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A compositional semantics characterizing bisimulation equivalence is derived from 
transition system specifications in the SOS style, satisfying certain syntactic conditions. We 
use Aczel's nonstandard set theory for solving a recursive equation for a domain of 
processes. It contains non-well-founded elements modelling possibly infinite behaviour. 
Semantic interpretations of syntactic operators are obtained by defining the operational 
semantics for terms consisting of both syntactic and semantic (processes) entities. Finally, we 
return to standard set theory by observing that a similar, though less general, result can be 
obtained with the use of complete metric spaces. 

1. Introduction 

A labelled transition system (LTS) is a triple < S, A,~>, consisting of a set S of states, 
a set A of transition labels, and a transition relation ~s; S x A x S (Plotkin, 1981). 
Every LTS induces a (strong) bisimulation equivalence on the set of states (Park, 1981). 
We show how to derive from transition system specifications (sets of axioms and rules for 
defining LTS's) satisfying the syntactic requirements of Groote and Vaandrager (1989), 
a compositional semantics that characterizes bisimulation in the sense that it assigns the 
same meaning to bisimilar states. This extends our previous results (Rutten, 1990) on the 
same topic, since the class of TSS's that can be handled is larger. 

First, a (not necessarily compositional) operational semantics MT is defined for an 
arbitrary LTS T. It assigns to each state its unfolding under the transition relation. These 
un.foldings are represented as elements of a class P of commutative, tree-like structures 
called processes, satisfying 

P = gi(A x P). 

(Here &(A x P) is the class of all subsets of A x P, the Cartesian product of A and P .) 
The process domain P is formally defined in Aczel's theory of non-well-founded sets 

(Aczel, 1988). This theory is based on the usual set-theoretic axioms, with the axiom of 
foundation replaced by a strong version of its negation, the anti-foundation-axiom (AFA). 

t This work was partially supported by ESPRIT BRA (3020) Integration. This paper is an improved version 
of J.J.M.M. Rutten, Non-well-founded sets and programming language semantics, Proceedings MFPS'91, 
Pittsburgh, 1991. 
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Aczel formulates AFA in a very intuitive fashion by viewing sets as graphs and the equality 
of sets as their being bisimilar (in a sense closely related to the original notion of Park). 
The existence of non-well-founded sets, like the set a satisfying a = {a}, is an immediate 
consequence of AFA. The semantic universe P mentioned above will contain such non
well-founded sets. A simple example is the process p satisfying p = { < a, C/J >, < b, p > }, 
which represents an infinite binary tree with a choice at every node between doing a and 
terminating, or doing b and continuing with p again. 

There are two useful facts that hold in the above theory. First, the process domain P 
(which can be viewed itself as an LTS) is strongly extensional, meaning that bisimilar pro
cesses are equal. The second fact is called the Solution Lemma and is a direct consequence 
of (in fact equivalent to) AFA. It states the existence of a unique solution for systems of 
recursive equations. Using these two facts, one can prove that the semantics Mr assigns 
the same element in P to bisimilar states. 

Next, LTS's defined by means of transition system specifications (TSS) are considered. A 
TSS is a set of rules (and axioms) for defining transitions. These rules follow the syntactic 
structure of the states s E S, which are now assumed to be terms over some (single-sorted) 
signature L. Thus, we consider LTS's of the form T = < Terms(L), A, -+>.We show how 
to use these rules for the definition of semantic interpretations of the syntactic operators 
f E"i. 

The main idea, which also explains the slogan in the title, is to consider an expression 
likef(p1, ... ,pk) (where k is the arity off and pi, ... ,pk are processes in P) as a mixed term, 
containing both syntactic(/') and semantic (pi, ... ,pk) entities. The semantic interpretation 
off is obtained by taking the operational semantics of mixed terms f (P1, ... , pk), for any 
k-tuple of processes. 

This yields a compositional semantics Cr for T, which is shown to be equal to Mr 
when the syntactic restrictions on the format of the transition rules introduced in Groote 
and Vaandrager (1989) are satisfied. We repeat the main result from that paper, namely 
that the bisimulation equivalence induced by such a TSS is a congruence, and use it to 
establish Mr = C r. 

Finally it is shown that (in standard set theory) complete metric spaces, which have 
often been used in the semantics of programming languages (Ni vat, 1979; de Bakker and 
Zucker, 1982), offer a good alternative to the above non-standard theory. The two main 
facts of Aczel's theory that are used here, namely the strong extensionality of (domains 
like) P and the Solution Lemma, also hold, though in a different form, for complete 
metric spaces. The reader interested in deriving compositional models from TSS's, but 
not too eager to study non-standard set theory, can skip Section 2 and consult Section 7 
for the metric theory that can be used instead. 

2. Non-well-founded sets 

We shall work in the universe of non-well-founded sets as presented by Aczel (1988). (See 
Barwise and Etchemendy (1988) for a summary. See also Forti and Hansell (1983) for an 
alternative approach.) 

At the basis of Aczel's work lies the conception of sets as graphs. Every set A gives rise 
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to a graph by taking as nodes the transitive closure of A, and as (directed) edges all pairs 
x and y with y E x. Conversely, every graph is associated with a unique set. 

It is this latter observation that Aczel turns into an axiom, the so-called anti-foundation
axiom (AFA). More formally it says: every graph has a unique decoration. Here, a 
decoration for a graph is a function D that assigns to every node of the graph a set such 
that for each node x 

D(x) = {D(y): y is a child of x}. 

An immediate consequence of AFA is the existence of non-well-founded sets: consider 
the one node graph with one edge leading from this node to itself. Since this graph has, 
by AFA, a decoration, there exists a set a with a = {a} (which is, moreover, unique). The 
set-theoretic framework Aczel works in is determined by the usual axioms of Zermelo
Fraenkel (ZFC), from which the axiom of foundation is omitted (yielding ZFC-), and to 
which AFA is added. The resulting collection of axioms is denoted by zpc- / AFA. (In 
Aczel (1988), the (relative) consistency of zpc- / AFA is shown.) 

We shall make use of two principles that are a direct consequence of AFA: the solution 
lemma and the principle of strong extensionality. 

The solution lemma asserts the existence of a unique solution for a class of systems of 
(recursive) equations. It is formulated as follows. Consider a set X of variables x (formally 
these variables are called atoms or Urelemente). A system of equations is a collection 

{x = ax}xEX, 

where, for every x, the set ax may contain any of the variables occurring on the left side 
of any of the equations (a simple example of a system of equations is {x = { x}} ). A 
solution for such a system is a collection n of sets { n:(x) }xEX such that, for every x, 

n(x) = ax [n(xi), n(x2), ... ], 

where we use the rather informal notation ax [n(x1), n(x2), .. . ] to denote the set that is 
obtained from ax by substituting every variable x; in ax by n(x;), for any i. Now we can 
formulate the following theorem. 

Theorem 2.1. (Solution Lemma) Every system of equations has a unique solution. 

In order to formulate the principle of strong extensionality, we first have to introduce 
the notion of E-bisimulation. (Actually it is just called bisimulation in Aczel's book. The E 
prefix is used to distinguish it from the usual notion of bisimulation, to be defined in the 
next section.) 

Definition 2.2. ( E-bisimulation) A binary relation R on sets is called an E-bisimulation if 
for all sets a and b with aRb, 

l:/x E a3y E b[xRy] 

l:/x E b3y E a[xRy]. 

Two sets a and b are called E-bisimilar (notation a "'E b) if there exists an E-bisimulation 
relation R with aRb. 

The principle of strong extensionality says that whenever two sets are E-bisimilar, they 
are equal. 
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Theorem 2.3. (Strong extensionality) For all sets a and b, 

a ""'E b <o> a = b. 

The principle of strong extensionality gives us a way of dealing with equality of non

well-founded sets; e.g., it can be used to prove a = b for a = {a} and b = { b}. (Note that 
the usual axiom of extensionality does not help here.) 

Finally, we mention a theorem stating the existence of fixed-points for a class of 

recursive domain equations. Again a definition first: 

Definition 2.4. A class operator <l> assigns to each class X a class <DX. A class operator is 

set-continuous if, for each class X, 

<l>X = LJ{ <l>x : x is a subset of X }. 

Aczel shows that every set-continuous class operator has a smallest and a largest fixed
point. The smallest fixed-point contains all well-founded elements that are present in the 

largest, which, moreover, may contain non-well-founded sets. We shall use only largest 

fixed-points, which are characterized in the following theorem: 

Theorem 2.5. (Largest fixed-point) Let <l> be a set-continuous class operator. Let 

JiI! = LJ{x : x is a subset of <l>x }. 

Then J<P is the largest fixed-point of <l>. 

Now we can solve recursive domain equations in the usual way by associating with 

such an equation a class operator. The fixed-points of this operator will satisfy the domain 

equation. 

3. Models for bisimulation 

As a starting point for our semantic considerations, we take the notion of labelled 
transition system (LTS) in the style of Plotkin's structural operational semantics (SOS). 

For every LTS T a semantics MT will be defined that assigns to every state of T its 
tree-like unfolding under the transition relation of T. This semantics is characterized by 

the fact that it assigns the same value to bisimilar states. 
First, the notion of labelled transition system is introduced: 

Definition 3.6. (LTS) A labelled transition system is a triple (S, A, ~) consisting of a set 

of states S, a set of labels A, and a transition relation ~c;; S x A x S. We shall write 
a 

s ~ s' for (s,a,s') E~. 

Definition 3.7. (Bisimulation) Let T = (S, A,~) be an LTS. A relation R c;; S x S is called 
a (strong) bisimulation if for all a EA and s, t E S with sRt, 

s ~ s' ~ :lt' ES [t ~ t' /\ s' Rt'] 

and 

t ~ t' ~:ls' ES [s ~ s' /\ s'Rt']. 

Two states are bisimilar in T, notation s "'T t, if there exists a bisimulation relation R 
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with sRt. Note that bisimilarity is itself a bisimulation relation (the largest); it is also an 
equivalence relation on states. 

Next we introduce for every LTS T = (S ,A,-+) a semantics Mr, which maps every state 
s E S onto its tree-like unfolding under the transition relation --+. It has as a co-domain 
the set P of processes, which is defined as follows (we shall often use the convention of 
writing (x, y E)X to introduce a set X with special elements x and y): 

Definition 3.8. Let (p, q E)P be the largest class satisfying 

P =&'(Ax P), 

where the set A is the set of labels of T. Formally, P is obtained as the largest fixed-point 
of the class operator <I> that assigns to every class X the class &>(A xX) (see also Chapter 8 
of Aczel (1988)). It is straightforward to show that <I> is set-continuous. (The interpretation 
of &(A x X) is of importance, however; it should be the class of all subsets of A x X. This 
distinction between sets and classes also explains why there is no problem of cardinality.) 

So far, nothing has been said about the set-theoretic nature of the set A of labels, which 
is used in the definition of P above. One possibility would be to take a specific collection 
of some well known sets (such as the natural numbers). More generally, one can take 
labels to be atoms or Urelements, which are also used in the formulation of the Solution 
Lemma above. Then the set theory we work in should be extended to deal with these as 
well. Intuitively, atoms are to be simply seen as given basic building blocks that may be 
used in the construction of sets. Rather than going into the details of formulating such a 
set theory here, we refer to Aczel (1988) for some more discussion, and to, for instance, 
Barwise ( 197 5). 

Interestingly, the domain P can itself be viewed as a transition system as follows: let 
Tp =< P,A,-+p>, where -+p is given, for all p,q E Panda EA, by 

a 
p --+p q ~< a,q >E p. 

Let "'P indicate the bisimilarity relation on P induced by Tp. 
The next theorem follows from the principle of strong extensionality. 

Theorem 3.9. The domain P is strongly extensional. That is, for all p, q E P, 

p "'P q =;.. p = q. 

Proof We show, for all p, q E P, 

p "'P q =;.. p "'E q. 

This, with the principle of strong extensionality, leads to the theorem. Let p ,..., p q. Then 
there exists a bisimulation R ~ P x P with pRq. We define 

S = S1 U S2 U S3 U S4 U Ss 

with 

S1 = R 

S2 {(< a,p >, < a,q >) : pRq,a EA} 
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{({a},{a}) :a EA} 

{({a,p},{a,q}): pRq,a EA} 

{(a,a) : a EA}. 

262 

Clearly pSq. We have to prove that S is an E-bisimulation. (Then p ""e q .) Consider 
two sets c and d with cSd and let c' E c. There should exist d' Ed with c'Sd'. 

First, suppose cS 1 d. Then c = r and d = t, for some r, t E P, and c' is of the form 
< a,r' >,for some a EA and r' E P. Since rRt, there exists t' E P such that< a,t' >Et 
and r' Rt'. Thus, <a, r' > S2 < a, t' > and hence <a, r' > S < a, t' >. 

Second, suppose cS2d. Then c =< a, r > and d =< a, t >, for some a E A and r, t E P 
with rRt. Note that, as usual,< x,y >is shorthand for {{x},{x,y}}. Thus, c' is either 
{a} or {a,r}. We can take d' Ed to be either {a} or {a,t}, satisfying c1S3d 1 or c'S4d', 
respectively. 

The other cases are similar. Note that in the last case cSsd, the fact that the set A is 
assumed to consist of atoms is used: elements a EA do not have a set structure. D 

For every LTS T a model MT : S - P is defined as follows: 

Definition 3.10. Let T = (S,A,-) be an LTS. We define a model (operational semantics) 

MT : S - P by, for any s E S, 

Mr(s) = { < a,Mr(s') >: s ~ s'}. 

We can justify this recursive definition by an application of the Solution Lemma: 
consider the system of equations 

{xs = {< a,Xs• >: s ___<::_,, s'}}ses, 

where { Xs }ses is a collection of variables, one for each state s E S. Let n be a unique 
solution for this system. Then we can define 

Mr(s) = n:(x5 ). 

The fact that n(xs) is in P is a direct consequence of the fact that P is the largest class 
satisfying the equation used for its definition. 

This model is of interest because it assigns the same meaning to states that are 
bisimilar. We prove this next. (See also van Glabbeek and Rutten ( 1989) and Abramsky 
(1991) for similar results using complete metric spaces and complete partially ordered 
spaces, respectively.) 

Theorem 3.11. Let ""T~ S x S denote the bisimilarity relation induced by the labelled 
transition system T = (S, A,-). Then 

Vs,t E S[s ""T t -=Mr(s) =Mr(t)]. 

Proof Let s, t E S. 
(<=):Suppose Mr(s) =Mr(t). We define a relation R1 ~ S x S by 

Ri = {(s',t') : Mr(s') = Mr(t')}. 

From the definition of Mr it is straightforward that R1 is a bisimulation relation on S 
and that sRt. Thus s ~r t. 
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( =>): Consider s and t with s ""T t. According to Theorem 3.9, it is sufficient to show that 
Mr(s) and Mr(t) are bisimilar. Let R2 s; P x P be defined by 

R2 = {(Mr(s'),MT(t')): s' "-T t'}. 

It is not difficult to show that R2 is a bisimulation. Hence Mr(s) ""P Mr(t). D 

4. Transition system specifications 

Often LTS's have some structure. In particular, the set of states is given as the set of 
terms over some signature, and the transition relation is defined by means of axioms and 
rules following the syntactic structure of the states. 

Therefore, for the rest of this paper let L be a single-sorted signature. Function symbols 
I E L come with an arity a (f), which is left implicit. Let (x E) Var be a set of variables. 
The set of terms (s,t E)T(L, Var) possibly containing variables is defined as usual. The set 
of terms without variables, called closed terms, is indicated by Terms (l:) or simply Terms. 
For any term t E T('L, Var), the set of variables occurring in t is denoted by Var(t). 

The set of substitutions (er E)Subst consists of all partial functions from Var to Terms. 
Substitutions are extended to terms in the usual way. The application of a substitution a 
to a term t is denoted by t (a). 

Definition 4.12. A transition system specification (TSS) for L is a collection (R E)& of 
rules of the form 

a· 
{t; ~ t( : i EI} 

" t ---+ t' 
where I is some set of indices, a;,a EA (the set of action labels), t;,t[,t,t' E T(l:, Var). 

The elements t; ~ t( are called premises, and t ~ t' is called the conclusion of this 
rule. If I = 0, the rule is called an axiom. The set of all variables occurring in R is denoted 
by Var(R). 

Definition 4.13. An expression of the forms ~ s' with s, s' E Terms is called a transition. 
Note that transitions do not contain variables (unlike terms used in rules). A proof tree 
for s ~ s' from a TSS .<?l is defined as follows (let R E .<?l be as above): 

1. If I = 0 and if there is a substitution er with domain Var(R) such that s = t (a) and 
s' = t'(cr), then s ~ s' is a proof tree for s __::__.. s'. 

2. If there is a substitution a with domain Var(R) such that s = t(cr) and s' = t'(a), 

and if there exist proof trees r; for the transitions t;(a) ~ t[(cr), for all i E J, then 
a proof tree for s ~ s' is obtained by forming the tree with root s ~ s' and as 
immediate subtrees the proof trees r;. 

3. Clauses 1 and 2 define all proof trees. 
u 

Note that proof trees always have a finite height. If a proof tree for s __.. s' from & 
exists, then we write (Jlt f- s __::__.. s'. Every TSS & induces an LTS < Terms, A,-'>-> with 

-'>-= {(s,a,s') : & f- s ~ s'}. 
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Example 4.14. Consider the signature ~B 

:EB =Act U {e,b} U RecVar U {·,+} 

consisting of a set Act of atomic actions, two special symbols e and b, a set (X E)RecVar 
of recursion variables, and two operators · and +. (The signature :EB is called Basic 
Process Algebra with e and b (see, for example, Groote and Vaandrager (1989)), here 
extended with recursion.) 
All elements are constants except for the last two, which are binary operators. The 
interpretation of·, for concatenation, and +, for nondeterministic choice, is as usual. Let 
A =Act u {..j}· The label ..; is used to indicate termination. A TSS ~B for :E8 is defined 
as follows. It consists, for every a E A, of the following axioms and rules: 

1. 

2. 

a 
a- e 

3. We assume the presence of a collection {sx: sx E Terms(:EB) AXE RecVar} of 
declarations, giving the body sx for each recursion variable X. Then we have for all 
X E RecVar the following rule: 

4. 

5. 

6. For all a f. ../• 

7. 

a 
sx- y 

a x-y 

x~ x' 
a 

x+y- x' 

x~ x' 
a 

y+x - x' 

x~ x' 
a 

x ·y- x'·y 

v' a 
x - x' y- y' 

a 
x·y- y' 

Let T = < Terrns(:E8 ), A, --4 > be the LTS induced by ~ill· Consider the function MT given 
by Definition 3.10. It yields for (a· b) + c E Terms (:E8 ) the following process: 

MT ((a · b) + c) = { < a, { < b, { < ..;, 0 >} >} >, < c, { < ..;, 0 >} >}. 

For another example, let X E RecVar and let sx =a+ (X · b), then 

Mr(X) = {abn J: n;;:; 0}, 

where abn..; is used as an abbreviation for 

{<a,{< b,···{< b,{< J.0 >} >}· ·· >} >} 
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with n occurrences of b. Note that the declarations of recursion variables X need not be 
guarded in X (in the standard sense that, for example, a · X is, and X · a is not, guarded 
in X). 

5. Processes as terms 

For the rest of the paper let ~ be a TSS for L, let T = < Terms, A, -+T> be the LTS 
induced by ~ and let P be as in Definition 3.8. Our aim is to develop a systematic way 
of associating with every syntactic operator f E L of arity k a function J : pk -+ P, 
which can be seen as its semantic interpretation, and to use these functions for defining a 
compositional semantics for T. 

To this end, we shall extend the signature L with the collection of processes P. Next, 
the TSS 9P will be extended in order to define also transitions for terms containing both 
function symbols from :E and processes. In the next section, this extended signature will 
be used to construct J. The key idea will be to consider an expression like /(p1,. .. , Pk) 
as a term - albeit a mixed one in the sense that it consists both of a syntactic entity f 
and semantic entities p1, ... ,Pk· Then its meaning will be directly given by the extended 
transition system. 

Definition 5.15. Let Lp = Lu P. All processes p E P have arity 0 (and hence are to be 
considered as constants of the extended signature). The set of closed terms over Lp is 
denoted by (p E)PTerms, the collection of process (or mixed) terms. Further, the TSS 9P 
is extended to a TSS f?lip for Lp by putting 

~P = ~u {p ~ q: < a,q >E p}. 

The LTS induced by f?lip is indicated by 

Tp =< PTerms,A,-+pT>. 

The bisimilarity equivalence induced by Tp is denoted by "'PT· 

Example 4.14. (continued) Suppose p, q E P with p __!!__.,PT q. Then (a · p) + c is an 
example of a process term. One of its possible transition sequences is 

a b 
(a·p)+c---+pr c·p--+pr q. 

Terms in Terms are assigned a meaning by the semantic function MT : Terms -+ P of 
Definition 3.10. Now, mixed terms in PTerms have by the same definition an operational 
model Mn : PTerms -+ P satisfying, for all p E PTerms, 

I a '} MPT(P) = {< a,MPT(P) >: P --+pr P · 

Given the fact that Terms £ PTerms, one would expect, for all s E Terms, 

Mr(s) = MPT(s). 

This does not hold in general, however, as the following example shows. 
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Example 5.16. Let 1: = {a}. Suppose f.!l contains only one (admittedly rather silly) rule, 

a 
y~ y 

a 
a~ a 

Obviously, M T(a) = f/J. In contrast, as a direct consequence of the fact that P is the largest 

fixed point of its defining equation, it contains a process p with p = { < a, p > }. Hence 

MPT(a) = p. 

Intuitively, the problem is that in the above rule no relation exists between the left side 

of the conclusion and the variables occurring in the premisses. Therefore, only rules of 

a restricted format are considered. Next it will be shown that for such rules the above 

equality of MT and MPT on elements of Terms does indeed hold. 

Definition 5.17. Let R be a rule of the form 
a· 

{ t; --!-+ t[ : i E I} 

t ~ t' 
Let Var(R) be the set of variables occurring in R. The set Il(R) of so-called produced 

variables is defined as follows. It is the union TI(R) = Un Iln of a sequence of sets (IIn)n, 

defined inductively by 

Ila= Var(t), Iln+l = LJ{Var(t() : Var(t;) c;;;; Iln}· 

Now the rule R is called inductive if Var(R) = TI(R). A TSS f.!l is inductive if all rules in 

f.!l are. 

The reason why such rules are called inductive is that their set of premisses can be 

inductively structured as follows. For every i E I, an induction coefficient w(i) is defined 

as the smallest natural number k such that 

Var(t() c;;;; Ilk. 

In Groote and Vaandrager (1989), the syntactic format of TSS's is extensively studied. 

(See also the next section of this paper.) It is not very difficult to prove that a rule is 

inductive if and only if it is pure in the sense of Groote and Vaandrager (1989). 

Theorem 5.18. If f.!l is inductive, then, for all s E Terms, 

MT(s) = MPT(s). 

Proof We shall prove 

1. --'>Tc;;;;__,. PT 

2. For alls E Terms, p E PTerms, ifs ~PT p, then p E Terms and s ~T p. 

From Clauses 1 and 2, it immediately follows that B c;;;; P x P, given by 

B = {(MT(s),Mn(s)): s E Terms}, 

is a bisimulation on P. Then the theorem follows by the strong extensionality of P. 
Clause 1 is trivial, so let us proceed with Clause 2. Consider a proof tree for s ~PT p. 

The proof is by induction on the height of the proof tree. 

(1): Suppose the height of the proof tree is l. Then it is the instantiation of an axiom in 



Processes as terms: non-well-founded models for bisimulation 267 

f!/tpr. Since s E Terms, it must be an axiom in Yl, say t ...::._. t': let (J : Var(R) -l> PTerms 
be a substitution with ta = s and t' (J = p. Since Yl is inductive and since there are no 
premisses, Var(t') s Var(t). Then s E Terms implies p E Terms and, moreover, s ~T p. 
(n+l): Suppose the height of the proof tree for s ~PT p is n + 1 and suppose Clause 
2 holds for all transitions that have a proof tree of height less than or equal to n. Since 
there are only axioms in Yln \ f!ltr, the transition s _::_.PT p is the instantiation of the 
conclusion of a rule R E f!ltr, say, 

{ ti ~ t[ : i E I} 
a 

t~ t' 
with substitution (J : Var (R) -l> PTerms. We show by induction on w(i) (defined immedi
ately after Definition 5.17 above) that, for all i EI, 

- t[ (J E Terms 
ai I 

- t;(J ---+r ti(J. 

Suppose this holds for all i with w(i) ::::;; k and consider i with w(i) = k + 1. Since 

Var(t;) S Ilk = Var(t) U LJ{Var(t;): w(i) s k}, 

this assumption implies for all x E Ilk that X(J E Terms. Because t;a ~PT t[(J has a 
proof tree of height less than or equal to n, it follows by the general induction hypothesis 

a· 
that t[ (J E Terms and t; a __!__,.T t( (J. 
Note that from the above it follows that (J is a substitution of type Cl : Var (R) -l> Terms. 

Thus we can conclude that s ~T p. D 

6. Compositional semantics for bisimulation 

For every syntactic operator f E L a semantic interpretation J can now be defined as 
follows: 

Definition 6.19. Let f!llp be the TSS of the previous section for the extended signature Lp. 

(Recall that we have a model Mn : PTerms -l> P.) Letf EL with arity k :2'.: 0. We define 
- k f: P - P, for all p1, .. . ,pk. by 

](p1, ... , Pk) =Mn if (pi,···, pk}). 

(Note that this is well defined, sincef(p1, ... ,pk) is a process term in ?Terms.) 
Example 4.14 (continued) According to the above definition, the semantic operators 
belonging to the signature LB are given by 

a {<a,{<J,0>}>} 

€ {< J.0 >} 
b 0 

P1.f.P2 PI U P2 

p1·p2 {< a,q17P2 >: < a,q1 >E PI /\a+ J} 
U {< a,q2 >: < J.q1 >E P1/\ < a,q2 >E P2}. 



J. J.M.M. Rutten 268 

As usual, a semantic interpretation of the operators in !: induces a compositional model 
for Terms. 

Definition 6.20. The mapping Cr : Terms -+ P is defined inductively as follows. Let 
t E Terms be of the form t =f(t1,. .. ,tk); then 

Crif(t1, . .. , tk)) = /(Cr(ti), ... , Cr(tk)). 

The question whether C T is equal (or correct with respect) to MT now naturally arises. 
The following example shows that in general the answer is no. 

Let !: = {a, i5, n: }, consisting of two constants and a unary operator, respectively. Let ~ 
be a TSS for !: given by 

Then Mr(n:(a)) = {< b,0 >},whereas 

a~ i5 
b 

n(a) - b. 

Cr(n:(a}) = i't(a) =it({< a,0 >}) = 0. 

The latter equality follows from the fact that the extended TSS f!Jlp does not contain any 
rule for deriving a transition from n:( { < a, 0 >} ). 

The point of this example is that the second axiom in ~ does not allow replacement 
of one term by another one that is bisimilar to it. More precisely, on the one hand the 
terms a and { < a, 0 >} (over the extended signature Lp) are bisimilar: they can both 
take an a step, to i5 and 0 respectively, neither can take further steps. On the other hand, 
however, n:(a) and n({< a,f/J >})are not bisimilar: the former can take a b step, whereas 
the latter cannot. In other words, the bisimilarity equivalence "'Pr induced by f!/lp is not 
a congruence. 

(However, note that "'T, the bisimilarity equivalence induced by f!Jl, is a congruence.) 
In Groote and Vaandrager (1989), a condition on the syntactic format of the rules of 

TSS's is given that ensures the induced bisimilarity equivalence to be a congruence. It will 
forbid rules like the second one in the example above. We shall first give the format and 
theorem of Groote and Vaandrager (1989); next we show how this can be applied here. 

Definition 6.21. Let f!Jl be a TSS for!: and let R be a rule in f!Jl. The rule R is in ty/t-format 
if it has the following form 

{ ti 2+ Y; : i E I} 

f(X1,. . . ,Xk) ~ 
and it is in tyxt-format if it is of the form 

a· 
{t; ~ Y; : i EI} 

a 

x - t 
where f E ~. with arity k; the terms t and ti, for i E I are in T(!:, Var); and all of 
the variables in { x i. .. ., xk} u {Yi : i E I} in the first case, and all of the variables in 
{ x} U {y; : i E I} in the second case, are pairwise distinct variables in Var. The TSS 
~is in tyft/tyxt-format (terminology of Groote and Vaandrager (1989)) if all its rules 
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are either in tyft or in tyxt format. It is in BSOS (bisimulation structured operational 
semantics, our terminology) format if it is both inductive and in t}ft /tyxt-format. 

As mentioned in the previous section, a rule is inductive if and only if it is pure in the 
sense of Groote and Vaandrager (1989) (pure is defined there as the conjunction of being 
well-founded and closed). The notion of well-foundedness is introduced as a technical 
condition needed to prove the main theorem (which follows in a moment). Here it is 
natural to require the rules to be inductive (which implies that they are well-founded) 
since this condition is also needed for Theorem 5.18. 

Theorem 6.22. (Groote and Vaandrager, 1989) If ;Jt is in BSOS format, then ""T, the 
bisimilarity relation corresponding to the TSS T (induced by :YI), is a congruence. That 
is, for all f EI of arity k, all u1, •.. , Uk, v1, ... , vk in Terms, 

Vi E {l, .. .,k}[u; ""T v;] ~f(u1, .. .,uk) '""Tf(v1,. . .,vk)· 

In the appendix a proof of the above theorem can be found, which is a slight variation 
of the one given in Groote and Vaandrager (1989). In that paper, some examples are 
given (similar to the one above with I = {a, .5, rr}) showing that none of the conditions 
of the theorem can be missed. 

Now consider a TSS f3ll that is in BSOS format. We shall prove that the compositional 
semantics of Definition 6.20 equals the operational semantics MT of Definition 3.10. We 
shall use two lemmas : 

Lemma 6.23. Let =n be the equality induced by MPT; i.e., p =n p' if and only if 
MPT(P) = Mn(p'). Then =n is a congruence. 

Proof By Theorem 3.11, =n = "'PT· If ;Ji is in BSOS format, then !Jfp is also, since 
all axioms of the form p __::__.. q are in BSOS format. Therefore by Theorem 6.22, ~PT is 
a congruence. 0 

Lemma 6.24. For all p E PTerm, p =PT MPT(p). 

Proof We have p rvpT MPT(P) as an immediate consequence of the observation that 
{(p,Mn(p)) : p E PTerm} is a bisimulation relation on PTerm. The lemma follows by 
Theorem 3.11. D 
Theorem 6.25. For all t E Terms, MT(t} = Cr(t). 

Proof Let t E Terms. We use induction on the syntactic structure of t. Let t = 
f(t 1, .. .,tk), for some/EI: and t 1,. .. ,tk E Terms, and suppose the theorem holds for all 
t1,. .. , tk. Then 

MT(t} Mrif(t1,. . .,tk)) 

(.'?hl is inductive, Theorem 5.18) 

MPT(f(t1, ... ,tk)) 

(by Lemma 6.23 and Lemma 6.24) 

MPT(f (MPT(t1), .. · ,MPT(tk ))) 

(Definition 6.19) 

](MPT(ti), ... ,Mpr(tk)) 
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= (Theorem 5.18) 

f(MT(t1), ... ,M T(tk)) 

= (induction hypothesis) 

](Cr(t1), ... , CT(tk)) 

(Definition 6.20) 

CTif (t1, ... ' tk)) 

CT(t). 

Example 4.14 (continued) The following equalities hold: 

MT(a) a 
MT(e-) € 

MT(()) 8 
MT(s1 +s2) M T(si).f.M T (s2) 

MT(s1 · s2) MT(s1fMT(s2) 

MT(X) MT(sx). 

If sx equals, for instance, a + (X · b) then 

Mr(X) = a.f.(MT(Xfb). 

7. Discussion: comparison with metric spaces 

270 

D 

Is it really necessary to resort to set theory, moreover to a non-standard one, if one wants 
to develop semantics of programming languages? No, not really, is the expected (and 
for some also very much welcome) answer. Below we shall show how all of the above 
constructions can be mimicked in a standard theoretic setting - or rather, without the need 
for (purely) set-theoretic considerations at all. (In fact, only some of the constructions of 
Section 3 have to be revised.) At the same time, this alternative approach will be less 
general (as we will see), and that is where an argument for the use of non-well-founded 
sets may be found. 

The mathematical structures that will be used are complete metric spaces, which seem 
to be closest to non-well-founded sets (rather than the (even) more standard complete 
partial orders). 

In de Bakker and Zucker (1982), a method is presented for constructing complete metric 
spaces as solutions of recursive domain equations. It was later generalized in America 
and Rutten (1989), where a larger family of equations is solved, and where, moreover, 
uniqueness of many such solutions is proved. Thus, a domain equation very similar to 
the one used for the construction of P (Definition 3.8) can be solved over a category of 
complete metric spaces. That is, there exists a complete metric space PM such that 

PM ~ rJ> compact (A X PM). 
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Here &compact (X) is, for any complete metric space X, the complete metric space consisting 
of all compact subsets of X. (See, for instance, Engelking (1977) or America and Rutten 
(1989) for all standard definitions concerning metric spaces.) The symbol~ expresses that 
both sides of the equation are isomorphic: there exist distance-preserving mappings 

and 

j : &"compact (A X PM) -+PM 

such that j o i = idpM and i o j = ide;compact<AxPM )· This equation was first solved in 
de Bakker and Zucker (1982). In America and Rutten (1989) the uniqueness (up to 
isomorphism) of the solution is proved. 

Note that P is strictly equal to &(A x P), whereas here the equation is solved up to 
isomorphism. 

Also PM can be turned into an LTS by defining, for all p, q E PM and a EA, 

p ~PM q ~< a,q >E i(p). 

Moreover, PM is again strongly extensional (as pointed out in van Glabbeek and Rutten 
(1989)). That is, if two processes are bisimilar, then they are equal. (For P this is proved 
in Theorem 3.9, using the general principle of strong extensionality, a direct consequence 
of AFA.) It can be shown by defining e = sup{ (pi, p2) : PI "'PM P2}, and proving € ::;;; }e, 
hence e = 0. From this it follows that any two bisimilar processes have distance 0, and 
thus are equal. 

Using PM instead of P, the operational semantics of Definition 3.10 can be adapted as 
follows. For an LTS T = (S, A,-), a model MT : S -+ PM is given, for any s E S, by 

MT(s) =j({< a,MT(s') >: s ~ s'}). 

The well-definedness of MT (that in Definition 3.10 is based on the Solution Lemma) 
derives from the fact that MT can be obtained as the unique solution of the following 
function: let et> : (S -+ 1 PM) -+ (S-+ 1 PM) be defined by, for any F E (S -+1 PM) and s E S, 

ll>(F)(s) =j({< a,F(s') >: s ~ s'}). 

(Here (S -+1 PM) is the set of non-expansive (non-distance-increasing, weakly contractive) 
mappings from S to PM.) Now 11> is contracting (strictly distance-decreasing) and hence 
(by Banach's theorem) has a unique fixed-point MT: see Rutten (1990). 

There is one important requirement that has to be met in the above definition of et>. 
The set 

{< a,F(s') >: s ~ s'} 

should be compact. This imposes an essential restriction on the LTS's to which the above 
construction can be applied: the transition relation -+ of T = (S, A,-+) must be finitely 
(or, more generally, compactly) branching. That is, for every s E S the set 

{< a,s' >: s ~ s'} 
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must be finite (or compact). (This can be weakened to image-finiteness if one uses the 
powerset constructor that yields all closed subsets in the definition of PM.) 

This difference between the use of non-well-founded sets, where arbitrary LTS's can 
be considered, and complete metric spaces constitutes a point in favour of the former. 
Note that, for example, the use of unguarded recursion is ruled out in the metric case: 
declarations like sx =a + (X · b) give rise to infinitely branching transition systems. 

Once the definitions of Section 3 have been adapted along the lines sketched above, all 
following definitions and theorems go through as before. In particular, the signature l: 
can again be extended with processes from PM as constants. (Maybe one final technical 
observation is needed here: if the LTS T is finitely branching, then the extended LTS 
Tp is compactly branching.) And thus, the definition of a compositional semantics Cr 
(Definition 6.20) remains unaltered, as well as the proof of the equality of MT and Cr 
(Theorem 6.25). 

Summarizing, non-well-founded sets and complete metric spaces are very similar in 
two respects. First, both P and PM are strongly extensional. Second, both the recursive 
specifications of MT (one with P and one with PM as co-domain) have a unique solution. 
In the first case, this is due to the Solution Lemma, in the second to Banach's theorem. In 
both cases, the function specification should satisfy some guardedness condition: systems 
of equations allow the occurrence of variables to the right of the equality only within 
other sets; a function specification, like that of <I> above, defines a contraction only if its 
argument (F) occurs at the right of the equality guarded by some distance-decreasing 
construct. (In order to understand the latter remark, the definitions of the metrics involved 
should be made explicit. Again we refer to America and Rutten (1989).) 

In Rutten (1991) it is shown that the non-well-founded domain ofhereditarily finite sets 
is isomorphic to a subset of the metric completion of the collection of all well-founded 
hereditarily finite sets (thus giving a metric version of Mislove et al. (1989), where complete 
partial orders are used). A point of further research is how to relate non-well-founded 
domains and metric domains in general. 
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Appendix 

In the proof of the theorem below, only rules that are (inductive and) in tyft format 
are considered. This is sufficient since any TSS containing rules in tyxt format can be 
transformed into a TSS (yielding the same LTS) containing only rules in tyft format, as 
follows. For every rule R in tyxt format, and every operator f E L:, a new rule is added by 
taking R in which x (the left side of the conclusion) is replaced by f (xi, · · ·, Xn), where n 
is the arity off and the new variables have been chosen disjointly from the ones already 
present in R. 

Theorem 6.22. If [}f is in BSOS format, then "'T, the bisimilarity relation corresponding 
to the TSS T (induced by !:lf), is a congruence. 

Proof Let W ~ Terms x Terms be the smallest congruence relation that contains ""T· 

In other words, W is the smallest relation such that 

1. ""T~ W 
2. For all f E l: of arity k, and all u1, ... , Uk and v1, ... , vk in Terms, 

ifu;Wv;, forall 15.i 5,k, thenf(u1, ... ,uk)Wf(v1, ... ,vk). 
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It is sufficient to show that W is a bisimulation, since this implies W c;;_.,7 _ By symmetry, 

this is equivalent to proving, for all u, v E Terms with uWv: if u ~ u', then there exists 

v' E Terms with v ~ v' and u'Wv'. 
Let u, v E Terms with uWv and suppose u ~ u'. We have to show the existence of 

v' E Terms with v ~ v' and u'Wv'. If u ~r v then this follows from the fact that "'T 

is a bisimulation relation and the fact that ~re;;_ W. 
Next, suppose that u = f (u) and v = f (v) for f E L, of arity k (with u = u1, ... , uk 

and v = v1, ... , Vk); suppose that ui Wv;, for all 1 s i s k. Consider a proof tree r for 

the transition f (u) ~ u', and let R E f!Jl be the last rule used in this proof tree in 

combination with a substitution a. By the remark preceding this theorem, we may assume 

that R is in tyft format. So, let 

( ui } tti --7 Yi : i E I 

f(x) ~ t 
R 

where the terms t and ti, for i E I are in T(L., Var ), x = x1, ... , xk. and all of the variables 

in {x1, ••• ,xk} U {Yi : i EI}, are pairwise distinct variables in Var. We have xda) = u;, 

for all 1 sis k, and t(a) = u'. 
We shall define a substitution a' such that 

f(x)(a') = f(v) 

/(ii)~ t(cr') 

t(a) Wt (0"1). 

We proceed by induction on the height of r. Suppose the height of r is n + 1. Assume that 

for all s and t in Terms with s Wt, and transitions s ~ s' with a proof tree of height 

less than or equal to n, there exists t' E Terms with t ~ t' and s' Wt'. 

Recall from Definition 5.17 that Var(R) = U 111. We shall, by induction on I, construct a 

sequence O"o c;;_ 0" 1 s · · · (using here and below a set notation for substitutions) such that 

for all / ~ 0, 

1. domain ( O"z) = 111 
2. For all z E domain(O"i): z(a)Wz(O"i) 

3. For all i EI, if m(i) = l then t;(O"z) ~ y;(0"1) 

(o): Take ao = { (x1, vi), ... , (xk. vk) }. Then clause 1 holds since 

domain (ao) = { x1,. .. , xk} = 110. 

Clause 2 holds since u; Wv;, for all 1 s i s k. Clause 3 trivially holds since w(i) > 0, for 

all i EI. Now f(x)(0"0) = f(v). (Note that here the fact is used that the left side of the 

conclusion of the rule R contains only one function symbol (f) and that all the variables 
in x are pairwise distinct.) 

(1+1): Suppose we have defined O"Q, •• • ,a1 satisfying clauses 1, 2 and 3 above. We extend 
<r1 by putting 

a1+1 = az U {(y;, wy;): w(i) = l + 1}, 

where for every i EI with m(i) = l + 1, a term Wy; is chosen as follows: 
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Let i EI with w(i) = l + 1. By definition of II1+1, this implies Var(t;) s: II1. By clause 2 
(for l) we have, for all variables z E Var (t;), that z (<I) Wz (<Ii). Since W is a congruence, 
this implies t;(<I) Wt; (ai). Consider the transition t; (<I) ~ y; (a). Using the definition of 
W, we distinguish between two cases. First, if t;(<I) "'T t;(<I1) then there exists, by the fact 
that ~T is a bisimulation, a term w E Terms such that t1(ai) ~ w and y;(<I) ~r w, 
hence y;(a)Ww. Take wy1 = w. 
Second suppose that there exist an operator g E I: and sequences (of length the arity of 
g) of terms v1 and v2 such that t;(<I) = g(vi) and t;(<Ii) = g(v2), and v1 Wv2 (using an 
obvious shorthand). Since the transition g (vi) -2+ y; (a) has a proof tree of height smaller 
than or equal to n, the induction hypothesis gives us the existence of a term w such that 
g (V2) -2+ w and }'; (a) Ww. Also in this case, take wy1 = w. 
Note that in this construction the fact is used that all y;'s are mutually distinct. 
It is immediate from the definition of a1+1 that the clauses 1, 2 and 3 hold for l + 1. 
Now define a'= U a1• Then/(x)(<I') = f(v). Since for all i EI we have t;(a') -2+ y;(a'), 
we have constructed a proof for the transition/ (v) ~ t (<I'). Finally, because of the facts 
that Var(t) s; LJ1 IT1 = domain(a'), that for all z E domain(a'), z(a)Wz(a'), and that W is 
a congruence, we have t(a) Wt(a'). D 


