
Math. Struct. in Comp. Science (1992), vol. 2, pp. 257-275 Copyright © 1992 Cambridge University Press

Processes as terms: non-well-founded models for
bisimulation

J. J. M. M. RUTTENt

CW!, Kruislaan 413, I 098 SJ Amsterdam, The Netherlands

Received 30 January 1991; revised 19 February 1992

A compositional semantics characterizing bisimulation equivalence is derived from
transition system specifications in the SOS style, satisfying certain syntactic conditions. We
use Aczel's nonstandard set theory for solving a recursive equation for a domain of
processes. It contains non-well-founded elements modelling possibly infinite behaviour.
Semantic interpretations of syntactic operators are obtained by defining the operational
semantics for terms consisting of both syntactic and semantic (processes) entities. Finally, we
return to standard set theory by observing that a similar, though less general, result can be
obtained with the use of complete metric spaces.

1. Introduction

A labelled transition system (LTS) is a triple < S, A,~>, consisting of a set S of states,
a set A of transition labels, and a transition relation ~s; S x A x S (Plotkin, 1981).
Every LTS induces a (strong) bisimulation equivalence on the set of states (Park, 1981).
We show how to derive from transition system specifications (sets of axioms and rules for
defining LTS's) satisfying the syntactic requirements of Groote and Vaandrager (1989),
a compositional semantics that characterizes bisimulation in the sense that it assigns the
same meaning to bisimilar states. This extends our previous results (Rutten, 1990) on the
same topic, since the class of TSS's that can be handled is larger.

First, a (not necessarily compositional) operational semantics MT is defined for an
arbitrary LTS T. It assigns to each state its unfolding under the transition relation. These
un.foldings are represented as elements of a class P of commutative, tree-like structures
called processes, satisfying

P = gi(A x P).

(Here &(A x P) is the class of all subsets of A x P, the Cartesian product of A and P .)
The process domain P is formally defined in Aczel's theory of non-well-founded sets

(Aczel, 1988). This theory is based on the usual set-theoretic axioms, with the axiom of
foundation replaced by a strong version of its negation, the anti-foundation-axiom (AFA).

t This work was partially supported by ESPRIT BRA (3020) Integration. This paper is an improved version
of J.J.M.M. Rutten, Non-well-founded sets and programming language semantics, Proceedings MFPS'91,
Pittsburgh, 1991.

J. J.M. M. Rutten 258

Aczel formulates AFA in a very intuitive fashion by viewing sets as graphs and the equality
of sets as their being bisimilar (in a sense closely related to the original notion of Park).
The existence of non-well-founded sets, like the set a satisfying a = {a}, is an immediate
consequence of AFA. The semantic universe P mentioned above will contain such non
well-founded sets. A simple example is the process p satisfying p = { < a, C/J >, < b, p > },
which represents an infinite binary tree with a choice at every node between doing a and
terminating, or doing b and continuing with p again.

There are two useful facts that hold in the above theory. First, the process domain P
(which can be viewed itself as an LTS) is strongly extensional, meaning that bisimilar pro
cesses are equal. The second fact is called the Solution Lemma and is a direct consequence
of (in fact equivalent to) AFA. It states the existence of a unique solution for systems of
recursive equations. Using these two facts, one can prove that the semantics Mr assigns
the same element in P to bisimilar states.

Next, LTS's defined by means of transition system specifications (TSS) are considered. A
TSS is a set of rules (and axioms) for defining transitions. These rules follow the syntactic
structure of the states s E S, which are now assumed to be terms over some (single-sorted)
signature L. Thus, we consider LTS's of the form T = < Terms(L), A, -+>.We show how
to use these rules for the definition of semantic interpretations of the syntactic operators
f E"i.

The main idea, which also explains the slogan in the title, is to consider an expression
likef(p1, ... ,pk) (where k is the arity off and pi, ... ,pk are processes in P) as a mixed term,
containing both syntactic(/') and semantic (pi, ... ,pk) entities. The semantic interpretation
off is obtained by taking the operational semantics of mixed terms f (P1, ... , pk), for any
k-tuple of processes.

This yields a compositional semantics Cr for T, which is shown to be equal to Mr
when the syntactic restrictions on the format of the transition rules introduced in Groote
and Vaandrager (1989) are satisfied. We repeat the main result from that paper, namely
that the bisimulation equivalence induced by such a TSS is a congruence, and use it to
establish Mr = C r.

Finally it is shown that (in standard set theory) complete metric spaces, which have
often been used in the semantics of programming languages (Ni vat, 1979; de Bakker and
Zucker, 1982), offer a good alternative to the above non-standard theory. The two main
facts of Aczel's theory that are used here, namely the strong extensionality of (domains
like) P and the Solution Lemma, also hold, though in a different form, for complete
metric spaces. The reader interested in deriving compositional models from TSS's, but
not too eager to study non-standard set theory, can skip Section 2 and consult Section 7
for the metric theory that can be used instead.

2. Non-well-founded sets

We shall work in the universe of non-well-founded sets as presented by Aczel (1988). (See
Barwise and Etchemendy (1988) for a summary. See also Forti and Hansell (1983) for an
alternative approach.)

At the basis of Aczel's work lies the conception of sets as graphs. Every set A gives rise

Processes as terms: non-well-founded models for bisimulation 259

to a graph by taking as nodes the transitive closure of A, and as (directed) edges all pairs
x and y with y E x. Conversely, every graph is associated with a unique set.

It is this latter observation that Aczel turns into an axiom, the so-called anti-foundation
axiom (AFA). More formally it says: every graph has a unique decoration. Here, a
decoration for a graph is a function D that assigns to every node of the graph a set such
that for each node x

D(x) = {D(y): y is a child of x}.

An immediate consequence of AFA is the existence of non-well-founded sets: consider
the one node graph with one edge leading from this node to itself. Since this graph has,
by AFA, a decoration, there exists a set a with a = {a} (which is, moreover, unique). The
set-theoretic framework Aczel works in is determined by the usual axioms of Zermelo
Fraenkel (ZFC), from which the axiom of foundation is omitted (yielding ZFC-), and to
which AFA is added. The resulting collection of axioms is denoted by zpc- / AFA. (In
Aczel (1988), the (relative) consistency of zpc- / AFA is shown.)

We shall make use of two principles that are a direct consequence of AFA: the solution
lemma and the principle of strong extensionality.

The solution lemma asserts the existence of a unique solution for a class of systems of
(recursive) equations. It is formulated as follows. Consider a set X of variables x (formally
these variables are called atoms or Urelemente). A system of equations is a collection

{x = ax}xEX,

where, for every x, the set ax may contain any of the variables occurring on the left side
of any of the equations (a simple example of a system of equations is {x = { x}}). A
solution for such a system is a collection n of sets { n:(x) }xEX such that, for every x,

n(x) = ax [n(xi), n(x2), ...],

where we use the rather informal notation ax [n(x1), n(x2), .. .] to denote the set that is
obtained from ax by substituting every variable x; in ax by n(x;), for any i. Now we can
formulate the following theorem.

Theorem 2.1. (Solution Lemma) Every system of equations has a unique solution.

In order to formulate the principle of strong extensionality, we first have to introduce
the notion of E-bisimulation. (Actually it is just called bisimulation in Aczel's book. The E
prefix is used to distinguish it from the usual notion of bisimulation, to be defined in the
next section.)

Definition 2.2. (E-bisimulation) A binary relation R on sets is called an E-bisimulation if
for all sets a and b with aRb,

l:/x E a3y E b[xRy]

l:/x E b3y E a[xRy].

Two sets a and b are called E-bisimilar (notation a "'E b) if there exists an E-bisimulation
relation R with aRb.

The principle of strong extensionality says that whenever two sets are E-bisimilar, they
are equal.

J. J.M. M. Rutten 260

Theorem 2.3. (Strong extensionality) For all sets a and b,

a ""'E b <o> a = b.

The principle of strong extensionality gives us a way of dealing with equality of non

well-founded sets; e.g., it can be used to prove a = b for a = {a} and b = { b}. (Note that
the usual axiom of extensionality does not help here.)

Finally, we mention a theorem stating the existence of fixed-points for a class of

recursive domain equations. Again a definition first:

Definition 2.4. A class operator <l> assigns to each class X a class <DX. A class operator is

set-continuous if, for each class X,

<l>X = LJ{ <l>x : x is a subset of X }.

Aczel shows that every set-continuous class operator has a smallest and a largest fixed
point. The smallest fixed-point contains all well-founded elements that are present in the

largest, which, moreover, may contain non-well-founded sets. We shall use only largest

fixed-points, which are characterized in the following theorem:

Theorem 2.5. (Largest fixed-point) Let <l> be a set-continuous class operator. Let

JiI! = LJ{x : x is a subset of <l>x }.

Then J<P is the largest fixed-point of <l>.

Now we can solve recursive domain equations in the usual way by associating with

such an equation a class operator. The fixed-points of this operator will satisfy the domain

equation.

3. Models for bisimulation

As a starting point for our semantic considerations, we take the notion of labelled
transition system (LTS) in the style of Plotkin's structural operational semantics (SOS).

For every LTS T a semantics MT will be defined that assigns to every state of T its
tree-like unfolding under the transition relation of T. This semantics is characterized by

the fact that it assigns the same value to bisimilar states.
First, the notion of labelled transition system is introduced:

Definition 3.6. (LTS) A labelled transition system is a triple (S, A, ~) consisting of a set

of states S, a set of labels A, and a transition relation ~c;; S x A x S. We shall write
a

s ~ s' for (s,a,s') E~.

Definition 3.7. (Bisimulation) Let T = (S, A,~) be an LTS. A relation R c;; S x S is called
a (strong) bisimulation if for all a EA and s, t E S with sRt,

s ~ s' ~ :lt' ES [t ~ t' /\ s' Rt']

and

t ~ t' ~:ls' ES [s ~ s' /\ s'Rt'].

Two states are bisimilar in T, notation s "'T t, if there exists a bisimulation relation R

Processes as terms: non-well-founded models for bisimulation 261

with sRt. Note that bisimilarity is itself a bisimulation relation (the largest); it is also an
equivalence relation on states.

Next we introduce for every LTS T = (S ,A,-+) a semantics Mr, which maps every state
s E S onto its tree-like unfolding under the transition relation --+. It has as a co-domain
the set P of processes, which is defined as follows (we shall often use the convention of
writing (x, y E)X to introduce a set X with special elements x and y):

Definition 3.8. Let (p, q E)P be the largest class satisfying

P =&'(Ax P),

where the set A is the set of labels of T. Formally, P is obtained as the largest fixed-point
of the class operator <I> that assigns to every class X the class &>(A xX) (see also Chapter 8
of Aczel (1988)). It is straightforward to show that <I> is set-continuous. (The interpretation
of &(A x X) is of importance, however; it should be the class of all subsets of A x X. This
distinction between sets and classes also explains why there is no problem of cardinality.)

So far, nothing has been said about the set-theoretic nature of the set A of labels, which
is used in the definition of P above. One possibility would be to take a specific collection
of some well known sets (such as the natural numbers). More generally, one can take
labels to be atoms or Urelements, which are also used in the formulation of the Solution
Lemma above. Then the set theory we work in should be extended to deal with these as
well. Intuitively, atoms are to be simply seen as given basic building blocks that may be
used in the construction of sets. Rather than going into the details of formulating such a
set theory here, we refer to Aczel (1988) for some more discussion, and to, for instance,
Barwise (197 5).

Interestingly, the domain P can itself be viewed as a transition system as follows: let
Tp =< P,A,-+p>, where -+p is given, for all p,q E Panda EA, by

a
p --+p q ~< a,q >E p.

Let "'P indicate the bisimilarity relation on P induced by Tp.
The next theorem follows from the principle of strong extensionality.

Theorem 3.9. The domain P is strongly extensional. That is, for all p, q E P,

p "'P q =;.. p = q.

Proof We show, for all p, q E P,

p "'P q =;.. p "'E q.

This, with the principle of strong extensionality, leads to the theorem. Let p ,..., p q. Then
there exists a bisimulation R ~ P x P with pRq. We define

S = S1 U S2 U S3 U S4 U Ss

with

S1 = R

S2 {(< a,p >, < a,q >) : pRq,a EA}

J. J.M. M. Rutten

{({a},{a}) :a EA}

{({a,p},{a,q}): pRq,a EA}

{(a,a) : a EA}.

262

Clearly pSq. We have to prove that S is an E-bisimulation. (Then p ""e q .) Consider
two sets c and d with cSd and let c' E c. There should exist d' Ed with c'Sd'.

First, suppose cS 1 d. Then c = r and d = t, for some r, t E P, and c' is of the form
< a,r' >,for some a EA and r' E P. Since rRt, there exists t' E P such that< a,t' >Et
and r' Rt'. Thus, <a, r' > S2 < a, t' > and hence <a, r' > S < a, t' >.

Second, suppose cS2d. Then c =< a, r > and d =< a, t >, for some a E A and r, t E P
with rRt. Note that, as usual,< x,y >is shorthand for {{x},{x,y}}. Thus, c' is either
{a} or {a,r}. We can take d' Ed to be either {a} or {a,t}, satisfying c1S3d 1 or c'S4d',
respectively.

The other cases are similar. Note that in the last case cSsd, the fact that the set A is
assumed to consist of atoms is used: elements a EA do not have a set structure. D

For every LTS T a model MT : S - P is defined as follows:

Definition 3.10. Let T = (S,A,-) be an LTS. We define a model (operational semantics)

MT : S - P by, for any s E S,

Mr(s) = { < a,Mr(s') >: s ~ s'}.

We can justify this recursive definition by an application of the Solution Lemma:
consider the system of equations

{xs = {< a,Xs• >: s ___<::_,, s'}}ses,

where { Xs }ses is a collection of variables, one for each state s E S. Let n be a unique
solution for this system. Then we can define

Mr(s) = n:(x5).

The fact that n(xs) is in P is a direct consequence of the fact that P is the largest class
satisfying the equation used for its definition.

This model is of interest because it assigns the same meaning to states that are
bisimilar. We prove this next. (See also van Glabbeek and Rutten (1989) and Abramsky
(1991) for similar results using complete metric spaces and complete partially ordered
spaces, respectively.)

Theorem 3.11. Let ""T~ S x S denote the bisimilarity relation induced by the labelled
transition system T = (S, A,-). Then

Vs,t E S[s ""T t -=Mr(s) =Mr(t)].

Proof Let s, t E S.
(<=):Suppose Mr(s) =Mr(t). We define a relation R1 ~ S x S by

Ri = {(s',t') : Mr(s') = Mr(t')}.

From the definition of Mr it is straightforward that R1 is a bisimulation relation on S
and that sRt. Thus s ~r t.

Processes as terms: non-wellfounded models for bisimulation 263

(=>): Consider s and t with s ""T t. According to Theorem 3.9, it is sufficient to show that
Mr(s) and Mr(t) are bisimilar. Let R2 s; P x P be defined by

R2 = {(Mr(s'),MT(t')): s' "-T t'}.

It is not difficult to show that R2 is a bisimulation. Hence Mr(s) ""P Mr(t). D

4. Transition system specifications

Often LTS's have some structure. In particular, the set of states is given as the set of
terms over some signature, and the transition relation is defined by means of axioms and
rules following the syntactic structure of the states.

Therefore, for the rest of this paper let L be a single-sorted signature. Function symbols
I E L come with an arity a (f), which is left implicit. Let (x E) Var be a set of variables.
The set of terms (s,t E)T(L, Var) possibly containing variables is defined as usual. The set
of terms without variables, called closed terms, is indicated by Terms (l:) or simply Terms.
For any term t E T('L, Var), the set of variables occurring in t is denoted by Var(t).

The set of substitutions (er E)Subst consists of all partial functions from Var to Terms.
Substitutions are extended to terms in the usual way. The application of a substitution a
to a term t is denoted by t (a).

Definition 4.12. A transition system specification (TSS) for L is a collection (R E)& of
rules of the form

a·
{t; ~ t(: i EI}

" t ---+ t'
where I is some set of indices, a;,a EA (the set of action labels), t;,t[,t,t' E T(l:, Var).

The elements t; ~ t(are called premises, and t ~ t' is called the conclusion of this
rule. If I = 0, the rule is called an axiom. The set of all variables occurring in R is denoted
by Var(R).

Definition 4.13. An expression of the forms ~ s' with s, s' E Terms is called a transition.
Note that transitions do not contain variables (unlike terms used in rules). A proof tree
for s ~ s' from a TSS .<?l is defined as follows (let R E .<?l be as above):

1. If I = 0 and if there is a substitution er with domain Var(R) such that s = t (a) and
s' = t'(cr), then s ~ s' is a proof tree for s __::__.. s'.

2. If there is a substitution a with domain Var(R) such that s = t(cr) and s' = t'(a),

and if there exist proof trees r; for the transitions t;(a) ~ t[(cr), for all i E J, then
a proof tree for s ~ s' is obtained by forming the tree with root s ~ s' and as
immediate subtrees the proof trees r;.

3. Clauses 1 and 2 define all proof trees.
u

Note that proof trees always have a finite height. If a proof tree for s __.. s' from &
exists, then we write (Jlt f- s __::__.. s'. Every TSS & induces an LTS < Terms, A,-'>-> with

-'>-= {(s,a,s') : & f- s ~ s'}.

J.J.M.M. Rutten 264

Example 4.14. Consider the signature ~B

:EB =Act U {e,b} U RecVar U {·,+}

consisting of a set Act of atomic actions, two special symbols e and b, a set (X E)RecVar
of recursion variables, and two operators · and +. (The signature :EB is called Basic
Process Algebra with e and b (see, for example, Groote and Vaandrager (1989)), here
extended with recursion.)
All elements are constants except for the last two, which are binary operators. The
interpretation of·, for concatenation, and +, for nondeterministic choice, is as usual. Let
A =Act u {..j}· The label ..; is used to indicate termination. A TSS ~B for :E8 is defined
as follows. It consists, for every a E A, of the following axioms and rules:

1.

2.

a
a- e

3. We assume the presence of a collection {sx: sx E Terms(:EB) AXE RecVar} of
declarations, giving the body sx for each recursion variable X. Then we have for all
X E RecVar the following rule:

4.

5.

6. For all a f. ../•

7.

a
sx- y

a x-y

x~ x'
a

x+y- x'

x~ x'
a

y+x - x'

x~ x'
a

x ·y- x'·y

v' a
x - x' y- y'

a
x·y- y'

Let T = < Terrns(:E8), A, --4 > be the LTS induced by ~ill· Consider the function MT given
by Definition 3.10. It yields for (a· b) + c E Terms (:E8) the following process:

MT ((a · b) + c) = { < a, { < b, { < ..;, 0 >} >} >, < c, { < ..;, 0 >} >}.

For another example, let X E RecVar and let sx =a+ (X · b), then

Mr(X) = {abn J: n;;:; 0},

where abn..; is used as an abbreviation for

{<a,{< b,···{< b,{< J.0 >} >}· ·· >} >}

Processes as terms: non-well-founded models for bisimulation 265

with n occurrences of b. Note that the declarations of recursion variables X need not be
guarded in X (in the standard sense that, for example, a · X is, and X · a is not, guarded
in X).

5. Processes as terms

For the rest of the paper let ~ be a TSS for L, let T = < Terms, A, -+T> be the LTS
induced by ~ and let P be as in Definition 3.8. Our aim is to develop a systematic way
of associating with every syntactic operator f E L of arity k a function J : pk -+ P,
which can be seen as its semantic interpretation, and to use these functions for defining a
compositional semantics for T.

To this end, we shall extend the signature L with the collection of processes P. Next,
the TSS 9P will be extended in order to define also transitions for terms containing both
function symbols from :E and processes. In the next section, this extended signature will
be used to construct J. The key idea will be to consider an expression like /(p1,. .. , Pk)
as a term - albeit a mixed one in the sense that it consists both of a syntactic entity f
and semantic entities p1, ... ,Pk· Then its meaning will be directly given by the extended
transition system.

Definition 5.15. Let Lp = Lu P. All processes p E P have arity 0 (and hence are to be
considered as constants of the extended signature). The set of closed terms over Lp is
denoted by (p E)PTerms, the collection of process (or mixed) terms. Further, the TSS 9P
is extended to a TSS f?lip for Lp by putting

~P = ~u {p ~ q: < a,q >E p}.

The LTS induced by f?lip is indicated by

Tp =< PTerms,A,-+pT>.

The bisimilarity equivalence induced by Tp is denoted by "'PT·

Example 4.14. (continued) Suppose p, q E P with p __!!__.,PT q. Then (a · p) + c is an
example of a process term. One of its possible transition sequences is

a b
(a·p)+c---+pr c·p--+pr q.

Terms in Terms are assigned a meaning by the semantic function MT : Terms -+ P of
Definition 3.10. Now, mixed terms in PTerms have by the same definition an operational
model Mn : PTerms -+ P satisfying, for all p E PTerms,

I a '} MPT(P) = {< a,MPT(P) >: P --+pr P ·

Given the fact that Terms £ PTerms, one would expect, for all s E Terms,

Mr(s) = MPT(s).

This does not hold in general, however, as the following example shows.

J. J.M. M. Rutten 266

Example 5.16. Let 1: = {a}. Suppose f.!l contains only one (admittedly rather silly) rule,

a
y~ y

a
a~ a

Obviously, M T(a) = f/J. In contrast, as a direct consequence of the fact that P is the largest

fixed point of its defining equation, it contains a process p with p = { < a, p > }. Hence

MPT(a) = p.

Intuitively, the problem is that in the above rule no relation exists between the left side

of the conclusion and the variables occurring in the premisses. Therefore, only rules of

a restricted format are considered. Next it will be shown that for such rules the above

equality of MT and MPT on elements of Terms does indeed hold.

Definition 5.17. Let R be a rule of the form
a·

{ t; --!-+ t[: i E I}

t ~ t'
Let Var(R) be the set of variables occurring in R. The set Il(R) of so-called produced

variables is defined as follows. It is the union TI(R) = Un Iln of a sequence of sets (IIn)n,

defined inductively by

Ila= Var(t), Iln+l = LJ{Var(t() : Var(t;) c;;;; Iln}·

Now the rule R is called inductive if Var(R) = TI(R). A TSS f.!l is inductive if all rules in

f.!l are.

The reason why such rules are called inductive is that their set of premisses can be

inductively structured as follows. For every i E I, an induction coefficient w(i) is defined

as the smallest natural number k such that

Var(t() c;;;; Ilk.

In Groote and Vaandrager (1989), the syntactic format of TSS's is extensively studied.

(See also the next section of this paper.) It is not very difficult to prove that a rule is

inductive if and only if it is pure in the sense of Groote and Vaandrager (1989).

Theorem 5.18. If f.!l is inductive, then, for all s E Terms,

MT(s) = MPT(s).

Proof We shall prove

1. --'>Tc;;;;__,. PT

2. For alls E Terms, p E PTerms, ifs ~PT p, then p E Terms and s ~T p.

From Clauses 1 and 2, it immediately follows that B c;;;; P x P, given by

B = {(MT(s),Mn(s)): s E Terms},

is a bisimulation on P. Then the theorem follows by the strong extensionality of P.
Clause 1 is trivial, so let us proceed with Clause 2. Consider a proof tree for s ~PT p.

The proof is by induction on the height of the proof tree.

(1): Suppose the height of the proof tree is l. Then it is the instantiation of an axiom in

Processes as terms: non-well-founded models for bisimulation 267

f!/tpr. Since s E Terms, it must be an axiom in Yl, say t ...::._. t': let (J : Var(R) -l> PTerms
be a substitution with ta = s and t' (J = p. Since Yl is inductive and since there are no
premisses, Var(t') s Var(t). Then s E Terms implies p E Terms and, moreover, s ~T p.
(n+l): Suppose the height of the proof tree for s ~PT p is n + 1 and suppose Clause
2 holds for all transitions that have a proof tree of height less than or equal to n. Since
there are only axioms in Yln \ f!ltr, the transition s _::_.PT p is the instantiation of the
conclusion of a rule R E f!ltr, say,

{ ti ~ t[: i E I}
a

t~ t'
with substitution (J : Var (R) -l> PTerms. We show by induction on w(i) (defined immedi
ately after Definition 5.17 above) that, for all i EI,

- t[(J E Terms
ai I

- t;(J ---+r ti(J.

Suppose this holds for all i with w(i) ::::;; k and consider i with w(i) = k + 1. Since

Var(t;) S Ilk = Var(t) U LJ{Var(t;): w(i) s k},

this assumption implies for all x E Ilk that X(J E Terms. Because t;a ~PT t[(J has a
proof tree of height less than or equal to n, it follows by the general induction hypothesis

a·
that t[(J E Terms and t; a __!__,.T t((J.
Note that from the above it follows that (J is a substitution of type Cl : Var (R) -l> Terms.

Thus we can conclude that s ~T p. D

6. Compositional semantics for bisimulation

For every syntactic operator f E L a semantic interpretation J can now be defined as
follows:

Definition 6.19. Let f!llp be the TSS of the previous section for the extended signature Lp.

(Recall that we have a model Mn : PTerms -l> P.) Letf EL with arity k :2'.: 0. We define
- k f: P - P, for all p1, .. . ,pk. by

](p1, ... , Pk) =Mn if (pi,···, pk}).

(Note that this is well defined, sincef(p1, ... ,pk) is a process term in ?Terms.)
Example 4.14 (continued) According to the above definition, the semantic operators
belonging to the signature LB are given by

a {<a,{<J,0>}>}

€ {< J.0 >}
b 0

P1.f.P2 PI U P2

p1·p2 {< a,q17P2 >: < a,q1 >E PI /\a+ J}
U {< a,q2 >: < J.q1 >E P1/\ < a,q2 >E P2}.

J. J.M.M. Rutten 268

As usual, a semantic interpretation of the operators in !: induces a compositional model
for Terms.

Definition 6.20. The mapping Cr : Terms -+ P is defined inductively as follows. Let
t E Terms be of the form t =f(t1,. .. ,tk); then

Crif(t1, . .. , tk)) = /(Cr(ti), ... , Cr(tk)).

The question whether C T is equal (or correct with respect) to MT now naturally arises.
The following example shows that in general the answer is no.

Let !: = {a, i5, n: }, consisting of two constants and a unary operator, respectively. Let ~
be a TSS for !: given by

Then Mr(n:(a)) = {< b,0 >},whereas

a~ i5
b

n(a) - b.

Cr(n:(a}) = i't(a) =it({< a,0 >}) = 0.

The latter equality follows from the fact that the extended TSS f!Jlp does not contain any
rule for deriving a transition from n:({ < a, 0 >}).

The point of this example is that the second axiom in ~ does not allow replacement
of one term by another one that is bisimilar to it. More precisely, on the one hand the
terms a and { < a, 0 >} (over the extended signature Lp) are bisimilar: they can both
take an a step, to i5 and 0 respectively, neither can take further steps. On the other hand,
however, n:(a) and n({< a,f/J >})are not bisimilar: the former can take a b step, whereas
the latter cannot. In other words, the bisimilarity equivalence "'Pr induced by f!/lp is not
a congruence.

(However, note that "'T, the bisimilarity equivalence induced by f!Jl, is a congruence.)
In Groote and Vaandrager (1989), a condition on the syntactic format of the rules of

TSS's is given that ensures the induced bisimilarity equivalence to be a congruence. It will
forbid rules like the second one in the example above. We shall first give the format and
theorem of Groote and Vaandrager (1989); next we show how this can be applied here.

Definition 6.21. Let f!Jl be a TSS for!: and let R be a rule in f!Jl. The rule R is in ty/t-format
if it has the following form

{ ti 2+ Y; : i E I}

f(X1,. . . ,Xk) ~
and it is in tyxt-format if it is of the form

a·
{t; ~ Y; : i EI}

a

x - t
where f E ~. with arity k; the terms t and ti, for i E I are in T(!:, Var); and all of
the variables in { x i. .. ., xk} u {Yi : i E I} in the first case, and all of the variables in
{ x} U {y; : i E I} in the second case, are pairwise distinct variables in Var. The TSS
~is in tyft/tyxt-format (terminology of Groote and Vaandrager (1989)) if all its rules

Processes as terms: non-well-founded models for bisimulation 269

are either in tyft or in tyxt format. It is in BSOS (bisimulation structured operational
semantics, our terminology) format if it is both inductive and in t}ft /tyxt-format.

As mentioned in the previous section, a rule is inductive if and only if it is pure in the
sense of Groote and Vaandrager (1989) (pure is defined there as the conjunction of being
well-founded and closed). The notion of well-foundedness is introduced as a technical
condition needed to prove the main theorem (which follows in a moment). Here it is
natural to require the rules to be inductive (which implies that they are well-founded)
since this condition is also needed for Theorem 5.18.

Theorem 6.22. (Groote and Vaandrager, 1989) If ;Jt is in BSOS format, then ""T, the
bisimilarity relation corresponding to the TSS T (induced by :YI), is a congruence. That
is, for all f EI of arity k, all u1, •.. , Uk, v1, ... , vk in Terms,

Vi E {l, .. .,k}[u; ""T v;] ~f(u1, .. .,uk) '""Tf(v1,. . .,vk)·

In the appendix a proof of the above theorem can be found, which is a slight variation
of the one given in Groote and Vaandrager (1989). In that paper, some examples are
given (similar to the one above with I = {a, .5, rr}) showing that none of the conditions
of the theorem can be missed.

Now consider a TSS f3ll that is in BSOS format. We shall prove that the compositional
semantics of Definition 6.20 equals the operational semantics MT of Definition 3.10. We
shall use two lemmas :

Lemma 6.23. Let =n be the equality induced by MPT; i.e., p =n p' if and only if
MPT(P) = Mn(p'). Then =n is a congruence.

Proof By Theorem 3.11, =n = "'PT· If ;Ji is in BSOS format, then !Jfp is also, since
all axioms of the form p __::__.. q are in BSOS format. Therefore by Theorem 6.22, ~PT is
a congruence. 0

Lemma 6.24. For all p E PTerm, p =PT MPT(p).

Proof We have p rvpT MPT(P) as an immediate consequence of the observation that
{(p,Mn(p)) : p E PTerm} is a bisimulation relation on PTerm. The lemma follows by
Theorem 3.11. D
Theorem 6.25. For all t E Terms, MT(t} = Cr(t).

Proof Let t E Terms. We use induction on the syntactic structure of t. Let t =
f(t 1, .. .,tk), for some/EI: and t 1,. .. ,tk E Terms, and suppose the theorem holds for all
t1,. .. , tk. Then

MT(t} Mrif(t1,. . .,tk))

(.'?hl is inductive, Theorem 5.18)

MPT(f(t1, ... ,tk))

(by Lemma 6.23 and Lemma 6.24)

MPT(f (MPT(t1), .. · ,MPT(tk)))

(Definition 6.19)

](MPT(ti), ... ,Mpr(tk))

J.J.M.M. Rutten

= (Theorem 5.18)

f(MT(t1), ... ,M T(tk))

= (induction hypothesis)

](Cr(t1), ... , CT(tk))

(Definition 6.20)

CTif (t1, ... ' tk))

CT(t).

Example 4.14 (continued) The following equalities hold:

MT(a) a
MT(e-) €

MT(()) 8
MT(s1 +s2) M T(si).f.M T (s2)

MT(s1 · s2) MT(s1fMT(s2)

MT(X) MT(sx).

If sx equals, for instance, a + (X · b) then

Mr(X) = a.f.(MT(Xfb).

7. Discussion: comparison with metric spaces

270

D

Is it really necessary to resort to set theory, moreover to a non-standard one, if one wants
to develop semantics of programming languages? No, not really, is the expected (and
for some also very much welcome) answer. Below we shall show how all of the above
constructions can be mimicked in a standard theoretic setting - or rather, without the need
for (purely) set-theoretic considerations at all. (In fact, only some of the constructions of
Section 3 have to be revised.) At the same time, this alternative approach will be less
general (as we will see), and that is where an argument for the use of non-well-founded
sets may be found.

The mathematical structures that will be used are complete metric spaces, which seem
to be closest to non-well-founded sets (rather than the (even) more standard complete
partial orders).

In de Bakker and Zucker (1982), a method is presented for constructing complete metric
spaces as solutions of recursive domain equations. It was later generalized in America
and Rutten (1989), where a larger family of equations is solved, and where, moreover,
uniqueness of many such solutions is proved. Thus, a domain equation very similar to
the one used for the construction of P (Definition 3.8) can be solved over a category of
complete metric spaces. That is, there exists a complete metric space PM such that

PM ~ rJ> compact (A X PM).

Processes as terms: non-well-founded models for bisimulation 271

Here &compact (X) is, for any complete metric space X, the complete metric space consisting
of all compact subsets of X. (See, for instance, Engelking (1977) or America and Rutten
(1989) for all standard definitions concerning metric spaces.) The symbol~ expresses that
both sides of the equation are isomorphic: there exist distance-preserving mappings

and

j : &"compact (A X PM) -+PM

such that j o i = idpM and i o j = ide;compact<AxPM)· This equation was first solved in
de Bakker and Zucker (1982). In America and Rutten (1989) the uniqueness (up to
isomorphism) of the solution is proved.

Note that P is strictly equal to &(A x P), whereas here the equation is solved up to
isomorphism.

Also PM can be turned into an LTS by defining, for all p, q E PM and a EA,

p ~PM q ~< a,q >E i(p).

Moreover, PM is again strongly extensional (as pointed out in van Glabbeek and Rutten
(1989)). That is, if two processes are bisimilar, then they are equal. (For P this is proved
in Theorem 3.9, using the general principle of strong extensionality, a direct consequence
of AFA.) It can be shown by defining e = sup{ (pi, p2) : PI "'PM P2}, and proving € ::;;; }e,
hence e = 0. From this it follows that any two bisimilar processes have distance 0, and
thus are equal.

Using PM instead of P, the operational semantics of Definition 3.10 can be adapted as
follows. For an LTS T = (S, A,-), a model MT : S -+ PM is given, for any s E S, by

MT(s) =j({< a,MT(s') >: s ~ s'}).

The well-definedness of MT (that in Definition 3.10 is based on the Solution Lemma)
derives from the fact that MT can be obtained as the unique solution of the following
function: let et> : (S -+ 1 PM) -+ (S-+ 1 PM) be defined by, for any F E (S -+1 PM) and s E S,

ll>(F)(s) =j({< a,F(s') >: s ~ s'}).

(Here (S -+1 PM) is the set of non-expansive (non-distance-increasing, weakly contractive)
mappings from S to PM.) Now 11> is contracting (strictly distance-decreasing) and hence
(by Banach's theorem) has a unique fixed-point MT: see Rutten (1990).

There is one important requirement that has to be met in the above definition of et>.
The set

{< a,F(s') >: s ~ s'}

should be compact. This imposes an essential restriction on the LTS's to which the above
construction can be applied: the transition relation -+ of T = (S, A,-+) must be finitely
(or, more generally, compactly) branching. That is, for every s E S the set

{< a,s' >: s ~ s'}

J.J.M.M. Rutten 272

must be finite (or compact). (This can be weakened to image-finiteness if one uses the
powerset constructor that yields all closed subsets in the definition of PM.)

This difference between the use of non-well-founded sets, where arbitrary LTS's can
be considered, and complete metric spaces constitutes a point in favour of the former.
Note that, for example, the use of unguarded recursion is ruled out in the metric case:
declarations like sx =a + (X · b) give rise to infinitely branching transition systems.

Once the definitions of Section 3 have been adapted along the lines sketched above, all
following definitions and theorems go through as before. In particular, the signature l:
can again be extended with processes from PM as constants. (Maybe one final technical
observation is needed here: if the LTS T is finitely branching, then the extended LTS
Tp is compactly branching.) And thus, the definition of a compositional semantics Cr
(Definition 6.20) remains unaltered, as well as the proof of the equality of MT and Cr
(Theorem 6.25).

Summarizing, non-well-founded sets and complete metric spaces are very similar in
two respects. First, both P and PM are strongly extensional. Second, both the recursive
specifications of MT (one with P and one with PM as co-domain) have a unique solution.
In the first case, this is due to the Solution Lemma, in the second to Banach's theorem. In
both cases, the function specification should satisfy some guardedness condition: systems
of equations allow the occurrence of variables to the right of the equality only within
other sets; a function specification, like that of <I> above, defines a contraction only if its
argument (F) occurs at the right of the equality guarded by some distance-decreasing
construct. (In order to understand the latter remark, the definitions of the metrics involved
should be made explicit. Again we refer to America and Rutten (1989).)

In Rutten (1991) it is shown that the non-well-founded domain ofhereditarily finite sets
is isomorphic to a subset of the metric completion of the collection of all well-founded
hereditarily finite sets (thus giving a metric version of Mislove et al. (1989), where complete
partial orders are used). A point of further research is how to relate non-well-founded
domains and metric domains in general.

Acknowledgements: Gordon Plotkin's stressing of the fact (already present in Aczel
(1989)) that the domain of processes is a transition system, eventually led to the idea
of processes as terms. Discussions with Samson Abramsky, Jaco de Bakker, Franck
van Breugel, Daniele Turi and Jeroen Warmerdam are gratefully acknowledged. The
anonymous referees are thanked for their constructive comments.

REFERENCES

Abramsky, S. (1991) A domain equation for bisimulation. Information and Computation, 92 161-218.
Aczel, P. (1988) Non-well-founded sets, number 14 in CSU Lecture Notes.
America, P. and Rutten, J. J.M. M. (1989) Solving reflexive domain equations in a category of

complete metric spaces. Journal of Computer and System Sciences, 39(3) 343-375.
Barwise, J. (1975) Admissible sets and structures, Springer-Verlag.
Barwise, J. and Etchemendy, J. (1988) The Liar: An Essay in Truth and Circularity, Oxford

University Press.
de Bakker, J. W. and Zucker, J. I. (1982) Processes and the denotational semantics of concurrency.

Information and Control, 54 70-120.

Processes as terms: non-well-founded models for bisimulation 273

Engelking, R. (1977) General Topology, Polish Scientific Publishers.
Forti, M. and Honsell, F. (1983) Set theory with free construction principles. Annali Scuola Normale

Superiore, Pisa, X(3) 493-522.
Groote, J. F. and Vaandrager, F. (1989) Structured operational semantics and bisimulation as

a congruence. In: G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi Della Rocca, editors,
Proceedings 16th ICALP, Lecture Notes in Computer Science 372 423--438. Springer-Verlag. To
appear in Information and Computation.

Mislove, M. W., Moss, L. S. and Oles, F. J. (1989) Non-well-founded sets obtained from ideal fixed
points. In Proc. of the Fourth IEEE Symposium on Logic in Computer Science 263-272. To appear
in Information and Computation.

Nivat, M. (1979) Infinite words, infinite trees, infinite computations. In: J. W. de Bakker and J. van
Leeuwen, editors, Foundations of Computer Science III, Part 2, Math. Centre Tracts 109 3-52.

Park, D. M. R. (1981) Concurrency and automata on infinite sequences. In: P. Deussen, editor,
Proceedings 5th GI conference, Lecture Notes in Computer Science 104 15-32. Springer-Verlag.

Plotkin, G. D. (1981) A structural approach to operational semantics, Technical Report DAIMI
FN-19, Aarhus University, Computer Science Department.

Rutten, J. J.M. M. (1990) Deriving denotational models for bisimulation from Structured Oper
ational Semantics. In: M. Broy and C. B. Jones, editors, Programming concepts and methods,
proceedings of the JFIP Working Group 2.2/2.3 Working Conference, Sea of Galilee 155-177.
North-Holland.

Rutten, J. J.M. M. (1991) Hereditarilyfinite sets and complete metric spaces. Technical Report
CS-R9148, Centre for Mathematics and Computer Science, Amsterdam.

van Glabbeek, R. J. and Rutten, J. J.M. M. (1989) The processes of De Bakker and Zucker
represent bisimulation equivalence classes. In: J. W de Bakker, 25 jaar semantiek 243-246, CWI,
Amsterdam.

Appendix

In the proof of the theorem below, only rules that are (inductive and) in tyft format
are considered. This is sufficient since any TSS containing rules in tyxt format can be
transformed into a TSS (yielding the same LTS) containing only rules in tyft format, as
follows. For every rule R in tyxt format, and every operator f E L:, a new rule is added by
taking R in which x (the left side of the conclusion) is replaced by f (xi, · · ·, Xn), where n
is the arity off and the new variables have been chosen disjointly from the ones already
present in R.

Theorem 6.22. If [}f is in BSOS format, then "'T, the bisimilarity relation corresponding
to the TSS T (induced by !:lf), is a congruence.

Proof Let W ~ Terms x Terms be the smallest congruence relation that contains ""T·

In other words, W is the smallest relation such that

1. ""T~ W
2. For all f E l: of arity k, and all u1, ... , Uk and v1, ... , vk in Terms,

ifu;Wv;, forall 15.i 5,k, thenf(u1, ... ,uk)Wf(v1, ... ,vk).

J. J.M. M. Rutten 274

It is sufficient to show that W is a bisimulation, since this implies W c;;_.,7 _ By symmetry,

this is equivalent to proving, for all u, v E Terms with uWv: if u ~ u', then there exists

v' E Terms with v ~ v' and u'Wv'.
Let u, v E Terms with uWv and suppose u ~ u'. We have to show the existence of

v' E Terms with v ~ v' and u'Wv'. If u ~r v then this follows from the fact that "'T

is a bisimulation relation and the fact that ~re;;_ W.
Next, suppose that u = f (u) and v = f (v) for f E L, of arity k (with u = u1, ... , uk

and v = v1, ... , Vk); suppose that ui Wv;, for all 1 s i s k. Consider a proof tree r for

the transition f (u) ~ u', and let R E f!Jl be the last rule used in this proof tree in

combination with a substitution a. By the remark preceding this theorem, we may assume

that R is in tyft format. So, let

(ui } tti --7 Yi : i E I

f(x) ~ t
R

where the terms t and ti, for i E I are in T(L., Var), x = x1, ... , xk. and all of the variables

in {x1, ••• ,xk} U {Yi : i EI}, are pairwise distinct variables in Var. We have xda) = u;,

for all 1 sis k, and t(a) = u'.
We shall define a substitution a' such that

f(x)(a') = f(v)

/(ii)~ t(cr')

t(a) Wt (0"1).

We proceed by induction on the height of r. Suppose the height of r is n + 1. Assume that

for all s and t in Terms with s Wt, and transitions s ~ s' with a proof tree of height

less than or equal to n, there exists t' E Terms with t ~ t' and s' Wt'.

Recall from Definition 5.17 that Var(R) = U 111. We shall, by induction on I, construct a

sequence O"o c;;_ 0" 1 s · · · (using here and below a set notation for substitutions) such that

for all / ~ 0,

1. domain (O"z) = 111
2. For all z E domain(O"i): z(a)Wz(O"i)

3. For all i EI, if m(i) = l then t;(O"z) ~ y;(0"1)

(o): Take ao = { (x1, vi), ... , (xk. vk) }. Then clause 1 holds since

domain (ao) = { x1,. .. , xk} = 110.

Clause 2 holds since u; Wv;, for all 1 s i s k. Clause 3 trivially holds since w(i) > 0, for

all i EI. Now f(x)(0"0) = f(v). (Note that here the fact is used that the left side of the

conclusion of the rule R contains only one function symbol (f) and that all the variables
in x are pairwise distinct.)

(1+1): Suppose we have defined O"Q, •• • ,a1 satisfying clauses 1, 2 and 3 above. We extend
<r1 by putting

a1+1 = az U {(y;, wy;): w(i) = l + 1},

where for every i EI with m(i) = l + 1, a term Wy; is chosen as follows:

Processes as terms: non-well~/ounded models for bisimulation 275

Let i EI with w(i) = l + 1. By definition of II1+1, this implies Var(t;) s: II1. By clause 2
(for l) we have, for all variables z E Var (t;), that z (<I) Wz (<Ii). Since W is a congruence,
this implies t;(<I) Wt; (ai). Consider the transition t; (<I) ~ y; (a). Using the definition of
W, we distinguish between two cases. First, if t;(<I) "'T t;(<I1) then there exists, by the fact
that ~T is a bisimulation, a term w E Terms such that t1(ai) ~ w and y;(<I) ~r w,
hence y;(a)Ww. Take wy1 = w.
Second suppose that there exist an operator g E I: and sequences (of length the arity of
g) of terms v1 and v2 such that t;(<I) = g(vi) and t;(<Ii) = g(v2), and v1 Wv2 (using an
obvious shorthand). Since the transition g (vi) -2+ y; (a) has a proof tree of height smaller
than or equal to n, the induction hypothesis gives us the existence of a term w such that
g (V2) -2+ w and }'; (a) Ww. Also in this case, take wy1 = w.
Note that in this construction the fact is used that all y;'s are mutually distinct.
It is immediate from the definition of a1+1 that the clauses 1, 2 and 3 hold for l + 1.
Now define a'= U a1• Then/(x)(<I') = f(v). Since for all i EI we have t;(a') -2+ y;(a'),
we have constructed a proof for the transition/ (v) ~ t (<I'). Finally, because of the facts
that Var(t) s; LJ1 IT1 = domain(a'), that for all z E domain(a'), z(a)Wz(a'), and that W is
a congruence, we have t(a) Wt(a'). D

