDER BY pos ;

Use case 2.10

SELECT qname , l f l a g , l rname , l po s , l mapq , l c i g a r , l r n e x t ,
l pnext , l t l e n , l s e q , l qua l ,

r f l a g , r rname , r pos , r mapq , r c i g a r , r rnext ,
r pnext , r t l e n , r s eq , r q u a l

FROM bam. p a i r e d p r i m a r y a l i g n m e n t s i
WHERE l rname = rname 2 10

AND r rname = rname 2 10
AND CASE WHEN l p o s < r po s

THEN ( pos 2 10 >= l p o s + s e q l e n g t h ( l c i g a r )
AND pos 2 10 < r po s )

ELSE ( pos 2 10 >= r pos + s e q l e n g t h ( r c i g a r )
AND pos 2 10 < l p o s )
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END

ORDER BY l p o s

Use case 2.11

SELECT qname , l f l a g , l rname , l po s , l mapq , l c i g a r , l r n e x t ,
l pnext , l t l e n , l s e q , l qua l ,

r f l a g , r rname , r pos , r mapq , r c i g a r , r rnext ,
r pnext , r t l e n , r s eq , r q u a l

FROM bam. p a i r e d s e c o n d a r y a l i g n m e n t s i
ORDER BY qname ;

Use case 2.12

WITH a l i g AS (
SELECT ∗
FROM bam. unpa i r ed a l i gnm ent s i
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) <>

bam flag ( f l a g , ’ l a s t s egm ’ )
AND bam flag ( f l a g , ’ s e c o a l i g ’ ) = True

AND rname <> ’ ∗ ’
AND pos > 0
AND rnext = ’ ∗ ’
AND pnext = 0

)
SELECT ∗
FROM (

SELECT l . qname , l . rname , l . f l a g , l . pos , l . mapq , l . c i gar ,
l . rnext , l . pnext , l . t l en , l . seq , l . qual ,

r . f l a g , r . pos , r . mapq , r . c i gar ,
r . rnext , r . pnext , r . t l en , r . seq , r . qual ,

CASE WHEN l . pos < r . pos
THEN r . pos − ( l . pos + s e q l e n g t h ( l . c i g a r ) )
ELSE l . pos − ( r . pos + s e q l e n g t h ( r . c i g a r ) )

END AS d i s t anc e
FROM (

SELECT ∗
FROM a l i g
WHERE bam flag ( f l a g , ’ f i r s s e g m ’ ) = True

) AS l JOIN (
SELECT ∗
FROM a l i g
WHERE bam flag ( f l a g , ’ l a s t s egm ’ ) = True

) AS r
ON l . qname = r . qname
AND l . rname = r . rname

) AS a l i g j o i n e d
WHERE d i s t anc e > 0 AND d i s t anc e < d i s t a n c e 2 1 2
ORDER BY rname ;
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Appendix E

Plots showing implementation
performance

E.1 Small files – full-output approach

Use case 1.1

Use case 1.2

93



Use case 1.3

Use case 1.4

Use case 1.5
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Use case 2.1

Use case 2.2

Use case 2.3
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Use case 2.4

Use case 2.5

Use case 2.6
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Use case 2.7

Use case 2.8

Use case 2.9
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Use case 2.10

Use case 2.11

Use case 2.12
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E.2 Small files – minimal-output approach perfor-

mance increase

Use case 1.1

Use case 1.2

Use case 1.3
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Use case 1.4

Use case 1.5

Use case 2.3
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Use case 2.4

Use case 2.6

Use case 2.7
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Use case 2.8

Use case 2.9

Use case 2.10
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Use case 2.11

Use case 2.12
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E.3 Big files – ‘minimal-output’ approach

Use case 1.1 Use case 1.2

Use case 1.3 Use case 1.4

Use case 1.5
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E.4 Small files – Straightforward storage schema ver-

sus Data Vault implementation

Use case 1.1

Use case 1.2

Use case 1.3
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Use case 1.4

Use case 1.5

Use case 2.1
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Use case 2.2

Use case 2.3

Use case 2.4
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Use case 2.5

Use case 2.6

Use case 2.7
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Use case 2.8

Use case 2.9

Use case 2.10
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Use case 2.11

Use case 2.12
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