
Utrecht University - Centrum voor

Wiskunde en Informatica

Masters Thesis

Estimating Aggregations over Joins

Author:
Abe Wits

Daily Supervisors:
Hannes Mühleisen (CWI)

Lefteris Sidirourgos (CWI)

UU Supervisors:
Tristan van Leeuwen (UU Math)

Hans Philippi (UU CS)

Σ

on

R1 R2

Σ

P

on

R1 R2

Σ

on

P

R1

R2

Σ

on

P

R1

P

R2

Σ

P

on

P

R1

R2

Σ

P

on

P

R1

P

R2

Σ

σ

on

R1 R2

Σ

σ

P

on

R1 R2

Σ

σ

on

P

R1

R2

Σ

σ

on

P

R1

P

R2

Σ

σ

P

on

P

R1

R2

Σ

σ

P

on

P

R1

P

R2

Σ

on

σ

R1

σ

R2

Σ

P

on

σ

R1

σ

R2

Σ

on

P

σ

R1

σ

R2

Σ

on

P

σ

R1

P

σ

R2

Σ

P

on

P

σ

R1

σ

R2

Σ

P

on

P

σ

R1

P

σ

R2

CWI database Architectures
UU Departement of Mathematics - UU Departement of Computer Science

December 1, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301660963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.uu.nl
http://www.cwi.nl
http://www.cwi.nl
https://www.cwi.nl/research-groups/database-architectures
http://www.uu.nl/en/organisation/mathematical-institute
http://.com

3

Contents

1 Introduction 5

2 Preliminaries 9
2.1 Sampling . 9

2.1.1 Uniform sampling . 10
2.1.2 Weighted sampling . 12

3 State of the Art 15
3.1 Sampling Through Joins . 15

3.1.1 Baseline sample join 16
3.1.2 “Fast” baseline sample join 17
3.1.3 Stream Sample Join 17
3.1.4 Mini-Join . 18
3.1.5 Additional sample join algorithms 18

3.2 Sampling For Aggregation . 19
3.2.1 Aggregation through uniform sampling 20
3.2.2 Aggregation through stratified sampling 20
3.2.3 Aggregation through weighted sampling 22

4 Approximate Aggregation over Joins 25
4.1 Sampling Through Joins . 25

4.1.1 (Heuristic) Stream Sample Join 25
4.1.2 (Heuristic) Weighted Stream Sample Join 26
4.1.3 Faster than linear Heuristic Weighted Sampling 28
4.1.4 Uniform Stream Sample Join 30
4.1.5 Theoretical comparison 31

4.2 Combining Sample-Join with Aggregation 34
4.2.1 Baseline strategies . 34
4.2.2 Novel strategies . 35

5 Experiments 37
5.1 Data generation . 37

5.1.1 Generate data given skew and weight ratio 39
5.1.2 Generate data given sparsity, bias and weight ratio . . 40

5.2 Assessing the Quality of
Heuristic Weighted Sampling 42
5.2.1 Theory behind the experiments 43
5.2.2 Practical setup of the experiments 44
5.2.3 Experimental results 45

5.3 Comparison of Sample-Join Algorithms 47
5.3.1 Comparing the quality 47
5.3.2 Comparing the run-time 48

4 Contents

6 Conclusion and Future Work 55
6.1 Conclusion . 55
6.2 Future Work . 55

6.2.1 Experimenting with stratified sampling over WS-join . 56
6.2.2 Extending estimation of aggregation over joins for dif-

ferent aggregation functions 56
6.2.3 Determining the quality difference between US-join

and Stream Sample Join 56
6.2.4 Data generation . 56
6.2.5 Sample synopsis . 57

Acknowledgements 59

5

Chapter 1

Introduction

Computer scientists and mathematicians study closely related topics. How-
ever, there is a fundamental conflict between computer science and math-
ematics. In computer science, the emphasis is typically put on producing
results that work well in a computational setting. Meanwhile, in mathemat-
ics, the focus is usually on rigid proofs. A computer scientist may think that
formal proofs are unnecessary. A mathematician may think that the imple-
mentation is an easy or unimportant problem. In many cases, these fields
will use a different language, which is tailored to their own goals, adding to
misapprehension between the fields.

Figure 1.1: Comparing the art of Mathematics with the
art of Computer Science

We will try to bring computer science and mathematics closer to each
other, by keeping an eye on the theoretical and practical aspects, and by
describing it in a consistent notation. Specifically, we will combine math-
ematical theory on sampling and statistics with Approximate Query Pro-
cessing (AQP). AQP is the field that speeds up the answering of queries on
databases by using approximations. Some sampling theory is already used
in this field. However, this does not include all state of the art sampling
techniques. In Chapter 2 we review the theoretical framework of sampling
and describe some popular sampling techniques and their complexity.

The main goal of this thesis is to efficiently approximate the aggregation
over a join. More formally, the goal is to approximate the following logical
query plan:

6 Chapter 1. Introduction

∑
σ12

on

σ1

R1

σ2

R2

Figure 1.2: The target query

In Figure 1.2, R1 and R2 represent two relations, and σ, on and
∑

repre-
sent operators from a relational algebra. The symbol σ denotes a filter, and
is known as SELECT in SQL. The natural join is represented by on, which
combines rows that have common attributes. The operator

∑
computes the

sum over some attribute, and is also known as SUM in SQL. Estimating the
sum by using samples has been studied extensively in AQP, see Section 3.2.
Instead of taking a sum directly, we first take a sample and then we esti-
mate the total sum from this sample. Schematically, we can describe this
approximation as follows: ∑

R
→

∑
T

PT

R

Figure 1.3: Approximating the sum

Here PT denotes the sampling operator. T denotes its type, which we choose
to be uniform for now.

∑
T is an adjusted sum operator

∑
R ≈ |R|m

∑
PT(R).

Here m is the sample size. We can apply this technique to approximate the
aggregation over a join: ∑

σ12

on

σ1

R1

σ2

R2

→

∑
T

σ12

PT

on

σ1

R1

σ2

R2

Figure 1.4: Approximating the sum in the target query

This allows for some speedup. However, we have not sped up the join op-
erator, which dominates the runtime, so the speedup is relatively small. It
is possible to obtain a uniform sample of the join result without calculating
the join explicitly. This can be done by using the Stream Sample Join algo-
rithm [7], which we will discuss in Section 3.1. Stream Sample Join “pushes”
the sampling operator through the join. This is the resulting updated logical
query plan:

Chapter 1. Introduction 7

∑
σ12

on

σ1

R1

σ2

R2

→

∑
T

σ12

õn

σ1

PT’

R1

σ2

R2

Figure 1.5: Approximating the sum and pushing down the
sampling operator in the target query

Here õn and PT’ are an adjusted join and an adjusted sampling operator (see
Section 3.1 for details). They make sure that the output is a mathematically
correct uniform sample of the join result. This logical query plan combines
the state of the art techniques to approximate the query result. However,
the state of the art can be improved in two ways.

1. We can choose T stratified or weighted (see Figure 1.6) to improve the
runtime and/or quality of the estimated sum

∑
R ≈

∑
T(S ⊂ R). All

element have equal probability to be selected by a uniform sampling
operator. In a stratified sample, this probability can differ for groups of
elements. In a weighted sample all elements have their own probability.
By choosing a higher selection probability for “interesting” (groups of)
elements, the aggregation can be estimated more accurately with a
smaller sample. See Section 3.2 for more information.

2. The adjusted sampling operator, PT’(R), takes O(|R|) time. This can
be sped up. This can be done by using indices, by taking a heuristic
sample, or by forcing PT’ to be uniform. See Section 4.1 for a full
description.

There is an intricate interplay between these two optimisations (see Sec-
tion 4.2). A fast sampling operator might produce a sample with weights
that do not suit the aggregation. Obtaining a weighted sample that allows
efficient aggregation may not be possible, if certain statistics on R1 have
not been pre processed. We discuss the results of our experiments and their
implementation in Chapter 5. Finally, in Chapter 6 we draw our conclusions
and discuss potential future work.

uniform stratified weighted

T-types

w

i

ww

ii

Figure 1.6: Overview of the different T-types for the op-
erators PT’ and

∑
T.

9

Chapter 2

Preliminaries

In this chapter we review some essential techniques that are needed to read
this thesis. Some proofs are included to familiarize the reader with notation
and the type of reasoning behind sampling algorithms. A good understand-
ing of these proofs will help the reader to comprehend why certain sampling
techniques have a certain complexity, and what it means for a sampling
algorithm to be correct in a formal sense. A motivation for including this
section is that some work on sampling in AQP shows a lack of interest for the
runtime of sampling. For example, one paper [7] describes slow algorithms
for with-replacement uniform sampling (Black-Box U1 and Black-Box U2),
and only refers to a much faster algorithm [27] without mentioning the com-
plexity. Another paper [16] seems to imply that Weighted Sampling can be
done with a runtime linear in the size of a sample, which is incorrect (see
Section 2.1.2).

2.1 Sampling

Let us start at the beginning: What is a sample?

“A sample is a subset of a population that is obtained through
some process, possibly random selection or selection based on
a certain set of criteria, for the purposes of investigating the
properties of the underlying parent population.”

–Eric Weisstein

Taking the top cookie from a jar to see if you would buy the whole jar
fits this definition. However, we will not discuss how to select cookies in this
thesis. Instead we focus on certain types of samples only. We will always
sample from some list of numeric values (floating point, real or integer). The
selection criterion will always be precisely defined and based on randomness.
And we investigate aggregations (the sum, the average, the minimum, etc)
over the underlying parent population. The desired sample size is chosen
before sampling, and a sample of exactly the desired size is always taken.

We distinguish two kinds of sampling; sampling with replacement and
sampling without replacement. When sampling with replacement, one el-
ement in the parent population could be selected multiple times. When
sampling without replacement, an element in the parent population can be
put into the sample only once.

http://mathworld.wolfram.com/Sample.html

10 Chapter 2. Preliminaries

2.1.1 Uniform sampling

A uniform sample takes elements from the parent population uniform ran-
domly; every element has the same selection probability. Given some re-
lation R with n elements, we want to construct a size r uniform sample
S = {S1, S2, · · · , Sr} ⊂ R = {R1, R2, · · · , Rn} without replacement. By
definition, S is a uniform sample (without replacement) of R if and only
if elements in S are drawn independently and P(Rj ∈ S) = r

n for all j.
Here P(∗) denotes a probability. If a sampling procedure yields a sample
with slightly different probabilities, the procedure is biased. If elements of S
are not obtained independently, this induces correlation. To illustrate why
correlation is bad; suppose we draw Ri as the first element of S uniform
randomly, and then just take Ri+1, Ri+2, · · · sequentially to obtain the rest
of S. This sample does have the property that P(Rj ∈ S) = r

n for all j.
However, it usually is not a “good” sample! For example, if the elements
of R are sorted by value, the sequential sample contains a small range of
similar values, which is not representative for R.

To illustrate how a uniform sample might be taken, we will now describe
reservoir sampling [27, 12], a well known algorithm for taking uniform sam-
ples without replacement. The reservoir sampling algorithm for sampling
with replacement is very similar.

input: R = {R1, R2, · · · , Rn}
output: S = {S1, S2, · · · , Sr}, a uniform sample of R w/o repl.
Initialize S; S1 ← R1, S2 ← R2, · · · , Sr ← Rr
for i ∈ {r + 1, r + 2, · · · , n} do

Do with probability r
i

Let j uniform random in {1, 2, · · · , r}
Sj ← Ri.

End

end

Algorithm 1: Uniform reservoir sampling without jumps

We prove that this approach yields a uniform sample (without replacement)
using induction.

• Induction basis. When n = r, the algorithm will simply yield the
sample S = R. This is a uniform sample without replacement (in fact,
it is the only possible sample).

• Induction hypothesis. At iteration i = n−1 we have a uniform sample
of {R1, R2, · · · , Rn−1}

• Induction step. From the induction hypothesis we know P(Ri ∈ S) = r
n−1

at iteration n− 1. In iteration n we replace some Sj by Rn with prob-
ability r

i = r
n , thus P(Rn ∈ S) = r

n . For any ` < n, the probability
that R` ∈ S was r

n−1 before this replacement, and becomes:

2.1. Sampling 11

r

n− 1
P(Si = R` not replaced by Rn) =

r

n− 1

(
P(Rn /∈ S) + P(Rn ∈ S)

r − 1

r

)
=

r

n− 1

((
1− r

n

)
+
r

n

r − 1

r

)
=

r

n− 1

(
n− r
n

+
r − 1

n

)
=

r

n− 1

(
n− 1

n

)
=
r

n

We conclude that S is a uniform sample without replacement in R �

This algorithm yields a uniform sample without replacement in O(n)
time using O(r) memory. However, this requires us to compute a random
variate for every element, which is a time intensive operation in practice.
It can be sped up by using exponential jumps; instead of doing a random
experiment for every element in R to check if it should replace an element
in S, we do a random experiment to immediately jump to the next element
in R that replaces an element in S. The difficulty lies with choosing the
distribution of the jumps in the correct way.

input: R = {R1, R2, · · · , Rn}
output: S = {S1, S2, · · · , Sr}, a uniform sample of R w/o repl.
Initialize S; S1 ← R1, S2 ← R2, · · · , Sr ← Rr
Set i← r + jump(r)
while i < n do

Let j uniform random in {1, 2, · · · , r}
Sj ← Ri.
i← i+ jump(i)

end

Algorithm 2: Uniform reservoir sampling with Jumps

Since we must jump forward at least one element:

P(jump(i) = 0) = 0

From uniform reservoir sampling without jumps we know that:

P(jump(i) = 1) =
r

i+ 1

From the above statements and probability theory we can deduce:

P(jump(i) = k) = P (jump(i) ≥ k)
r

i+ k

=

(
k−1∏
`=1

(
1− P(jump(i) = `)

)) r

i+ k

12 Chapter 2. Preliminaries

This jump distribution can be precomputed (partially), or it can be (closely)
approximated using a geometric distribution [27]. By computing a random
variate of the jump distribution in O(1) time, the time complexity of uniform
reservoir sampling is linear in the number of replacements in S; the expected
number of replacements is

∑n
i=r+1

r
i = O(r log n

r).
Uniform samples with replacement can be taken in O(r) time by repeat-

edly (r times) generating a random index i between 1 and n, and adding Ri
to S. While the big-O complexity is a useful tool to asses runtime efficiency,
hidden constant factors can be crucial in practice. In this case, the reali-
ties of the actual computing hardware play an important role. Repeatedly
generating a random index in R will lead to random access to the back-end
storage device. If the storage device is main memory, the difference in access
time is not gigantic, but for a classic hard drive random reads take much
more time per read than sequential reads [11]. Reservoir sampling keeps the
sampling process sequential, which has several benefits:

• It may save disk reads if sampled elements are adjacent

• It can be applied even if R streams by only once

• n does not have to be known apriori

2.1.2 Weighted sampling

A weighted sample is a sample where different elements can have different
selection probability. As before, we will denote the sample by S and the
parent population by R. The weights of R = (R1, R2, · · · , Rn) are denoted
by the w = (w1, w2, · · · , wn). From these weights selection probabilities can
be computed:

sampling type selection probability

with replacement ∀i∀jP(Ri = Sj) = wi∑n
i=1 wi

without replacement ∀iP(Ri ∈ S) = |S|
|R|

While sampling with replacement, the selection probabilities remain un-
changed. However, while sampling without replacement, the weight of the
sampled elements is removed. If, for example, element k has been selected,
the remaining probabilities are:

P(element Ri is drawn) = pi = 1(i 6= k)
wi

−wk +
∑n

j=1wj

Here 1(∗) is the indicator function, which takes the value 1 if its argument
is true, and which takes the value 0 if its argument does not hold.

Reservoir sampling can be adopted to take weighted samples [12]. To
reduce the number of random variates that has to be drawn, exponential
jumps can be used in a way very similar to the uniform sampling case.
Instead of jumping over an amount of elements, this jumps over a certain
weight. Hence, to determine the number of elements to skip, the sum over the
weights still has to be determined. As a result, weighted reservoir sampling

2.1. Sampling 13

with exponential jumps remains a O(n) time, O(r) memory algorithm. This
linear time complexity limits the usability of weighted reservoir sampling on
very big data. On such data taking a uniform sample in O(r) time is still
feasible.

The O(n) time complexity of reservoir sampling is not bad; without spe-
cial indices, all weighted sampling algorithms need Ω(n) time (Ω(n) means
asymptotically worse or equal to O(n) time). This can be made intuitive by
looking at a corner case; suppose pj = 0.9 and pi 6=j = 0.1

n−1 . p is normalised
and, on average, a weighted sample with replacement should contain Rj
with probability at least 90%. Thus any good weighted sampling algorithm
should know where Rj is, requiring at least one linear pass over all the
weights, taking Ω(n) time. In this sense, reservoir sampling has an optimal
time complexity. However, it is possible to device a faster algorithm if we
approximate the weighted samples heuristically; we introduce a novel (and
the first) Heuristic Weighted Sampling algorithm in Section 4.1.3.

With the help of auxiliary data structures, we can obtain samples (with
replacement) with a better time complexity. Suppose we have the nor-
malized Cumulative Distribution Function (CDF) of p, which can be de-

fined as Ci =
∑i
j=1 wj∑n
j=1 wj

. To sample one element a random double x is

taken in [0, 1[. Let i the biggest index such that wi ≤ x; observe that
P(i = j) = Cj − Cj−1 = pj , so this approach does indeed yield an element
with the correct selection probability. The index i can be found using a bi-
nary search in the CDF in O(log(n)) time, hence the total time complexity
of this algorithm is O(r log(n)). This algorithm can be adopted to take sam-
ples without replacement by simply redrawing an element if it was already
present in S (a data structure for detecting duplicates is required). As long
as the total weight of S remains small relative to the total weight of R, this
approach is efficient.

We cannot expect that a normalized CDF is always available; it takes
linear storage and needs to be precomputed in linear time. The storage
overhead is not always acceptable. Precomputing CDFs for intermediate
query results (for example after a filter) is not feasible without a priori
knowledge; the number of possible intermediate query results is practically
infinite.

15

Chapter 3

State of the Art

In this chapter we will discuss the current state of the art techniques to
sample through joins (Section 3.1) and to estimate aggregates from samples
(Section 3.2). By combining these techniques, we can efficiently approximate
aggregations over joins. We will discuss how to combine these techniques,
and improvements of Sampling Through Join techniques in Chapter 4.

3.1 Sampling Through Joins

In this section we will discuss how to obtain a sample over a join efficiently,
using some of the current state of the art techniques. In Section 4.1 we
extend and improve some of these techniques.

Let us formalize the problem setting. See Figure 3.1 for an overview of
the notation used in this section. Suppose we have two relations, R1(A,B)
and R2(A,C). We want to compute a (uniform) sample (with replacement)
over J = R1 on R2 efficiently. We want this sample to have size α|J | ∈ N
for some α ∈ [0, 1]. R1 and R2 join over attribute A, which attains values
a1, a2, a3, · · · . The number of tuples t ∈ Rj with t.A = ai is denoted with
mj(ai) for j ∈ {1, 2}.

The most basic approach is to compute the full join and sample from
that. This can be sped up by “pushing down” the sampling operator. With
“pushing the sampling operator down through a join” (or “sample through a
join” for short), we refer to moving the sampling operator down in the logical
query plan so the sampling is performed before the join is executed. This
reduces the size of the input of the join, which can result in a big speedup.
For the same reason, filters are often pushed down joins.

It is not efficient to simply push down uniform sampling through a Join
operator. An example (based on an example by Chaudhuri et al [7]); suppose
R1.A = {1, 1, 1, 1, 1, 2, 1} and R2.A = {2, 2, 2, 2, 2, 2, 2, 2, 2}. Note that all
elements of R1 onA R2 are the result of joining just one tuple of R1 with all
the tuples of R2. Hence if we were to instead join S1 ⊂ R1 with S2 ⊂ R2,
the result will likely be empty. In this section we will describe some other
ways of pushing sampling through a join.

The techniques described strive to achieve several goals.

• Create truly uniform samples (no bias, no correlation)

• Be computationally efficient (in terms of time and memory)

• Depend on as few indices/statistics as possible

Constructing an index is more expensive than the direct execution of an
exact weighted sampling algorithm. To avoid this problem, it is possible

16 Chapter 3. State of the Art

R1

R2
A

C

A

B

a1

a1

a2 a3 a4 ...

...a2 a3

n1

n2

m2(a3)

m1(a3)

ak1

ak2

Figure 3.1: The notation used in the section on sampling
through joins, which is based on the notation used by Chaud-
huri et al [7]. In this picture, R1 and R2 are stratified by val-
ues of A to illustrate the meaning of m1 and m2. Whenever
R1 and/or R2 is assumed to be stratified, this is mentioned

explicitly.

to pre-process the data to construct and store indices. We do not know
which attributes are relevant in advance, so it may be necessary to store
many indices. However, we do want to depend on as few indices/statistics
as possible, since there are some common cases where pre-processing is not
possible:

• Intermediate query steps; it is hard to predict what the intermediate
query results will be, let alone index them.

• Big datasets and/or small memory; we cannot assume there is enough
space available to store indices/statistics.

• Updates; if the data is changed, updating the indices can be time
consuming

• Streaming setting; in a streaming setting the data must be processed
in one pass.

3.1.1 Baseline sample join

The simplest way of sampling over a join is just performing the join and
then sampling from the result.

P

on

R1 R2

This technique is statistically sound but can be rather inefficient; it will
take O(|R1 on R2|) time, which could be as much as Θ(n1 ∗ n2). If we were
interested in a uniform sample containing only 1% of the tuples in J , we
will “throw away” 99% of our hard work in the sampling step. Can we do
better?

3.1. Sampling Through Joins 17

3.1.2 “Fast” baseline sample join

We could consider pushing down the sampling operator through the join to
both sides:

on

P

R1

P

R2

Here P is the sampling operator. Would this improve the runtime, since we
will have to join two much smaller sets? The answer is no, it will not always
improve the runtime; if only very few combinations t1 ∈ R1 and t2 ∈ R2

join, we could end up requiring very large samples in R1 and R2 to get any
output, which is especially inefficient if sampling with replacement is used.
However, if the join key is reasonably dense, we can expect that most tuples
in the sample will join, and this approach would be efficient. But there are
bigger problems with this approach; bias and correlation.

First, we will discuss the bias. It is induced by the (implicit) projection
performed by the join operator. One output tuple t = (t1 ∈ R1) on (t2 ∈ R2)
could originate from different pairs of t1 and t2. This can be the case even if
R1 and R2 contain no duplicates, because the fields that differentiate tuples
can be projected out. The probability that a certain t ∈ (R1 on R2) occur
will differ depending on the number of ways it could be created, causing
bias. This problem would affect all the sample join techniques we study in
this thesis. The solution is simple; we can assume that duplicates are not
removed from the join result. In most cases duplicates are very rare, so
the influence of this solution on the results is limited. To us, the benefits
of avoiding bias outweigh the possibility of duplicates, and hence we will
assume duplicates are not removed in the rest of this thesis.

Now let us discuss the correlation. This turns out to be the real issue of
“Fast” baseline sample join; correlation can pose significant practical prob-
lems when trying to estimate aggregates from a sample. To illustrate this
issue, suppose we take a size 1 sample S1 = {t} ⊂ R1. By joining it with
S2 ⊂ R2 we obtain S1 on S2, which is a sample in R1 on R2. However, all
tuples in S1 and S2 have the same value for the A and B attribute, t.A and
t.B. S1 on S2 resides entirely in the stratum of R2 with R2.A = t.A. If the
C and A attribute of R2 are not independent, the estimate of the sum over
(R1 on R2).C using S1 on S2 will be (severely) biased. The problem persists
if larger samples in R1 and R2 are used, since a weaker (but still significant)
correlation between tuples in S1 on S2 will be present. There is no way of
solving this issue without drastically altering the algorithm.

3.1.3 Stream Sample Join

In this section, we will first discuss Olken sample join [24], the algorithm that
inspired Stream Sample Join [7]. After that we will discuss Stream Sample
Join here briefly, a more technical description can be found in Section 4.1.1.

Can we push sampling down a join operation without inducing correla-
tion? Olken has shown that this is indeed possible. His algorithm, the Olken
sample join algorithm can be classified as a rejection sampling scheme. We
take tuples from R1 uniform randomly. Suppose t1 is such a tuple, with
t1.A = ai. Then we accept the tuple t1 with probability m2(ai)

M , where

18 Chapter 3. State of the Art

P

×

R1 R2

õn

P

R1

P

R2

Figure 3.2: The left and right LQP have the same result,
while the right LQP is much more efficient.

M = maxj (m2(aj)), and otherwise reject it. If it is accepted, we select t2
uniform randomly from {t ∈ R2 | t.A = ai}, the set of tuples in R2 that
could join with t1, and output t1 on t2.

We need to efficiently select random elements from {t ∈ R2 | t.A = ai}.
This is an easy task if R2 is stratified by A values. To obtain m2(ai) effi-
ciently, we also need statistics on R2. Finally we need to be able to take a
uniform random sample from R1. The size of this sample depends on the
number of tuples that are rejected.

Is there a way to avoid rejecting part of our sample? Yes! The resulting
algorithm is called Strategy Stream-Sample in the original paper [7], we
will refer to it as Stream Sample Join. Instead of rejecting tuples sampled
from R1 to fix the distribution of the output tuples, we weigh the sample
on R1. Tuple t1 should have weight m2(t1.A) to attain the correct output
distribution (so we need statistics on R2 to obtain weights). To get such a
weighted sample from R1 we need O(n1) time. Then this t1 is joined with
t2, which is sampled uniform randomly from {t ∈ R2 | t.A = ai}, the set of
tuples in R2 that could join with t1. We need an index on R2 to be able to
do this efficiently. Then t1 on t2 is added to the result.

3.1.4 Mini-Join

The Mini-Join [16] operator (denoted õn) allows us to push sampling down
a Cartesian product, see Figure 3.2. It can also be used to simplify the
description of Stream Sample Join, see Section 4.1.1.

Suppose we have S1 ⊂ R1 and S2 ⊂ R2, uniform samples. The Mini-Join
operator õn takes tuples s1 ∈ S1 and s2 ∈ S2 uniform randomly, without
replacement, outputting s1 on s2, until either S1 or S2 is empty. The result
is a true uniform sample of R1 ×R2, the Cartesian product of R1 and R2.

3.1.5 Additional sample join algorithms

Kamat and Nandi describe some sample join algorithms for situations with
specific (un)availability of statistics/indices [16].

First there is Group Sample Join. This is a variation of the Stream
Sample Join that does not require availability of an index on R2. As a re-
sult, it is slower than Stream Sample Join. Basically, a weighted sample
S1 from R1 of size r is constructed with weights m2(t1.A) (hence statis-
tics on R2 are required). This sample is joined with R2, the result is
S2 = S1 on R2 GROUP BY S1. One tuple is selected from every group of S2,
the resulting set of tuples is S, the desired size r sample of J .

Then there is “StratJoin Both”, a stratified sample join algorithm. It
assumes both R1 and R2 are stratified (as in Figure 3.1). The algorithm; For
stratum i (with value ai) produce uniform samples Si1 ⊂ {t1 ∈ R1|t1.A = ai}

3.2. Sampling For Aggregation 19

and similarly Si2, both of size f · m1(ai) · m2(ai). Here f is the sampling
fraction, a constant. Use the Mini-Join operator to combine Si1 and Si2 for
each i. The result, ∪iSi1õnSi2, is a uniform sample in J .

Finally they introduce StratJoin Overall, which can be seen as an
improvement of StratJoin Both. The idea of StratJoin Overall; de-
pending on the sampling fraction, we sample or use the complete stratum; if
the size of the fraction to be sampled is bigger than 1 we do not sample, in
order to avoid sample inflation (sampling fraction bigger than one). Three
cases are considered:

• both strata have sampling fraction less than 1
=⇒ use StratJoin Both

• only one stratum has sampling fraction less than 1
=⇒ use Stream Sample Join (Kamat and Nandi refer to Stream Sam-
ple Join as StratJoin NN)

• neither stratum has sampling fraction less than 1
=⇒ use baseline sample join

3.2 Sampling For Aggregation

We will discuss how to estimate an aggregation given that we have some way
of obtaining a weighted sample, for example from a join result as explained
in Section 3.1 or 4.1. First we will motivate why it is a good idea to use
samples to estimate aggregations. Then we will describe the exact problem
setting, and finally we will discuss possible approaches and their properties.

First the motivation; why do we want to use sampling to estimate aggre-
gates? Aggregation functions, like SUM, MIN, MAX or AVG, can be computed in
linear time. However, if there is a lot of data, such a linear scan may be too
time intensive. It is possible to estimate the aggregation, by instead looking
at part of the data only. It turns out that such approximate aggregations
are very efficient; it is possible to reduce the runtime a lot while maintaining
reasonably accuracy. In this section we will discuss ways to estimate aggre-
gations from different types of samples. For each type of sample, we discuss
a way to estimate the aggregate and some ways of estimating the error of
the estimate.

Now for the problem setting. Suppose we have a weighted without re-
placement sample S in R with weights w. We want to obtain an estimate of
the aggregation as quick as possible, and with help of as few statistics as pos-
sible. In this section, we will only discuss the SUM aggregation. If statistics
are used, we assume them to be precomputed, to avoid online linear scans.
We prefer statistics that can be computed in O(n) = O(|R|) time. Depend-
ing on the setting, storing O(n) size statistics may or may not be possible.
In the rest of this section, we will show how to estimate aggregation given a
uniform, stratified or weighted sample.

For each type of sampling, we will discuss known error bounds. Ulti-
mately, we would like to obtain estimates of query results with a confidence
interval. A (σ, ε) confidence interval is defined by the property that the
absolute error of the estimate is less than ε for at least a fraction σ of the
random trials. If we have some estimate

∑̂
R for the exact sum aggregate

20 Chapter 3. State of the Art

∑
R, we can write this property like this:

P
(∣∣∣∣∑̂R−

∑
R

∣∣∣∣ < ε

)
> σ

If the resulting query is not just one aggregate, but a set of aggregates (for
example after a groupby), it can be preferable to use a distribution precision
measure [10] instead of a confidence interval.

3.2.1 Aggregation through uniform sampling

In the special case that S is a uniform sample, the following estimator can
be used: ∑

R ≈ |R|
|S|
∑

S

This is an unbiased estimate [8]; the expected value E(|R||S|
∑
S) equals

the correct value
∑
R. The speed of convergence depends on the distribution

of the data. In the worst case, we have an extremely large outlier, and we
need to sample almost all of the data to get a reasonable estimate of the
sum. If we know the values are in [min,max], a (σ, ε) confidence interval for
the sum can be obtained using a uniform sample [5, 31] of size

|R|2(max−min)2

2ε2
log

(
2

1− σ

)
.

This result can be obtained using Hoeffding bounds.
It is also possible to estimate the variance of the estimated sum [8].

v̂ar

(
|R|
|S|
∑

S

)
=
|R|(|R| − |S|)
|S|(|S| − 1)

∑
i

(Si − avg(S))2

This is an unbiased estimate of the variance, which has a variance of its
own; we will not analyse this “higher order” variance. The variance gives us a
way to obtain an approximate confidence interval of our estimate. Assuming
that R is normally distributed (a strong assumption!), at a significance level
σ we have that approximately:

∑
R ∈

[
|R|
|S|
∑

S ± t(1−σ)/2

√
v̂ar

(
|R|
|S|
∑

S

)]

Here tα is the tail probability of the student’s t-distribution with |S| − 1
degrees of freedom. This approximation can still be used if R is not exactly
normally distributed, but it will be less accurate (again, we do not analyse
higher order variance). Agarwal et al [1] have compared properties of the
above ways of obtaining confidence intervals, and provide more methods to
estimate confidence intervals.

3.2.2 Aggregation through stratified sampling

Stratified sampling for aggregation is a well known variance-reduction tech-
nique [8, 21, 31], that improves upon estimation of aggregation through uni-
form sampling. It is an approach that allows for computationally efficient

3.2. Sampling For Aggregation 21

application in practice. The main idea is that there are “interesting” and
“uninteresting” regions in the data. A sample that focusses on the interest-
ing parts of the data allows for higher precision estimates of the aggregation.

To this effect, the data is partitioned based on the values of the aggre-
gation attribute. In the world of sampling, the partitioning is called the
stratification, and the partitions are called strata. Creating this stratifica-
tion is usually considered to be a preprocessing step. A uniform sample is
taken within each stratum to estimate the aggregation value for each stra-
tum. The sampling fractions of the uniform sampling steps are based on
some measure for “interestingness” each stratum. For example, the variance
within the strata and the average impact of each stratum’s value range on the
aggregation. As a result we can achieve a better approximation with similar
sample-size, or achieve a similar-quality approximation with a lower sample-
size. The total aggregation is estimated from these stratum-estimates.

Consider, for example, estimating the sum of a certain attribute that is
distributed according to the exponential distribution. This distribution has
large outliers, so a small number of values will have a big impact on the
results; if we select too many outliers, our estimate will be too big, if we
select too few, our estimate will be too small. By sampling a larger fraction
in the strata containing the outliers, the precision of our estimate can be
greatly improved. By sampling less from clusters of similar values, the size
of the sample is greatly reduced, improving performance.

As an example, consider the stratified estimator of the sum of a relation:

∑
R ≈

#strata∑
i=1

|Ri|avg(Si)

Here theRi are a partition ofR (i.e. R = ∪#strata
i=1 Ri and ∀i 6=jRi∩Rj = ∅).

Si ⊂ Ri is a uniform sample. Note that this estimator is unbiased; its
expected value is exactly

∑
R. The estimated variance of the stratified

estimator is [8]:

v̂ar

(
#strata∑
i=1

|Ri|avg(Si)

)
=

#strata∑
i=1

|Ri|2v̂ar(avg(Si))

Here the variance contribution of each stratum stems from the variance
of uniform sampling. Obviously, one can apply the expressions derived in
Section 3.2.1:

v̂ar (avg(Si)) = v̂ar

(
1

|Si|
∑

Si

)
=

1

|Ri|2
v̂ar

(
|Ri|
|Si|

∑
Si

)
To get the most out of the stratified estimator, we have to choose the desired
sampling size within the strata (|Si|) in a “good” way. This problem has been
studied extensively, for example by Chaudhuri et al [6] and Yan et al [31].
However, existing optimization techniques spend Ω(|R|) time, which is not
acceptable if we are to choose our weight function online. Hence we will focus
on finding one or more stratifications offline that are efficiently applicable
for a variety of queries.

22 Chapter 3. State of the Art

3.2.3 Aggregation through weighted sampling

Suppose we do not stratify the data, but rather directly estimate the aggre-
gation result using the weighted sample S. In this section si denote elements
of S. The stratified approach (Section 3.2.2) is a special case with a piece-
wise constant weight distribution. The additional degrees of freedom by
no longer using strata should allow us to do better, but they also compli-
cate the problem. For sampling without replacement the Horvitz-Thompson
estimator can be used:

∑
R ≈

|S|∑
i=1

si
πi

Here πi = P(Rsi ∈ S) is the probability that an element in R ends up in
the sample. If we use sampling with replacement, we could use the Hansen-
Hurwitz estimator instead. It is a special case of the Horvitz-Thompson
estimator.

∑
R ≈ 1

|S|

|S|∑
i=1

si
pi

Here pi denote the normalized weights pi = wi∑
i wi

. These estimators

are very similar, especially if the sampling fraction is low enough to make
duplicates in the sample with replacement unlikely. Sampling without re-
placement yields slightly higher precision estimates, but is more difficult to
analyse. In fact, in Section 4.1.3 we could only find a good way of estimating
the error of Heuristic Weighted Sampling by assuming sampling with replace-
ment. Since we want samples to be small for fast performance, collisions are
unlikely (unless the distribution has some very high weight elements). Hence
we focus on sampling with replacement here.

The Hansen-Hurwitz estimator works with any weight distribution. Choos-
ing a weight distribution that allows for fast convergence is the name of the
game. If possible, one should choose the weights as close to the values as
possible; for the special case wi = csi, where c an arbitrary constant, the vari-
ance of this estimator drops to zero. However, obtaining the normalization
factor

∑
iwi is as complex as obtaining an aggregation (it is an aggregation)!

Hence we need to pre-compute it. Pre-computing only makes sense if we can
use the same weight distribution for many different aggregations; otherwise
we might as well pre-compute the aggregation offline.

From a theoretical point of view, combining a uniform sample with a
linearly weighted sample is an (almost) optimal strategy, requiring a size
O(n1/3) sample up to polylogarithmic factor [22]. “Up to polylogarithmic”
factor means that we ignore log (n)k factors, so this is O(3

√
n log (n)k) for

some constant k. With linearly weighted sampling, we refer to a sample with
replacement and with weights set to the values of the aggregation column.
As opposed to the Hansen-Hurwitz estimator, this method by Motwani et al
does not require

∑
iwi. The result by Motwani et al is a truly theoretical

one, in the sense that it is not directly suitable for practical implementation.
However, the potential benefits of the improved asymptotic complexity are
a good motivation for future study of their sampling algorithm.

3.2. Sampling For Aggregation 23

Motwani et al also describe a method to obtain an (ε, σ) confidence in-
terval using only linearly weighted samples. In this case, a sample with

O

(√
nε−

7
2 log n

(
log

1

δ
+ log

1

ε
+ log log n

))
tuples is needed. Even though these results for linearly weighted sampling
are specific to sum aggregations, we expect that techniques based on impor-
tance sampling could be used in a more general setting. Importance sampling
is a sampling technique that allows approximate integration of an unknown
continuous function efficiently and with a rigid error bound. It puts empha-
sis on parts of the integration domain that influence the outcome the most,
to faster obtain a good estimate. Perhaps, this technique can be adjusted
to estimate aggregations over discrete data. The Non-Parametric [28] vari-
ant [32, 23] is probably better suited for such an adjustment, since it already
assumes the distribution is represented by a discrete set of values.

25

Chapter 4

Approximate Aggregation
over Joins

Now that we know the state of the art techniques for pushing sampling down
joins (Section 3.1), and estimating aggregation from samples (Section 3.2),
we can go beyond the state of the art. We will combine the techniques de-
scribed in Chapter 3 and extend them to efficiently approximate aggregation
over joins.

4.1 Sampling Through Joins

In Section 3.1 we discussed current state of the art techniques for taking a
sample over a join efficiently. All these techniques strive to produce uniform
random samples. However, if we drop this constraint, we can benefit in two
major ways. First of all we can “steer” the distribution of a sample to suit a
certain aggregation. How this improves the aggregation quality is discussed
in Section 4.2. Secondly, it turns out that a sample can be taken in a
much more time efficient way for certain weight distributions. A theoretical
comparison of runtimes of different approaches is presented in the example
setting in Section 4.1.5.

4.1.1 (Heuristic) Stream Sample Join

A high level overview of Stream Sample Join [7] can be found in Section 3.1.3.
In this section we will describe it in more detail, and prove its correctness
and complexity. Stream Sample Join has been summarized by Kamat and
Nandi [16] as follows:

1. Obtain a with-replacement sample S1 of R1 where the sampling weight
w(t1) for a tuple t1 is set to m2(t1.A).

2. For each tuple from S1 in a streaming fashion do:

(a) sample a random tuple t2 from amongst all tuples t ∈ R2 that
satisfy t.A = t1.A

(b) Output t1 on t2

In step 1, it is assumed that m2(t1.A) can be obtained efficiently, so
some statistics on R2 should be available. Step 2 could written as S1õnR2,
see Section 3.1.4. We will now prove that the result is a uniform sample of
|R1 on R2| (if duplicate elements are not removed from the join).

26 Chapter 4. Approximate Aggregation over Joins

Proof: Let j = (j1 on j2) ∈ (R1 on R2) an arbitrary tuple. The probability
that j is selected by the Stream Sample Join algorithm is equal to the prob-
ability that we first select j1 (this probability is α−1m2(j1.A) with normal-
isation constant α =

∑
j1∈R1

m2(j1.A) = |R1 on R2|) times the probability
that we then select j2 (this probability is 1/m2(j1.A)). Thus the total prob-
ability that j is selected is α−1m2(j1.A) ∗ 1/m2(j1.A) = α−1 = 1/|R1 on R2|.
Since all elements in the sample produced by Stream Sample Join are chosen
independently, we also know that there is no correlation. We conclude that
Stream Sample Join produces a uniform sample of R1 on R2.

�

The complexity of Stream Sample Join is O(max(|R1|,m), where m =
f∗|R1 on R2| is the output size and f is the desired sampling fraction. Assum-
ing we cannot speedup the weighted sampling using statistics on the weight
distribution, taking a weighted sampling using weights w(t1) = m2(t1.A)
will take O(|R1|) time. However, it is possible to obtain heuristic weighted
samples without memory-intensive statistics in O(m2wmax

wmin
) time (see Sec-

tion 4.1.3). The resulting algorithm, Heuristic Stream Sample Join, has a
total complexity O(max (m2wmax

wmin
,m)) = O(m2wmax

wmin
). Here wmax = max iwi

and wmin = min iwi.

4.1.2 (Heuristic) Weighted Stream Sample Join

Stream Sample Join is a great algorithm to compute uniform samples. How-
ever, for many applications, we would prefer an algorithm that can take
weighted samples. One such application is estimation of aggregates. As
discussed in Section 3.2, stratified and weighted samples can yield better
estimates of the sum than equally sized uniform samples.

In this section we extend Stream Sample Join to compute (heuristic)
weighted samples. This yields two novel algorithms, Weighted Stream Sam-
ple Join (WS-join) and weighted Heuristic Stream Sample Join (HWS-join).
In Section 4.1.4 we introduce a third novel algorithm, uniform sample Stream
Sample Join (US-join). See Figure 4.3 for a visual summary of HWS-join,
WS-join and US-join.

Stream Sample Join can be adjusted to produce weighted output; we can
adjust the probability that tuples are selected by tinkering with the weights
in the weighted sampling step. This may be useful if we want to aggregate
over a sample of the join-result; as discussed in Section 3.2 this may reduce
the size of the sample needed, hence producing a result faster or with smaller
uncertainty.

We can set the weights to w(t1) = h(t1)m2(t1). By following the cor-
rectness proof of Stream Sample Join in Section 4.1.1 we will show that
Weighted Stream Sample Join yields a weighted sample of R1 on R2 with
weights h(t1).

Proof: Let j = (j1 on j2) ∈ (R1 on R2) an arbitrary tuple. The probabil-
ity that j is selected by the Weighted Stream Sample Join algorithm is equal
to the probability that we first select j1 (this probability is h(t1)m2(j1.A)
up to normalisation constant) times the probability that we then select j2
(this probability is 1/m2(j1.A)). Thus the total probability that j is se-
lected is h(t1)m2(j1.A) ∗ 1/m2(j1.A) = h(t1) up to normalisation. Since all

4.1. Sampling Through Joins 27

elements in the sample produced by Weighted Stream Sample Join are cho-
sen independently, we also know that there is no correlation. We conclude
that Weighted Stream Sample Join produces a correctly weighted sample of
R1 on R2.

�

The output weights h can be chosen based on attributes in R1 and the
join attribute; in the notation we are using this are the attributes A and
B. By using Heuristic Weighted Sampling instead of weighted sampling, we
also have an approximate version of Weighted Stream Sample Join.

It is possible to extend the algorithm, so our choice of output weights h
may also depend on the attributes unique to R2 (attribute C in the notation
used). However, some additional preprocessing steps are required. h(t) can
be split; h ∼ h1(t1)h2(t.C). To obtain one output tuple, we first obtain t1 by
sampling from R1 using weight function h1, and some arbitrary (“gauge”)
function g. Then we join this tuple with t2, one of the matching tuples in
R2. Instead of choosing t2 uniformly among all t2 ∈ R2 with t2.A = t1.A,
we weigh this choice using h2(t2.C) (this gives rise to a weighted generaliza-
tion of the minijoin operation, which we will denote as õnh2). The selection
probability of some tuple t will be:

P(t) = P(t.A = t1.A ∧ t.B = t1.B)P(t.C = t2.C)

=
h1(t1)g(t1)∑

t̂1∈R1
h1(t̂1)g(t̂1)

h2(t2.C)∑
t̂2∈{t̃2∈R2|t̃2.A=t1.A} h2(t̂2.C)

The normalization of h2 depends on t1.A. To produce a sample according to
h we have to adjust for this by setting g(t1) = γ

∑
t̂2∈{t̃2∈R2|t̃2.A=t1.A} h2(t̂2.C)

for some constant γ. The total selection probability of t becomes:

P(t) =
h1(t1)γ

∑
t̂2∈{t̃2∈R2|t̃2.A=t1.A} h2(t̂2.C)∑
t̂1∈R1

h1(t̂1)g(t̂1)

h2(t2.C)∑
t̂2∈{t̃2∈R2|t̃2.A=t1.A} h2(t̂2.C)

=
h1(t1)γ∑

t̂1∈R1
h1(t̂1)g(t̂1)

h2(t2.C)

=
γ

µ
h1(t1)h2(t2.C)

Here µ =
∑

t̂1∈R1
h1(t̂1)g(t̂1) is a constant. We conclude that

P(t) ∼ h(t).

Adjusting the weight using attributes unique to R2 (i.e. attribute C) will
influence the time complexity of weighted (heuristic) Stream Sample Join.
The CDF of the weight distribution over R2, can be computed using O(n2)
memory and O(n2) time. Assuming this is done apriori, we can ignore this
runtime. The time complexities are as follows:

Exact Heuristic

h without C O(max(n1,m)) O(max(m2wmax
wmin

,m))

h with C O(max(n1,m log n2)) O(max(m2wmax
wmin

,m log n2))

28 Chapter 4. Approximate Aggregation over Joins

Under the mild assumptions that n1 > m and m2wmax
wmin

> m this can be
simplified:

Exact Heuristic

h without C O(n1) O(m2wmax
wmin

)

h with C O(n1 +m log n2) O(m2wmax
wmin

+m log n2)

Here J = R1 on R2. When h depends on C, the additional factor log n2

is a result of the weighted sampling in a stratum of R2 after t1 is selected,
by binary search in the CDF.

input:

• Two relations, R1(A,B), R2(A,C)

• A weight function h = h1h2, where h1 : R1 → R≥0,
h2 : R2 → R≥0

• The desired output size m

output: S ⊂ R1 on R2, a h-weighted sample

Precompute g(A) =
∑

t̂2∈{t̃2∈R2|t̃2.A=A} h2(t̂2.C)
Set w1(t1) = h1(t1)g(t1.A) (calculation of w1 can be done lazily)
Obtain S1 ⊂ R1, a size m w/ repl. sample with weights w1

for t1 ∈ S1 do
Obtain t2 ∈ S2, with weights h2

Add t1 on t2 to the output S
end

Algorithm 3: Weighted (Heuristic) Stream Sample Join algorithm. If
S1 ⊂ R1 is obtained using a weighted sampling algorithm, the result is
exact. If it is obtained using Heuristic Weighted Sampling, it is a heuristic
algorithm.

4.1.3 Faster than linear Heuristic Weighted Sampling

The Stream Sample Join algorithm depends on weighted sampling (with
replacement). A weighted sampling algorithm creates a size m sample S
of some relation R, given some weight function w : R → R≥0. An element

x ∈ R is selected with probability p(x) = w(x)∑
x∈R w(x) . Notice p is a probability

distribution.
Our goal is to provide a faster than linear (o(n)) algorithm, given that

we only need a sample that approximately follows the weighting function,
and given some statistics of w that can be precomputed. We postulate
that improvements are possible if the amount of rare/high weight elements
is somehow limited. The general idea is that we can first take a uniform
sample U ⊂ R of size k using a known O(k) uniform sampling algorithm (for
example reservoir sampling with exponential jumps [12]), and then take a
weighted sample S ⊂ U using a standard O(k) weighted sampling algorithm.
See Figure 4.1 for an overview of the notation.

We have to choose k = |U | big enough, so that our heuristic weighted

4.1. Sampling Through Joins 29

R U S

n
m

k

uniform weighted

Figure 4.1: An overview of the Heuristic Weighted Sam-
pling Algorithm. U is a uniform sample without replacement
of R, and S is a weighted sample without replacement of U .

S is an heuristic weighted sample of R.

wmax

wmax wmax wmax

∆ < wmax

Figure 4.2: Reducing the Surname Problem to the Birth-
day Problem. wmax ≡ maxxi∈R w(xi)

samples resemble true weighted samples. Ideally the quality of the approxi-
mation could be quantified by proving that for some choice of k, and some ba-
sic statistics of the weight function, we know that the probability-distribution
of samples selected by our approximate algorithm is within a factor (1±ε) of
the correct probability-distribution with probability at least σ. However, we
were not able to design such a proof, and we leave this for future research.

Hence we choose to focus on some practical and necessary (but not nec-
essarily sufficient) constraints on k. In Section 5.2 we will empirically test if
these constraints are sufficient in practice. If U is too small...

1. ...the probability that duplicates (some xi which is selected multiple
times) occur increases

2. ...the similarity between the distribution of weights in U and the dis-
tribution of weights in R decreases

First we will discuss how to make duplicates unlikely. Or rather; given
some U , how big can m = |S| be, so a weighted sample of size m will not
contain duplicates with probability at least 50%. This problem is also known
as the Surname Problem, which can also be seen as a weighted version of
the Birthday Problem [19]. The known solutions depend on the distribution
of the weight function, and are not easily adopted to estimate the size of U
in o(n) time. Hence we will instead provide a bound on the proper size of U
by reducing the Surname Problem to the Birthday Problem.

We can change any instance of the Surname Problem to an instance of
the Birthday Problem with an equal or higher probability of duplicates by

30 Chapter 4. Approximate Aggregation over Joins

replacing the bins by b
∑
i wi

wmax
c ≤ bkwmin

wmax
c bins of size wmax ≡ maxxi∈R w(xi),

see Figure 4.2. For the birthday problem it is known that samples of size√
2q ln

(
1

1−σ

)
out of q bins, will contain duplicates with probability σ (ap-

proximately [20]). Hence we can avoid duplicates at significance level σ (with

probability 1−σ), by choosing

√
2kwmin
wmax

ln
(

1
1−σ

)
≈ m which we can rewrite

as k ≈ 1
2m

2wmax
wmin

ln
(

1
1−σ

)
. Hence choosing k ≥ 1

2m
2wmax
wmin

ln
(

1
1−σ

)
should

avoid duplicates at significance level at least σ.
Now for the second constraint; we want the distribution of weights in R

to be similar to the distribution of weights in U . It is difficult to guarantee
this without knowing much about the distribution of weights, but we would
at least like the weight density of U to be similar to the weight density of R.
Given that we know the normalisation of the weight function

∑
iwi, this is

easy to check while constructing U :

n

|U |
∑
x∈U

w(x)∑
iwi
≈ 1

To enforce this constraint in practice, we need to introduce δ ∈ R≥0, a
constant that controls how close the weight density in U should approximate
the weight density of R:

n

|U |
∑
x∈U

w(x)∑
iwi
∈ [1− δ, 1 + δ]

It is not trivial to choose an optimal value of δ. The term wmax
wmin

in the
sample size already accounts for skew in the data by avoiding duplicates;
the purpose of δ and wmax

wmin
overlap partially. However, if we are unlucky

and select a non-representative sample, δ does add some guarantee that a
fair fraction of outliers is present in the sample. In a way, these “unlucky”
cases are already covered by the certainty σ in the confidence interval. It
is difficult to provide effective rigid bounds on the impact of δ on the size
and the quality of the sample. At preliminary experiments, we did observe
that large values of δ have no effect, while small values of δ cause large
fluctuations in the sample size (and thus the runtime), complicating analysis.
For which value δ crosses over from a little to a lot of influence depends on
the data. Because of the complex behavior of δ, and because of the already
huge amount of parameters, we do not consider δ in Section 5.2, where we
evaluate the quality of HWS numerically.

4.1.4 Uniform Stream Sample Join

It is possible to choose the output distribution in a way that allows for a
massive speedup of WS-join! Suppose we join a uniform sample in R1 with
R2 to approximate R1 on R2, or equivalently, we set the desired output distri-
bution of the Weighted Stream Sample Join algorithm to h(t1) = m2(t1)−1.
In this case the weights used in the Weighted Sample step will simplify to
uniform weights, w(t1) = h(t1)m2(t1) = m2(t1)−1m2(t1) = 1. We will refer
to this approach as US-join. This case is different than WS-join and HWS-
join for two reasons. First of all, it is faster than WS-join and HWS-join

4.1. Sampling Through Joins 31

R1 U S ~./ R2

uniform weighted

R1 U ~./ R2

R1 S ~./ R2

uniform

weighted

HWS-join

US-join

WS-join

Figure 4.3: Three possible sample-join algorithms.

Figure 4.4: Log-log plot of relative time needed for HWS-
join and WS-join (speed of US-join is set to 1) versus the
output size m. R1 is not indexed, n1 = 108, wmax

wmin
= 2 and

T2 = 500T1. The vertical lines are the crossover points, for
α = 0.7 and β = 0.5.

since w(t1) = 1. These weights allow us to use (exact) uniform sampling
algorithm which has a time complexity linear in the sample size. Secondly,
it is less flexible than WS-join ans HWS-join. h(t1) = m2(t1)−1 is fixed, so
it is not possible to tweak the output distribution for a certain aggregation.

4.1.5 Theoretical comparison

In this section we compare the theoretical runtime of HWS-join, US-join and
WS-join (see Figure 4.3 for an overview of these algorithms). We assume a
uniform random tuple in R2 with a given join-attribute value can be found
efficiently, since we need this for Stream Sample Join to work efficiently.
We will discuss two settings; the case where R1 is not indexed and the case
where R1 is indexed using a CDF.

We take differences in access speed to disks into account. This can be
relevant because access speeds can differ wildly. For example if one of the
relations is in cold storage (magnetic tapes or optic discs) and the other
relation is on hard drives. Or, if one of the relation is stored on a hard drive,
and the other is in main memory. The ratio of the read speeds is important
for the relative performance of US-join, HWS-join and WS-join.

The constants T1 and T2 denote the times needed to do a random access
read of a tuple from R1 and R2 respectively. T1 and T2 are expressed in
units of T seq

1 , the (average) time needed to read one tuple from R1 during a
sequential scan. Typically T seq

1 � T1 because of cache effects and (on classic
hard drives) seek time and rotational latency.

32 Chapter 4. Approximate Aggregation over Joins

R1 is not indexed

We will now compare the complexity of different sample-join algorithms
given that no index on R1 is available.

TR2 indexed
HWS-join = O

(
m2wmax

wmin
T1 +mT2

)

The first term, O
(
m2wmax

wmin
T1

)
, is the time needed to do obtain a Heuristic

Weighted Sample of size m. This is done by first obtaining U , requiring

O
(
m2wmax

wmin

)
random reads in R1, taking T1 time per read. This term domi-

nates the time needed to obtain a size m weighted sample S from U . Finally
we need O (m) random reads in R2 to compute the minijoin, which takes T2

time per read since R2 in indexed. While the O(mT2) term for the minijoin
remains the same for US-join and WS-join, the time needed obtain S ⊂ R1

does vary. In the case of the US-join, S can be obtained using m random
reads in R1.

TR2 indexed
US-join = O (m(T1 + T2))

In the case of the WS-join, S can be obtained by sequentially reading through
all of R1 by using reservoir sampling.

TR2 indexed
WS-join = O (n1 +mT2)

See Figure 4.4 for a plot comparing these runtimes. We also take the dif-
ference in quality of the different algorithms into account, without specifying
the metric. For this purpose, we use the constant α to denote that a size αm
sample using HWS-join is “as good” as a size m sample using US-join. In a
similar manner, we can compare WS-join with US-join. WS-join can yield
the same “quality” sample as US-join with sample size βm. Independent of
the precise measure used, we know β ≤ 1, since uniform sampling is a special
case of weighted sampling. Also, one would expect β < α, since HWS is an
approximation of WS. The experimental results in Section 5.2 suggest that
β is a modest constant factor smaller than α in most settings.

HWS-join is the most efficient for small values of m, US-join is the most
efficient for intermediate values of m and WS-join is the most efficient for
big values of m. Given a fixed sample size, WS-join can yield the highest
quality aggregation estimates, followed by HWS-join, and the lowest quality
(biggest error) estimate is produced by US-join.

We can estimate which kind of sample-join will perform best using the
theoretical runtimes. HWS-join will be faster than US-join if:

m ∈ O
(
wmin

wmax

T1 + (1− α)T2

T1α2

)
⊂ O

(
T2

T1

)
We can conclude that HWS-join is the most efficient only if random access
in R2 is much slower than random access in R1, or in other words, if T2T1 � 1,
the weights do not have a high w-ratio wmax

wmin
and m is relatively small. This

means that WS-join will be faster than US-join if:

4.1. Sampling Through Joins 33

m ∈ Ω

(
n1T

seq
1

T1 + (1− β)T2

)
⊂ Ω

(
n1

T seq
1

T1 + T2

)
Here T seq

1 is the time it takes to access one tuple in R1 given that we do
this in a sequential manner (thus T seq

1 < T1). We conclude that WS-join is
the most efficient if m is “not small” compared to n1, so scanning through
R1 sequentially to obtain a weighted sample is not much slower than taking
a uniform sample (using a lot of random access) instead.

R1 is indexed

In this section, we will assume that R1 is indexed with a CDF. As a result
we can take a size m weighted sample in O(T1m log n1) time. Other indices
that speed up weighted sampling exist. For example, a binary tree with
cumulative probabilities [30]. To our knowledge, no indices exist that can
provide weighted samples in less than O(T1m log n1) time.

Only the time complexity of WS-join improves if a CDF on R1 is avail-
able, because it is the only algorithm that computes a weighted sample in
R1 directly. The CDF cannot be used to speedup uniform sampling. Stor-
ing (additional) indices to speedup uniform sampling can yield at most a
constant speedup factor, since we have to read all m elements in S in any
sample-join algorithm.

TR1 and R2 indexed
HWS-join = O

(
m2wmax

wmin
T1 +mT2

)
TR1 and R2 indexed

US-join = O (m(T1 + T2))

TR1 and R2 indexed
WS-join = O (m(T1 log n1 + T2))

If we assume T1 = T2, we get that US-join is more efficient whenever

n1 > e
2
β
−1

. For β > 0.2, US-join will usually be more efficient (it is faster
for all relations with n1 & 104). For β < 0.1, WS-join will usually be more
efficient (it is faster for all relations with n1 . 2 ∗ 108, this bound increases
rapidly for smaller β).

Example setting: R1 in main memory, R2 on HDD

To get a feeling for typical values of T1, T2 and T seq
1 , we have done some

benchmarks [29] on some consumer hardware. We assume R1 is in main
memory, while R2 is on a hard disk drive (HDD). The data used was 6.4GB
of randomized data. This is big enough to avoid CPU cache effects (our
L3 is approximately 8MB) and HDD cache effects (with a cache of roughly
30MB), and in our case small enough to avoid issues with NUMA (non uni-
form memory access) memory banks. To limit the influence of page caching,
it was cleared between runs. The number of tuples read was kept small
enough to avoid hitting cached parts of the data too often. Overhead of
auxiliary code (time measurements, for loop, etc) was taken into account.
This yielded the following results:

34 Chapter 4. Approximate Aggregation over Joins

Read Type Var Latency Latency (T seq
1)

Sequential RAM T seq
1 5.2 ns 1.

Random RAM T1 57. ns 11.
Sequential HDD T seq

2 2.3 ∗ 106 ns 4.5 ∗ 105

Random HDD T2 9.0 ∗ 106 ns 1.7 ∗ 106

We can compare the different sample-join algorithms using the above la-
tency measurements. We assume α = 0.7, β = 0.6, wmax

wmin
= 2 and n1 = 1011.

One column in R1 consisting of 1011 32-bit values takes 0.4TB, which fits in
main memory on modern machines. Assuming R1 is not indexed, the ranges
for m are:

Sample-join Approximate optimal range of m

HWS-join m < 4.9 ∗ 104

US-join 4.9 ∗ 104 < m < 1.4 ∗ 105

WS-join 1.4 ∗ 105 < m

4.2 Combining Sample-Join with Aggregation

In this section we will discuss estimation of aggregates over a join. First
we introduce the problem setting, then we discuss some baseline solutions,
and finally we describe some novel approaches based on our new sample-join
algorithms, US-join, WS-join and HWS-join. See Figure 4.5 for a generic
overview of the overall strategy of aggregation over sampling (with a filter).

We will use the notation of Section 3.1 as described in Figure 3.1. It is
assumed that computing and storing statistics on R2 (in memory) is feasible.
We assume that we have O(n1) time and O(1) memory available to pre-
process R1 offline, so some statistics on R1 are available. Our goal is to
estimate an aggregation over R1 on R2 with precision ε and certainty σ. The
O(1) memory limit does not allow the beautiful Wander Join technique by
Li et al [17], which relies on indices.

Selections are pushed down as far as possible. σ12 filters on predicates
that depend on attributes in both R1 and R2. σ1 and σ2 contain predicates
over attributes in R1 or R2 only respectively. To achieve target precision,
the selectivity of σ1, σ2 and σ12 have to be taken into consideration when
determining the sample size of PT.

4.2.1 Baseline strategies

Full Join + uniform aggregation

The Baseline solution is full execution of the join followed by an aggregation.
Notice that the join is the computationally most intensive step, and this ap-
proach will take O(|R1 on R2|) time. If the join result is small this approach
is reasonably efficient (in terms of runtime), however, R1 on R2 could be as
big as n1n2.

Stream Sample Join + uniform aggregation

Stream Sample Join (which is the current state of the art sample-join algo-
rithm) can be combined with a uniform aggregate estimator. Even though

4.2. Combining Sample-Join with Aggregation 35

∑
σ12

on

σ1

R1

σ2

R2

∑
T

σ12

õn

σ1

PT’

R1

σ2

R2

Figure 4.5: Logical Query Plan of aggregation over join
with selection. The classic approach is on the left. The
sampling approach is on the right. T is the type of sampling.

all ingredients of this approach have been known for quite some time, the
combination has not been studied yet. The Stream Sample Join has the
biggest contribution to the runtime, thus the total complexity is:

O(max(f |R1 on R2|, |R1|))

4.2.2 Novel strategies

By following one of the three sample-join algorithms (see Figure 4.3) by a
stratified aggregation (as described in Section 3.2) we can estimate the sum
over a join without executing a full join. There is an intricate interplay be-
tween sample-join and the Aggregation step; we have to tune the amount
of time spent in each step, and how to choose weights in the intermedi-
ate Weighted Heuristic Sample. What choices are optimal depends on the
problem size, value distributions, aggregation type and target precision.

WS-join + aggregation

Stream Sample Join can run inO(f |R1 on R2| log n1) if the CDF (Cumulative
Distribution Function) of w (the weights on R1) is available. Here f is the
selection fraction; the time complexity of WS-join is linear in its output size.
The weighted sampling step does a binary search over this CDF to obtain one
random element in O(log n1) time. However, storing a linear-size auxiliary
data structure of R1 is not always feasible. It is possible to use a different
sampling algorithm that does not need a CDF. A good choice would be
the A-ExpJ algorithm [12], a reservoir sampling algorithm with exponential
jumps. The exponential jumps vastly reduce the number of required random
variates, but A-ExpJ does requires O(n1) time in total.

Stream Sample Join [7] is the special case of WS-join where we take
the output-weights uniform. In many cases, the weights of WS-join can be
chosen to outperform Stream Sample Join, see Figure 5.5 for such a case.

As briefly discussed in Section 3.2.3, it is possible to use stratified sam-
pling techniques by choosing the weight function piecewise constant. To
do this, R1 has to be grouped into strata, and counts of R1 within these
strata have to be stored. To support aggregation over different attributes,
we need more than one stratification. We cannot store the strata explic-
itly (by reordering R1 or storing IDs of elements) without inducing O(n1)

36 Chapter 4. Approximate Aggregation over Joins

memory overhead. Just storing the counts for all attributes would take
O(#attributes(R1)#strata(R1)), which can be chosen to be much less than
n1. Because of the complexity of this approach, we leave full exploration
and implementation as future work.

HWS-join + aggregation

“HWS-join + aggregation” is the WS-Join approach where the weighted
sampling step is replaced by Heuristic Weighted Sampling. This provides
better time complexity, or avoids storing a size O(n1) index on R1. We can
use the same choices for output-distribution as discussed in Section 4.2.2,
however the Heuristic Weighted Sampling step adds more uncertainty. We
can adjust the output size of the algorithm to correct for this additional
uncertainty.

US-join + aggregation

The weight distribution f(t1) = m2(t1)−1 only depends on the join attribute.
Hence we can use the stratified aggregation techniques described in Sec-
tion 3.2.2. In this case the strata correspond to the distinct values of the
join attribute in R2. Thus the number of strata is at most n2. We need to
know the counts of the strata to be able to perform the aggregation.

37

Chapter 5

Experiments

5.1 Data generation

To make sure that our algorithms work well in practice, we need to try them
on a wide range of inputs. It is not possible to consider all inputs, since
there are infinitely many. However, it is possible to generate data with cer-
tain properties. We prefer easy to describe properties that have an impact
on the performance that can be parametrized. We can analyze the perfor-
mance of our algorithms under different (extreme) conditions by varying the
parameters. This allows us to give some guarantees on the performance of
our algorithms. In this section, we will first identify four properties that span
a wide range of inputs, and describe measures for these properties. Then we
will discuss ways to generate data with certain properties.

Weight ratio

The weight ratio is defined as the maximum weight divided by the mini-
mum weight. This quantity appears in the required minimum sample size
of Heuristic Weighted Sampling (HWS), and hence is interesting to control.
A weight ratio equal to 1 corresponds to constant data. The weight ratio of
a distribution can be set to any value by applying a linear transformation.
Such a transformation preserves most other properties of the data.

Sparsity

The sparsity denotes how many different values the data contains, and it
can be measured as follows:

sparsity(S) =
‖{s ∈ S}‖
‖S‖

=
of unique values in S

‖S‖
The sparsity is especially important when generating columns that will

be joined together; by drawing from a small set of distinct values, many
tuples will join, and the join result will be big. Or if we use a very low
sparsity, the probability of any collisions is small, and the join result could
be (close to) empty.

Skew

Skew or skewness is a measure for the “shape” of the distribution. At a low
skew, all values are close to each other. At a high skew, there will be a few
outliers with a value that is quite different from the rest of the data. The
exact definition of skew varies in AQP literature. The two most common
definitions:

38 Chapter 5. Experiments

• Skew is the exponent s in the Zipf Distribution [7, 4, 6, 31, 16]. The

Zipf distribution has PDF fs(k) = k−s

ζ(s) , where ζ(s) =
∑∞

k=1
1
sk

.

• Skew is some undefined measure. High skew indicates that the data
is “asymmetric” and has “a long tail” and that uniform sampling per-
forms poorly [22, 9]

We will refer to the second definition as effective skew, and to the first
definition as Zipf-skew. Zipf-skew has a concrete definition, which is helpful
when doing experiments. Effective skew is more general, and leaves the
choice of a precise measure of skewness to the reader. There exist many
measures for skewness [3, 18]. The Zipf-skew is a measure/parametrization
of effective skew for data following the Zipf distribution. We will also describe
a different, more general measure of effective skew, which we call bias.

Bias

In order to compare the quality of aggregation over uniform samples to
aggregation over weighted samples, we would like to generate data that will
make uniform samples misrepresent the data with high probability. A high
bias should denote that the plugin estimator with uniform sampling yields
imprecise results. It is known that data with big outliers has this property;
the amount of outliers present in the uniform sample varies wildly because of
their rarity. At the same time, they influence the estimated aggregate a lot.
However, we would like to use a more objective measure for the compatibility
of data with uniform sampling techniques. For this purpose we can use the
measure of variance of the mean estimator over uniform samples [8]:

bias(S) ≡ variance(ȳ) = E(ȳ − Ȳ)2 =
σ̂2

n
(1− f)

Here y ⊂ S is the uniform sample of size n, ȳ denotes its average, which
should approximate Ȳ , the true average. The dataset has total size N , and

σ̂2 =
∑N
i=1(yi−Ȳ)2

N−1 . f denotes the sampling fraction, n/N .

bias(S) =
σ̂2

n
(1− f) =

(∑N
i=1(yi−Ȳ)2

N−1

)
n

(1− f) =

∑N
i=1(yi − Ȳ)2

(N − 1)n
(1− f)

For different aggregations different measures could be used.

5.1. Data generation 39

1 10 100 1000

0

0.25

0.5

0.75

1

value

c
u
m

ila
ti
v
e

fr
e

q
u

e
n

c
y

1 10 100 1000

0

0.25

0.5

0.75

1

value

c
u

m
ila

ti
v
e

fr
e

q
u

e
n

c
y

Figure 5.1: Empirical CDF of five datasets generated
by Algorithm 4 (left) and Algorithm 5 (right). n =
1000, weightratio = 1000, (Zipf-)skew = 2 (left) and

(Polynomial-)skew = 32 (right)

5.1.1 Generate data given skew and weight ratio

We can generate data using the Zipf distribution and then apply a linear
transformation to enforce a certain weight ratio.

input: Desired parameters (Zipf-)skew,weight ratio ∈ R and size
n ∈ N
output: R, the generated data.
// Take a size n sample of the Zipf distribution

R← sample
(
k−skew

ζ(skew) , n
)
∈ Nn

// Scale R to attain the desired weight ratio

R← R−min(R)
R← R/max(R)
R← R ∗ (weightratio− 1) + 1

Algorithm 4: Generating data with skew and weight ratio using the Zipf
distribution

There is a downside to this approach; the rescaling depends on the max-
imum value in R, which varies wildly for the Zipf distribution. Hence the
shape of the distribution will vary given fixed parameters. See Figure 5.1. To
produce more stable output, we can use a different distribution instead. We
try to produce similar results in an efficient and continuous manner by taking
uniform random ui ∈ [0, 1], and taking these to the power skew, Ri = uskew

i .
Since we do not use the Zipf distribution anymore, the meaning of “skew”
has changed; we will refer to the exponent of uskew

i as Polynomial-skew if
the skewness measure can not be deduced from the context.

The CDF of this function is F (x) = x1/skew and the corresponding PDF
is (1− 1

skew)x−1/skew. See Figure 5.2 for a plot of the CDF for different skew
and weight ratio.

40 Chapter 5. Experiments

CDFs of datasets

x (the value)

F
(x

)
 (

th
e

fr
eq

ue
nc

y)

0.0 0.5 1.0

0.
0

0.
5

1.
0

w−ratio=16, skew=16
w−ratio=16, skew=4
w−ratio=16, skew=1
w−ratio=2, skew=16
w−ratio=2, skew=4
w−ratio=2, skew=1
w−ratio=1.1, skew=16
w−ratio=1.1, skew=4
w−ratio=1.1, skew=1

Figure 5.2: Some example CDFs used by Algorithm 5. The
x-axis is expressed in units of w-ratio. The distribution with
(Polynomial-)skew = 1 tends to the uniform distribution as

w-ratio tends to infinity.

input: Desired parameters (Polynomial-)skew,weightratio ∈ R
and size n ∈ N
output: R, the generated data.
// Take a size n sample of a continuous distribution

R← sample
(
(1− 1

skew)x−1/skew, n
)
∈ Rn

// Scale R to attain the desired weight ratio

R← R ∗ (weightratio− 1) + 1

Algorithm 5: Generating data with (Polynomial-)skew and weight ratio
using a continuous distribution

We would like to control sparsity as well, so the data can be used to
test joins with different output sizes. This could be done by (partially)
rounding the data. However, the sparsity would then influence the effective
skew as well, especially at low sparsity (few unique values). The effect on
the effective skew is not straightforward. To make sure that our parameters
still represent the properties of the data we want to describe, we switch from
skew to bias as measure of effective skew. The resulting method is described
in the following section.

5.1.2 Generate data given sparsity, bias and weight ratio

We have tried several ways of generating a dataset parametrized by sparsity,
bias and weight ratio. It turns out that tuning common discrete distributions
to suit this purpose can be rather cumbersome. There are also some very
“artificial” ways of generating such a dataset, for example by first choosing
the distribution of unique values and then adding duplicate values to achieve
some target bias. We finally choose to generate our data by first sampling
from a polynomial distribution (this way we can choose the bias) and then

5.1. Data generation 41

rounding the results (this will enforce some sparsity). The resulting data
has a “natural” distribution.
The polynomial distribution we choose has the following CDF:

f(x) = x
1
λ

Here λ is the Polynomial-skew, a parametrization of effective skew. Sup-
pose S̃ = sample(n, f(x)), a sample of size n following this distribution;
P(s ≤ x) = f(x). We find our final sample S by applying g : R → Q to all
elements of S:

g(x) =
bαxc
α

So if we enumerate elements of Ŝ = {Ŝi}i∈[1,2,··· ,N], then S = {g(Ŝi)}i∈[1,2,··· ,N].
We want to find λ and α so that the resulting data has some target

bias and sparsity. First we tried to express λ and α in terms of bias and
sparsity algebraically. We identified relevant ranges of values of λ and α, and
observed that sparsity will behave in a roughly linear fashion with respect
to β and µ if α = 2β and λ = 3µ, while the bias behaves in an exponential
manner. This “linearization” will make it easier to find some optimal set
of parameters. Note that this problem can be written as a minimization
problem where we score a solution using the quadratic distance between the
target and measured bias and sparsity.

After trying out some existing solvers, we concluded that they did not
exhibit the properties needed to find the solution of our problem. Our min-
imization problem exhibits several difficult properties:

• it is multidimensional: we have two input parameters and two target
measures (these targets can be combined into one objective function)

• it is very non-uniform: some regions of α and λ will yield little change
in the target measures, while there may be rapid change in other re-
gions. We partially solved this problem by parametrizing using β and
µ instead.

• it is computationally expensive: to evaluate the score function, we have
to create a sample and measure its bias and sparsity, which takes O(n)
time, with a reasonably big constant because of the random number
generation

• it is random: different generated samples will have different bias and
sparsity

Gradient descent like methods are infeasible, since they will try to esti-
mate the gradient by evaluating the objective function at some x and x+ ∆
for some small ∆, which does not work well because of the randomness of
this objective function. Grid search methods are infeasible, since they will
evaluate the objective function many times; the O(n) time complexity of our
objective function is very prohibitive. Hence we implemented a simulated
annealing solver [14]. The simulated annealing algorithm starts with some
initial state β and µ, and randomly varies them, accepting changes for the
worse at random depending on the temperature. The size of the random
changes depends on the temperature as well (smaller changes at lower tem-
peratures). Note that due to variance in bias and sparsity given some β and

42 Chapter 5. Experiments

1 10 100 1000

0

0.25

0.5

0.75

1

value

c
u

m
ila

ti
v
e

fr
e
q

u
e
n
c
y

Figure 5.3: Empirical CDF of five datasets generated
by the algorithm described in Section 5.1.2. n = 1000,

weightratio = 1000, bias = 16 and sparsity = 1/10.

µ, we cannot improve β and µ by much after some point. Hence we stop the
simulated annealing after some reasonable β and µ have been found, and
generate multiple samples with these parameters and select the sample with
the best score.

With this technique we are able to find datasets with sparsity and bias
within 0.1% range of the desired sparsity and bias in roughly n/1000 sec-
onds, which is good enough for our purposes. Note that this approach can
easily be adapted to optimize for different notions of bias, which is useful
since different aggregation operators may require different sparsity measures.

The distribution of the data is much more stable than that of the scaled
Zipf-distribution (Algorithm 4) as can be seen by comparing Figure 5.3 with
Figure 5.1.

5.2 Assessing the Quality of
Heuristic Weighted Sampling

First we will describe a measure for the quality of a heuristic weighted sam-
ple, and describe a way of computing this measure (Section 5.2.1). Then
we discuss how we have assessed the quality of HWS on a representative set
of relations in a computationally feasible fashion (Section 5.2.2). Finally,
we use the results of our experiments to describe the properties of HWS
(Section 5.2.3). The experimental results in this section suggest that HWS
yields samples that are very similar to true weighted samples for a reasonable
intermediate sample size k. This implies that the difference between the α
and β factor defined in Section 4.1.5 is reasonably small.

5.2. Assessing the Quality of
Heuristic Weighted Sampling

43

5.2.1 Theory behind the experiments

We assess the probability that a sample is selected through Heuristic Weighted
Sampling, and compare this probability to the desired (true) selection prob-
ability. In other words; our goal is to determine the error

εw = sup
s⊂R

(εw(s)) = sup
s⊂R

(|Pws(s)− Paws(s)|)

up to some significance level σ. Note that this error will depend on the
weight distribution on R. One might estimate these probabilities by us-
ing direct simulation; for some given w, repeatedly sample using (heuristic)
weighted sampling, and compare the frequencies. However, this is not com-
putationally feasible for all but the smallest relations, since we will have
to repeat the experiment O(nk) times to get reasonable statistics. In this
section we provide a computationally more efficient way of estimating the
selection probabilities.

In this section we will use sampling with replacement everywhere. This
is reasonable since Heuristic Weighted Sampling can only work well if there
is a low probability of collisions. In this section S and U denote random
variables, while we denote the random variates with s and u. For the proba-
bility P(S = s) we use the shorthand P(s), for similar cases we use a similar
shorthand. First, consider the true selection probability of some sample s:

Pws(s) = #perms(s)

m∏
i=1

w(si)

wR

Where wR ≡
∑n

i=1w(Ri). s is an unordered set. Hence we need to account
for its permutations. #perms(s) is the number of different orderings of s.
We count duplicates by id, not by value. In general we can count the number
of orderings as follows:

#perms(s) =
‖s‖!∏

r∈R #occurrences(r ∈ s)!

Here #occurrences(r ∈ s) = ‖{r = x|x ∈ s}‖., and 0! = 1.
The probability that s is selected using Heuristic Weighted Sampling can

be expressed as follows:

Paws(s) =
∑
u⊂R

P(s|u)P(u)

Notice that P(u) = #perms(u) 1
n

k
, since u is an (unordered) uniform sample

with replacement. Now consider the probability that s is selected given that
u was selected, P(s|u):

P(s|u) = #perms(s)1(s ⊂ u)
m∏
i=1

P(si ∈ u)

Here 1(s ⊂ u) is the indicator function, which is 1 if s ⊂ u and 0 otherwise.

P(si ∈ u) =
w(si)#occurrences(si ∈ u)

wu

44 Chapter 5. Experiments

Where wu ≡
∑m

i=1w(ui). We now have all ingredients to calculate Paws(s)
directly by looping over all possible u. This is, however, too computationally
expensive. Instead we would like to estimate Paws(s) by evaluating random
u (this is a Monte Carlo approach). However, most u do not contain s and
do not contribute to Paws(s). Hence we instead evaluate random ū, such
that u = ū ∪ s (here ‖ū‖ = k − m). Let ũ be the ordered version of ū.
Drawing random ordered sets is easier than drawing unordered sets. We
rewrite Paws(s):

Paws(s) ≈ nk−mavgũ
P(s|ū ∪ s)P(ū ∪ s)

#perms(ū)

In this formula nk−m is the total number of possible ū. The term #perms(ū)
allows us to convert between the ordered and unordered probabilities. Some
components of the above formulas are quite sensitive to over and/or under-
flow. To avoid these issues we have rewritten all equations in logarithmic
form.

5.2.2 Practical setup of the experiments

The properties of the weights w that have a big impact on performance of
HWS are the skew and w-ratio. We expect that HWS will perform better
(produce better results and/or require smaller U) for lower weight ratios,
since a low w-ratio (close to 1) limits the relative size of outliers in the weight
function. The skew parametrizes the fraction of high outliers (indirectly);
we expect HWS to perform worse if outliers are rare, since we typically need
a bigger U to capture a representative fraction of the outliers. Hence we can
generate the weights by using Algorithm 5 from Section 5.1.1. All code used
in the experiments can be found online [29].

Given some relation R and its weight function w, we compare the selec-
tion probability using WS with the selection probability using HWS by eval-
uating Pws(s) for random s and by approximating Paws(s) using the method
described in Section 5.2.1. We obtain εw at significance level σ by doing this
for nouter different s, and taking the dσ ∗ noutere-st biggest measured εw(s).
Notice that the quality of this estimate of the error will depend on both the
number of U used in the calculation of Paws(s) (ninner) and the number of
s considered (nouter). We assume convergence of the Monte Carlo method
of order 1/

√
n, and choose ninner and nouter sufficiently large accordingly.

For m = 100 we used ninner = nouter = 1000. For bigger values of m, it
is not computationally feasible to calculate a confidence interval this way.
Instead, nouter is chosen smaller (∼ 10 points) to obtain ε with an estimated
uncertainty based on the variance in the results.

To summarize, experiments were parametrized using the following vari-
ables:

5.2. Assessing the Quality of
Heuristic Weighted Sampling

45

Variable Derived? Description

n N size of R
k N size of U
m N size of S
skew N w ∼ rand([0, 1])skew

w-ratio N wmax/wmin

nouter N number of S tried
ninner N number of U tried
k-factor Y k/(w ratio ∗m2)
n-ratio Y n/k

5.2.3 Experimental results

The experimental results are summarized in Figure 5.4. In each plot, we
vary one parameter (while keeping the rest of the parameters constant) to
show its influence on the error in the selection probability. In this section
we will discuss these parameters one by one. But first some general remarks
on the experiments.

To obtain confidence intervals, very time intensive simulations have to be
run. The theory behind these experiments is described in Section 5.2.1. The
algorithm iterates over ninner ∗nouter ∗ k factor ∗w ratio ∗m2 elements while
obtaining S from U . To obtain reasonable σ = 0.99 confidence intervals, we
need ninner = nouter = 1000. We chose m = 100 for most experiments, which
is big enough for practical application but small enough to keep the number
of iterations down. For these values of m, ninner and nouter, the number of
iterations needed is 1010 ∗ k factor ∗ w ratio. As long as the k-factor and
w ratio are relatively small, the runtime can be kept reasonable.

The experiments were executed on the SciLens cluster, on four machines
boasting 1TB memory and 96 logical cores each. We implemented code to
find confidence intervals in the R language, but we wrote the performance
critical code (the kernel) in C++. The code was (embarrassingly) paral-
lelized. The most time intensive simulations took 2 weeks on one machine.

Sample size m

In the top left graph in Figure 5.4 it is shown that the size of m does not
have a big influence on the error ε, given that we keep the k-factor (and
other parameters) fixed. This is evidence that our heuristic for letting the
size of U increase quadratically with m to keep the error constant is a good
approximation (at least for small values of m). The other plots were all made
with m = 100, which is the largest value we could use while still computing
reasonable σ = 0.99 confidence intervals. We did run experiments with
bigger m, which only provided a rough estimate of ε. The results indicated
that HWS behaves similar when taking bigger samples.

Skew

The influence of the skew on ε depends on the w-ratio. This behavior can be
seen in the top middle and top right graphs in Figure 5.4. For small w-ratio,
the influence of skew is also small, as is to be expected. For larger w-ratio,
we observed that ε will first increase with skew and later decrease with skew.

http://www.scilens.org/

46 Chapter 5. Experiments

●
●

●
●

●
●

5 10 50 200

m vs ε

m

skew = 16, n−ratio = 1, k−factor = 16, w−ratio = 4

ε

0.005

0.010

0.015

0.020

0.025
●σ = 0.9

σ = 0.95
σ = 0.99

●●●●●
●

●

●

●
●

●●●

skew vs ε

skew

n−ratio = 50, k−factor = 1, w−ratio = 2

ε

1 2 4 8 16 32

0.22

0.23

0.24

0.25

0.26

●σ = 0.9
σ = 0.95
σ = 0.99

●

●

●

skew vs ε

skew

n−ratio = 10, k−factor = 1, w−ratio = 16

ε

1 4 16

0.06

0.08

0.10

0.12
●σ = 0.9

σ = 0.95
σ = 0.99

●

●

●

●

k−factor vs ε

k−factor

skew = 4, n−ratio = 1, w−ratio = 2

ε

8 16 32 64

0.005

0.010

0.015
0.020
0.025
0.030
0.035
0.040

●σ = 0.9
σ = 0.95
σ = 0.99

●● ● ●● ●●● ●● ●● ● ●●●●●

1 5 20 100 500

n−ratio vs ε

n−ratio

skew = 1, k−factor = 1, w−ratio = 2

ε

0.225

0.230
0.235
0.240
0.245
0.250
0.255

●σ = 0.9
σ = 0.95
σ = 0.99

●

●

●

●

●

w−ratio vs ε

w−ratio

skew = 4, n−ratio = 2, k−factor = 16

ε

1.1 2.0 4.0 8.0

0.010

0.015

0.020

0.025

●σ = 0.9
σ = 0.95
σ = 0.99

Figure 5.4: Measuring ε, the relative error in selection
probability of a sample using HWS with respect to the se-
lection probability of the same sample using WS. All plots
are logarithmic in the x-axis, only k-factor vs ε is plotted
with a logarithmic y-axis. The top row tries to capture the
influence of the skew and w-ratio of the data on ε. The bot-
tom row shows the influence of other variables on ε. In all

of these plots, m = 100.

5.3. Comparison of Sample-Join Algorithms 47

The skew for which ε attains its maximum value increases with the w-ratio.
The initial increase of ε (for small values of skew) can be explained by the
fact that U is less likely to include a representative fraction of outliers in R as
the skew increases. The decrease of ε for big values of skew can be explained
by the overall flattening of the distribution from which R is drawn; it is likely
that true weighted sampling will yield samples without any large outliers if
they are too rare, and hence, HWS will produce more realistic samples.

k-factor

The size of the k-factor influences ε in a very direct and predictable way (see
the bottom left graph in Figure 5.4). Based on our experiments, the rate
of convergence is O(1

k factor). As the size of |U | = k factor ∗ w ratio ∗ m2

increases, ε decreases. Based on the heuristics in Section 4.1.3, k factor = 1
should be big enough to sample S ⊂ U without over-representing small
weights at significance level σ ≈ 0.86 (given that a fair fraction of big weights
is present in U). For σ = 0.9, in most cases k factor = 1 yields ε ≈ 0.20±0.07.
Other variables do also influence ε, as can be seen in Figure 5.4. Redefining
the k-factor to take these other variables into account in a more precise way,
so a fixed k-factor yields a (nearly) constant (and predictable) ε, is a future
goal.

n-ratio

The ratio n/k (or the n-ratio) does not influence the quality of samples. This
is illustrated in the lower middle plot in Figure 5.4. This plot shows this
property for one specific skew, w-ratio and k-factor. However, we tested this
for a multitude of parameter values and it never influences ε. We conclude
that the complexity of HWS is independent of n in practice.

w-ratio

The amplitude of the influence of the w-ratio (defined as wmax
wmin

) on ε depends
on the skew. However, all other things being equal, a bigger w-ratio yields a
smaller ε. The reason for this is that the size of U will depend linearly on the
w-ratio (given that we have a constant k-factor) in an attempt to correct
for the bigger required sample size if there is a bigger w-ratio. The fact
that ε reduces at bigger w-ratios means that we are over-correcting. Notice
that rate with which ε reduces is much smaller than O(1

w ratio), as we would
expect if higher w-ratio would only influence the size of U ; this means that
we do need (part of) the correction.

5.3 Comparison of Sample-Join Algorithms

In this section we compare the runtime and quality of different sample-join
algorithms.

5.3.1 Comparing the quality

In this section, we will compare the quality of Stream Sample Join with that
of WS-Join experimentally. See Figure 5.5 for the results. In this experiment,
the skew of R2.C is varied, while everything else remains constant. This way

48 Chapter 5. Experiments

● ●
●

●

●
●

●

0.05

0.10

0.20

0.50

Adjusting Weights for Aggregation

skew

ε

1 2 4 8 16 32 64

●σ = 0.9
σ = 0.95
σ = 0.99
σ = 0.9
σ = 0.95
σ = 0.99

Figure 5.5: Log-log plot of skew in column C vs ε. Here ε
is the relative error of an estimation of the sum over column
C, using a weighted sample-join. The upper/red points were
created using classic Stream Sample Join with aggregation.
The bottom/blue points was created using WS-Join, with
weights linear in C. Note that our approach is much more

robust under skew.

we can test the robustness of aggregation over Stream Sample Join and WS-
join with respect to skew in the aggregation column. The weight ratio of
R2.C is fixed at 1024. R1.A and R2.A are chosen uniform randomly in
[0, 100]. The relation R1 contains n1 = 107 rows, R2 contains n2 = 103 rows
and the sample size is set to m = 103. WS-join is configured to produce a
weighted sample with weight proportional to the C value.

Note that the full join result contains approximately

n1 ∗ n2

#unique values in R1.A and R2.A
=

107 ∗ 103

100
= 108

tuples. While our sample size is very small (m = 103 is 0.001% of the
data), the error remains in the order of 10% with significance 0.99 even if
the aggregation column is extremely skewed, if we use WS-join. While the
aggregation quality of Stream Sample Join is good if there is little skew in
the data, the error increases drastically with skew.

While the runtime of WS-Join is similar to that of Stream Sample Join
(see section 4.1.5), we observe that WS-Join is much more robust under
skew.

5.3.2 Comparing the run-time

In Section 4.1.5, we have compared the run-times of the sample-join algo-
rithms in a theoretical setting. In this section, we confirm that our theoreti-
cal run-time model is correct, and study the performance of our sample-join
algorithms in a realistic setting.

We compare US-join, WS-join and HWS-join. WS-join is tested twice;
one implementation uses reservoir sampling with exponential jumps, the
other uses reservoirs sampling without exponential jumps [12]. These algo-
rithms are tested for different sample sizes, and for different read speeds T1

5.3. Comparison of Sample-Join Algorithms 49

●

●

●

●
● ●

●

●

■
■

■ ■ ■ ■

■

■

◆ ◆ ◆ ◆ ◆ ◆

◆

◆

▲

▲
▲

▲

10-7 10-6 10-5 10-4 10-3 10-2 10-1
m/n

10-1

100

101

102

time (seconds)

● US-join

■ WS-join (reservoir w/ jumps)

◆ WS-join (reservoir w/o jumps)

▲ HWS-join (reservoir w/ jumps)

Figure 5.6: R1 on HDD, R2 in memory – log-log plot of
runtime vs relative sample size. n1 = 2 ∗ 108 and n2 = 2000.
Experiments were run 5 times, the shaded areas mark the

standard deviation.

and T2 to R1 and R2 (T1 and T2 are the time needed to do a random read
in R1 and R2 respectively). The read speeds are controlled by storing R1

and R2 on either a hard disk drive or in main memory. In this system the
difference in non-sequential read speed is roughly THDD ≈ 1.6 ∗ 105Tmemory,
more differences in reading behavior between HDD and main memory are
discussed in Section 4.1.5).

R1 took 200MB on the hard drive, which is much more than the 30MB
cache in the hard drive, avoiding caching effects. Further more, the Linux
page file and CPU-cache were flushed in between experiments. We will now
discuss the results of our experiments for four different settings.

R1 on HDD, R2 in memory

See Figure 5.6. As expected, computation of n1 random variates is the dom-
inating component of the runtime of WS-join without exponential jumps.
For WS-join with exponential jumps, the time needed for random number
generation becomes the most time consuming component for large m/n. For
small m/n, the time required to sequentially read all of R1 from disk domi-
nates the runtime. US-join starts out very fast for small sampling fractions,
because it can avoid reading all of R1. However, when the average distance
between random reads is less than or equal to the size of blocks fetched by
the hard drive, US-join will read all of R1 as well, and it loses its advantage.

From a theoretical point of view, we know that HWS-join can only be
competitive if T1 is much smaller than T2. Since T1 is much bigger than
T2, obtaining a uniform sample of size m2wmax

wmin
is the dominating run time

component of the HWS-join algorithm. Assuming wmax
wmin

= 1 (the best case),
HWS-join is a factor m slower than US-join, and it becomes slower than
WS-join with exponential jumps for m ≈ 50. This experiment confirms
that the runtime is problematic for all but the smallest samples. In this
experiment (and all the run-time comparisons in this section) HWS-join is
not evaluated for any m such that wmax

wmin
m2 ≥ n1; once we sample all of R1

in our intermediate sample U , it is always more efficient to use WS-join.

50 Chapter 5. Experiments

● ● ●
● ●

●

●

●

■ ■ ■ ■
■

■

■

■

◆ ◆ ◆ ◆ ◆ ◆
◆

◆

▲ ▲

▲

▲

10-7 10-6 10-5 10-4 10-3 10-2 10-1
m/n

10-1

100

101

102

time (seconds)

● US-join

■ WS-join (reservoir w/ jumps)

◆ WS-join (reservoir w/o jumps)

▲ HWS-join (reservoir w/ jumps)

Figure 5.7: R1 in memory, R2 on HDD – log-log plot of
runtime vs relative sample size. n1 = 2 ∗ 108 and n2 = 2000.
Experiments were run 5 times, the shaded areas mark the

standard deviation.

R1 in memory, R2 on HDD

See Figure 5.7. This case is similar to the setting explored theoretically in
Section 4.1.5. We will compare the different approaches by assuming that;

• A size αm sample obtained using US-join is as good for estimating
aggregations as a size m sample obtained through HWS-join for a
constant α

• A size βm sample obtained using US-join is as good for estimating ag-
gregations as a size m sample obtained through WS-join for a constant
β

Here β ≤ 1 and β < α. We will assume that α = 0.7 and β = 0.5, but the
analysis can easily be adopted for other values of α and β.

Since random access in R2 is much more expensive than random access
in R1, joining the sample in R1 with R2 (using the mini-join) will be the
bottleneck if we do not read all of R1 (US-join and HWS-join) and m is
small. Because of this it can be efficient to join (using mini-join) only the
“important” part of the sample in R1 with R2; that is precisely what HWS-
join does. HWS-join is the most efficient choice for m smaller than ∼ 4000.
US-join is the most efficient choice for m in between ∼ 4000 and n1.

5.3. Comparison of Sample-Join Algorithms 51

●
●

●

●

●

●

●

●

■ ■ ■ ■
■

■

■

■

◆ ◆ ◆ ◆ ◆ ◆
◆

◆

▲

▲

▲

▲

10-7 10-6 10-5 10-4 10-3 10-2 10-1
m/n

10-4

10-3

10-2

10-1

100

101

102

time (seconds)

● US-join

■ WS-join (reservoir w/ jumps)

◆ WS-join (reservoir w/o jumps)

▲ HWS-join (reservoir w/ jumps)

Figure 5.8: R1 and R2 in main memory – log-log plot of
runtime vs relative sample size. n1 = 2 ∗ 108 and n2 = 2000.
Experiments were run 5 times, the shaded areas mark the
standard deviation. One outlier in the leftmost point of US-
join, with a runtime more than a factor 250 bigger than the

other four measurements, was removed from the data.

●

●

●

● ● ● ●

●

■
■ ■ ■

■ ■

■

■

◆ ◆ ◆ ◆ ◆ ◆
◆

◆

▲

▲
▲

▲

10-7 10-6 10-5 10-4 10-3 10-2 10-1
m/n

10-1

100

101

102

time (seconds)

● US-join

■ WS-join (reservoir w/ jumps)

◆ WS-join (reservoir w/o jumps)

▲ HWS-join (reservoir w/ jumps)

Figure 5.9: R1 and R2 on HDD – log-log plot of runtime
vs relative sample size. n1 = 2 ∗ 108 and n2 = 2000. Experi-
ments were run 5 times, the shaded areas mark the standard

deviation.

R1 and R2 in main memory

See Figure 5.8. This setting is very similar to the setting with R1 in memory
and R2 on HDD. The difference is that the mini-join with R2 is much faster
when R2 is in main memory. Because of this, the cost of the mini-join does
not dominate the runtime of US-join and HWS-join for small m. Hence US-
join and HWS-join perform even better relative to the runtime of WS-join
for small m. Another effect is that HWS-join is almost a factor m slower
than US-join (for all m), which renders it relatively useless.

R1 and R2 on HDD

See Figure 5.9. If all data is stored on a hard disk drive, sequentially scanning
becomes relatively efficient. For m larger than ∼ 1000 WS-join is the most
efficient option. For smaller m, US-join is competitive. However, since the

52 Chapter 5. Experiments

read speeds in R1 are as fast as the read speeds in R2, HWS-join is roughly
a factor m slower than US-join.

Conclusions from the run-time comparison

On conclusion is that the theoretical framework presented in section 4.1.5
does describe the overall behavior of the runtime of US-join, WS-join and
HWS-join accurately. However this framework can only estimate which al-
gorithm will be best in what case. How well the algorithms perform in
reality does depend on practical details. We have compared the different
sample-join approaches for one specific setting, but because of the multi-
tude of measurements it is easy to loose sight of the bigger picture. In
Figure 5.10 we have summarized a small part (only one sample size) of the
results presented in this section, using a bar chart. The differences between
the different sample-join algorithms seem less profound when presented on a
logarithmic (rather than linear) scale. We conclude that US-join and HWS-
join can provide a big improvement in runtime compared to the state of the
art, depending on the setting.

5.3. Comparison of Sample-Join Algorithms 53

Figure 5.10: Lower is better. The yellow bar has the same
speed as the current state of the art. Comparison of the
runtimes of US-join, WS-join (with exponential jumps) and
HWS-join. The bar that is not missing (US-join with R1

and R2 in memory) has height 0.00049 seconds (a factor
819 speedup over the state of the art). The sample size is
m = 400, the sizes of R1 and R2 are n1 = 2 ∗ 108 and

n2 = 2000 respectively.

55

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The main goal of this thesis was to efficiently approximate aggregations over
joins. ∑

σ12

on

σ1

R1

σ2

R2

→

∑
T

σ12

õn

σ1

PT’

R1

σ2

R2

We have shown that it is indeed possible to do this using state of the art
AQP techniques. We have shown three new strategies that improve on the
current state of the art aggregation over Stream Sample Join:

1. We have extended Stream Sample Join to produce weighted samples
(WS-join), without increasing the runtime. These weighted samples
can be used to improve the precision of the aggregation, and are robust
against skew in the aggregation column.

2. We have shown that the special case of Weighted Stream Sample Join
where PT’ is the uniform sampling operator (US-join) can be executed
in time linear in the sample size, which is asymptotically faster than
Stream Sample Join. The aggregation operator can be corrected for
the resulting non-uniformity of the joined sample.

3. The weighted sampling operator PT’ can be replaced by Heuristic
Weighted Sampling (HWS-join). We have shown that this yields high
quality samples, and that it is faster than WS-join and US-join in some
cases.

It will depend on the exact setting which of the above strategies is the most
efficient, however, we are always able to improve on Stream Sample Join,
the current state of the art.

6.2 Future Work

In this section we discuss some of the possible continuations of the work
presented in this thesis.

56 Chapter 6. Conclusion and Future Work

6.2.1 Experimenting with stratified sampling over WS-join

We combine Stratified Sampling (Section 3.2.2) with WS-join in Section 4.2.
However, when using WS-join (see Section 4.1.2) for stratified sampling,
we cannot choose the amount of tuples sampled from each stratum (without
making big changes to the algorithm). As a result, there is a subtle difference
between traditional Stratified Sampling, and the approach to Stratified Sam-
pling we need. We use a weight function with constant weights within each
stratum; we do not control the exact amount of tuples that is sampled from
a stratum, but rather the expected amount of tuples that is sampled from a
stratum. This subtle difference influences the theory slightly. However, we
can still test the quality of estimates using stratified sampling experimen-
tally. We expect that state of the art strata selection heuristics [31] can be
applied without big adjustments. These experiments would be a good topic
for future work.

6.2.2 Extending estimation of aggregation over joins for dif-
ferent aggregation functions

We have focussed on the sum aggregation, since this has been extensively
studied. It is relatively easy to extend our approach to support aggregations
based on the sum over some algebraic UDFs (User Defined Functions); we
can add a column with the UDF applied to each element, and use this as
our aggregation column. Some of the techniques described in this thesis may
also be applicable to min and max, but this is less straight forward.

6.2.3 Determining the quality difference between US-join and
Stream Sample Join

The US-join algorithm produces weighted samples with weights depending
on the strata sizes in R2. We expect that the aggregation quality of US-join
differs a little from the aggregation quality of Stream Sample Join, but that
the massive difference in run-time makes up for this. A rigorous evaluation
of the quality of aggregations obtained using US-join in a practical setting
could provide a strong argument in favor of US-join.

6.2.4 Data generation

The problem of generating data with certain properties is very common.
We developed a data generator for the join setting (see section 5.1). In
literature, data is usually generated by parametrizing the desired properties
in the model that generates data. When properties are complicated and not
independent, finding a model that can generate correct data is a difficult task.
Our data generator reverses this approach. The relationship between input
parameters and desired properties is never modeled explicitly. Instead, we
use a black box solver to find a dataset with the desired properties. Finding
such a solver is complicated by the multidimensionality of the solution space,
the randomness of the problem, and the large time required to evaluate the
quality measure for one set of input parameters. We propose a Simulated
Annealing solver, and show that this approach can be effectively used to
generate data with given sparsity, bias and weight ratio for the join setting.

6.2. Future Work 57

Our data generation scheme could be released as a tool for other re-
searchers. The code can already be found online [29], but has to be rewritten
and tested extensively to guarantee good portability, stability and perfor-
mance. Documentation has to be added. And it should be integrated with
one or more popular languages such as R and Python for ease of use.

6.2.5 Sample synopsis

Samples and their distribution could be used as a novel synopsis type akin
to wavelets and histograms [9]. The idea is to propagate a sample and its
distribution through a logical query plan. This has been done in the field of
Probabilistic Databases [26, 15, 13], by associating some “probability of exis-
tence” to every tuple. We instead keep a random sample of tuples, and store
a (small) data structure describing the distribution of this sample. In this
thesis we have focussed on doing this for just one join followed by an aggre-
gation. In the future we can try to extend this so multiple query operations
can follow each other. Ultimately, sample synopsis could be integrated into
a practical approximate query engine such as BlinkDB [2] or SciBORQ [25].

Some of the results in this thesis show that this approach has potential:

• Existing weighted aggregation techniques can be applied; they are more
efficient than uniform aggregation (Section 3.2)

• This synopsis type can be pushed down joins efficiently under some
mild assumptions (Section 4.1)

However, much more work is required to settle on one (nearly) optimal syn-
opsis type, and to fully explore its properties and compare it to other synopsis
types.

59

Acknowledgements
I would like to thank my daily supervisors, Lefteris and Hannes from CWI,
for their help and advice with the writing of this thesis. I would also like
to thank Hans and Tristan from the UU, for reading about, listening to and
grading my thesis. Thanks to Mark and Jeemijn for reading drafts of my
thesis and providing feedback. Thanks to my office mates Mark, Benno and
Thibault, and my former office mates Duc, Mrunal, Pedro and Bo for the dis-
traction. Thanks to Mark, Till, Tim and Dean for the table tennis sessions.
Thanks to Tom for his help with memory mappings. Thanks to Jan-Willem
and Tom for their parallel-algorithm related distractions. The experiments
in this thesis would not have been possible without the computational power
provided by the SciLens cluster.

http://www.scilens.org/

61

Bibliography

[1] Sameer Agarwal, Henry Milner, Ariel Kleiner, Ameet Talwalkar,
Michael Jordan, Samuel Madden, Barzan Mozafari, and Ion Stoica.
Knowing when you’re wrong: Building fast and reliable approximate
query processing systems. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’14, pages
481–492, New York, NY, USA, 2014. ACM.

[2] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner,
Samuel Madden, and Ion Stoica. Blinkdb: Queries with bounded er-
rors and bounded response times on very large data. In Proceedings of
the 8th ACM European Conference on Computer Systems, EuroSys ’13,
pages 29–42, New York, NY, USA, 2013. ACM.

[3] Barry C Arnold and Richard A Groeneveld. Measuring skewness with
respect to the mode. The American Statistician, 49(1):34–38, 1995.

[4] Brian Babcock, Surajit Chaudhuri, and Gautam Das. Dynamic sample
selection for approximate query processing. In Proceedings of the 2003
ACM SIGMOD international conference on Management of data, pages
539–550. ACM, 2003.

[5] Ran Canetti, Guy Even, and Oded Goldreich. Lower bounds for sam-
pling algorithms for estimating the average. Information Processing
Letters, 53(1):17–25, 1995.

[6] Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. Optimized
stratified sampling for approximate query processing. ACM Trans.
Database Syst., 32(2), June 2007.

[7] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. On random
sampling over joins. ACM SIGMOD Record, 28(2):263–274, 1999.

[8] William G Cochran. Sampling techniques. John Wiley, 1953.

[9] Graham Cormode, Minos Garofalakis, Peter J Haas, and Chris Jer-
maine. Synopses for massive data: Samples, histograms, wavelets,
sketches. Foundations and Trends in Databases, 4(1–3):1–294, 2012.

[10] Bolin Ding, Silu Huang, Surajit Chaudhuri, Kaushik Chakrabarti, and
Chi Wang. Sample+ seek: Approximating aggregates with distribution
precision guarantee. In Proceedings of the 2016 International Confer-
ence on Management of Data, pages 679–694. ACM, 2016.

[11] Jonathan Dursi. On random vs. streaming i/o performance; or seek(),
and you shall find - eventually. https://simpsonlab.github.io/

2015/05/19/io-performance/, 2015. [Online; accessed: 2016-11-15].

https://simpsonlab.github.io/2015/05/19/io-performance/
https://simpsonlab.github.io/2015/05/19/io-performance/

62 BIBLIOGRAPHY

[12] Pavlos S Efraimidis and Paul G Spirakis. Weighted random sampling
with a reservoir. Information Processing Letters, 97(5):181–185, 2006.

[13] Robert Fink, Jiewen Huang, and Dan Olteanu. Anytime approximation
in probabilistic databases. The VLDB Journal, 22(6):823–848, 2013.

[14] Chii-Ruey Hwang. Simulated annealing: theory and applications. Acta
Applicandae Mathematicae, 12(1):108–111, 1988.

[15] Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher
Jermaine, and Peter J Haas. Mcdb: a monte carlo approach to managing
uncertain data. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 687–700. ACM, 2008.

[16] Niranjan Kamat and Arnab Nandi. Perfect and maximum randomness
in stratified sampling over joins. arXiv preprint arXiv:1601.05118, 2016.

[17] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. Wander join: Online
aggregation for joins. In ACM SIGMOD International Conference on
Management of Data, San Francisco, USA, page 1, 2016.

[18] HL MacGillivray. Skewness and asymmetry: measures and orderings.
The Annals of Statistics, pages 994–1011, 1986.

[19] Shigeru Mase. Approximations to the birthday problem with unequal
occurrence probabilities and their application to the surname problem
in japan. Annals of the Institute of Statistical Mathematics, 44(3):479–
499, 1992.

[20] Frank H Mathis. A generalized birthday problem. SIAM Review,
33(2):265–270, 1991.

[21] Xiangrui Meng. Scalable simple random sampling and stratified sam-
pling. In Proceedings of the 30th International Conference on Machine
Learning (ICML-13), pages 531–539, 2013.

[22] Rajeev Motwani, Rina Panigrahy, and Ying Xu. Estimating sum by
weighted sampling. In International Colloquium on Automata, Lan-
guages, and Programming, pages 53–64. Springer, 2007.

[23] Jan C. Neddermeyer. Computationally efficient nonparametric im-
portance sampling. Journal of the American Statistical Association,
104(486):788–802, 2009.

[24] Frank Olken. Random sampling from databases. PhD thesis, University
of California at Berkeley, 1993.

[25] Lefteris Sidirourgos, Martin L Kersten, Peter A Boncz, et al. Sciborq:
Scientific data management with bounds on runtime and quality. In
CIDR, volume 11, pages 296–301, 2011.

[26] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Proba-
bilistic databases. Synthesis Lectures on Data Management, 3(2):1–180,
2011.

[27] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions
on Mathematical Software (TOMS), 11(1):37–57, 1985.

BIBLIOGRAPHY 63

[28] L. Wasserman. All of Nonparametric Statistics. Springer Texts in Statis-
tics. Springer New York, 2010.

[29] Abe Wits. Repository - estimating aggregations over joins. https:

//github.com/usewits/MastersThesis, 2016. [Online].

[30] Chak-Kuen Wong and Malcolm C. Easton. An efficient method for
weighted sampling without replacement. SIAM Journal on Computing,
9(1):111–113, 1980.

[31] Ying Yan, Liang Jeff Chen, and Zheng Zhang. Error-bounded sampling
for analytics on big sparse data. Proceedings of the VLDB Endowment,
7(13):1508–1519, 2014.

[32] Ping Zhang. Nonparametric importance sampling. Journal of the Amer-
ican Statistical Association, 91(435):1245–1253, 1996.

https://github.com/usewits/MastersThesis
https://github.com/usewits/MastersThesis

	Introduction
	Preliminaries
	Sampling
	Uniform sampling
	Weighted sampling

	State of the Art
	Sampling Through Joins
	Baseline sample join
	``Fast'' baseline sample join
	Stream Sample Join
	Mini-Join
	Additional sample join algorithms

	Sampling For Aggregation
	Aggregation through uniform sampling
	Aggregation through stratified sampling
	Aggregation through weighted sampling

	Approximate Aggregation over Joins
	Sampling Through Joins
	(Heuristic) Stream Sample Join
	(Heuristic) Weighted Stream Sample Join
	Faster than linear Heuristic Weighted Sampling
	Uniform Stream Sample Join
	Theoretical comparison

	Combining Sample-Join with Aggregation
	Baseline strategies
	Novel strategies

	Experiments
	Data generation
	Generate data given skew and weight ratio
	Generate data given sparsity, bias and weight ratio

	Assessing the Quality of Heuristic Weighted Sampling
	Theory behind the experiments
	Practical setup of the experiments
	Experimental results

	Comparison of Sample-Join Algorithms
	Comparing the quality
	Comparing the run-time

	Conclusion and Future Work
	Conclusion
	Future Work
	Experimenting with stratified sampling over WS-join
	Extending estimation of aggregation over joins for different aggregation functions
	Determining the quality difference between US-join and Stream Sample Join
	Data generation
	Sample synopsis

	Acknowledgements

