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ABSTRACT

The local e�ective H�older exponent has been applied to evaluate the variability of heart rate locally at an

arbitrary position (time) and resolution (scale). The local e�ective H�older exponent [8, 9] used is e�ectively

insensitive to local polynomial trends in heartbeat rate due to the use of the Wavelet Transform Modulus

Maxima technique. Also the variability so obtained is compatible in the sense of distribution to the Multifractal

Spectra of the analysed heart rate time series. This provides the possibility of standardising the variability

estimation for comparison between di�erent patients and between di�erent recordings for one patient. The

previously reported global correlation behaviour [1] is captured in the e�ective H�older exponent based, local

variability estimate. This includes discriminating healthy and sick (congestive heart failure patients) on the

basis of both the central (Hurst) exponent and the width of the multifractal spectra. In addition to this, we

observed intriguing patterns of individual response in variability records to daily activities. A moving average

�ltering of H�older exponent based variability estimates was used to enhance these 
uctuations. We �nd that

this way of local presentation of scaling properties may be of clinical importance.
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1. Introduction

Recent �ndings reported in [1] suggest that heartbeat rate is more complex than has been anticipated,
requiring multiple, densely interwoven scaling (roughness) exponents to describe it. This is in contrast
to the more established view which associated one global roughness exponent with each heartbeat
record [2]. This exponent, of course, could be di�erent for various people and also depended on the
state of health. A multifractal description reveals exponents changing from point to point in a way
which suggests some higher order organisation. Such multifractal exponents cannot be simply grouped
in patches of constant or stationary behaviour, but display complex, non-stationary structure at any
time scale (resolution) considered.
The multifractality discovery was possible thanks to the application of the wavelet transform (mod-

ulus maxima) method to perform the multifractal analysis of the heartbeat signal. The formalism,
developed by Arneodo et al in the early nineties has been successfully used to test many natural
phenomena [3, 4, 5, 6, 7]. One of the key aspects of this methodology is, however, that it is intrin-
sically statistical and provides only global estimates of scaling (of the moments of relevant quantity).
While this is often a required property, in some cases local information about scaling might provide
more relevant information than the global spectrum. This is particularly true for time series where
scaling properties are non-stationary, whether it be due to intrinsic changes in the signal scaling
characteristics, noise or simply the boundary e�ects.
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To address this problem, we have introduced [8, 9] a method of estimation of the local scaling
exponent through the paradigm of the multiplicative cascade. We reveal the hierarchy of the scaling
branches of the cascade with the wavelet transform modulus maxima tree, which has proved to be
an excellent tool for the purpose [4, 10]. Contrary to the intrinsically instable local slope of the
maxima lines, this estimate is robust and provides a stable, e�ective H�older exponent, local in scale
and position.
For model multifractals, the mechanism behind multiscale non-stationarity in the roughness expo-

nent values does not change with resolution (scale). It can be captured in a distribution (or spectrum)
of multifractal exponents, which for idealised multifractal signals shows the same spectrum indepen-
dent of the length or starting position of the investigated time series. Such behaviour is typical for
model multifractals, but in heartbeat and in other real life signals, changes are observed in all spectral
characteristics: positioning, shape and modality, depending on the time series investigated, but also
on the selected time and scale range of analysis.
While this adds to the complexity of the global (spectral) description, it also validates the local

approach, where we choose to look back at the temporal organisation of the scaling (e�ective H�older)
exponent in the hope that the analysis of its intrinsic non-stationarities will provide insight into global
behaviour. 1

In this paper, we applied the local e�ective H�older exponent to evaluate the variability of the
heartbeat rate locally at an arbitrary position (time) and resolution (scale). Just as is the case in
global Wavelet Transform Modulus Maxima based Multifractal Formalism, the technique is e�ectively
insensitive to local polynomial trends in heartbeat rate. Also the variability so obtained is compatible
in the sense of distribution to the multifractal spectra of the analysed heartbeat rate time series.
Therefore, the previously reported global correlation behaviour is captured in the e�ective H�older

exponent based, local variability estimate. This includes discriminating healthy and sick (congestive
heart failure patients) on the basis of both the central (Hurst) exponent [2] and the width of the
multifractal spectra [1]. However, in addition to this, we observed intriguing patterns of individual
response (non-stationarities) in variability records to daily activities and during sleep.
The observation of non-stationarity of the variability estimate obtained with the e�ective H�older

exponent prompted us to conduct a series of experiments. The main objective of the tests was to
develop a methodology capable of answering of the following questions:

1. Is the observed multifractal behaviour of the heartbeat the result of non-stationarity of the local
e�ective H�older exponent?

2. Can the non-stationarity be linked with activity, i.e. the particular mental or somatic state of
the person?

3. In the case of known physiological input like beta-blocker, is the non-stationarity still observed?

4. In the case of non-activity such as during sleep, is the non-stationarity still observed?

Of course all the above questions lead to the central question of the physiological reasons for the
apparent multifractal behaviour of the heartbeat. We will not attempt to give answer to this in this
mainly methodological paper. Rather we will show that the methods described can give answers to
particular questions of the kind listed above. We, therefore, hope that the methodology presented
can help, through extensive study, in understanding systems characterised by apparently multifractal
behaviour.
The structure of the paper is as follows. In section 2, we focus on the relevant aspects of the

wavelet transformation, in particular the ability to characterise scale-free behaviour through the H�older
exponent. Together with the hierarchical, scale-wise decomposition provided by the wavelet transform,
it will enable us to reveal the scaling properties of the tree of the multiplicative cascading process. In

1for example, into the way the spectrum is built.
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Figure 1: Left: Continuous Wavelet Transform representation of the random walk (Brownian process)
time series. The wavelet used is the Mexican hat - the second derivative of the Gaussian kernel. The
coordinate axes are: position x, scale in logarithm log(s), and the value of the transform W (s; x).
Right: The related WTMM representation.

section 3, we brie
y describe a technical model enabling us to estimate the scale-free characteristic (the
e�ective H�older exponent) for the branches of such a process. A more extensive coverage of this method
is available in [8, 9]. In section 4, we use the derived e�ective H�older exponent for the local temporal
description of the various test heartbeat time series. Section 5 provides an extension to 
uctuation
analysis of the e�ective H�older exponent. Again a number of test signals are used to illustrate the
e�ectiveness of the method and address the central questions arising from the non-stationarity of local
e�ective H�older exponent. Section 6 closes the paper with conclusions.

2. Continuous Wavelet Transform and its Maxima Used to Reveal the Structure of

Singularities in the Time Series

Conceptually, the wavelet transformation [11, 12] is a convolution product of the time series with the
scaled and translated kernel - the wavelet  (x), usually a n� th derivative of a smoothing kernel �(x).
Usually, in the absence of other criteria, the preferred choice is the kernel, since it is well localised both
in frequency and position. In this paper, we chose the Gaussian �(x) = exp(�x2=2) as the smoothing
kernel, which has optimal localisation in both domains.
The scaling and translation actions are performed by two parameters; the scale parameter s `adapts'

the width of the wavelet kernel to the resolution required and the location of the analysing wavelet is
determined by the parameter b:

Wf(s; b) =
1

s

Z
1

�1

dx f(x)  (
x� b

s
) ;

where s; b 2 R and s > 0 for the continuous version (CWT).
The 3D plot in �gure 1 shows how the wavelet transform reveals more and more detail while going

towards smaller scales, i.e. towards smaller log(s) values. The wavelet transform is sometimes referred
to as the `mathematical microscope' [4], due to its ability to focus on weak transients and singularities
in the time series. The wavelet used determines the optics of the microscope; its magni�cation varies
with the scale factor s.
This property makes the continuous wavelet transform very useful in analysing local regularity

(scaling/roughness) properties of functions. In particular, such local scaling behaviour is often char-
acterised by the H�older exponent h. The following scaling equation de�nes the H�older exponent
h(x0) 2 (n; n+ 1) of the cusp singularity at x0:
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jf(x)� Pn(x� x0j � Cjx� x0j
h ; (2.1)

as the supremum of all h such that the above relation holds for some polynomial Pn of degree n < h.
Pn can often be associated with the Taylor expansion of f around x0, but Eq. 2.1 is valid even if such
an expansion does not exist [15]. The H�older exponent is, therefore, a function de�ned for each point
of f , and it describes the local regularity of the function (or distribution) f .
It can be shown [13] that for cusp singularities, the location of the singularity can be detected, and

the related exponent can be recovered from the scaling of the Wavelet Transform, along the so-called
maxima line, converging towards the singularity. This is a line where the wavelet transform reaches
local maximum (with respect to the position coordinate). Connecting such local maxima within the
continuous wavelet transform `landscape' gives rise to the entire tree of maxima lines. Restricting
oneself to the collection of such maxima lines provides a particularly useful representation [14] of the
entire CWT, the so-called Wavelet Transform Modulus Maxima representation (WTMM). It incor-
porates the main characteristics of the WT: the ability to reveal the hierarchy of (singular) features,
including the scaling behaviour. In particular, we have the following power law proportionality for
the wavelet transform of the cusp singularity in f(x0):

W (n)f(s; x0) � jsjh(x0) :

This is under the condition that the wavelet has at least n vanishing moments, i.e. it is orthogonal to
polynomials up to degree n:

R +1
�1

xm  (x) dx = 0 8m; 0 � m < n . The reader will note that this
requirement is needed to �lter the polynomial Pn in Eq. 2.1 in order to access the unbiased scaling
exponent.

3. Estimation of the Local, Effective H�older Exponent Using the Multiplicative Cas-

cade Model

We have shown in the previous section that the wavelet transform, and in particular its maxima lines,
can be used in evaluating the H�older exponent in isolated singularities. In most real life situations,
however, the singularities in the time series are not isolated but densely packed. The logarithmic rate
of increase or decay of the corresponding wavelet transform maximum line is usually not stable but

uctuates, following the action of some process involved.
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Figure 2: Left: It is impossible to evaluate the scaling exponent for an arbitrary maximum line
participating in a complex process: a real life example of a maximum line. Right: The local e�ective
H�older exponent estimate takes the e�ective di�erence in the logarithm of the density of the process
with respect to the logarithm of the scale di�erence gained along the process path.

To capture the 
uctuations and estimate the related exponents (to which we will refer to as an
e�ective [8] H�older exponent of the singularity), we will model the singularities as created in some
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kind of a collective process of a very generic class - the multiplicative cascade model. Each point of
this cascade is uniquely characterised by the sequence of indices (s1:::sn), taking index values from
the set of weights fpig. The sequence indicates the unique order in which the weights are successively
acting along the process branch leading to the particular singularity.
Suppose that we denote the density of the cascade at the generation level Fi (i running from 0 to

max) by �(Fi), we then have

�(Fmax) = ps1 ::: psn �(F0) = PFmax

F0
�(F0)

and the local exponent is related to the rate of increase of the product PFmax

F0
over the gained scale

di�erence. In any experimental situation, the weights pi are not known and h has to be estimated.
This can be simply done using the fact that for the multiplicative cascade process, the e�ective product
of the weighting factors is re
ected in the di�erence of logarithmic values of the densities at F0 and
Fmax along the process branch:

hF0Fmax
=

log(�(Fmax))� log(�(F0))

log((1=2)max)� log((1=2)0)
:

The densities along the process branch can be estimated with the wavelet transform, using its remark-
able ability to reveal the entire process tree of a multiplicative process [10]. It can be shown that the
densities �(Fi) correspond with the value of the wavelet transform along the maxima lines belonging
to the given process branch. The estimate of the e�ective H�older exponent becomes:

ĥshislo
=

log(Wf!pb(slo))� log(Wf!pb(shi))

log(slo)� log(shi)
;

where Wf!pb(s) is the value of the wavelet transform at the scale s, along the maximum line !pb
corresponding to the given process branch bp. Scale slo corresponds with generation Fmax, while shi
corresponds with generation F0, (simply the largest available scale in our case). 2

4. Employing the Local Effective H�older Exponent in the Characterisation of Heart-

beat Interval Time Series

Such an estimated local ĥ(x0; s) can be depicted in a temporal fashion, for example with colour stripes
as we have done in �gure 3. The colour of the stripes is determined by the value of the exponent
ĥ(x0; s) and its location is simply the x0 location of the analysed singularity (in practice this amounts
to the location of the corresponding maximum line). Colour coding is done with respect to the mean
value, which is set to the green colour central to our rainbow range. All exponent values lower than
the mean value are given colours from the `warmer' side of the rainbow, all the way towards dark red.
All higher than average exponents get `colder' colours, down to dark blue.
The �rst example in �gure 3 is a record [17] of heartbeat intervals recorded from a healthy human

heart and it shows an intricate structure of interwoven singularities at various strengths. This be-
haviour has been recently reported [1] to correspond with the multifractal behaviour of the heartbeat.

The green is centred at ĥ = 0:1 for this panel. The second example time series is a computer generated
sample of white noise. It shows almost monochromatic behaviour, centred at h = �0:5. The colour
green is dominant. There are, however, several instances of darker green and light blue, indicating
locally smooth components.
To the right of �gure 3, the log-histograms are shown of the H�older exponent displayed in the colour

panels. They are made by taking the logarithm of the measure in each histogram bin. This conserves

2For slo we will use a = 5 in the examples presented in this report. This is the lowest resolution for which we can

maintain the shape of the Mexican hat.
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Figure 3: Left: Example time series with local Hurst exponent indicated in colour: the record of
healthy heartbeat intervals and white noise. The background colour indicates the H�older exponent
locally, centred at the Hurst exponent at green; the colour goes towards blue for higher ĥ and towards
red for lower ĥ. Right: The corresponding log-histograms of the local H�older exponent. (For colour
version of this �gure, see note on the �rst page of this report.)

the monotonicity of the original histogram, but allows us to compare the log-histograms with the
spectrum of singularities D(h). The log-histograms are actually closely related to the (multifractal)
spectra of the H�older exponent [9]. The multifractal spectrum of the H�older exponent is the `limit
histogram' Ds!0(h) of the H�older exponent in the limit of in�nite resolution. Of course we cannot
speak of such a limit other than theoretically and, therefore, a limit histogram (multifractal spectrum)
has to be estimated from the evolution of the log-histograms along scale. For details see [9].
The ability to display the scaling properties of the time series in a local manner has already proven

quite successful. We have applied the method to a set of heartbeat interval time series in a (double)
blind test. The purpose of the test was to establish whether the local e�ective H�older exponent `panels'
can be used in discerning whether the time series is from a healthy or an ill subject.
In �gure 4, we show one such set of panels. There are two records of healthy heartbeats and two of

heart disease. The centre value of the e�ective H�older exponent is h = 0:1, and is displayed in green
colour. For h > 0:1 the colour becomes darker green, through light blue, it saturates as dark blue for
h = 0:5. All h > 0:1 correspond with a higher than average local degree of correlation, which has been
associated with heart failure. On the contrary, all h < 0:1 indicate stronger than average (relative)
anti-correlation, which can be associated with healthy heartbeat behaviour. The colours displayed for
h < 0:1 are from light green through yellow and orange towards red at h = �0:3.
The two upper panels 1) and 2) in �gure 4 both belong to healthy individuals but of course there is no

reason why they should be identical. And indeed individual patterns all have a di�erent arrangement
of colour stripes. Also the density of colours changes; some non-stationary behaviour is apparent in
the �gures 4, panels 1) and 2). Both panels show a wide range of colours re
ecting fully developed
dynamics of the healthy heartbeat. Such panels correspond to a wide multifractal spectrum [1].
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1).

2).

3).

4).

Figure 4: Local Hurst exponent indicated in colour for four heartbeat interval time series (not shown).
The green colour is centred at h = 0:0 for all plots. It saturates at dark blue for h = 0:4 and at dark
red for h = �0:4. (For colour version of this �gure, see note on the �rst page of this report.)

The two lower panels 3) and 4), on the contrary, are taken from heartbeats of congestive heart failure
(CHF) cases. The deviation from healthy behaviour can occur in a number of ways but these two are
perhaps the most generic. One type of deviation causes a narrowing of the dynamics and therefore a
narrowing of the range of colours - it is reminiscent of the monofractal noise shown in �gure 3. The
other type of deviation, in addition to a narrower colour spectrum, is that it drifted away in its entire
colour spectrum in the direction of green and blue, that is smoother (more correlated) behaviour.
This shift in the central colour re
ects the change in the global correlation exponent between healthy
and CHF individuals [2].
We have left the background between the stripes uncoloured (white) although it corresponds with

even more smooth regions (at the resolution considered!) and can all be painted dark blue. This
would enhance the colour range and help diagnosis, but we preferred not to introduce any additional
information to the panels in this research paper.
It is apparent that the colour panels provide more information than the global averages, like the

central colour or the range of colours used (i.e.- the width of the multifractal spectrum). In the follow-
ing, we will show how to exploit this additional information pertinent to the local colour 
uctuations
(non-stationarities) in the panels.

5. Collective Properties of the Local Variability Estimate

In the context of heartbeat, one may ask the question: what is the meaning of the varying local
scaling exponent. Also its temporal organisation and its relevance to the multifractal spectrum may
be tested. Ultimately, we would like to identify physiological reasons for the apparent multifractal
behaviour of the heartbeat. Let us �rst go back to numerical information, the H�older exponent which
we used to represent in colour, and exploit a few generic cases of non-stationarity.
In �gure 5, three example heartbeat interval time series are shown with their corresponding local

e�ective H�older exponent. The �rst example from the left (bottom plot) shows a consistent linear
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Figure 5: Three example heartbeat interval time series (top row) with their corresponding local
e�ective H�older exponent (bottom row). Two examples of non-stationarities in local H�older exponent;
they are intrinsic to the local H�older exponent not to the non-stationarities of the input time series,
as is shown in the third example, showing independence of the polynomial trend in the input.

trend - the increase of the exponent value with time. This can also be veri�ed in the corresponding
time series above (leftmost, top plot): the roughness of the time series decreases with time (except
for some minor 
uctuations). In the second example (centre panel), two distinct regimes can be
distinguished with a somewhat di�erent mean h value: one region up until sample 5000 and the other
of slightly lower value of h for samples 5500 and more. Both the above cases will result in a broadening
of the D(h) spectrum as a result of the non-stationary behaviour of h. This e�ect alone, if observed at
one global resolution, would not be suÆcient for multifractal behaviour - it would simply mean that
the local variability is non-stationary in these time series. In the following, we will detect multiscale
non-stationarity of h. In the last example in the rightmost panels, we show that the h exponent and
the roughness of the time series are independent of the 
uctuations or trends in the time series.
The evident non-stationary behaviour in these �gures can be quanti�ed, and for this purpose we

used a low pass moving average �lter (MA) to detect/enhance trends. This processing is, of course,
done on the H�older exponent value set fhi(f(x))g, not on the input signal f(x) . A n-MA �ltering of
n base is de�ned as follows:

hMAn
(i) =

1

n

i=nX
i=1

hi(f(x)) ; (5.1)

where hi(f) are the subsequent values of the e�ective H�older exponent of the time series f . Standard
deviation from the hMAn

(i) mean exponent can also be calculated:

SDhMAn
(i) =

1

n

vuuti=nX
i=1

(hi(f(x)) � hMAn
(i))2 : (5.2)

The observation of non-stationarity of the variability estimate obtained with the e�ective H�older



9

exponent prompted us to do a series of experiments. The main objective of the test was to attempt
to answer the questions posed in the Introduction. In the following, we are going to show how the
techniques described can help in �nding the answers to those questions. We analysed several data
sets but only the typical behaviour will be presented, leaving broader coverage of the data and related
conclusions to a separate publication.
As already indicated above, even though the 
uctuations in the heart rate variability are clearly

visible in the e�ective H�older exponent data, they will bene�t from �ltering with the moving average
�lter. The moving average, Eq. 5.1 is performed directly on the subsequent ordered maxima, each
carrying the corresponding e�ective H�older exponent value. The number of maxima at the lowest
scale of analysis is only roughly related to the number of heartbeats in the time series. However,
this problem is negligible for the large length of averaged exponent values (we use 100, 1000, 10000
exponent values, i.e. maxima lines). Since the actual temporal information can be associated with
each maximum value, we map it back on the average values obtained from the moving average and
use it for the abscissa of the plots. Additionally, for each moving average window, we calculate the
standard deviation from the mean value. This standard deviation, Eq. 5.2 is closely related to the
width of histograms of the local e�ective H�older exponent. Therefore it also re
ects the width of the
multifractal spectra over MA-base, the range of the moving average window.
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Figure 6: Left: Plot of the 100 base MA smoothed e�ective H�older exponent, for the heartbeat
test case and for white noise. Mean and standard deviation are shown. Right: Three widths of MA
window, 100, 1000 and 10000 are used to test whether the 
uctuations observed can be used to explain
the wider multifractal spectra for the longer time series normally used for spectra estimation (> 5000
maxima).

5.1 Ad. 1)
We have included in the same plot, (�gure 6 left), the result of running exactly the same procedure
on a random noise sample and on the heartbeat rate. The resulting 
uctuations for the random noise
are much smaller in magnitude, thus supporting the observation that the 
uctuations in variability
of heartbeat may be of physiological or other origin and are not pure statistical 
uctuations of noise
data. Additionally, we checked the standard deviation of the variability, which clearly indicated a
broader spectrum for the heartbeat than for the same length of white noise data.
`The reader may, of course, ask the question whether the non-stationarities in the H�older exponent

are the only source of wide multifractal spectrum of the heartbeat. Firstly, the non-stationarities
observed show up at all temporal resolutions just as is the case for model multifractals. It is not
possible to select one single temporal scale capturing the non-stationary behaviour. Therefore, the
contributions to the multifractal spectrum come from various temporal scales in comparable degree.
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If this were not the case, this would mean that for long baseMA averages, we would get considerably
higher standard deviation of the H�older exponent than for shorter base MA averages.
Therefore, we performed a test to indicate whether the 
uctuation e�ects observed can be used

to explain the wider multifractal spectra. We used three widths of MA window, 100, 1000 and
10000. The result of running MA with the longest window (approximately 2 hours record) gave a
clear indication that long lengths of data result in a wider spectra than shorter records. However, in
defense of the multifractality of the heartbeat, we �nd in shorter baseMA levels of standard deviation
which are larger than those in the longer base MA. In other words, locally, stdev (and therefore the
`local' multifractal spectrum) in MA100 exceeds that of MA1000. Similarly, locally stdev within a
MA1000 exceeds that of MA10000. Note that it is not the plot in �gure 6 b) that is being averaged.
Rather, it gives the standard deviation of the result of averaging of the local e�ective H�older exponent
(not shown).

5.2 Ad. 2)
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Figure 7: The variability plot from a long run of experiments where the test persons were given placebo
or beta-blocker. Two runs ofMA �lter were performed with 100 and 1000 maxima long window. The
observed e�ect of the beta blocker is nihil or negligible. However, an interesting pattern of response
to food is evident.

The variability plots shown in �gures 7 and 8 come from a long run of experiments where the test
persons were given placebo or beta-blocker. Two runs of MA �lter were performed with 100 and
1000 maxima long window. The observed e�ect of the beta blocker is nihil or negligible, indicating
there is little change to the dynamics of the heart due to the beta-blocker only (at least for the two
cases analysed and for the slo = 5 resolution considered). However, we found an interesting pattern
of response to activity in these data sets. The �rst set shows a particularly strong response of the
person in question to food. Let us remind the reader that higher values of the exponent are normally
associated with a pathologic condition. The observed shift towards higher values as the result of
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Figure 8: Another variability plot from with the placebo or beta-blocker. Again no response was
registered. For this person, however, an interesting pattern of response to sleep has been found.

eating (it is almost possible to estimate the volume of the meal!) may indicate some nearly pathologic
response in this individual case. Another data set shows a much smaller response to food but it does
show higher correlation levels during �rst hours of sleep. Again this makes us speculate that the
particular person may have nearly pathologic behaviour during �rst stages of sleep. (It should be
noted that the person in study was going to bed very late 0am-2am and waking up after a relatively
short sleep, 5-6 hours.)

5.3 Ad. 3)
Particularly in the second data set, the day/night oscillations [19] can be clearly observed in the width
of the multifractal spectrum and the range of the variability (as is re
ected by the standard deviation
plotted in both �gures 7 and 8). The oscillations nearly follow the sinusoidal line (with a 24 hour
period), which we superimposed on the standard deviation of the local e�ective H�older exponent. The
actual phase of the oscillations is shifted by some 4-5 hours with respect to the clock. (It actually is
5-6 in the plot but about one hour delay comes from the MA 1000 beat base average.) This means
that the physiological `middle of the night' is not at 12pm but at 4-6am, similarly `middle of the day'
falls at 4-6pm, not at 12noon.)
In the upper `tomo.dat' plot in �gure 9, the in
uence of the beta-blocker on the variability range (the

width of the multifractal spectrum) can be observed. Especially during the day, standard deviation
of the e�ective H�older exponent is high, which would correspond with a wide multifractal spectrum
calculated traditionally. This e�ect diminished after the placebo tablet was replaced with the beta-
blocker. For the last three days of the test, the standard deviation of the H�older exponent looks much
smoother and seems to follow the day/night sinusoidal pattern better. This e�ect is not visible in the
lower `kou.dat' plot, where the beta-blocker was taken during the �rst few days of the test and was
later replaced with placebo.
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Figure 9: The day/night oscillations can be observed in the range of the variability as re
ected by
the standard deviation of the local e�ective H�older exponent. The actual phase of the oscillations is
shifted by some 4-6 hours with respect to the clock. (This means that the physiological `middle of the
night' is not at 12pm but at 4-6am, similarly the `middle of the day' falls at 4-6pm, not at 12noon.)
In the upper `tomo.dat' plot, the in
uence of the beta-blocker on the variability range (the width of
the Multifractal spectrum) can be observed. This is not visible in the lower `kou.dat' plot.

5.4 Ad. 4)
In �gure 10, two samples of the sleep period taken from the tomo and kou data are displayed. The
actual time period between going to bed and waking up is indicated with a line segment. A part of
the sinusoidal day/night rhythm is also visible, reaching maximum somewhere near the early morning
hours (4-6am). The mean e�ective H�older exponent obtained with 100 baseMA is shown together with
the standard deviation from the mean. Both show large non-stationarities, di�erent for each sample
(and each night period within samples), but still considerably larger than statistical 
uctuations would
be in a monofractal (e.g. white) noise sample of comparable length.
The origin of these non-stationarities is not known at the moment of writing. It is possible that

they are related to sleep phases [18], but this relation does not appear to be trivial and a follow-up
study is expected to shed more light on this.

5.5 Let us summarize
We were able to test answers to the questions posed in the Introduction:
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Figure 10: Two samples of the sleep period taken from the tomo and kou data. The time period
between going to bed and waking up is indicated with a line segment. The mean e�ective H�older
exponent obtained with 100 base MA is shown together with the standard deviation from the mean.
Both show large non-stationarities. A part of the sinusoidal day/night rhythm is also visible.

1. The observed multifractal behaviour of the heartbeat is the result of `non-stationarity' of the
local e�ective H�older exponent at all resolutions, just as is the case with multifractals. We still
do not know the actual mechanism of these non-stationarities. Probably di�erent mechanisms
control them at various temporal resolutions.

2. Yes, for particular temporal resolutions (we tested about 100-1000 maxima), it is evident that
the non-stationarity can be linked with activity. The exact mechanism of this dependence must
be further studied since it cannot be validated from a limited test of the kind presented here.

3. It seems that the in
uence of beta-blocker is rather small and limited mainly to the standard
deviation of the H�older exponent (corresponding with the width of the multifractal spectra). In
the only case where we observed such a dependence, it was narrowing the spectra width (less
`dynamic' behaviour) due to the beta blocker. The beta blocker does not seem to in
uence the
mean value of the H�older exponent (which re
ects the correlation properties of the heartbeat).

4. We observe a full range of non-stationary behaviour in the case of non-activity such as during
sleep; it seems to be mainly non-stationarity of shorter time scales.

Finally, we note that the local information revealed with the e�ective H�older exponent seems to
have potential diagnostic meaning. In particular this holds for 
uctuations revealed with the MA
procedure. Their link with activity may be interesting to explore further in a diagnostic context. Of
course, the global properties like the log-histogram, which can be calculated from the e�ective H�older
exponent, inherit the diagnostic capabilities of the MF spectra calculated traditionally [1]. In addition
to this, it seems possible to display the mapping

hMAn
(i)! SDhMAn

(i) ;

between the mean and the standard deviation for the investigated signals. The non-stationarities and
their interrelation will be captured in such a map. Below we plotted it for two test signals tomo and
kou for two resolutions MA100. and MA1000. The ranges, shape and compactness (or the degree
of scatter) of these plots clearly di�er for both records, which makes us guess that they may have
diagnostic meaning.



14

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

’smooth.100.tomo.dat’ u 2:3
’smooth.1000.tomo.dat’ u 2:3

StDev(h(t))

MA(h(t))

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

’smooth.100.kou.dat’ u 2:3
’smooth.1000.kou.dat’ u 2:3

StDev(h(t))

MA(h(t))

Figure 11: stdev versus mean maps for kou.dat and tomo.dat. 100 and 1000 MA bases are plotted
with di�erent colours. The ranges, shape and compactness (or the degree of scatter) of these plots
clearly di�er for both records and may have diagnostic meaning. (Line going to 0.0 is due to �nite
sample size.) Note that both characteristics are not of the input signal but its local e�ective H�older
exponent and, therefore, can be compared without normalising. Due to the very �ne dot size, the
local dot density in these maps can be readily perceived. In general, binning the dots may be required,
especially for longer time series records.

6. Conclusions

The local e�ective H�older exponent has been applied to evaluate variability of heart rate locally at
an arbitrary position (time) and resolution (scale). The variability so obtained is compatible in the
sense of distribution to the multifractal spectra of the analysed heart rate time series. This provides
the possibility to standardize the variability estimation for comparison between di�erent patients and
between di�erent recordings for one patient.
In addition to this, we observed intriguing patterns on non-stationary behaviour of the local e�ective

H�older exponent. These can be related to individual response in variability records to daily activities.
We have attempted to build a methodological approach aiming at revealing such non-stationarities in

local variablity at various time scales. A moving average �ltering of H�older exponent based variability
estimates was used to enhance these 
uctuations/non-stationarities.
We �nd that this way of local presentation of scaling properties may be of clinical importance. But,

ultimately, we believe that the �ndings and methodology presented open a way better to address the
question of physiological reasons for apparent multifractal behaviour of the heartbeat.
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