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ABSTRACT

Opportunistic networking can help emergency services in
both their daily operation and disaster relief. This idea
has been extensively explored in previous research, but most
studies are based on little knowledge of real mobility. In or-
der to support future research, this paper analyses one year
of GPS traces from a fire department. The results reveal the
characteristics of hypothetic opportunistic networks formed
by devices following this mobility considering different com-
munication ranges. We found that the networks analysed
are heterogeneous in many dimensions. They are also sparse
and partitioned, but delay-tolerant routes connecting these
partitions exist. To ease the discovery of these routes, we
reveal in the connections between nodes. These findings can
be applied in the design and deployment of solutions from
the physical to the application layer.
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1. INTRODUCTION

Communication networks are an essential tool for emer-
gency services. Nowadays, they are used for coordination,
information gathering, alerting population and more. In
the near future, the proliferation of new technologies, such
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as sensors, are going to increase even more their impor-
tance. However, the use of existent network infrastructures,
e.g. commercial 3G /4G networks or specialised TETRA net-
works, is not always possible nor the best solution. Emer-
gency services often act in remote locations, where the in-
frastructure may not exist, or after natural disasters, which
may destroy it. Furthermore, costs can be saved by not us-
ing a commercial network for services that do not rely on
continuous connectivity. For that reason, Mobile Ad-hoc
Networks (MANETS) are an attractive alternative, not only
in disaster relief, but also in the daily operation of emer-
gency services. MANETSs are deployed using wireless proto-
cols, such as 802.11. Devices, also known as nodes, estab-
lish network links with others within their communications
range. They act as both hosts and routers, forwarding traf-
fic on behalf of others. Sometimes, when nodes can not be
connected through a multihop route, they can still leverage
Delay-Tolerant Networking (DTN) mechanisms to exchange
data. MANETSs and DTNs can be combined to get the most
of the network. In general, nodes use opportunities given
by their location to communicate with other nodes. Thus,
these networks are generally called opportunistic networks.
Understanding node mobility is key to engineer realistic so-
lutions for this type of networks. The research community
is aware of this fact and has worked on it. Mobility mod-
els have been proposed, for example in the area of tacti-
cal networks [1], which includes emergencies [2]. However,
researchers confront the scarcity of real mobility traces to
support these models. This trend is fortunately changing
and more mobility and network traces are being gathered in
different application domains?.

This paper describes the results of analysing one year of
mobility traces of an emergency service. We have worked to-
gether with the regional fire department of Asturias (Spain)
to analyse their mobility without compromising privacy. The
goal is to provide the properties of hypothetic opportunistic
networks given their real movement. As far as we know, no-
body has tackled the analysis of such a big mobility dataset
in the context of emergencies. Our results reveal several
insights that can be used for network engineering, protocol
design and future research in opportunistic networking for
emergency services.

!See the CRAWDAD database - crawdad.org



The remainder of the paper is organised as follows. Next,
we describe the mobility traces and the method to process
them. Then, we present the most relevant results from ap-
plying our method to analyse mobility. Section 4 discusses
the implications of the most relevant results. Finally, we
formulate some conclusions and potential future work.

2. MOBILITY TRACES & METHOD

Our original data source is one year of GPS traces ex-
tracted from the Geographical Information System (GIS) of
a regional Fire Department (Bomberos de Asturias / 112).
The traces were generated by devices embedded mainly in
cars and trucks, but also in a helicopter and a few personal
radios. They represent their movement in emergency and
rescue operation, but also in their daily routines. A total of
229 devices reported 19,462,339 locations. A new location is
reported with an interval of approximately 30 seconds when
the GPS device detects movement.

GPS traces allow us to hypothesise about the potential
of opportunistic networks. Due to the size of the dataset,
we make a set of assumptions to simplify its analysis. We
assume that there is a network node located in the same
positions registered by each GPS device. At any given mo-
ment, the position of a node is the last GPS position reg-
istered. Links between nodes are estimated calculating the
distance between them. In our analysis, all nodes have the
same communication range and a link is established if the
distance between two nodes is shorter than it. We consider
three ranges: 10, 50 and 200 meters; which can be associ-
ated with radio technologies such as Bluetooth, WiFi and
WiMAX. Therefore, we obtain three hypothetic opportunis-
tic networks from the original mobility dataset. These as-
sumptions simplify our calculations at the cost of slightly
decreasing the realism of the results obtained. First, the
real position of a node may be an intermediate points be-
tween two reported positions. Second, the establishment of
a link between nodes depends on many other factors apart
from the distance, such as obstacles that may attenuate the
signal.

Given the communication range and the GPS location of
every node, we are able to estimate the existence of net-
work links. We carry out two types of analyses. On the
one hand, we analyse the dynamics of each link individu-
ally, i.e. when each link exists or not. We define a contact
as the period of time when the link is uninterruptedly estab-
lished. We define a break as the time between consecutive
contacts. Our analysis examines the duration of contacts
and breaks for each pair of nodes. They are fundamental
to determine network properties, such as its capacity or de-
lay. On the other hand, we analyse the dynamic topology
of each network. The topology is defined by all the nodes
and the links between them. Since nodes move, topology
changes over time. To discover delay-tolerant properties of
the networks, we consider snapshots of the network topol-
ogy using different time windows: 1 hour, 1 day and 1 year.
We calculate consecutive network topologies that link two
nodes if there is a link between them at any moment within
the given time window. For example, the time window of 1
day builds one network topology for each day. Each topol-
ogy contains links between all nodes that have had a contact
during that day, independently of its duration. Therefore,
each of these windows generates a set of snapshots, which
reveal different network properties. The 1 year window pro-
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Table 1: Contact duration metrics

Range (meters) 10 50 200
# Links 3,755 11,057 19,291
# Contacts 399,129 | 2,440,652 | 1,458,481
Mean contact (seconds) 398 3,886 15,640
Aggregated contacts (hours) || 431,340 | 2,398,270 | 5,686,176
Mean break (seconds) 8,634 55,490 212,500

vides one network topology representing the big picture of
the relationships between nodes in our dataset. The 1 day
window provides 365 network topologies, revealing the net-
work properties for applications that could support delays
lower than a day. The 1 hour window provides 8,740 net-
work topologies, revealing properties for applications that
are more sensitive to delay and closer to real time. Then,
network science metrics [3] are used to analyse each of these
snapshots. We look into partitions, clustering coefficients
and different centrality metrics. These metrics reveal net-
work properties, problems and protocol requirements, as it
has been showcased by previous related work [6].

3. RESULTS
3.1 Contacts & Breaks

In this section, we analyse the distribution of several met-
rics: contact & break duration for all nodes (Figures 1 and
2), mean contact & break duration for each pair of nodes
(Figures 3 and 4), and aggregated contact duration for each
pair of nodes (Figure 5). The x-axis corresponds to the
duration in seconds using a logarithmic scale. To ease read-
ability, we add markers equivalent to long periods of time in
seconds. We also provide a summary of relevant values for
each communication range in Table 1.
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Figure 1: Contact duration distribution for all links

In Figure 1, we analyse the duration of all the contacts
found in our traces. It provides a good overview of how long
contacts between nodes last. Most contacts last more than
a 1 minute and less than 1 hour using a 10 meters range.
For 50 meters and 200 meters, contact duration increases
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Figure 2: Break duration distribution for all links

significantly. As expected, the larger the range, the longer
the contacts. Contacts longer than 1 day are unfrequent,
although existent. Indeed, the longest contact detected lasts
for 292 days, which most likely corresponds to vehicles that
have been parked closely and barely used. Contacts shorter
than 1 minute are difficult to detect due to the frequency
in which GPS traces are collected (30 seconds), because it
limits the maximum resolution for this analysis. Figure 2
represents the distribution of the duration of breaks. It is
remarkable how the distribution for the 200 meter range
differs from the others. Whereas going for 10 meters to a 50
meters range has a small impact in the duration of breaks,
increasing the range to 200 meters decreases strongly the
existence of short breaks.

Table 1 provides numerical results of the analysis of all
contacts. We have extracted some relevant metrics to un-
derstand the relationships between nodes. We calculated
the number of different links detected for each of the ranges.
We also calculated the total number of contacts, considering
all links. Whereas the number of links obviously increases
with the range, the number of contacts is the highest for the
50 meters range. Thus, a significant amount of breaks (close
to a million) that would occur in an ad-hoc network with 50
meters range could be avoided by increasing it to 200 me-
ters. This is consequent with the result obtained analysing
the duration of breaks, since we have already observed that
a 200 meters range removes short contacts.

Table 1 provides the mean duration of contacts and breaks,
as well as the aggregated durations of all contacts. These
metrics provide a good insight of the influence of the range
in the link stability -how frequently and for how long breaks
occur- and also the network capacity -how much time nodes
have to exchange information. Given the amount of time
that nodes could be in contact, it seems like there are plenty
of opportunities to exchange information without using any
network infrastructure. Figures 3, 5 and 4 illustrate the dis-
tribution of these metrics, but individually for each pair of
nodes (or link). Examining links separately reveals the het-
erogeneity of the network. Links present strong differences
among them. Therefore, these networks are far from being
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Figure 3: Mean contact duration distribution for all
links

uniform, which would condition the way in which informa-
tion can be propagated.

3.2 Network topologies

This section describes the results obtained from calculat-
ing snapshots of the network topology considering different
communication ranges (10 meters, 50 meters and 200 me-
ters) and time windows (1 hour, 1 day and 1 year). First, we
present the results of analysing network partitions. Second,
we look into clustering coefficients and centrality metrics.
We have summarised the average values of these metrics in
Table 2. To obtain each value, metrics are averaged from all
the values obtained for each time window and range. Fur-
thermore, we illustrate the Normalised Degree distributions
of the topologies analysed in Figure 3.2.

Network partitions are groups of isolated nodes that can
only communicate among them. Partitions are important
from the networking point of view, because they give an
idea on how nodes are connected. Two nodes are not able to
exchange information within the given time window if they
are in different partitions. We have measured the number
and size of partitions in the network topologies generated
by each time window and range. The general trend is that
the number of partitions decreases with the length of the
time window and with the range. This is sound with our
expectations, because, in a longer period of time, nodes are
more likely to contact with others, build new links and even-
tually merge in fewer (and bigger) partitions. In addition, a
longer communication range increases the possibilities of es-
tablishing links. On the contrary, and also as expected, the
average size of the partitions grows with the range and the
time window length. The biggest diameter metric indicates
the longest multihop route present in the network (often in
the biggest partition). In other words, it is the maximum
number of nodes that a packet would have to traverse if
routing was optimal. For all the network topologies exam-
ined, the average of the longest route is below 9 hops, which
can have key implications for the design of routing and for-
warding policies. There are two relevant take-aways from
analysing partitions. First, our results indicate that when



Table 2: Mean values of network metrics
Time window 1 year 1 day 1 hour
Range (meters) 10 50 200 10 50 200 10 50 200
# Partitions 1 1 1 14.35 | 4.64 1.07 12.47 | 10.25 | 3.40
Partitions size 228 229 229 7.83 | 32.99 | 169.80 || 4.32 | 6.08 | 24.36
Biggest diameter 4 3 2 8.18 7.86 3.99 277 | 3.75 | 5.14
Clustering coefficient 0.44 0.71 0.88 0.56 0.40 0.31 0.48 | 0.28 | 0.09
Degree centrality 49.01 | 125.20 | 183.60 || 3.65 6.78 18.84 2.26 2.51 3.43
Betweenness centrality 95.81 | 51.40 | 22.20 || 45.03 | 154.50 | 101.40 || 1.22 | 7.80 | 92.05
Normalised closeness centrality || 0.55 0.70 0.85 0.01 0.10 0.47 0.02 0.02 0.13
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Figure 4: Mean break duration distribution for all
links

using a shorter time window, a larger number of nodes are
isolated. Thus, the network topology is sparse in real time.
Second, when the time window is big enough (e.g. 1 year)
almost all nodes merge in a big partition. This means that
communication between any two nodes is possible, although
possibly with long delays.

The clustering coefficient, or transitivity, of a network is
the probability that two nodes connected to a third one (its
neighbours) are also connected. It is a measure of the con-
nectivity between neighbours: a high clustering coefficient
indicates that the neighbours of a node are very likely to be
connected as well. This metric gives a basic idea about net-
work density and about groups of nodes (clusters) that are
highly interconnected. Clusters are interesting because they
can be leveraged in the design of distributed systems. In ad-
dition, the clustering coefficient also gives insights on how
strongly connected is the network, which is important for
network resilience. For example, a network suffers less when
a node drains its battery if its neighbours are well connected
among them. It would be expected that a longer range and
time window would produce higher clustering coefficients,
however, this is not always the case, as observed in Table 2.

Centrality metrics measure the importance or popularity
of nodes in the network. There are several centrality met-
rics, but we consider three that are interesting to analyse
ad-hoc networks according to Katsaros et al. [7]: degree,
betweenness and closeness. Degree centrality is the number
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Aggregated duration of contacts by pair of nodes
Figure 5: Aggregated contact duration distribution
for all links

of neighbours of a node. As expected, it increases with the
range and the time window. Understanding degree distribu-
tions is key to understand the structure of a network. Figure
3.2 represents these distributions for all the network topolo-
gies generated with all ranges and time windows. We can
observe that the trend is similar for different ranges using
the same time window, but not for different time windows
(especially for 1 year). These distribution also show the
heterogeneity of the network: some nodes have a few links
and some have many. Popular nodes, the ones with many
links, are referred to as hubs. In our observations for the
1 year time window, there are hubs with a relatively high
degree, e.g. 221. Betweenness centrality is the number of
shortest paths that traverse a node. This metric can reveal
the existence of bottlenecks in the network. A node with
high betweenness is likely to forward more packets on be-
half of others and, as a consequence, may become congested
or drain its battery faster. Closeness centrality is the inverse
of the distance in hops from a node to the rest of the nodes
in the network. This metric is relevant for information dis-
semination in a network. If we wanted to send a message
to all nodes in a partition, the most efficient way would be
to use the node with the highest closeness. The most inter-
esting result is for the 1 year window, where the average of
the observations are relatively high. This means that most
nodes are close to each other in the long term and that there
would be many candidates to disseminate information.
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4. DISCUSSION

This section discusses some implications of the described
results in the design and deployment of solutions from the
physical to the application layer. The stability shown by
contacts is relevant for the protocols in the lower layers.
Fast connections and disconnections of nodes are infrequent.
Therefore, there is time enough for state-of-the-art link layer
protocols, e.g. 802.11, to manage links between nodes. If
contacts were too short, these protocols would have to sup-
port very fast link establishment and soon link break detec-
tion. Shared medium is also problematic in wireless ad-hoc
networks. There are two main issues: collisions produced
by too many nodes sharing the medium and the well-known
hidden node problem. These issues are only relevant if nodes
compete for the medium at the same time. The analysis of
partitions revealed that in real time the network would be
sparse, with many isolated nodes, 2 or 3 nodes partitions and
short multihop routes. Therefore, the network is unlikely to
suffer heavily from any shared medium problem.

Although the network is sparse in real time, nodes con-
nect when observing longer timespans. This demonstrates a
common assumption when designing systems for MANETSs
in emergencies: the network is sparse and partitioned, but
there are nodes that can be used as data ferries. The store-
carry-forward paradigm [11] can be applied to design delay-
tolerant applications, in which a key problem is how to find

ferry nodes. Delay-tolerant routing protocols, e.g. PROPHET

[8] or dLife[9], aim to solve this issue. They typically use in-
formation from past contacts to predict future contacts. To
understand if this approach is valid in our scenarios, we look
for existent patterns in the contacts. In specific, we aim to
predict future frequency of contact from past frequency of
contact. The frequency of contact for a pair of nodes can be
calculated dividing the aggregated contact duration by the
total time analysed. For example, if one minute of mobility
is analysed and two nodes are connected for 30 seconds, the
frequency of contact is 0.5.

Lets define a variable t that takes as value all the seconds
in our traces. Then, for each t we calculate the frequency of
contact before t (Fcbt) and the frequency of contact after t
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(Fcat). So, for a pair of nodes, Fcbt is the aggregated con-
tact duration before t divided by the seconds elapsed from
the beginning of the traces to t. On the other hand, Fcat is
the aggregated contact duration after t divided by the sec-
onds left from t to the end of the traces. We now suppose
that every time a contact ends, the nodes predict that Fcat
is equal to Fcbt. This is a simple prediction that can be im-
plemented in real systems. Since we know Fcat, the error of
making these predictions in our traces is Fcat - Fcbt. Figure
7 shows the Probability Density Function for the prediction
errors. The error means are 0.01, 0.12, and 0.05 for 10, 50
and 200 meters respectively. Standard deviations are small.
Thus, capacity estimation errors are around 0, which may be
assumable in some real systems. These results indicate that
repeating patterns are present in the contacts. Therefore,
PROPHET-like protocols are adequate for this application
domain. To increase packet delivery probability and over-
come prediction errors, several ferries may be used. This is
possible in these networks because they are well connected
and several routes between nodes exist.

A MANET routing protocol discovers multihop routes in
real time. These protocols are sometimes criticised due to
their bad scalability. However, this would not be a prob-
lem, because multihop routes are likely to be short and the
partitions small, which implies a small routing table. Short
routes positively affect communications reliability as well. It
is well known that the probability of losing a packet increases
with the number of hops that it has to traverse.

Centrality metrics indicate that hubs are common in the
network and that nodes are highly interconnected. There
are many popular nodes, which is positive for network re-
silience. If a node failed, alternative nodes would be able
to rebuild connectivity. These results are also relevant for
network congestion as bottlenecks are unlikely according to
observed betweenness. Finally, a problem in MANETS is the
underperformance of TCP. Basically, TCP confuses disrup-
tions and congestion [5]. Thus, if disruptions are frequent,
TCP obtains a very low throughput. In our analysis we have
observed short contacts, but also very long ones, in which it
should be possible to use TCP. Therefore, TCP use may be
reconsidered in some situations.



1.00

0.75 -

0.50

Probability Density Function

Range
10 meters
0.25 |7|50 meters
200 meters
000 - “‘14‘_-----------------.\‘:&n ‘
1 1
[Te} o
IS -

Error of capacity estimation
Figure 7: Capacity estimation error distribution

S. CONCLUSIONS

This paper proposes the use of GPS traces to discover
the properties of opportunistic networks for emergency ser-
vices. Our approach differs from others that use connectiv-
ity traces, e.g. [10]. GPS traces introduce a higher level
of abstraction that could reduce the realism of the results.
Nonetheless, they also introduce more freedom in the analy-
sis, such as in the usage of different communication ranges.
As a result, the traces reveal interesting properties of an op-
portunistic network for an emergency service. The results
and discussion of this paper can help other researchers in
the design of experiments and protocols with a realistic ap-
proach. Although mobility traces can not be made public
due to privacy issues, the contacts will be available in the
CRAWDAD database to drive simulations or apply further
analysis.

Our analysis has revealed three important properties in
the networks analysed. First, they are heterogeneous in
several dimensions. Degree distributions are not uniform.
Hence, nodes in the network can have a very different num-
ber of neighbours. In addition, every link behaves differ-
ently, producing different durations of contacts and breaks.
Second, mobility creates sparse MANETS in real-time, but
with the possibility of delay-tolerant communication. At a
given moment, nodes are likely to be isolated or in a small
partition. However, their movement opens the possibility
to connect with others and use store-carry-forward to trans-
port information. Third, the error of predicting future link
capacity with past link capacity is small. The direct impli-
cation is the design of efficient routing strategies. However,
other applications can be envisioned from capacity estima-
tion, such as adaptive video transport [4].

Future work will be directed to deepen the analysis of
these mobility traces. By using information from the emer-
gency services, it will be possible to extract mobility from
specific situations, e.g. wildfires. The analysis of these sce-
narios could reveal specific properties, e.g. linked to the
type of emergency operation. Furthermore, models for some
parameters will be studied to enable the generation of net-
working scenarios with realistic characteristics. The analysis
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of mobility will be complemented with the evaluation of ex-
istent delay-tolerant routing protocols, as well as the design
of new solutions for emergency services.
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