@ Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Wavelet Transform in Similarity Paradigm I
Z.R. Struzik, A. Siebes
Information Systems (INS)

INS-R9815 December 1998



Report INS-R9815
ISSN 1386-3681

CWwiI

P.O. Box 94079

1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199



Wavelet Transform in Similarity Paradigm |l

Zbigniew R. Struzik, Arno Siebes

cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

email: Zbigniew.Struzik@cwi.nl

ABSTRACT

For the majority of data mining applications, there are no models of data which would facilitate the tasks of
comparing records of time series, thus leaving one with ‘noise’ as the only description. We propose a generic
approach to comparing noise time series using the largest deviations from consistent statistical behaviour.

For this purpose we use a powerful framework based on wavelet decomposition, which allows filtering polynomial
bias, while capturing the essential singular behaviour. In particular we are able to reveal scale-wise ranking of
singular events including their scale-free characteristic: the Holder exponent.

We use such characteristics to design a compact representation of the time series suitable for direct comparison,
e.g. evaluation of the correlation product. We demonstrate that the distance between such representations
closely corresponds to the subjective feeling of similarity between the time series. In order to test the validity
of subjective criteria, we test the records of currency exchanges, finding convincing levels of (local) correlation.
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1. INTRODUCTION

The issue of quantitative similarity estimation between time series in data mining applications seem-
ingly suffers from a serious internal inconsistency; on the one hand one wants the similarity to be
independent of a large class of linear transformations like (amplitude, time) rescaling, addition of
linear trend or constant bias. This is understandable since most such operations affect the parameter
values of commonly used estimators (e.g. power spectrum), or destroy any stationarity potentially
present in the time series making estimation impossible. At the same time, the subjective, qualitative
judgment of similarity (by humans) is based precisely on non-stationary behaviour; rapid transients
marking beginnings of trends, extreme fluctuations and generally speaking, strong but rare events.

Generically, time series data for which there is no model are treated as noise following a certain
distribution (or alternatively a power spectrum, another global measure). Comparing such time series
is an awkward task - in practice therefore one resigns oneself to matching these global measures, dis-
tributions or spectra. Naturally, the discrimination power of such tests is restricted to the universality
class of the representation applied - the spectral test will not distinguish between different processes
if they have the same spectrum but differ in distribution. By the same argument, processes with the
same distribution may have different spectra but will not be distinguished if only the distributions are
tested.

Still, the global statistical characterisation of this type will usually be inferior to characterisation
by humans when determination of similarity (correlation or matching) between time series is required.
Even without a model, the human observer is capable of identifying and localising rapid transients,
trends and fluctuations in the data which best characterise the time series in question. Even with
the same distribution and power spectrum, the same process can have two realisations which differ
in local detail. In addition to this, such local fluctuations characteristic for single realisations usually



make statistical estimations difficult and result in unreliable estimates. In particular, it is common
knowledge that the evaluation of data distributions from short data sets is an awkward task, resulting
in unreliable estimates. The reason for this is limited statistics, in which local fluctuations of the
data override consistent statistical behaviour. However, what is of great disadvantage from the sta-
tistical point of view can be of advantage in another context. In this report, we propose a method of
characterising the time series which relies on such deviations from the consistent statistical behaviour
as caused by the non-stationary behaviour of the data. We will show how large local fluctuations in
relatively short data sets carry the relevant information about the transient ‘shape’ of the time series.
In particular we can then make use of them in order to provide a very compact set of characteristics
of the time series useful for correlation or matching purposes.

But what if the time series data in our application is long enough to result in good statistical
estimates? The way to go is, of course, to reduce the data length in order to increase the influence of
large local fluctuations! What sounds unreasonable, is perfectly admissible and technically possible, by
the operation of coarse graining the data using so-called wavelet filters, in the Wavelet Transformation
scheme.

In the previous work [1], we have used this recently introduced tool - the Wavelet Transformation
(WT), capable of characterising the time series, independently of translation and polynomial bias
but also of scaling and normalisation. We have shown how to use the WT based representation to
define similarity measures in two extreme formulations: the global - statistical similarity and the
localised, detail oriented case. In both cases, we have used the representation capturing scale-wise
hierarchy of singular events in the time series, the Wavelet Transform Modulus Maxima or Bifurcation
representations. We have also shown that the Wavelet Transform method of scale-wise decomposing
time series data can be successfully used to characterise such singular behaviour by means of global
and local scaling exponents.

In analysing these features we did not, however, pay attention to their relative scale localisation, or
the frequency of occurrence of the certain value of the scaling exponent estimate. In other words we
treated the feature space of the WT of the data on an equal, flat basis, without any attempt to rank
the derived features. As noted above, it is often the case that it is not the statistical bulk behaviour
but some rare, extreme events, or alternatively, the strong, local fluctuations of the time series, which
determine the interestingness of the time series. Still, if treated on an equal basis with all information
in the time series, they would be overshadowed by the ‘noise’ of consistent behaviour.

In this report we will demonstrate how the Wavelet Transform method of scale-wise decomposing
time series data provides a natural method to obtain scale-wise ranking of events in the time series.
In addition to this, by evaluating both the local scaling estimates and the spectral density of singular
behaviour in the time-series, we will be able locally to indicate rare events in time-series. These will
next be used for the purpose of (locally) correlating time-series using large or rare events.

In section 2, we will give the heuristic motivation for the methods to be described. It will be argued
that the rare events and large fluctuations will both provide the information relevant to distinguish-
ing between statistically indistinguishable time series. In section 3, we will focus on the relevant
aspects of the wavelet transformation, in particular the ability to characterise scale free behaviour of
characteristic events in time series, like ‘crash’ singularities. The link of such singularities with the
non-stationary behaviour of time series will be postulated, and together with the hierarchical scale-
wise decomposition provided by the wavelet transform, it will enable us to select the interesting large
scale features.

In section 4, we will introduce a technical model enabling us to estimate the scale-free characteristic
(the effective Holder exponent) for the thus selected large scale events, for real life time-series, i.e. in
the case of dense singularities. In section 5, we will discuss the h-representation of time series, utilising
the large scale characteristics with exponents properly estimated. The issues of distance metric in the
representation and that of correlation between the representations will be addressed. This is followed
by the test case of correlating examples of currency exchange rates in section 6. Section 7 closes the
report with conclusions and suggestions for future developments.



Figure 1: Two time series with local Hurst exponent indicated in colour. Both time series have the
same global Hurst exponent but differ in distribution. The relevant detail information is contained
in rare events in the second time series. The time series above has a Gaussian distribution of jumps,
while the time series below has a fat tailed distribution.

2. RARE EVENTS VERSUS LARGE FLUCTUATIONS

Suppose, by virtue of example, that we want to correlate several stock indexes in order to find their
degree of dependence on one another. Direct implementation of a standard correlation product would
probably not give very exciting results. Generally, the stocks would have different values and could
have different sampling rates. Some might respond better to some market stimuli and have a higher
linear trend than others. Plus, they would, of course, have a substantial constant bias, as the result
of the history of the index.

In addition to these problems, the bulk of financial data, including indices consists mainly of nearly
brown noise (Hurst exponent; H ~ 0.5) [2]. Even if we manage, despite of the non-stationary biases
just mentioned, correctly to evaluate its distribution, this will be entirely useless for the purpose of
discriminating (or correlating) one such time series from another. As two realisations of the same sta-
tistical process, they will simply follow the same distribution and will, therefore, be indistinguishable
from a statistical point of view.

Still, the common sense of trading would mark as correlated the indices which responded in a similar
way to the same largest stimuli, neglecting the small scale ‘noise’ on the data. Not coincidentally,
such large singular jumps define the difference between pure brown noise and financial records - the
probability of strong rare events is considerable and higher than for the Gaussian distribution, see
figure 1, and Ref. [3]. Tt is thus quite evident that a representation effectively filtering out the low level
noise and retaining the strongest rare events would be required for a reliable and efficient correlation
of financial indexes.

In figure 1, we show two example time series. Both consist of nearly uncorrelated noise with the
same Hurst exponent, close to that of the Brownian walk (Hgp = 0.5). Using the method which
is described in this report, we have indicated the local version of the Hurst exponent, the Holder



exponent, locally along the time series. (Note: Just as the Hurst exponent can be considered a global
roughness indicator, the Holder exponent can be loosely associated with the feeling of local roughness
or regularity of the time series.) This is done with colour ranging from blue for minimum to red for
maximum with green centered at the mean value.! As an immediate implication of such a procedure
comes the observation that the spectral density of the lower time-series is much richer than that of the
time-series above. Indeed, we can verify that the even though both time series have the same global
Hurst exponent, they differ in distribution (of singular events). The time series above has a Gaussian
distribution of jumps, while the time series below has fat tailed distribution. It is a record [1984-1988]
for the S&P index [3].

Thus, the relevant detail information in the second time-series is contained in rare events marked
with less frequent colour. Note that these rare events are not necessarily the largest events in the
sense of the absolute index value, but they do closely correspond to the most smooth (blue/white)
and the most singular (red/black) events.

At the same time the first time series remains essentially monochromatic. While for some appli-
cations, stating this fact may be sufficient, it is evident that the particular realisation of the process
involved has resulted in large events - the fluctuations of the size close to that of the sample length.
These only weakly distort the almost perfectly monochromatic/narrow band of singularities in the
time series. The small colour noise on the monochromatic background for such a high resolution anal-
ysis is mainly caused by deviations at the very small resolution considered. By means of analysing
the colour distribution for smaller and smaller data lengths, obtained with the WT filters, we will
however be able to give characterising power to such fluctuations at large scales. Even though they
follow the same statistical rule of the Gaussian process, for some applications their location may well
be as crucial as the presence and the location of rare events in the lower time series in figure 1.

3. CONTINUOUS WAVELET TRANSFORM AND ITS MAXIMA USED TO REVEAL THE STRUCTURE OF
THE TIME SERIES

As already mentioned above, the recently introduced Wavelet Transform (WT), see e.g. Ref. [4],
provides a way of analysing local behaviour of functions. In this, it fundamentally differs from global
transforms like the Fourier Transform. In addition to locality, it possesses the often very desirable
ability of filtering the polynomial behaviour to some predefined degree. Therefore, correct character-
isation of time series is possible, in particular in the presence of non-stationarities like global or local
trends or biases. Last described but certainly not least for our purpose, one of the main aspects of the
WT which is of great advantage is the ability to reveal the hierarchy of (singular) features including
the scaling behaviour - the so-called scale-free behaviour. We will omit the formal aspects of the
wavelet transform from this report, referring the reader to more complete specialised treatment [4, 5].
We will, however, highlight the key concepts mentioned above, also describing them in detail adequate
to our problem.

Conceptually, the wavelet transform is a convolution product of the time series with the scaled and
translated kernel - the wavelet ¢(z), usually a n — th derivative of a smoothing kernel 6(x). Usually,
in the absence of other criteria, the preferred choice is the kernel well localised both in frequency and
position. In this report, we chose the Gaussian f(z) = exp(—x?/2) as the smoothing kernel, which
has optimal localisation in both domains.

The scaling and translation actions are performed by two parameters; the scale parameter s ‘adapts’
the width of the wavelet kernel to the microscopic resolution required, thus changing its frequency
contents, and the location of the analysing wavelet is determined by the parameter b:

r—0b
s

Wi =1 [ dr @ e, 3.)

where s,b € R and s > 0 for the continuous version (CWT).

n b/w version, gray-level coding is used ranging from white for minimum to black for maximum.
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Figure 2: Continuous Wavelet Transform representation of the random walk (Brownian process) time
series like that in figure 1 top. The wavelet used is the Mexican hat - the second derivative of the
Gaussian kernel. The coordinate axis are: position z, scale in logarithm log(s), and the value of the
transform WT'(s,b).

In figure 2 we show the wavelet transform of a random walk sample decomposed with the Mexican
hat wavelet - the second derivative of the Gaussian kernel. From the definition, the transform retains
the entire temporal locality properties - the position axis is in the forefront of the 3D plot. (In this
report, we will mainly refer to position denoted x or b, meaning position in the time axis.) The
standard way of presenting the CWT is using the logarithmic scale, therefore the scale axis pointing
‘in depth’ of the plot is log(s). The third vertical axis denotes the magnitude of the transform W (s, b).

The 3D plot shows how the wavelet transform reveals more and more detail while going towards
smaller scales, i.e. towards smaller log(s) values. Therefore, the wavelet transform is sometimes
referred to as the ‘mathematical microscope’, due to its ability to focus on weak transients and singu-
larities in the time series. The wavelet used determines the optics of the microscope; its magnification
varies with the scale factor s.

3.1 Accessing Singular Behaviour with the Wavelet Transformation

Quite frequently it is the singularities, the rapid changes, discontinuities and frequency transients,
and not the smooth, regular behaviour which are interesting in the time series. Let us, therefore,
demonstrate the wavelet’s excellent suitability to address singular aspects of the analysed time series
in a local fashion. The singularity strength is often characterised by the so-called Holder exponent -
if we represent the function f through its Taylor expansion around = = xg:

f(@)yy =cotcr(x—xg)+ -+ +en(z—20)" + Clz — x0|h(x°) . (3.2)

The exponent h(zg) is termed the Holder exponent of the Holder singularity at zg. It follows directly
that if h(x) is equal to a positive integer n, the function f is n times continuously differentiable in
xo. Alternatively, if n < h(xzg) < n + 1, the function f is continuous and singular in zy. In this case,
f is n times differentiable, but its n** derivative is singular in 2 and the exponent h characterises



this singularity. The exponent h, therefore, gives an indication of how regular the function f is in xg,
that is the higher the h, the more regular the function f.

The wavelet transform of the function f in z = xy with the wavelet of at least n vanishing moments,
i.e. orthogonal to polynomials up to (maximum possible) degree n:

+oo
/ 2" Y(x)de =0 VYm,0<m<n,

—0o0

reduces to

1 _
W™ (s, 29) = ;/ Clz — w0 w(%) dz = C|s|"(®0) / 12! (') da’

Therefore, we have the following scale-wise proportionality of the wavelet transform of the (Hoélder)
singularity n < h <n 4+ 1, with the wavelet with n vanishing moments:

W(")f(s,aro) ~ |8|h(xo) )

Thus the continuous wavelet transform can be used for detecting and representing the Holder singular-
ities in the time series even if masked by the polynomial bias. Note: we will restrict the scope of this
report to Holder singularities, thus not taking into consideration the so-called oscillating singularities
requiring two exponents [6]. The range of influence of a singularity on the wavelet transform is limited
to the so-called cone of influence. It can be characterised by the standard deviation o of the wavelet
used and, therefore, increases linearly with the scale: (xg — s) < 0. In figure 3, we show the wavelet
transform of the Dirac pulse with obtained with the Mexican hat wavelet. The range of influence of
the Dirac pulse on the coefficients of the transform is by the above definition restricted to the 2D
position-scale ‘cone’ originating at x( - the location of the Dirac pulse itself, and spreads within the
bounds of two straight lines marking the standard deviation o of the wavelet used. Note, that unlike
in all other plots we used linear scale s here.
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Figure 3: CWT representation of the single Dirac delta D(z) located at o = 0. It shows the so-
called ‘cone of influence’ which in this case takes the form of a triangle pointed at zy and bounded
by (zg — s) < 0. Due to the linear scale used, the local maximum line centered at zo = 0 follows 1/s
increase, which in log-log scale gives —1 slope. The wavelet used is the Mexican hat.



It is not necessary to evaluate an entire cone of influence in order to characterise its related singular-
ity. In fact any line converging to the singularity at hand within the range of the cone of influence can
be used for this purpose [7]. In particular, this can be the line where the wavelet transform reaches
local maximum (with respect to position coordinate). Connecting such maxima within the continuous
wavelet transform ‘landscape’ gives rise to the so-called maxima lines. It turns out that restricting
oneself to the collection of such maxima provides a particularly useful representation of the entire
CWT. The fact that these lines generally converge to singular points in the signal is of course one
of the important properties of this representation. In the following subsection we will describe this
and other advantages of the representation using the maxima lines, the so-called Wavelet Transform
Modulus Maxima (WTMM) representation.?

3.2 Wawvelet Transform Modulus Mazima Representation

The continuous wavelet transform described in Eq. 3.1 is an extremely redundant representation,
much too costly for most practical applications. This is the reason why other, less redundant rep-
resentations, are frequently used. Of course, in going from high redundancy to low redundancy (or
even orthogonality), certain (additional) design criteria are necessary. For our purpose of comparison
of the local features of time series, one critical requirement is the translation shift invariance of the
representation; nothing other than the boundary coefficients of the representation should change, if
the time series is translated by some Az.

A useful representation satisfying this requirement and of much less redundancy than the CWT
is the Wavelet Transform Modulus Maxima (WTMM) representation, introduced by Mallat [8]. In
addition to translation invariance, it also possesses the ability to characterise fully local singular
behaviour of time series as illustrated in the previous subsection.
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Figure 4: WTMM representation of the time series and the bifurcations of the WTMM tree. Mexican
hat wavelet.

Both the aforementioned properties of the maxima lines representation make it particularly useful
for our purpose. The WTMM is derived from the CWT representation by extracting lines of local
maxima with respect to position/time (of the modulus) of the wavelet transform.

2Here we use ‘modulus’ and WTMM for historical consistency reasons. Also, within this report we limit our vocab-
ulaly to the use of ‘maxima’, which will simply mean positive and negative maxima, (i.e. minima) of the CWT.



Since the necessary requirement for the maximum is zero of the derivative of the WT with respect
to the position coordinate x, this can be used for the definition (and for the actual computation) of
the maxima (minima) along scale:

dWf(sz) _ and

dx
w < 0 for maximum (3.3)

either -
2
d (VZQ(S@ > 0

or for minimum .

An additional condition for zero of the second derivative identifies the beginning of the maximum
(minimum) line, in the point of bifurcation or the so-called top point:

d(Wﬁ)(s,a:) I
EWhHen _ g (3-4)
dx? )

The scale coordinate of the top point of a maximum line will be accordingly called top-scale. An
example WTMM tree is shown in figure 4, together with the high-lighted bifurcations of the maxima
lines [9].

While, as indicated in the previous subsection, the Holder exponent of the singularity can be
evaluated from the entire cone of influence, it is much more convenient to consider the maximum of
the Wavelet Transform only. It can be shown that such a maximum converges to the singularity and
that it can be used for the evaluation of the Holder exponent of the singularity.

Let us consider the following set of examples, see figure 5 left; a single Dirac pulse at D(1024),
the saw tooth consisting of an integrated Heaviside step function at 1(2048), and the Heaviside step
function for S(3072"), where + denotes right-handed limit. The Holder exponent of a Dirac pulse
is —1, and each step of integration results in an increase of this exponent by 1. We, therefore, have
h = 0 for the right sided step function S(3072%) and h = 1 for the integrated step I(2048).
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Figure 5: Left: The test signal consisting of the Dirac pulse D(1024), the change in slope - integrated
Heaviside step 1(2048), and the Heaviside step H(3072). Right: The log-log plot of the maxima,
together with their respective logarithmic derivative, corresponding to all three singularities: D(1024),
1(2048) and H(3072). Lines of theoretical slope are also indicated; these are —z for D(1024), x for
I(2048) and a constant for H(3072). The wavelet used is the Mexican hat. Normalisation 1/s.

For Holder singularities, the process of integration and differentiation adds and subtracts one from
the exponent. This can be also verified in the results obtained from the scaling of the maxima lines.



We obtain the (logarithmic) slopes of the maxima values very closely following the correct values
of these exponents, see figure 5 right. This, of course, suggests the possibility of the estimation of
the Holder exponent of (Holder) singularities from the slope of the maxima lines approaching these
singularities. An important limitation is, however, the requirement for the singularities to be isolated
for this procedure to work. Note that the scaling of the maxima lines becomes stable in the log-log
plot in figure 5 right, only below some critical scale s..;t, below which the singularities effectively
become isolated for the analysing wavelet. Indeed, the distance between the singular features in the
test time-series in figure 5 left, equals 1024, which is in the order of three standard deviations of the
analysing wavelet at (log(scrit) = 5.83 = log(1024/3).

3.8 Some Considerations on the WT Representation of Non-stationarities

As demonstrated above, the wavelet has to be orthogonal to polynomials up to a certain degree n
in order to access the singularity exponent h by filtering out the polynomial bias. This operation of
filtering the polynomial behaviour is nothing other than differentiating the time series to the degree
n, the number of vanishing moments of the wavelet. This is evident from the fact that the Wavelet
Transformation commutes (up to factor —s) with the operation of differentiation:

Wio(s,b) = [ 1@ ey de = [ @) (-9 Goo0) do = (35)

S

= (—s)™ %; (/ Fa) 0(E=2) da:) = (=)™ D f() (3.6)

S

Therefore, using wavelets with n vanishing moments, one can perform a stable derivation of the n-th
order - one can obtain a smoothed derivative Difys)) of the time series at the given scale s. The degree
of derivation can be controlled with n, the number of vanishing moments. For n = 1, i.e. for the
analysing wavelet orthogonal to constants, the first derivative of a smoothing function, we obtain the
representation corresponding to the first derivative of the function, the local slopes of the input time
series.

T —0b

Do @) = =55 [ @) o) da (3.7

S
Note that the WTMM representation makes use of the maximum values of the same convolution
product, compare Eq. 3.1, but with the normalisation factor set to 1/s. The maxima lines are therefore
proportional, locally in position and scale, to the strongest values of the first derivative of the analysed
time series, smoothed with the smoothing kernel of the width proportional to 1/s.

Let us summarize the above observations in more intuitive terms; at a particular scale of analysis,
the Wavelet Transform gives the local derivative insensitive to the polynomial trend, global or large
in relation to the working scale. This is how the effect of orthogonality to polynomials is achieved. At
the same time, complete information about the trend is still preserved in the WT through the related
singularities, in particular those marking the beginning and end of the trend. It allows among other
things the reconstruction of the trend. This property of the Wavelet Transform makes it possible
to compare time series with non-stationarities. The information about them becomes ‘compressed’
into the maxima, in a (semi)orthogonal fashion. Therefore, computing similarity measures with the
WTMM or related representations, which we will use in the following, does not ‘blow up’ the correlation
product due to non-stationarities, and allows the comparison of the features of the time series.

Let us show an example of a random walk sample with an artificially added step, see figure 6.
The wavelet transform is obtained with the first derivative of the Gaussian smoothing kernel - the
maxima representation shows two strong maxima starting from the largest scale - the highest resolution
available. Both the maxima, see figure 6 lower left, contain all the information about the step and
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can be seen converging to the location of the step. Indeed, it is possible to reconstruct the input time
series from the maxima representation. Let us, however, remove both the maxima lines in question.
The reconstructed time series does not possess the step. In fact we see some additional distortion to
the time series - at large scales the (almost) constant components in the original function (without
the step added) are indistinguishable from the step singularity. This is also reflected in the fact
that the maxima do not converge to the locations of the singularities along straight lines. Still the
reconstruction (up to the low frequency almost constant bias) illustrates the point: the singularity in
the time series is inherited by the maximum line. In fact, as a curiosity, we can remove just one line
prior to reconstruction to arrive at ‘half a step’ reconstructed.
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Figure 6: Left above, the input time series; Brownian motion with the step (H1, H2) added. Left
below, the WTMM wavelet transform with the first derivative of the Gaussian wavelet. Above right,
the reconstruction with two step related maxima lines removed. Below right, the reconstruction with
one of the two step related maxima lines removed (Max(H2)).

Alternatively, one could retain only the step related maxima lines and remove the remaining ‘noise’
in order to reconstruct the step. In the following example, see figure 7, we will retain several maxima
lines starting at the largest scales in order to reconstruct the largest singularities in the time series
while suppressing the remaining signal, which becomes ‘noise’ through such a definition.

Even though to each singularity there is a maximum line, provided the number of vanishing moments
of the wavelets is sufficient to detect the singularity, at a particular scale only the singularities which
are ‘large’ enough are visible. (Note that this size or strength refers not to the Holder exponent h,
but to the value of the WT maximum at the scale considered.) Therefore, with the scale increasing,
we have fewer and fewer singularities visible. We can, therefore, take the set of the largest maxima
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lines (those visible at and above some chosen scale) and use them to obtain the approximation of the
function to some level of detail (scale), but with the main singularities well focused.
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Figure 7: Left above, the input time series: S&P 500 index, first 4096 samples of 16384 shown in
figure 1. Right above, the WT maxima obtained with the Mexican hat. Eight selected maxima are
highlighted. Lines at scale s = 400 and s = 50 are drawn. Notice that there are no other maxima
except for the highlighted ones, which begin above the scale log(400) = 6. Below left, the low frequency
version of the input time series corresponding with smoothing with a Gaussian filter at s = 400. Below
right, the ‘reconstruction’ using selected maxima only.

Let us as an illustration refer to figure 7. The input time series is shown together with the tree of
maxima of the WT with the Mexican hat wavelet. In the same figure 7 right above, we selected a
scale level of s = 400 which is denoted with the line. All eight maxima which are still visible at scales
larger than the one selected are highlighted and used for ‘reconstruction’. In figure 7 below left, we
show the low pass approximation of the time series corresponding with the selected scale level. To the
right, we show the approximation using the selected maxima. Compared to the smoothing only, the
reconstruction gives a much better characterisation of the largest discontinuities, although it shows
small overshoots (apparently due to the Gibbs phenomenon).

The detail of the singular behaviour is superimposed on the smooth approximation, as shown in
bottom left figure 7. This is evident from the fact that the maxima used are the only ones existing
above the selected threshold scale considered, in our case s = 400. Note, that the maxima above this
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scale fully characterise the approximation at this scale.

This procedure (used for both above examples) is only meant for qualitative illustration purposes;
it only works well if one can identify the maxima corresponding to the given singularity. As we have
discussed before, the number of lines converging to the singularity depends on the combination of the
value of the h exponent and the number of vanishing moments (number of oscillations) of the wavelet.
Still, even if the number of maxima is larger than one, each maximum line fully characterises the
singularity exponent and its size/scale, even though it may not be sufficient to reconstruct it.

4. ESTIMATION OF THE LOCAL, EFFECTIVE HOLDER EXPONENT USING THE MULTIPLICATIVE CAS-
CADE MODEL

We have shown in the previous section 3 that the wavelet transform and in particular its maxima

lines can be used in evaluating the Holder exponent in isolated singularities. The scaling of such

singularities remains essentially uniform below some critical scale, making the estimation possible

with the linear fit in the log-log plot over a carefully selected scale range.

In most real life situations, however, the singularities in the time series are not isolated but densely
packed. The logarithmic rate of increase or decay of the corresponding wavelet transform maximum
line is usually not stable but it fluctuates wildly, often making estimation impossible due to divergence
problems when the value of the WT along the maximum line approaches zero.

On the other hand, we have also shown on both simulated and real examples that the maxima lines
contain the ‘compressed’ information about the singular behaviour, potentially very relevant for our
purpose. Encoding and processing the entire length of the maximum line is relatively computationally
expensive, and estimation of Holder exponent from the log-log fit impossible. Still, we would like to
have some means of characterising the singular behaviour from the related maximum line. As a remedy
for the estimation problems, we will use the characterisation with the model based approximation of
the local scaling exponent, which we will refer to as an effective Holder exponent of the singularity.

In order to estimate this exponent in real life time series with dense singular behaviour, we need to
approach the problem of diverging maxima values in log-log plots and the problem of slope fluctuations.

We used the procedure of bounding the local Holder exponent as described in the report [10] to
pre-process the maxima. The crux of the method lies in the explicit calculation of the bounds for
the (positive and negative) slope locally in scale. The parts of the maxima lines for which the slope
exceeds the bounds imposed are simply not considered in calculations. The output of this procedure
is therefore the set of non-diverging values of the maxima lines corresponding to the singularities in
the time series.

Even though instead of fluctuating wildly between +o0o and —oo, these values now remain within
the bounds, they still fluctuate, with the local slope changing from point to point. Of course, this
is why it is not possible to evaluate the Holder exponent by linear fit in log-log plot, something we
can do for isolated cases giving a stable maximum value decay/increase. Therefore, we resort to the
second assumption, in which we model the singularities as created in some kind of a collective process
of a very generic class. For the estimation of the local Holder exponent in such time series, we will
use a multiplicative cascade model. This will allow us to construct a stable estimate of a local h(xg)
exponent. The multiplicative cascade model is a generalisation of a binomial multiplicative process
otherwise known as the Besicovich binomial process.

4.1 Multiplicative Cascade Model

The Besicovitch measure is actually a simple extension of the widely known Cantor set construction
achieved by equipping it with a multiplicative measure. To demonstrate a uniform case, we start from
a unit mass bar uniformly distributed over (0..1) interval. In the first generation step, the support
is divided into three equal parts and the unit mass is divided in two and distributed over the side
intervals of length 1/3, being (0..1/3) and (2/3..1). Note that the centre interval remains empty. In the
next generation, the same procedure is recursively applied to all the intervals with mass distributed
over them. It is easy to check that each step of generation increases the density of the measure by the
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factor 3/2, while the total measure remains constant and equal to the unit mass.

There is the possibility of generalising this construction through non-equal factors defining non-
uniform, multiplicative repartitioning of the measure. To do this, one again takes a unit measure and
distributes it with the arbitrary ratios p; and ps over the two remaining sections of the line at each
construction step, see figure 8 left. The resulting multiplicative distribution of the measure gives a
classical example of the so-called multi-fractal object [11].

Naturally, the ratios cl_l =cy ! /3 defining the middle-third Cantor set can as well be set to
non-uniform. Also, the number of divisions, which is equivalent to the number of transformations,
see Eq. 4.1, can be subject to alteration (increase). In particular the support does not have to be the
Cantor set at all, but it can simply be the entire (0..1) interval. If in addition to this the normalisation
requirement is lifted, we will refer to such construction as the multiplicative cascade model, see figure 8
right.

60
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Figure 8: Left: the Besicovitch measure on the Cantor set, generations Fy through Fj3 and the
generation Fgz. The distribution of weights is p; = 0.4 and p, = 0.6. The standard middle third
Cantor division is retained. Right: similar construction but on 0..1 support instead of the Cantor set,
leading to multiplicative cascade. p; = 0.3 and p2 = 0.7, generation Fis.

The set of transformations By 2y describing the Besicovitch construction can be expressed as:

Bufe) = pi S
By fa) = pof(ET22 (4.1)

with the normalisation requirement:

prtp2=1. (4.2)
Additionally, we put conditions ensuring non-overlapping of the transformations:

1+ b
+1<0+2
C1 Co

while all the respective values by /c1,b2/ca, cfl, 051 are from the interval (0, 1).
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For equal ratios, py = p2 = 1/2 and ¢; = ¢o = 3 with by = 0 and by = 2 we recover the middle-
third, homogeneous distribution of measure on the Cantor set. We have the Besicovitch measure for
non-equal p;, with other above settings retained. Finally, for non-equal p;, regardless of normalisation
Eq 4.2 and with ¢; = ¢o = 2 with b; = 0 and bs = 1, we have the multiplicative cascade on (0..1)
interval.

Each point of this cascade is uniquely characterised by the sequence of weights (s1...s5,) taking
values from the (binary) set {1,2}, and acting successively along a unique process branch leading to
this point. Suppose that we denote the density of the cascade at the generation level F; by x(F}), we
then have

K(Fmaa:) = Ps; -+ Psp H(FO) — P}};Om,a,:n H(F())

and the local exponent is related to the product PE;“” of these weights:

wr _ los(PE)
Free ™ Tog((1/2)7) —Tog(1/2)7)

In any experimental situation, the weights p; are not known and h; has to be estimated. This can
be simply done using the fact that for the multiplicative cascade process of the kind just described,
the effective product of the weighting factors is reflected in the difference of logarithmic values of the
densities at Fjy and Fj4, along the process branch:

Fo _ 10g(K(Fmaz)) —log(k(s0))
Fmaz = log((1/2)mer) —log((1/2)°) -

The densities along the process branch can be estimated with the wavelet transform using its remark-
able ability to reveal the entire process tree of a multiplicative process [9, 12]. It can be shown that
the densities k(F;) can be estimated from the value of the wavelet transform along the maxima lines
corresponding to the given process branch. The estimate of the effective Holder exponent becomes:

o _ 1080V S (Smin)) ~ 108(1W fi(ma))
Smin log(smin) — 10g(Smaa)

where W fwpy(s) is the value of the wavelet transform at the scale s, along the maximum line wp
corresponding to the given process branch. Scale s,,;, corresponds with generation F), .., while s;,qz
corresponds with generation Fj.

For the estimation of h, we need Syae and W fwpy(Smas). We can, of course, pick any of the roots
of the sub-trees of the entire maxima tree in order to evaluate exponents of the partial process or
sub-cascade. But for the entire sample available we must use the entire tree and for this purpose, we
can only do as well as taking the sample length to correspond with s;,4z, i.€.:

Smaz = Ss1, = log(SampleLength) .

Unfortunately, the wavelet transform coefficients at this scale are heavily distorted by finite size effects.
This is why we estimate the value of W fwpp(Smas) using the mean h exponent.

4.2 Estimation of the Mean Hélder Exponent
For a multiplicative cascade process, a mean value of the cascade at the scale s can be defined as:
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M(s) = ;Ez 1; , (4.3)

where the Z(s,q) is the partition function of the ¢g-th moment of the measure distributed over the
wavelet transform maxima at the scale s considered:

Z(s,q) = S (W fwr(s)?,

Q(s)

where Q(s) = {w;(s)} is the set of all maxima w;(s) at the scale s, satisfying the constraint on their
local logarithmic derivative in scale [10]. This mean gives the direct possibility of estimating the mean
value of the local Holder exponent as a linear fit to M:

log(M(s)) =hlogs+C . (4.4)
We will not, however, use the definition 4.3 since we want the Holder exponent to be the local version

of the Hurst exponent. This compatibility is easily achieved when we take the second moment of the
partition function to define the mean h':

M(s) = | 2122
Z(s,0)
Wrf(log(s)) Wi(log(s))
1 1
0 2(s,2) . 0 min. scale maxima ©
line of mean H slope - Z(s,2) .+
= min scale line of mean H slope
-1+ 1 B -1 slope=h_min B

max scale max scale

5t 1 5r 1
6 | s : slope=h_max |
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8 | | | | 8 | | | |
0 2 4 6 8 10 0 2 4 6 8 10
log(s) log(s)

Figure 9: Left: the projection of the maxima lines of the WT along time. The mean value of the
Holder exponent can be estimated from the log-log slope of the line shown. Also, the beginning of the
cascade at the maximum scale S,,4. is indicated. Right: the maxima at the smallest scale considered
are shown in the projection along time. The effective Holder exponent can be evaluated for each point
of the maximum line at s, scale. Two extremal exponent values are indicated, for minimum and
maximum slope.

Therefore, we estimate our mean Holder exponent A’ from 4.4 substituting M with M’. The estimate
of the local Holder exponent now becomes:
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BSSL ~ log(Wf(szn)) - (71/ 10g8 =+ C)
Smin log(Smin) — log(ssr)

4.8 Comparing the Distributions and the FEvolution of the Logarithmic Histogram

Such an estimated local h(xg, s) can be depicted in the temporal fashion, for example with colour/grayscale
as we have done in figure 1. Alternatively it can be grouped into histograms. We will estimate his-
tograms of h(zg, s) for a range of scales less than factor 2.0; Smin/Smaz < 2.0. This is done in order

to increase the number of points to be histogrammed - instead of one scale, we sample a multitude of
scales within a narrow scale range (10 samples per scale for histograms shown in figure 10).

We display histograms of h, taking the logarithm of the measure in each histogram bin. This
conserves the monotonicity of the original histogram, but allows us to compare the log-histograms
with the so-called spectrum of singularities D(h).3 Tt is a standard way of visualising the distribution
of singularities. It gives the (fractal) dimension D(h;) of the supporting set of singularities for each
exponent value h; in the time-series. This is usually obtained using the so-called Legendre Transform
from the moments of the partition function Z, see Ref[13, 14], but there is also a direct correspondence
between our log-histograms and the D(h) through the scaling of the logarithmic histograms:

log(1(h(smaz))) — log(p(A(smin)))

D(h) = dim({zo} : T(x—x0) ~ |z — z|"*)) ~ 108 (Smaz) — 108(Smin)

For three example time series, we show in figure 10, log-histograms of the exponent h at different scales.
The time series considered are a white noise sample, a fractional Brownian motion with H = 0.6, and
a record of the S&P index.

Starting at the top, the row of histograms is made for the scale range log(500.0) < log(s) <
l0g(1000.0). The histograms show considerable fragmentation. Several modes become visible and in
an extreme interpretation, all the values can be considered as single modes. This will certainly hold
for even higher scales with the limit of one single value. This limit is achieved in less than a decade
of scale for the time series shown - the ‘histogram’ plots (not shown) for the scale log(s) = 6.53 have
only one value. This means that for log(s) = 5.15 and all the scales above, the fluctuations dominate
the distribution and consistent statistical behaviour becomes dispersed. On the contrary, while going
down with the scale, the bulk of consistent behaviour overshadows the large scale fluctuations. This
can be observed in the second row of histograms for the scale log(50.0) < log(s) < log(100.0), and
especially for the fourth row at the scale log(5.0) < log(s) < log(10.0).

The consistent statistical behaviour is captured in the scale-free representation of these histograms.
The D(h) spectrum provides such a representation, capturing both gross, scale-free behaviour and
the fluctuations (giving rise to the off-centre spreading of the spectrum). In the ideal case of infinite
sample length, it should be just one Dirac delta at some value h for the first two time series from
the left. Evidently this is not the case and the fluctuations of the relatively short length time series
sample (4096 points) are the reason for this. While this is, of course, the reason for taking longer
records for deriving statistically meaningful estimates, we will show in the following that, for the task
of comparing time series, e.g. various realisations of random processes, with respect to similarity
criteria, the fluctuations constitute the core elements for such a comparison.

With the h-exponent scale parameterized histograms, we have therefore obtained insight into both
the largest events in scale (fluctuations) and largest events in h distribution (the rare events). Both
can be used as a means of characterising time series, along with the distribution at a certain scale or
the invariant limit distribution D(h). Since we aim at a local comparison, we will not expand on the
issue of the distribution matching, and will move directly to the issue of local representation.

3this is usually denoted with f(a) in the literature, but we find D(h) more suitable here.
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Figure 10: Three sets of h histograms for respective scales log(s) = 5.15, log(s) = 3.75, log(s) = 2.31,
respectively for the top first, second and third row. Below, in the bottom row, the corresponding D(h)
spectrum. Left column: for 4096 samples of white noise. Centre: 4096 samples of fractional Brownian
motion with H = 0.6. Right: S&P 500 index, first 4096 samples from figure 1.
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5. THE h-REPRESENTATION
As already discussed in section 3, the wavelet transform removes the polynomial bias, but at the
same time it effectively ‘compresses’ the information about the ‘non-stationarity’ into a piece of local
information. Moreover, it reveals the scale-wise organisation of singularities, thus allowing for the
selection of the interesting strongest events. This we have discussed in the previous section; the
strongest events will slowly disappear in the bulk of the maxima while going down the scale.
In oder to arrive at a (very compact) representation of the time series, one would like to include
a certain (predefined) number of such features in it. Therefore, one would have to find an optimum
of the scale of representation and the number of features, a process prone to some arbitrariness in
the design of optimality criteria. This problem can be avoided using a somewhat modified strategy
which we suggest in the following. The h-representation as we will call it will be obtained by means
of tracing the fixed number of strongest maxima below the representation scale at which they appear,
thus allowing better localisation of singular features in the time domain and a more stable estimation
of the h exponent.
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Figure 11: Left: the input time series with the WT maxima above in the same figure. The strongest
maxima correspond to the crash of ’87. The input time series is de-biased and L1 normalised. Right:
we show the same crash related maxima highlighted in the projection showing the logarithmic scaling
of all the maxima.

Let us consider the entire sample length of the S&P 500 index shown in the lower part of figure 1.
We can make the decomposition with the Mexican hat wavelet. We will use the Mexican hat, since
it will mark with one line the places where we have ‘a change of slope’. Of course, the step Heaviside
function will have two lines approaching it, and the Dirac delta three.

The strongest maxima in figure 11 left (above the input time series plot) converge to the largest
singular events. Note that the largest singularity is not related to the highest amplitude of the time
series but to the largest step like singularity. Also, another set of strongest maxima corresponds to the
step singularities at the end points of the time series resulting from the finite length of the investigated
time series.

In the right figure 11, we show the same maxima highlighted in the projection showing the loga-
rithmic scaling of all the maxima. The maxima corresponding to the crash are the strongest for all
the scales considered. They also show scaling which is closer to that of the Heaviside step with Holder
exponent h = 0, rather than to the average Hurst exponent of the financial time series H ~ 0.5.

Let us now show the development of i values associated with each maximum for some meaningful
range of scales, e.g. from log(s) = 2 to log(s) = 8. Even in plotting the projection of the entire set of
h values, several lines show up as the largest deviations, see figure 12 left. They extend far from the
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main ‘cone’ of the distribution and can be identified as: a) the maxima corresponding with the ends
of the time series record and b) the maxima related to the strongest event, the crash of '87. Taking a
section of the projection of h for a fixed scale confirms this observation. In figure 12 right, a section
is carried out for log(s) = 6 above, and for log(s) = 2.14 below. For each value of the h exponent, an
impulse is drawn; what we show is therefore not a histogram but it contains the same information;
the histogram can be obtained from it by appropriately binning the data.
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Figure 12: Left: the projection of the local Holder exponents along scale. The exponents of the major
events, edge and crash are indicated. Right: the distributions of the local Holder exponents taken at
two different scales, log(s) = 6.0 and log(s) = 2.14.

We chose this way of presentation since the strongest events on which we want to focus are not very
frequent - we refer to them as ‘rare’ events. They are difficult to see once the bulk of the distribution
takes shape, as in the section at log(s) = 2.14 in figure 12 bottom right.

Note that at large scales, the crash related maxima are evidently and strongly unique, while at
smaller scales they loose the distance to the bulk of maxima lines. This observation suggests that
one should look for some optimal combination of scale and number of the strongest features to be
represented. Therefore, the main criterium for selecting the working scale used would be the predefined
small number of features which are revealed up to this scale. This approach is, however, not without
problems - the parameters, like position x; and the Holder exponent h;, obtained for such a relatively
high working scale would be burdened with a very big distortion. This is why we use a somewhat
modified strategy. We evaluate the maxima decomposition for some considerable range of scales, say
two decades or more, and select the predefined number of maxima which show up first, while going
down the scale. The relevant parameters can thus be evaluated for these maxima over the extended
range of scales.

Let us illustrate this by selecting the 10 strongest maxima from the distribution in figure 12 and
continuing them down to scale log(s) = 6. They are indicated by points in figure 13 left, while in
top right, the corresponding ‘distribution’ of h; values is shown. Finally, in the same figure 13, we
show the temporal structure of the analysed time series sampled along the chosen set of points; it
is a set {x;, f(x;)}, where ¢ runs from 1, ..., 10, enumerating the strongest maxima chosen. For the
sake of comparison, we plot in figure 14 the sampling of the input time series with all the maxima
(which are 25) present at the scale log(s) = 6. There is a substantial amount of detail added to the
‘approximation’, nevertheless the strongest features remain unchanged. In figure 13 right, we compare
the sampling with the 10 strongest maxima against the original time series. We determine that the
conclusion is not different - the largest features are well captured by the sampling proposed.
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Figure 13: Left: the points indicating the strongest 10 maxima at the lowest scale considered. Right
above: the distribution of the A values. It retains the rare events, and shows far fewer bulk events.
Right below: the sequence of h in the temporal fashion. Also in the same plot, we show the ‘approxi-
mation’ of the time series using the sampling of the original time series at the locations of the selected
maxima.

Note that it is not the values of the function which are retained for the sake of representing the time
series, but the corresponding (effective) Holder exponent. Indeed, generally we would not want to
be dependent on the exact values of the time series, but rather employ the scale free characteristics,
locally independent of vertical rescaling and polynomial bias. Even though we discard the actual
values of the wavelet transform at the chosen maxima points, the signs of these values can be taken
into the representation. Generally speaking, they will allow us to distinguish between inverted features
and, in particular, between the time series f(x) and its inverted version — f(x).
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Figure 14: Left: the ‘approximation’ of the time series using the 10 strongest maxima, overlayed onto
the ‘approximation’ using all 25 maxima at the scale considered log(s) = 6. Right: the ‘approximation’
of the time series using the strongest 10 maxima, overlayed onto the original time series.
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In figure 15 left, we show the sequence of the values of the 10 strongest maxima at the scale
considered. The signs of these values give a unique sequence of sign changes. This information is not
present in the sequence of the local Holder exponent as shown in figure 13 bottom right. This is due to
the fact that we take the logarithm of the modulus of the WT value to estimate the scaling exponent.
Still, this sign sequence provides important information about the sign of the singularity in addition
to its exponent. There is a unique relation between the sign of the WT and the curvature/concavity
of the approximation pattern - compare the left figures 15 and 14. The reason for this is evident
from the fact that this sign sequence simply reflects the sign of the second derivative of the smoothed
version of the time series (for the Mexican hat wavelet). The distribution of these maxima is almost
symmetrical around zero, which can be seen in figure 15 right.
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Figure 15: Left above: the sequence of the values of the 10 strongest maxima at the scale log(s) = 6,
giving a unique sequence of sign changes. Right above: the distribution of these maxima values is
almost symmetrical around zero. Below: analogical plots for scale log(s) = 2.14.

In conclusion to the above considerations, we can design our h-representation to contain the set of
a certain number of the largest features of the time series at hand. The parameters coded are the
z-coordinate x; of the selected maximum lines w; at the scale s,,,, the Holder exponent h(z;), the
corresponding sign of the wavelet transform W f(z;) (and optionally the top scale of w;). The implicit
assumption is taken here, which allows us to neglect the top scale parameter within the default h-
representation. It relies on the expectation that for the small number of largest features their top scale
will not differ much, and most likely will be within less than one decade. It is of course possible to
validate this assumption in the process of constructing the representation, as is also possible to simply
retain the top scale and take it into the representation. Within the scope of this work, however, we
do not take the top-scale parameter into consideration when deriving the h-representation and as a
consequence when comparing the time series in the test section 6.

5.1 Matching Distances and Norms

We used a straightforward algorithm to evaluate the similarity between the h-representations. For
each set of numbers associated with the representation feature ¢, we used a quadratic distance measure
with separate factors for position and h exponent, f, and fj respectively:
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h(x) h(x)
1.0 1.0

Figure 16: Two sets of autocorrelation measures corrs s(z, h) and Corrg s(x) for different f, factors
and different numbers of features. From top to bottom 4, 8 and 547 features, and f, = 1.0 for the left
column and f, = 0.1 for the right column of the plots. The pointwise autocorrelation corrs s(z, h)
reflects distance measure, and is shown with colour changing from red to blue according to distance
increasing. The autocorrelation product Corrs s(z) is shown as a line plot function of time z. One
can verify that it corresponds with the vertical projection of the distance measure.

disty(z,h) =1— (fo A7+ fo A7),

where A, =z — z; and A, = h — h; and x;, h; belong to s - the representation of the time series.

The representation thus defined is suitable for determining the distance measure between the time
series. A simple pointwise product will show how the two representations s; and ss, of the time series
in hand are correlated in the time z, and h exponent domains:

CorTsy s (T, h) = dists, (x, h) dists, (z,h) . (5.1)
Since we actually have the h-representation consisting of two (independent) parts, corresponding with

the positive and the negative signs, we also have two distance functions per time series. This is why
we use the ‘modulus’ of the two part correlation function:
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1
lcorr{,, (z, h)| = \/; \/distj'1 (z,h) dists, (z, h) + dists, (x, ) dists, (z,h) . (56.2)

Calculation of the actual correlation product in time domain can now be done by a simple projection
of the pointwise correlation onto the time axis x:

h"”,a_r
Corrs, s,(x) = / lcorr{ 7, (x, h)| dh . (5.3)

h'm in

From this time dependent correlation product we can, of course, evaluate the cumulative correlation
measure for comparison between different pairs of time series, i.e. for determining the similarity
measure. For this purpose, however, we have to normalise the correlation measure. The simplest
norm can be evaluated just as the autocorrelation of the h-representation of the time series s:

1
Ny = / Corrs ¢(x) dz (5.4)
0

where we assume that the time span x has been normalised to the 0..1 range. Therefore the measure
of similarity between time series s; and sy can be evaluated as:

1
. 1
SiMsy 59 = Corrg, s,(z) dzx .
N, Ns, Jo

This similarity measure takes values from the [0..1] interval. Of course, for a distance measure, we
can use — log(sim), extending from 0 to occ.

5.2 Transition from Local to Stochastic Representation and the Saturation of h-Representation

In figure 16 we show an example of pointwise autocorrelation |corrf (z,h)| of the h-representation
of a time series s for two values of f, factor and for three levels of the number of features represented.
We can see how (for both factor f, values), while incorporating more and more features, the distance
measure fills the entire interval (0..1). This happens due to increasingly dense coverage of the position
coordinate with more and more features. Thus, the position discriminating capability becomes lost,
while the h-discriminating ability approaches that of the D(h) distribution discussed earlier.

The number of features taken into the h-representation can be directly related to the scale; the higher
the number of the features the lower the scale s. Therefore, the effect just described is analogical to
the histogram ‘saturation’ which we observed in section 4. Here, it is the saturation of the local
h-representation, if we change the scale towards a higher resolution. This can be measured using the
total norm measure Eq 5.4, i.e. the cumulative autocorrelation. For the plot of the norm as a function
of scale, for two f, factor values, see figure 17. The evolution of the total norm is linear with respect
to log(s) for the larger sigma factor, and changes to linear from apparently exponential (or power
law) for the smaller sigma factor. The local h-representation can in principle be used across the entire
spectrum of the scale range and position parameters. The total autocorrelation indeed grows and this
reflects the increasing discrimination power with the larger scale range covered. But linear in log(s),
the growth of discrimination power is much slower than the exponential number of features added,
and soon it becomes infeasible to use it. This is another indication of the fact that the representation
so defined only makes sense for a very small number of features. Indeed, this is perfectly consistent
with the design criteria we imposed. Nevertheless, it is possible to extend the h-representation over
scale information (top-scale) for those applications requiring larger number of features and scale-wise
resolution power.
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Figure 17: The evolution of the norm N; as a function of the logarithm of scale, for two different
factors f, = 1.0 and f, =0.1.

6. EXPERIMENTS WITH SIMILARITY

We took the records of the exchange rate with respect to USD over the period 01/06/73 - 21/05/87.
It contains daily records of the exchange rates of five currencies with respect to USD: Pound Sterling,
Canadian Dollar, German Mark, Japanese Yen and Swiss Franc. (Some records were missing - we
used the last known value to interpolate missing values.) Below, in figure 18 we show the plots of the
records.

All the time series were decomposed using the Mexican hat wavelet. For each, the 10 — 20 strongest
maxima were selected and for each of these maxima, the following were retained: the position of the
maximum at the fine scale, the estimate of the Holder exponent, the sign of the WT value at the
location of the maximum at the finest scale.

As the measure of similarity for our examples, we have respectively:

e German Mark(ss) versus Swiss Franc(ss); total correlation = 0.793370

e Pound Sterling(s;) versus Canadian Dollar(sg); total correlation = 0.287755
e Pound Sterling(s;) versus German Mark(ss); total correlation = 0.408833

e Pound Sterling(s;) versus Swiss Franc(ss); total correlation = 0.375356

e Canadian Dollar(sz) versus German Mark(ss); total correlation = 0.314108

e Canadian Dollar(sz) versus Swiss Franc(ss); total correlation = 0.337519 .

Note that all these values were obtained including the end cut-off and the related singularity at
the beginning and at the end of the time series record. (We had to pad with zeros in order to obtain
power of 2 for FFT). These cut-off singularities are trivially correlated for all time series and add some
bias to the correlation values. For all the above examples, the cut-off singularities account for some
0.1 — 0.2 correlation.

We plot the time series pairwise, their corresponding h-representations and their pairwise cor-
relation in figures 19 to 21. For the plots of h-representations, we actually plotted the pointwise
autocorrelations, which reflects the distance measure. The pointwise correlations of the corresponding
h-representations are shown in the bottom plots, including the projection of the pointwise correlation
onto the time axis, shown with the line plot. Even at the very low resolution of the h-representations,
the correlation plot conveys relevant temporal information about the local similarity of time series
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Figure 18: Left above, all the records of the exchange rate used, with respect to USD over the period
01/06/73 - 21/05/87. In small inserts, single exchange rates renormalised, from top right to bottom
left (clockwise), Pound Sterling, Canadian Dollar, German Mark, Japanese Yen and Swiss Franc, all
with respect to USD.

matched. For example, in figure 19 the time series s3 and ss correlate very well across the entire
sample. The time series s; and sy only start to show some significant correlation after x = 0.55 on
the normalised time axis. Similarly, in figure 20 we identify a lack of local correlation between x = 0.2
and x = 0.55.

A possible interpretation is that the time series s3 and s5 are permanently strongly coupled through
some political/economical links. Considering these are both time series from the European Union,
this is not an unlikely reason. On the other hand, the localised beginning of the correlations between
the s1 and s time series may have something to do with an important political /economical /military
event which then took place and has coupled both currency systems since then. Alternatively, and
perhaps even more likely, the events reflected by both the exchange rates of the currencies in question
may have primarily affected the reference currency, in this case the USD.

As an additional test, we measured the similarity between one and the same time series, but with
the time reversed in one of them. The results were in all cases convincing - a very low global correlation
level. Locally the residual correlation measure was symmetrical. This confirms the fact that there is
little long-range correlation (if any) in the records of exchange rates. Still, we can encounter some
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similarities between random fluctuations. We show two examples in figure 22: total correlation for
the left example is 0.242666, and 0.277345 for the right one.

7. CONCLUSIONS
To conclude, let us summarize the advantages of the wavelet transform in the context of designing a
compact representation of time series for similarity matching.

The Wavelet Transformation incorporates the concept of scale (resolution) to the representation of
the time series, which enables us to reveal the scale-wise organisation (hierarchy) of features. Since
we are interested in only the largest features, these correspond to events at the largest of the scales of
decomposition. The task of selecting such features can be accomplished using the (predefined) number
of WT maxima appearing above some largest (predefined) scale of interest.

The Wavelet Transformation provides the possibility of designing a scale-free representation of
singular features in time series independent of vertical and horizontal rescaling, shift and invariance
with respect to additive (polynomial) bias. In particular, the WT allows us to isolate such singular
events and in addition to evaluate their scale free parameters, relative scale, relative position and
effective estimate h of their Holder exponent. We have shown that a set of such features can serve for
evaluating the (local) correlation product for time series.

With regard to possible extensions of this methodology, there are two directions which could be
taken. One is further to reduce the discrimination power for the sake of rapid rough similarity
matching. We have shown that histograms of the local h exponent can be made for all scales. We
have also demonstrated that by an appropriate choice of scale or the number of maxima, it possible
to incorporate in the distribution the features which belong to the strongest fluctuations and suppress
those which belong to the bulk behaviour of the distribution. This approach should be particularly
useful in rough matching not oriented at local information.

At the other extreme is the possibility of extending the h-representation over the ‘top’ scale. This
information is not necessary in the case of the very limited scale range covered by the largest features
in the h-representation as presented in this report. However, in case a higher discriminating power is
needed, more features may have to be included in the representation. In this case, the scale range will
likely extend to the degree requiring the top-scale of each singular feature to be incorporated into the
representation. Adding a new parameter introduces another degree of freedom in the representation,
thus improving the resolution of matching. In particular the scale parameter can be used to implement
matching including x rescaling, thus comparing features of different length, or features at different
resolutions in one time series.

Due to the character of our application, we have shown how to estimate the Hélder exponent for
dense singularities. Of course, there may be applications where isolated singularities are predominant.
In this case a more accurate estimation of their exponents can be obtained than by using our multi-
plicative cascade model. A method to decide whether we deal with an isolated singularity would be
useful in this context. The properties of the tree structure revealed by the WT should provide reliable
guidance for such a method.

Last but not least, on the implementation side for real data mining applications, compactly sup-
ported wavelets from the Haar family will be evaluated for use in efficient and fast algorithms realising
the methodology described in this report.
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Figure 19: Left: German Mark versus Swiss Franc. Right: Pound Sterling versus Canadian Dollar.
The time series in the pair of the upper plots are followed by the distance measures (autocorrelations)
obtained from the corresponding h-representations in two plots below. The pointwise correlation of the
corresponding h-representations is shown in the bottom plots. Vertical range for pointwise correlation
plot is from 0 to 1 for h exponent, horizontal is ranging from 0 to 1 for normalised time. Projection
of the pointwise correlation on the time axis is shown with the line plot.
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Figure 20: Left: Pound Sterling versus German Mark. Right: Pound Sterling versus Swiss Franc.
Description of the axis analogical to that in figure 19.
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Figure 21: Left: Canadian Dollar versus German Mark. Right: Canadian Dollar versus Swiss Franc.
Description of the axis analogical to that in figure 19.
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Figure 22: Left: Swiss Franc versus Swiss Franc inverted in time. Right: Canadian Dollar versus
Canadian Dollar inverted in time. Description of the axis analogical to that in figure 19.
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