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Coordination models Orc and Reo compared

ABSTRACT
Orc and Reo are two complementary approaches to the problem of coordinating components or
services. On one hand, Orc is highly asynchronous, dynamic, and based on ephemeral
connections to services. On the other hand, Reo is based on the interplay between
synchronization and mutual exclusion, is more static, and establishes more continuous
connections between components or services. The question of how Orc and Reo relate to each
other naturally arises. In this paper, we present a detailed comparison of the two models. We
demonstrate that embedding non-recursive Orc expressions into Reo connectors is
straightforward, whereas recursive Orc expressions require an extension to the Reo model. For
the other direction, we argue that embedding Reo into Orc would require, based on
expressiveness results of Palamidessi, signifficantly more effort. We conclude with some
general observations and comparisons between the two approaches.
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Abstract

Orc and Reo are two complementary approaches to the problem of coordinating compo-
nents or services. On one hand, Orc is highly asynchronous, dynamic, and based on ephemeral
connections to services. On the other hand, Reo is based on the interplay between synchro-
nization and mutual exclusion, is more static, and establishes more continuous connections
between components or services. The question of how Orc and Reo relate to each other
naturally arises. In this paper, we present a detailed comparison of the two models. We
demonstrate that embedding non-recursive Orc expressions into Reo connectors is straight-
forward, whereas recursive Orc expressions require an extension to the Reo model. For the
other direction, we argue that embedding Reo into Orc would require, based on expressiveness
results of Palamidessi, significantly more effort. We conclude with some general observations
and comparisons between the two approaches.

1 Introduction

Although the field of coordination languages and models has been around for some time,
the recent interest in Service-oriented Computing (SoC) and Web-service choreography and
orchestration1 has precipitated greater interest in the field, resulting in both new models and
new application domains for existing models. Service-oriented Computing is based on the
idea that software is composed of services which reside on third-party machines [SH05]. Web
services are a common realization of this idea [Cer02]. Since the conception of SoC, research
has focussed on developing languages to compose or coordinate services into either composite
services or complete applications.

Coordination languages and models are based on the philosophy that an application or sys-
tem should be divided into the parts that perform computation and the parts that coordinate
the results and resources required to perform the computations. The original coordination
language, Linda [Gel85], played only a passive rôle in coordination, by providing a blackboard
(tuple space) which data can be written to and read from. Since then many coordination mod-
els have been proposed [PA98, AHM96], and the trend is towards developing models that play
a more active rôle in the coordination process. Two recent and interesting active coordination
models, Orc [CM07] and Reo [Arb04], sit diametrically opposite of each other in their ap-
proaches to coordinating services or components. This paper sets out to explore these models
in detail.

Orc is a simple orchestration language designed by Misra and Cook [CM07], based on
three connectives and the simple notion of a site call to model computations—the external
actions to be orchestrated. Central to Orc’s design is the idea that accessing (web) sites is an
asynchronous activity which can fail, and so the connectives are designed to be asynchronous
and not susceptible to failure.

Reo is a channel-based coordination language designed by Arbab [Arb04] that is based on
a simple notion of channel composition. It differs from existing models in that composition of
connectors from channels propagates synchronization and exclusion constraints through con-
nectors. In combination with stateful channels, an expressive coordination language emerges.

1Supported by FCT grant 22485 – 2005, Portugal.
2Email: Jose.Proenca@cwi.nl D.G.Clarke@cwi.nl
1We take the words choreography and orchestration to fall under the more general notion of coordination.
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This paper presents a comparison ofOrc andReo. By choosing two coordination languages
at different ends of the spectrum for our comparison, we hope to gain insight into the design
choices and the advantages and disadvantages of various approaches. In the long run, we
should hope for a synthesis of their key ideas, to get the best of both worlds. We present a
number of examples, compare features and the underlying philosophies and design choices,
and formally embed Orc into Reo. We also discuss the difficulties of the embedding in the
other direction, referring to known results about encoding the asynchronous π-calculus into
the synchronous π-calculus. The main conclusions that we make from this work is that neither
full Orc can be encoded into Reo, nor can Reo be encoded into Orc. We start by explaining
informally why infinite Orc expressions, defined using recursion, cannot be encoded into Reo.
We then define Orc− as the subset of Orc without recursion, and provide an encoding from
Orc− to Reo, that we prove to be correct. This encoding is the main contribution of this
paper. To show that the synchronous behaviour of Reo cannot be encoded into Orc, we use
previous results about the π-calculus due to Palamidessi [Pal97], by encoding Orc into the
asynchronous π-calculus, and referring to the symmetric leader election problem. Here we do
not formally prove the correctness of this last encoding.

Section 2 describes our encoding of Orc into Reo. Section 3 presents our argument that
the other direction is not possible, in general. Section 4 compares the two models on a variety
of points. Section 5 discusses some related work, and Section 6 concludes and discusses future
work. But first, we introduce Orc and Reo, and give small examples.

1.1 Orc

In this section we present Orc’s syntax and reduction semantics, and give simple examples of
Orc expressions. Work by Misra and others describes Orc’s semantics in more detail [CM07,
KCM06].

Orc expressions have the following syntax, where E is an expression name, M is a site
name, x is a variable, v is a constant value, and p is a tuple of p’s:

f, g ∈ Expr ::= 0 | M(p) | E(p) | f >x> g | f |g | f where x :∈ g
p ∈ Actual ::= x | v

Definition ::= E(x)
def
= f

An Orc program consists of an Orc expression together with a set of definitions. Basic
services, such as data manipulation, are assumed to be provided by primitive sites. An Orc
expression can be a primitive site call, a reference to another Orc expression, or a composi-
tion of Orc expressions. The computational model underlying Orc consists on a number of
expressions running in parallel, which ultimately call sites. Each of these sites may publish a
result, that can be discarded or used in other expressions.

A site call is written M(p), where p is a tuple of arguments, which can be constants or
variables. During execution all variables have to be instantiated, that is, evaluation is strict,
and the site returns at most one value. Example primitive sites include 0, a special primitive
included in Orc’s syntax grammar which never responds, and let(v), which responds value v.
We use E to range over possibly recursive definitions of Orc expressions.

Three combinators exist for composing expressions f and g: symmetric composition, writ-
ten f | g; sequential composition, written f >x> g; and asymmetric composition, written
f where x :∈ g. The combinator f | g calls f and g simultaneously and executes them in
parallel. The values that it can publish are exactly all the values that f and g can publish.
The sequential composition f >x> g starts by calling f , and for each published value by f ,
a new thread of g is executed. The variable x is bound to each value published by f in the
corresponding thread of g. The values published by f >x> g consist of the values published
by all threads of g. The last operator f where x :∈ g calls f and g in parallel, replacing x in
f by the first published value of g. All the subsequent values published by g are discarded.
This operator publishes only the values published by f .2

In the rest of this section we show some examples, borrowed from Kitchin et al. [KCM06],
to provide a better understanding about the semantics of Orc. In the end we formally present
Orc’s semantics.

2These operations appear to be closely related to Friedman and Wise’s frons construct [FW80].
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Sequential vs asymmetric parallel composition Consider the following Orc ex-
pressions:

EmailNews(d)
def
= (CNN (uk, d) | BBC (uk)) >x> email(me, x)

EmailNewsOnce(d)
def
= email(me, x) where x :∈ (CNN (uk, d) | BBC (uk))

Here, uk and me are constant values, x and d are variables, and CNN (uk, d), BBC (uk)
and email(me, x) are site calls that retrieve the news for the UK on the day d from CNN,
retrieve the news for the UK from BBC for today, and send an email to me with value x.
Thus EmailNews(d) and EmailNewsOnce(d) invoke the news service from CNN and BBC and
send the resulting content by e-mail to me. The difference between these two expressions is
that EmailNews sends the news from both CNN and BBC (when the services reply), while
EmailNewsOnce mails only the value of the first reply, ignoring the second reply.

Time-out Let Rtimer(t) be a site that, when called, waits t time units before publishing
a signal. Using this site, we can express a call to a site M that can only wait t time units for
its result using the following Orc expression.

let(z) where z :∈
`
M >x> let(x, true) | Rtimer(t) >x> let(x, false)

´
In this example true and false are constants that indicate whether M succeeded in publishing
a value or not. When M is faster to publish a value than Rtimer(t), then the full expression
publishes the tuple (x, true), where x is the value published by M . Otherwise, it publishes
(y, false), where y is the signal published by the timer site. In the semantics of Orc that we
present in the end of this Section we consider that, when both sides of the parallel composition
are equally fast, then one is chosen non-deterministically.

Barrier Synchronization Consider the Orc expressions M >x> f and N >y> g. We
can execute them in parallel, imposing that f and g are called at the same time, after both
sites M and N have completed.`

(let(u, v) where u :∈ M) where v :∈ N
´

>(x, y)> (f | g)

The two asymmetric parallel combinators join the results of the calls of M and N , and the
result is forward to f and g via a single sequential composition combinator.

Recursion Infinite behaviour can be described using recursive definitions, as the following
example shows.

Metronome
def
= Signal | (Rtimer(1) >x> Metronome)

EmailNewsFrequently(d)
def
= Metronome >x> EmailNewsOnce(d)

Metronome is an Orc expression that sends a signal published by Signal every time unit.
The site Rtimer(t), as in the time-out example, waits t time units before publishing a signal.
Therefore, EmailNewsFrequently calls EmailNewsOnce every time unit, which in turn sends
me an email from either CNN or BBC.

Orc’s semantics Instead of the standard, asynchronous semantics for Orc, we present a
synchronous semantics which allows multiple events to occur at the same time. This approach
enables a simpler formal comparison with Reo, without really changing the essence of Orc.
The reduction rules for Orc expressions have the form f

a−→ g and are presented below. Here
a is a set of observations of base events, defined as follows:

BaseEvent ::= τ | Mk(v) | k?v | !v

We use the silent observation τ mainly to represent the binding of a variable to a value. Mk(v)
represents the call to site M , indexed by a fresh k and where v is a tuple of values used as
argument. k?v represents the return of value v by the site call indexed with k. !v represents
that a value v was published. Finally, we use a and b to range over sets of observations,

following the convention that
∅−→ denotes

τ−→. The reduction rules are presented in Fig. 1.
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k fresh

M(v)
Mk(v)
−−−−−→?k

(SiteCall)
?k

k?v−−→ let(v)
(SiteRet)

let(v)
!v−→ 0

(Let)

f
a−→ f ′

f | g
a−→ f ′ | g

(Sym1)
g

a−→ g′

f | g
a−→ f | g′ (Sym2)

f
a−→ f ′ g

b−→ g′

f | g
a,b−−→ f ′ | g′

(Sym3)

g
a−→ g′

g where x :∈ f
a−→ g′ where x :∈ f

(Asym1N)
f

b−→ f ′ !w /∈ b

g where x :∈ f
b−→ g where x :∈ f ′

(Asym2)

g
a−→ g′ f

b−→ f ′ !w /∈ b

g where x :∈ f
a,b−−→ g′ where x :∈ f ′

(Asym3N)
f

!v,b−−−→ f ′

g where x :∈ f
τ−→ [v/x].g

(Asym1V)

g
a−→ g′ f

!v,b−−−→ f ′

g where x :∈ f
a−→ [v/x].g′

(Asym2V) f
!v1,..,!vn,a
−−−−−−−−→ f ′ !w /∈ a n ≥ 0

f >x> g
a−→ (f ′ >x> g) | [v1/x].g | .. | [vn/x].g

(Seq)

Figure 1: Operational semantics of Orc

To describe the behaviour of a site call we introduce an extension to represent an inter-
mediate state, ?k, following [KCM06]. This denotes an instance of a site call that has not yet
returned, and is used in rules (SiteCall) and (SiteRet). k is a fresh value used to uniquely
identify the specific call. We also use the primitive site let(v) as an intermediate state, to
capture a site that has just returned value v, and will publish that value. For the case of the
asymmetric composition g where x :∈ f , five different rules were defined to distinguish the
cases when only g is reduced, when only f is reduced (publishing or not a value), and the
combination of both.

The reductions rules in Fig. 1 yield the following reduction of the expression EmailNewsOnce
presented above. Here we assume that a and b are fresh, v is the value published by the BBC
site, and v′ is the value published by the email site.

email(me, x) where x :∈ (CNN (uk, d) | BBC (uk))
BBCa(uk)−−−−−−−→ email(me, x) where x :∈ (CNN (uk, d) | ?a)

a?v−−−−−−→ email(me, x) where x :∈ (CNN (uk, d) | let(v))
τ−−−−−→ email(me, v)

emailb(me,v)−−−−−−−−−→ ?b
b?v′

−−−−−→ let(v′)
!v′

−−−−−→ 0

1.2 Reo

Reo is a powerful coordination model based on channel composition. Channels impose syn-
chronisation and other constraints on their ends. Behaviour arises from the propagation of
these constraints through connectors formed by plugging channels together to form nodes,
which themselves impose mutual exclusive data merging and synchronous data replication
constraints. A key characteristic of Reo is that synchrony and mutual exclusion constraints
are propagated through composition. We present the semantics of Reo connectors in an
adaptation of the constraint automata model [BSAR06].

Firstly, we assume that connectors are defined over a denumerable set of node names,
Node. Each connector C will have a set of input nodes I ⊆ Node, and a (disjoint) set of
output nodes, O ⊆ Node. The input and output nodes of a connector define its arity, denoted
C : I → O. 3 We define Names(C) to be I ∪O, which we call the boundary nodes of C.4

The semantics of a connector C is given as a reduction relation of the form C
N−→ C′,

where N is a (partial) map from the set of boundary nodes to the values that flow through
those nodes. For example, we write I(v), O(v) to denote the map from the boundary nodes
I and O to the value v, and we write nodes(N) to denote the domain of N . We say that C

3For the purpose of this paper, we assume that primitive connectors are not plugged into themselves, i.e., for a
primitive with arity I → O, we have that if I → O then I ∩O = ∅.

4 We introduce a slightly different definition from the literature, where a boundary node is a node that is only
an input or output node.
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evolves to C′ and fires nodes nodes(N). C′ is the connector resulting from the particular step.
Typically, C and C′ will have the same primitives, just in different states. Table 1 presents
some Reo primitives, their arity, and axioms describing their behaviour. Each axiom gives a
valid reduction of the corresponding primitive.

Visualisation Representation Arity Axioms

SyncA,B A → B SyncA,B

A(v),B(v)−−−−−−→ SyncA,B

SDrainA,B {A,B} → ∅ SDrainA,B
A(v),B(w)−−−−−−−→ SDrainA,B

SSpoutA,B ∅ → {A,B} SSpoutA,B

A(v),B(w)−−−−−−−→ SSpoutA,B

LossyA,B A → B
LossyA,B

A(v),B(v)−−−−−−→ LossyA,B

LossyA,B

A(v)−−−→ LossyA,B

ADrainA,B {A,B} → ∅ ADrainA,B
A(v)−−−→ ADrainA,B

ADrainA,B
B(v)−−−→ ADrainA,B

ASpoutA,B ∅ → {A,B} ASpoutA,B

A(v)−−−→ ASpoutA,B

ASpoutA,B

B(v)−−−→ ASpoutA,B

FIFO1A,B A → B FIFO1A,B
A(v)−−−→ FIFO1A,B(v)

v FIFO1A,B(v) A → B FIFO1A,B(v)
B(v)−−−→ FIFO1A,B

MergerA,B,C {A,B} → C
MergerA,B,C

A(v),C(v)−−−−−−→ MergerA,B,C

MergerA,B,C

B(v),C(v)−−−−−−→ MergerA,B,C

0-outA ∅ → A −

0-inA A → ∅ −

1DrainA A → ∅ 1DrainA
A(v)−−−→ 1DrainA

Table 1: Arity and behaviour of some Reo primitives

The composition of connectors C and C′ is denoted by C ∗ C′. Well-formedness of the
composition and the calculation of its arity is given by the following rule:

C : I → O C′ : I′ → O′

I′′ def
= I ∪ I′ O′′ def

= O ∪O′ O ∩O′ = ∅
C ∗ C′ : (I′′ \O′′) → O′′

This rule expresses that output and input nodes are plugged 1 : n, i.e., each output node
can be plugged into multiple input nodes. This results from the fact that the well-formedness
conditions in the rule only impose that O ∪O′ = ∅, and not that I ∪ I′ = ∅, and also from
the fact that we only remove the repeated input nodes in the resulting arity. Regarding the
behaviour, output nodes act as n-replicators, where data must flow to every connected input
channel end. If n = 0, we assume that the data is consumed. The formal description we
present differs slightly from the original description of Reo, where nodes could result from
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an n : m plugging, without fundamentally changing anything, in order to simplify our formal
results.

Notation 1.1. Given a map N and a set P . With a slight abuse of notation, define N ∩P
def
=

{(n, d) ∈ N | n ∈ P} and N \ P
def
= {(n, d) ∈ N | n /∈ P}.

The following two rules give the semantics for the composition of connectors C1 : I1 → O1

and C2 : I2 → O2. Note that a node set can only fire if it fires in both C1 and C2, with the
same data value flowing in both cases.

C1
N1−−→ C′1 C2

N2−−→ C′2 N1 ∩Names(C2) = N2 ∩Names(C1)

C1 ∗ C2
N1∪N2−−−−−→ C′1 ∗ C′2

C1
N1−−→ C′1 N1 ∩Names(C2) = ∅

C1 ∗ C2
N1−−→ C′1 ∗ C2

Note that we do not address causality issues here, because the connectors we will build
deliberately avoid causal loops. These can be trivially dealt with. We also introduce a
restriction operator that hides some output nodes of a connector. Given a connector C : I →
O and a set of nodes Ω ⊆ O, define C �Ω = C : I → Ω.

Ordering example Consider the services Politics, Sport and Email , that return news
about politics or news about sport, or send an email of a given message, respectively. In
Fig. 2 we present a connector that coordinates these three services. Initially, the connector
receives data from the Politics and the Sport services, and forwards data from Politics to the
Email in a single step. After that, the data previously sent by the Sport service is sent to the
Email. This way we guarantee that the two services alternate, and that we can only have
politics news if sports news is also available—presumably as a sanity-preserving measure.

Figure 2: Example of a Reo connector

Formally, we consider two different states of the connector:

Ord = (FIFO1 Sport,X ∗ SDrainPolitics,Sport ∗MergerPolitics,X,Email)�Email

Ord(x) = (FIFO1 Sport,X(x) ∗ SDrainPolitics,Sport ∗MergerPolitics,X,Email)�Email

The former corresponds to the connector depicted in Fig 2, while the latter corresponds to
the same connector when the FIFO1 channel is full with data x. Using the rules above, we
can calculate the connector’s arity, Ord : {Politics,Sport} → Email , and behaviour:

Ord
Politics(v),Sport(w),Email(v)−−−−−−−−−−−−−−−−−−→ Ord(w)

Ord(w)
X(w),Email(w)−−−−−−−−−−→ Ord.

These transitions represent the only possible behaviour of the connector, given the axioms of
each primitive and the reduction rules. The first transition goes to a state where the buffer is
full, and indicates that data is flowing on the nodes Politics, Sport , and Email . The second
transition goes back to the original state, and indicates that data is flowing on nodes X and
Email .

Synchronizing merge example We now present an example to illustrate how to define
a more complex coordination pattern, without going into too much details. In Fig. 3 we
represent a synchronizing merge connector, whose main idea is to control the execution of
components or connectors A and B according to a specific pattern. This pattern is one of the
workflow patterns defined by Van der Aalst [AHKB03].
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Figure 3: Synchronizing merge connector

In the connector presented in Fig. 3 we introduce some special notation. The nodes with
a cross ( ) (to be introduced in Table 2) denote exclusive routers, which output the received
data to precisely one of its outputs. We use nodes with more than one input to represent
mergers connected to the node. The components denoted by A and B have an input node on
the left side and an output node on the right side, and represent two external components or
connectors that receive a signal to start executing, and return another signal after executing.

The composition of the behaviour of the primitives in Fig. 3, after hiding the details of
every output node except O, yields the following behaviour. Initially, only the input node
I can be fired, causing data to flow into the FIFO1 channel on the left and through the
exclusive router on the left. Data will flow also either to A, to B, or to both, depending on
who is ready to receive data, and to one of the three FIFO1 channels in the middle. The
connector evolves to a new state, where the only possible step is to output data through node
O after the components that were initiated return a signal, emptying the existing FIFO1
channels. Therefore, if only A was executed, then B cannot execute until A finishes, and if
both A and B were executed, then they must finish before any of them can be executed again.

2 A Static Encoding of Orc in Reo

We present two translations ofOrc intoReo. The first translation, the merged-output encoding,
attempts to directly model Orc expressions, in particular, by merging the multiple results
of a sequential composition. The second encoding, the multiple-output encoding, takes an
alternative approach, duplicating the circuitry for each output of the Orc expression. Note
that we can only encode non-recursive Orc expressions into a finite Reo connector. For the
remainder of the paper, we restrict ourselves to non-recursive Orc expressions, denoted Orc−.
Basically, we assume that every invocation of a definition has been expanded. We also assume
the existence of a Reo component, with one input and one output node, for each primitive
site. Initially, the component is ready to receive some data over the input node; after an
unspecified amount of time, it may return a result over the output node.

Before presenting the encodings, we will introduce some useful Reo connectors. We then
give some formal properties concerning the second encoding on Section 2.4, and use weak
bisimulation to prove its soundness with respect to Orc’s semantics.

2.1 Warming up

We now introduce the Reo connectors used in the translations. Each connector is defined
by presenting its arity and axioms, although they could equally have been defined as the
composition of primitives.5 The connectors are defined in Table 2.

Table 2 is divided into two parts. In the upper part we present a Reo node and three
connectors that play a rôle similar to nodes in that they connect a single output node to
multiple input nodes A node (•) with arity I → {O1, . . . , On} receives data in I and replicates
the same data synchronously to O1, . . ., On. This can be derived from the rules introduced
in Section 1.2. The behaviour of the remaining three connector in the upper part is as
follows. Firstly, an Exclusive Router ( ) receives data in the input node and sends data

5The tupling connector Tn is an exception, as none of our primitives are capable of data manipulation.
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Visualisation Arity Axioms

• I → {O1, . . . , On} • I(x),O1(x),...,On(x)−−−−−−−−−−−−−→ •

I → {O1, . . . , On}
O ∈ {O1, . . . , On}

I(x),O(x)−−−−−−→

I → {O1, . . . , On}
∅  {P1, . . . , Pm} ⊆ {O1, . . . , On}

I(x),P1(x),...,Pm(x)−−−−−−−−−−−−−→

I → {O1, . . . , On} I(x),O1(x1),...,On(xn)−−−−−−−−−−−−−−−→

I → {O1, . . . , On} −

Tn {I1, . . . , In} → O Tn
I1(x1),...,In(xn),O(x1,...,xn)−−−−−−−−−−−−−−−−−−−→ Tn

Cp ∅ → O Cp
O(p)−−−→ Cp

Var I → O Var
I(x)−−−→ Var(x)

Var(x) I → O
Var(x)

O(x)−−−→ Var(x)

Var(x)
I(y)−−→ Var(y)

Pn {I1, . . . , In} → O
∅  {P1, . . . , Pm} ⊆ {I1, . . . , In} k ∈ {1, . . . , m}

Pn
P1(x1),...,Pm(xm),O(xk)−−−−−−−−−−−−−−−−→ Pn

Table 2: Definition of some Reo connectors.

synchronously to exactly one of its output nodes. If more than one output node can receive
the data, a non-deterministic choice is made. Secondly, an Inclusive Router ( ) is a variation
of the Exclusive Router that can send data to multiple output nodes instead of performing
a non-deterministic choice. Third is a connector that acts like a node for one step, and then
prevents flow for eternity, by becoming the connector in the fourth row.

Now consider the lower part of Table 2. Connector Tn tuples n values. It is a synchronous
connector, i.e., inputs and outputs succeed at the same time. Connector Cp always return a
constant value p. Connectors Var and Var(x) represent a possibly-undefined variable. It is a
buffer that replaces its content when new data arrives to the connector, and can output its
content as many times as required. The last connector, Pn, coordinates n inputs into a single
output. Data flows only if data can flow synchronously at one or more input nodes and the
output node.

Before continuing with the encoding, an issue regarding the use of variables in Reo needs
to be resolved. A variable can be read by multiple connectors, either all at the same time
or just by some at each step. To coordinate access to a variable, we propose two different
approaches in Fig. 4: (a) replicate the output of the variable when necessary, or (b) replicate
the input and create a variable connector for each possible access. The second approach has
the advantage that the access to a variable does not require any synchronisation between the
connectors that may also access the variable. Although more storage locations are required,
it reduces the cost of coordination. This is the approach we use.
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(a) (b)

Figure 4: (a) Replication after the storage of a variable. (b) Replication of the storage of a
variable.

2.2 Merged-Output Encoding

This section presents an encoding of an Orc− expression into a connector which merges
the multiple outputs of a parallel composition via a single output node. This is the most
natural approach, but it is, as we shall see, problematic. We therefore only give an informal
presentation, reserving a completely formal description for our second encoding.

An expression h ∈ Orc− is encoded as a connector with arity {I, X1, . . . , Xn} → O,
depicted in Fig. 5(a), where the Xi corresponds to the free variables of h. For example,
the encoding of the expression (CNN (uk , d) | BBC (uk)) >x> email(me, x) is presented in
Fig. 5(b), recalling that d is a variable, whereas uk and me are constants. The connector
starts by receiving data on input node I and buffering it. Site BBC can then be called, while
site CNN needs to wait until data is available on node D. The results from the site calls are
stored in the RVar component one at a time, which subsequently provides the value to site
email , once for each value returned by BBC and CNN .

(a) (b)

Figure 5: Encodings into Reo connectors with a single output: (a) a general Orc expression; (b) a
specific Orc expression (CNN (uk , d) | BBC (uk)) >x> email(me, x). RVar is a resettable variable.
It acts like a variable (e.g., Var from Section 2.1), but it cannot be updated until the reset (top)
node is fired, removing the value of the variable.

The example encoding reveals the main problem of this approach. The outputs of CNN (uk ,
d) | BBC (uk) are forwarded to a single instance of email, serializing the execution of email .
As a consequence, it is possible that CNN finishes before BBC , but that site email hangs on
the result of CNN , preventing email from even getting the result from BBC . The semantics of
Orc [KCM06], however, dictate that (CNN (uk , d) | BBC (uk)) >x> email(me, x) is strongly
bisimilar to (CNN (uk , d) >x> email(me, x)) | (BBC (uk) >x> email(me, x)), which means
that email is not serialized and could respond to either results from CNN or BBC irrespective
of their ordering or failure. This, however, is not true for the connectors resulting from the
encoding. In the next section, we overcome this problem by duplicating parts of the connector.

Another solution for this termination problem is possible by introducing some observa-
tional behaviour corresponding to when a service does not publish any value, as done by
Bruni et al. in their encoding of Orc into Petri Nets [BMT06]. This could be achieved, for
example, by adding timeouts to each primitive site call. An extension for Reo that includes
connectors capable of dealing explicitly with time was proposed by Arbab et al. [ABBR07].
The authors introduce the Timed Constraint Automata, which can be used to formally model
the timeouts in Reo, allowing a precise definition of a component that fails to return any
value. In our case we could attach a timeout connector to the input node of each site call,
such as an expiring FIFO1 channel, which loses the contents of its buffer after a certain time.
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Using these ideas we expect that we could also encode recursive Orc expressions, but we chose
not to use this approach because we consider it to be less faithful to Orc’s semantics, where
the failure to return a value cannot be observed.

2.3 Multiple-Output Encoding

A more faithful encoding of Orc− expressions is presented in this section. The encoding of
an expression such as f >x> g duplicates g for each output of f . The encoding is possible
because we can obtain an upper bound on the number of outputs of an Orc− expression—this
is not possible with full Orc due to recursion. The following lemma captures this property.

Lemma 2.1. Define function (#) on Orc− expressions (and internal representations: ?k and
let(v)), and on sets of output actions as follows:

#(f | g) = #(f) + #(g)
#(f >x> g) = #(f)×#(g)
#(g where x :∈ f) = #(g)
#(M(v1, . . . , vn)) = 1
#0 = 0

#(?k) = 1
#(let(v)) = 1

#(!v1, . . . , !vn, a) = n
where !w /∈ a

This function gives an upper bound on the number of outputs produced by an Orc− expression,
i.e., for any Orc− expression h, h

a−→ h′ implies #h ≥ #a + #h′.

Proof. Note that substitution does not effect the number of outputs, i.e., #([σ].h) = #h,
because #(M(x)) and #(M(v)) are always 1 independently of the value of v, where x is a
variable and v is a constant value.

The proof follows by induction on the structure of h. The base cases, 0, let(v), ?k, and
M(v), are trivial, since there is only one possible action for each, and only let(v) produces one
output. We also omit the case when h = g | h, since it is simpler than the other combinators,
and the reasoning is analogous.

• h = f >x> g: In this case our induction hypothesis is: if f
a−→ f ′, then #f ≥ #a + #f ′.

Assume f
a−→ f ′, where a =!v1, .., !vn, a′ and !w /∈ a′ (hence, #a = n). The only possible

reduction is given by rule Seq: h
a′
−→ h′, where h′ = f ′ >x> g | [v1/x].g | . . . | [vn/x].g.

Since a′ has no outputs, we know that #a′ = 0. Then we can conclude that:

#a′ + #h′ = #h′

= #(f ′ >x> g | [v1/x].g | . . . | [vn/x].g)
{Def. (#)} = #(f ′ >x> g) + #([v1, /x].g) + · · ·+ #([vn/x].g)

= #(f ′ >x> g) + #a×#g
{Def. (#)} = (#f ′ ×#g) + #a×#g

= (#a + #f ′)×#g
{IH on f} ≤ #f ×#g

= #h

• h = g where x :∈ f : Again, our induction hypothesis is: if g
a−→ g′ and f

b−→ f ′, then
#g ≥ #a + #g′ and #f ≥ #b + #f ′. We consider 2 cases. The first case assumes that

g
a−→ g′ and f

b−→ f ′, where !w /∈ b (and therefore #b = 0). In this case we can apply rule

Asym3N: h
a,b−−→ g′ where x :∈ f ′, and conclude that #(a, b) + #(g′ where x :∈ f ′) =

#a + #b + #g′ = #a + #g′ ≤ #g = #h. For the second case we assume g
a−→ g′ and

f
!v,b−−→ f ′, where b can be any set of actions. In this case we can apply rule Asym2V:

h
a−→ [v/x].g′, and conclude that #a+#([v/x].g′) = #a+#g′ ≤ #g = #h. We arrive at

a similar conclusion in the remaining possibilities for the reduction of h, after applying
rule Asym1N, Asym2 or Asym1V.

Corollary 2.2. Let f ∈ Orc−, and f
a1−→ f ′

a2−→ · · · an−−→ f (n) be a possible trace. Then
#f ≥ #a1 + · · ·+ #an + #f (n).
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We now define a function [[·]] that converts an expression f ∈ Orc− into a Reo connector.
The arity of the resulting connector will be {I} ∪ V → O, where I /∈ V , I denotes the main
input node, V denotes a set of nodes corresponding to the free variables of f , and O is the
set of output nodes. Node I is used to initiate the connector, though nodes in V can be fired
beforehand, which corresponds to the setting of these variables. The function [[·]], presented
in Fig. 6, is defined inductively on the shape of Orc expressions, in such a way that the
number of output nodes is given by the function (#) defined above. In the definition of the
encoding we use special primitives, also depicted in Fig. 6, where we show an F and G shaped
hole to provide some intuition about where [[f ]] and [[g]] are connected to. In the following
description of these primitives, we use F, G, and M to denote the connectors encoding f , g
and M , respectively.

Symmetric Parallel Composition:

‖θ,α,β : I → {If , Ig}

Initially θ = α = β = 0. The intuition behind the connector ‖θ,α,β , illustrated in Fig. 6(a),
is that it is initialized by flow in node I, after which sends an initialization signal on nodes
If and Ig. The data is buffered in buffers that can fire nodes If and Ig as soon as they are
ready to be fired. As [[f | g]] = ‖0,0,0 ∗F ∗ G, firing If and Ig will trigger the connectors F and
G. The behaviour of ‖θ,α,β is depicted in the diagram below.

'& %$ ! "#‖0,0,0

I(v) //'& %$ ! "#‖1,v,v

If (v) //

Ig(v)

��

If (v),Ig(v)

))TTTTTTTTTTTTTTTTTT
'& %$ ! "#‖1,0,v

Ig(v)

��'& %$ ! "#‖1,v,0

If (v) //'& %$ ! "#‖1,0,0

Sequential Composition:

|〉x|〉θ,〈α1,...,αn〉 : {I, Of1, . . . , Ofn} → {If , Ig1, . . . , Ign, X1, . . . , Xn}

The connector is illustrated in Fig. 6(b). The main idea is to execute F when data flows
through the input node I, and to buffer each of its outputs in a different FIFO1 channel.
Each of these FIFO1 channels is connected to a different instance of the encoded G, which
can be executed in parallel after the corresponding FIFO1 channel is filled.

To make the behaviour easier to describe, we factor |〉x|〉θ,〈α1,...,αn〉 into n + 1 different
connectors corresponding to unconnected parts of the main connector:

|〉x|〉θ,〈α1,...,αn〉 = |〉x|〉Fθ ∗ |〉x|〉G1
α1 ∗ · · · ∗ |〉x|〉

Gn
αn

,

where |〉x|〉Fθ : I → If , |〉x|〉Gj
αj

: Ofj → {Igj , Xj}, and 1 ≤ j ≤ n. Initially θ = α1 = . . . = αn =
0. The possible behaviour of each of the subparts is the following:

|〉x|〉F0
I(v),If (v)
−−−−−−→ |〉x|〉F1

|〉x|〉Gj
0

Ofj(v),Xj(v)
−−−−−−−−−→ |〉x|〉Gj

v

Igj(v)
−−−−→ |〉x|〉Gj

0 ,

where 1 ≤ j ≤ n. This means that |〉x|〉0,〈0,...,0〉, when triggered by node I, synchronously

triggers the input node of F. For each output of F (in node Ofj), the connector |〉x|〉Gj
0 also

synchronously fires node Xj (making the contents of variable x available in G), and evolves
to a configuration where the input node of Gj can be fired whenever possible.

Asymmetric Parallel Composition:

Wx
θ,α,β,δ : {I, Of1, . . . , Ofn} → {If , Ig, X}

The connector is illustrated in Fig. 6(c). The intuition is that F and G are executed in parallel.
The output nodes of F are merged in such a way that only the first output value will flow
through node X, which will be connected to G where the value of x is used. The output nodes
of the connector Wx

θ,α,β,δ are precisely the output nodes of G.
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[[f | g]] = (F ∗ ‖0,0,0 ∗ G) �Of∪Og where

‖θ,α,β :
I → {If , Ig}

:=
F := [[f ]] : {If} ∪ Vf → Of

G := [[g]] : {Ig} ∪ Vg → Og

(a)

[[f >x> g]] = (F ∗ |〉x|〉0,〈0,...,0〉 ∗ G1 ∗ · · · ∗ Gn) �Sn
i=1 Ogi

where
|〉x|〉θ,〈α1,...,αn〉 : {I, Of1, . . . , Ofn}

→ {If , Ig1, . . . , Ign, X1, . . . , Xn}
:= F := [[f ]] : {If} ∪ Vf

→ {Of1, . . . , Ofn}
for j ∈ {1, . . . , n}:

Gj := [[[xj/x].g]] :
{Igj} ∪ Vg → Ogj

xj is a fresh
variable name

(b)

[[g where x :∈ f ]] = (Wx
0,0,0,0 ∗ F ∗ G) �Og

where
Wx

θ,α,β,δ : {I,Of1, . . . , Ofn}
→ {If , Ig, X} :=

F := [[f ]] : If ∪ Vf

→ {Of1, . . . , Ofn}
G := [[g]] :

Ig ∪ Vg → Og

(c)

[[M(x1, . . . , xn, v1, . . . , vm)]] = (M0,〈0,...,0〉,V,0,0 ∗Mk) �!k where
Mθ,〈α1,...,αn〉,V,β,δ : {I,X1, . . . , Xn, ?k}

→ {Mk, !k}
:= V = 〈v1, . . . , vm〉

x1, . . . , xn are variables
v1, . . . , vm are values
for j ∈ {1, . . . , n}:

tj :=
{

0 if θ = αj = 0
1 otherwise

Mk : Mk →?k :=
Reo component of site M

k is fresh

(d)

Figure 6: Definition of the encoding function [[·]] from Orc into Reo, where α, β, θ, and δ stand
for the value of buffers (FIFO’s or One Time nodes), whose value can be 0 (no value), 1 (some
value), or a constant value. Nodes in the environment are associated with the variable with the
same name in lower case. For example, node X1 in Reo corresponds to variable x1 in Orc.
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To make the behaviour easier to describe, we factor Wx
θ,α,β,δ into two different connectors

corresponding to unconnected parts of the main connector:

Wx
θ,α,β,δ = W←θ,α,β ∗W→δ ,

where W←θ,α,β : I → {If , Ig} and W→δ : {Of1, . . . , Ofn} → {X}. Initially θ = α = β = δ = 0.
The connector W←θ,α,β is exactly the same as connector ‖θ,α,β , and therefore W←0,0,0 behaves
as ‖0,0,0. The possible behaviour of W→0 is the following:

W→0
O,X(vk)−−−−−→W→1 ,

where O ⊆ {Of1(v1), . . . , Ofn(vn)}, and vk ∈ {v1, . . . , vn} such that Ofk(vk) ∈ O. The choice
of which node in {Of1(v1), . . . , Ofn(vn)} will write into node X is made by connector Pn (see
Table 2). This means that Wx

0,0,0,0 ∗ F ∗ G behaves similarly to ‖0,0,0 ∗ F ∗ G, except that the
output nodes of F trigger the connector W→δ . The output nodes of Wx

θ,α,β,δ are restricted to
the output nodes of F. This connector allows data to flow to node X, which is part of the
environment of G and is made available to this instance. Note that the difference between
‖θ,α,β and Wx

θ,α,β,δ is captured, in part, by the combinator W→δ .

Site call:
Mθ,Σ,V,β,δ : {I, X1, . . . , Xn, ?k} → {Mk, !k}

The connector is illustrated in Fig. 6(d). The main idea is to tuple all the arguments required
by site M before the site is executed. As in previous cases, we factor this connector into two
different connectors corresponding to unconnected parts of M to make the behaviour easier
to describe:

Mθ,Σ,V,β,δ = M←θ,Σ,V ∗M→β,δ.

Initially θ = β = δ = 0 and Σ = 〈0, . . . , 0〉. The behaviour of each of the subparts is described
below:

M←0,Σ0,V
N1−−→ M←0,Σ1,V

N2−−→ · · ·
Nj−−→ M←0,Σj ,V

I(v),Mk(v)−−−−−−→ M←1,〈0,...,0〉,〈0,...,0〉

M→0,0
Mk(v)−−−→ M→1,v

!k(v)−−−→ M→1,0

where v = 〈v1, . . . , vn〉 is a tuple of data values, and for each i ∈ {0, . . . , j}, Ni ⊆ {X1(v1), . . . ,
Xn(vn)},

S
i Ni = {X1(v1), . . . , Xn(vn)}, Σj = 〈α′1, . . . , α′n〉 such that, for i ∈ {1, . . . , n},

α′i 6= 0, and for each Xm(vm) ∈ Ni, Σi = [vm/αm].Σi−1. This means that initially the empty
FIFO1 channels in M←θ,Σ,V need to become full by the firing of the corresponding nodes. Only
then node I can be fired, together with node Mk which triggers component Mk. When this
component returns data on node ?k, the value is stored in a FIFO1 channel, and in the next
step the value is output by node !k.

Example revisited Recall theOrc expression (CNN (uk, d) | BBC (uk)) >x> email(me, x)
presented in Section 1.1. We presented its merged-output encoding in Section 2.2. Fig. 7
presents the connector [[(CNN (uk, d) | BBC (uk)) > x > email(me, x)]] resulting from the
multiple-output encoding. Data flowing through the input node I corresponds to the start of
execution of the Orc expression, and data flowing through the input node D corresponds to
the binding of variable d.

Note that the resulting connector is not the most simple one, in the sense that there
are consecutive FIFO1 channels that could be merged into a single one, and there are some
redundant One Time Nodes. If we wanted to actually run the encoding of an Orc expression
we could remove the One Time Nodes, relying on the assumption that site calls only return
once, and the encoded connector is executed only once. Without these assumptions, the One
Time Nodes are needed to derive a bisimulation between an Orc− expression and its encoding
in Reo.

2.4 Soundness

In this section we provide several important results about the translation presented in Fig. 6
that are required to understand and prove the main result, namely that every h ∈ Orc− is
weakly bisimilar to its encoding in Reo.
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Figure 7: Multiple-output encoding of (CNN (uk, d) | BBC (uk)) >x> email(me, x)

Define the function b· to map labels in Reo’s operational semantics to base events of Orc
as follows:

M̂k(v) = Mk(v) ?̂k(v) = k?v !̂k(v) = !vb∅ = ∅ ca, b = ba ∪bb ba = τ otherwise,

where Mk, ?k and !k correspond to nodes in the Reo connector obtained from the translation
of a site call M .

Lemma 2.3. Let h ∈ Orc−. Each node in Names([[h]]) can be fired at most once.

Proof. Recall that the One Time node, depicted as , only allows data to flow once. We
can verify that, in every rule of the translation, the input nodes are connected to a One Time
node labelled by θ or tn, for some number n, which means that the input nodes can only be
fired once. The proof for the output nodes follows by induction on the structure of h.

• Base case – h = M(v1, .., vn):
We know that the input node can be triggered at most once because of the existence of
a One Time node labelled by θ. The same way we have One Time nodes labelled by
tn, for some number n, and β, which guarantees that the nodes corresponding to input
variables and the output node, respectively, can be fired at most once.

• h = f | g, h = f >x> g, or h = g where x :∈ f :
By definition of [[h]], we can observe that the output nodes always correspond to the
union of the output nodes of recursive calls to f or g. Since we know by induction
hypothesis that the output nodes of each recursive call can be triggered at most once,
than we can conclude that it is also the case for [[h]].

Lemma 2.4 relates the order in which input and output nodes are fired.

Lemma 2.4. Let h ∈ Orc− and H = [[h]] : {I} ∪ V → O. For any trace 〈a0, a1, a2, . . .〉 of
sets of fired boundary nodes of H, we claim that:

I ∈ an ⇒ O ∩ an = ∅, and for 0 ≤ j < n, aj ⊆ V and O ∩ aj = ∅.

This lemma can also be proved by structural induction on h. It is enough to verify that,
for each case of the encoding function, the firing of the main input must precede the firing of
the output node. By Lemma 2.4, the input and output nodes can be fired only once, so every
action a occurring before the input node is fired is such that ba = ∅ or ba = τ , because a can
only refer to input or output nodes.

Since the main input node of the encoding of an Orc− expression can only be fired once,
we introduce some notation to distinguish the states of the connector before and after the
input node is fired. This simplifies the comparison of the evolution of Orc− expressions with
different configurations of the encoded connector.

Definition 2.5. Let f ∈ Orc− and F = [[f ]] : {If} ∪ Vf → Of . We define two partitions of
reachable configurations of F :

F−I =
˘
F ′ | F

a1−→ · · · an−−→ F ′ ∧ If /∈ nodes(a1 ∪ . . . ∪ an) ∧ n ≥ 0
¯

F+I =
˘
F ′ | F

a1−→ · · · an−−→ F ′ ∧ If ∈ nodes(a1 ∪ . . . ∪ an) ∧ n ≥ 1
¯
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The first set consists of the configurations of F after zero or more steps up to when the
input node is fired, and the second set consists of the possible configurations after the input
node has fired. We say that a connector F ′ is reachable from F if F ′ ∈ F−I∪F+I . Combining
Definition 2.5 with Lemmas 2.3 and 2.4, we arrive at the following corollary.

Corollary 2.6. Let f ∈ Orc− and F = [[f ]] : {If} ∪ Vf → Of . Then:

• Assume H ∈ F−I . If H
a−→ H ′, then nodes(a) ∩ Of = ∅. Furthermore, for all H ′′

reachable from F , if H ′′
a−→ H, then H ′′ ∈ F−I , If /∈ nodes(a), and either ba = ∅ orba = τ

• If H ∈ F+I and H
a−→ H ′, then I /∈ nodes(a) and H ′ ∈ F+I .

The main result of this section is the existence of a weak bisimulation between an Orc−

expression and its translation into Reo. We define the notion of weak transition and weak
bisimulation inspired by Milner’s definition of weak bisimilarity [Mil99].

Definition 2.7. Let Q and Q′ be Orc expressions (or Reo connectors), and a be a set of

actions. We write Q
a⇒ Q′ to denote Q(

τ−→)∗
a′
−→ (

τ−→)∗Q′, whenever a\{τ} = a′\{τ}, i.e., Q
evolves to Q′ after performing a transition a′ and any number of τ transitions before or after

a′. When a = {τ}, then
a⇒def

= (
τ−→)∗.

Definition 2.8. We say ≈ ⊆ Orc−×Reo is a weak bisimulation if for every pair (f, C) ∈ ≈,
written f ≈ C, where f is an Orc expression, C is a connector configuration, and a ⊆
BaseEvents, we have:

(i) if f
a−→ f ′, then ∃b, C′ such that bb = a, C

b⇒ C′ and f ′ ≈ C′; and

(ii) if C
a−→ C′, then there is an expression f ′ such that f

ba⇒ f ′ and f ′ ≈ C′.

We say f is weakly bisimilar to C, written f ∼ C, if there is a weak bisimulation ≈ such
that f ≈ C.

Lemma 2.9 captures that substituting a variable in an Orc expression is the same as
triggering the input node associated with the corresponding variable.

Lemma 2.9. Let h ∈ Orc− and hv
def
= [v/x].h, where x is a free variable in h, and v is a data

value. Substitution does not change the behaviour of the translation, i.e.,

If h ∼ [[h]] and [[h]]
X(v)−−−→ Hv then hv ∼ Hv,

where Hv is obtained by sending value v in node X.

Proof Outline. We start by verifying that the only relevant case is when h = M(p), and x ∈ p,
because that is the only place where x can be used. We can prove that, in this case, the
possible behaviour of [[hv]] is the same as Hv, concluding that h ∼ [[h]] implies hv ∼ Hv.

Theorem 2.10 is the main result of this section, which relates Orc expressions with their
Reo encodings. The proof uses the lemmas introduced above, in particular, Corollary 2.6 deals
with inductive applications of the construction, and Lemma 2.9 handles the substitution of
variables.

Theorem 2.10. Let h ∈ Orc−. We claim that h ∼ [[h]] : I ∪ V → O, where V contains only
nodes associated to free variables of h.

Proof Outline. This theorem follows by induction on the structure of h. We define the relation
≈ inductively for each constructor of Orc as follows. We omit the prove that ≈ is a weak
bisimulation, which can be done by analysing every possible element of ≈.

• h = M(x1, .., xn, v1, .., vm)
Where x1, .., xn are variables and v1, .., vm are values. We assume that the last variables
are always the first to be instantiated.

≈ = {(M(x1, .., xi−1, v
′
i, .., v

′
n, v1, .., vm),M0,〈0,..,0,v′

j ,..,v′
n〉,〈v1,..,vm〉,0,0 ∗Mk)

| 1 ≤ i ≤ n}
∪ {(?k,M1,〈0,..,0〉,〈0,..,0〉,0,0 ∗Mk),

(let(v′),M1,〈0,..,0〉〈0,..,0〉,1,v′ ∗Mk),
(0,M1,〈0,..,0〉,〈0,..,0〉,1,0 ∗Mk)}
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• h = f | g
Let F = [[f ]] and G = [[g]]. By the induction hypothesis there are two bisimulations, ≈f

and ≈g, such that f ≈f F and g ≈g G.

≈ = {(f ′ | g′, F ′ ∗ ‖0,0,0 ∗G′) , (f ′ | g′, F ′ ∗ ‖1,v,v ∗G′)
| f ′ ≈f F ′ ∧ g′ ≈g G′ ∧ F ′ ∈ F−I ∧G′ ∈ G−I}

∪ {(f ′ | g′, F ′ ∗ ‖1,0,v ∗G′)
| f ′ ≈f F ′ ∧ g′ ≈g G′ ∧ F ′ ∈ F+I ∧G′ ∈ G−I}

∪ {(f ′ | g′, F ′ ∗ ‖1,v,0 ∗G′)
| f ′ ≈f F ′ ∧ g′ ≈g G′ ∧ F ′ ∈ F−I ∧G′ ∈ G+I}

∪ {(f ′ | g′, F ′ ∗ ‖1,0,0 ∗G′)
| f ′ ≈f F ′ ∧ g′ ≈g G′ ∧ F ′ ∈ F+I ∧G′ ∈ G+I}

• h = f >x> g
Let n = #f , and 1 ≤ j ≤ n. Also let F = [[f ]] and Gj = [[g]]. By the induction hypothesis
there are n + 1 bisimulations, ≈f and ≈gj , such that f ≈f F and g ≈gj Gj.

≈ = {(f ′ >x> g′, F ′ ∗ |〉x|〉0,〈0,..,0〉 ∗G′1 ∗ . . . ∗G′n)
| f ′ ≈f F ′ ∧ g′ ≈gj G′j ∧ F ′ ∈ F−I ∧G′j ∈ G−I}

∪ {(f ′ >x> g′ | [v1/x].g′ | . . . | [vr/x].g′, F ′ ∗ |〉x|〉1,〈α1,..,αn〉∗
G′1 ∗ . . . ∗G′n)
| f ′ ≈f F ′ ∧ F ′ ∈ F+I ∧ v1, .., vn are values
∧ ∀m∈{1,..,r}.([vm/x].g′ ≈gs G′m ∧G′m ∈ G+I ⇔ αm = 0)
∧ ∀m∈{r+1,..,n}.(g

′ ≈gm G′m ∧G′m ∈ G−I ∧ αm = 0)}

• h = g where x :∈ f
Let n = #f , and 1 ≤ j ≤ n. Also let F = [[f ]] and G = [[g]]. By the induction hypothesis
there are two bisimulations, ≈f and ≈g, such that f ≈f F and g ≈g G.

≈ = {(g′ where x :∈ f ′, F ′ ∗Wx
0,0,0,0 ∗G′)

, (g′ where x :∈ f ′, F ′ ∗Wx
1,v,v,0 ∗G′)

| f ′ ≈f F ′ ∧ g′ ≈g G′ ∧ F ′ ∈ F−I ∧G′ ∈ G−I}
∪ {(g′ where x :∈ f ′, F ′ ∗Wx

1,v,0,0 ∗G′)
| f ′ ≈f F ′ ∧ g′ ≈g G′ ∧ F ′ ∈ F−I ∧G′ ∈ G+I}

∪ {(g′ where x :∈ f ′, F ′ ∗Wx
1,0,v,δ ∗G′)

| f ′ ≈f F ′ ∧ g′ ≈g G′ ∧ F ′ ∈ F+I ∧G′ ∈ G−I ∧ δ ∈ {0, 1}}
∪ {(g′ where x :∈ f ′, F ′ ∗Wx

1,0,0,δ ∗G′)
| f ′ ≈f F ′ ∧ g′ ≈g G′ ∧ F ′ ∈ F+I ∧G′ ∈ G+I ∧ δ ∈ {0, 1}}

3 Encoding Reo into Orc

The encoding of Orc− into Reo is local, in the sense that each Orc combinator and each site
call in an Orc expression can be independently translated, and their composition yields the
encoding of the main expression. On the other hand, we anticipate that the encoding of Reo
into Orc would be global, since each Reo connector needs to be considered as whole. Note
that such an encoding will not be compositional. For example, C(SyncA,B ∗ MergerB,C,D)
would not correspond to C(SyncA,B) | C(MergerB,C,D), since in the second case it is possible
for data to flow from A to B, whereas in Reo this could not occur if there was also data
flowing from C to D. The encoding would become roughly the implementation of one of the
known algorithms to combine the synchronous constraints imposed by Reo primitives, such
as Connector Colouring [CCA07].

The expressiveness of Orc is closely related to the set of base primitive sites considered.
An example use of more complex primitive site calls can be found in the work by Cook et
al. [CPM06], where the authors encode into Orc the set of workflow patterns proposed by
Van der Aalst [AHKB03]. A similar approach could be attempted to encode Reo into Orc,
using complex primitive site calls that can synchronize with each other, but still the encoding
will not be compositional. We also analysed a synchronous semantics of Orc, presented by
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Cook et al. [CM07], where all events other than external response are processed as soon as
possible. This allows, for example, to impose an order on how two primitive sites are called,
which was not possible with the asynchronous semantics. However, it is still not possible to
describe atomic blocks that can either succeed or rollback if one of the actions is not possible.
A stronger model, for example, a transactional model, is required to capture the synchrony
imposed by Reo semantics.

Formal comparisons between synchronous and asynchronous communication have been ex-
plored in the context of the π-calculus. The asynchronous π-calculus, or πa-calculus for short,
is a subset of the π-calculus with no mixed choice operator, and whose syntax mandates that
a process finishes after outputing a message in a channel. To have (polyadic) synchronisation
in the π-calculus means that it is possible to constrain a fixed-sized tuple of more than one
channel so that each element can be executed only if all the other elements of this tuple can
also be executed. This notion of synchrony is closely related to synchrony in Reo, since Reo
allows for the definition of constraints on the firing of more than one port in the same step.
Unlike Reo, the π-calculus does not propagate synchrony through composition.

In the remaining of this section we explore expressiveness results in the context of the
π-calculus, in particular, the work by Palamidessi where she proves that the (synchronous)
π-calculus cannot be encoded in the πa-calculus [Pal97].

Sketch of a non-encodability result via π-calculus

We sketch a proof of the non-encodability of the Reo into full Orc, according to a reasonable
notion of encodability, reusing the results of Palamidessi wherein she compares the expressive-
ness of the (synchronous) π-calculus and the πa-calculus [Pal97]. Our argument relies on the
assumption that different sites in Orc can only communicate with each other through Orc’s
combinators. Without this assumption it would be possible to use arbitrarily complex sites
to produce the desired coordination.

Palamidessi proved that there is no uniform encoding from the π-calculus to the πa-calculus
that preserves a reasonable semantics. She defines an encoding to be uniform if it preserves
distribution and permutations, i.e., if the parallel operator on the π-calculus is encoded into
the parallel operator on the πa-calculus, and if for each renaming of variables before the
encoding there is some permutation on the encoded process such that certain conditions hold.
A reasonable semantics is characterised by distinguishing two processes P and Q whenever
P can produce actions on certain intended channels that cannot be produced by Q. In her
proof Palamidessi uses the argument that the leader election on a symmetric system cannot
be solved using the πa-calculus because the symmetry cannot be broken, while it is possible
in the π-calculus, mainly because of the existence of the guarded choice construct.

It is not immediately clear how these results apply in our setting, as it is difficult to know
the meaning of preserving the parallel operator on an encoding of Reo into Orc. We sketched
our proof as follows. We present an encoding of Orc into the πa-calculus, allowing us to
conclude that the symmetric leader election problem cannot be solved in Orc. Note that we
do not prove the correctness of the encoding. We then conclude by giving a brief explanation
on how the leader election problem can be trivially solved in Reo.

Encoding Orc into the πa-calculus

In this section we present briefly the syntax of the πa-calculus, we define an encoding function
([·]) from Orc to the πa-calculus, and we translate our running example into the πa-calculus.

The syntax of a πa-calculus process is defined as follows, where x is a channel, and y is
the message (or a tuple of messages) sent over a channel, which can be again a channel.

Processes P ::= x〈y〉 | x(y).P | (νx)P | P |P | !P

Informally x〈y〉 represents the output of message y through channel x, x(y).P represents the
reception of message through channel x, which becomes bounded to name y, and evolves to
process P , (νx)P represents the creation of a new channel name x, which can occur in P ,
P |P stands for the parallel execution of two processes, that can communicate over common
channels, and !P represents the replication of process P , i.e., an unbounded parallel execution
of copies of the same process P . Note that replication in the πa-calculus has been proven to
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be equivalent to a set of recursive processes. We omit the formal semantics of the πa-calculus,
which can be easily found in the literature [Pal97, CM03].

The general idea is, given anOrc expression f and a channel name s, produce its translation
P in the πa-calculus such that P can be executed by sending a message out through channel s.
We denote it by ([f, s]) = P . The message out is the channel used by the resulting expression
to output the possible results of the corresponding Orc expression. The names of variables in
Orc are used as the names of the channels in the πa-calculus, where the corresponding value
is passed. We present the encoding in Fig.8, where we use the notation (νx y z)P to denote
(νx)(νy)(νz)P .

([f | g, start]) = start(out).(νstartf startg)(
([f, startf ]) | startf 〈out〉
| ([g, startg ]) | startg〈out〉

)
([g where x :∈ f, start]) = start(out).(νstartf startg outf x)(

([f, startf ]) | startf 〈outf 〉
| ([g, startg ]) | startg〈out〉
| outf (x′).!x〈x′〉

)
([f >x> g, start]) = start(out).(νstartf startg outf )(

([f, startf ]) | startf 〈outf 〉
| !(outf (x′).(ν startg x)

(([g, startg ]) | startg〈out〉 | !x〈x′〉))
)

([M(p), start]) = start(out).p(p′).M〈p′, out〉

([E(p), start]) = start(out).E〈p, out〉

Figure 8: Translation of Orc into πa-calculus

The general definition of the encoding of an Orc expression f into the πa-calculus, after
introducing a set Defs = {D1, . . . , Dn} of definitions of auxiliary Orc expressions, is as follows:

([f,Defs, start ]) = ([f, start ]) | ([D1])def | · · · | ([D1])def | Sites

where ([E(p)
def
= f ])def = !

`
E(p, out).(νstartf )(([f, startf ]) | startf 〈out〉)

´
. Furthermore, we

assume Sites to consist on several processes in parallel, one for each site M used in f and in
Defs, such that it can always receive a message through channel M to start the computation
corresponding to the site call to M . Note that the parameters of M will be all the arguments
of site M , and also the channel that should be used to return the result of the site call.

Fig. 9 presents the encoding ([·]) applied to our running example, where start is the name
of the channel that needs to be used to start the execution of the translated process.

Separation result

The encoding of Orc into the πa-calculus, if proved to be correct, shows that Orc is not
expressive enough to break the symmetry when solving the leader election problem. Carbone
and Maffeis [CM03] extended Palamidessi’s result to show that the expressive power of the
π-calculus with polyadic synchronisation that can synchronize at most n channels is less than
of the one that can synchronize at most n+1 channels. These results emphasise the idea that
Reo cannot be encoded in Orc, because Orc is asynchronous whereas Reo can synchronize an
arbitrary number of ports.

The synchrony and exclusion inherent to Reo, unlike in Orc and the πa-calculus, allows
the symmetry of a system to be easily broken. Combined with fact that the symmetric
leader election problem cannot be solved in Orc, this is enough to show the non-encodability
of Reo into Orc. Although we do not prove formally that the leader election problem can
be solved in the context of Reo, the connector in Fig. 10 provides the necessary intuition
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([(CNN (uk, d) | BBC (uk)) >x> email(me, x), start]) =
start(out).(νstartf startg outf x)(

startf (out).(νstartf startg)(
startf (out).uk(uk′).d(d′).CNN 〈uk′, d′, out〉
| startf〈out〉
| startg(out).uk(uk′).BBC 〈uk′, out〉
| startg〈out〉

)
| startf 〈outf 〉
| !

(
outf (x′).(νstartg x)

(startg(out).me(me′).x(x′).email〈me′, x′, out〉
| startg〈out〉 | !x〈x′〉)

))
Figure 9: Example of the encoding of Orc into πa-calculus

to understand how it could be solved. This example shows a connector built from three
symmetric sub-connectors, each having an input port on the left and an output port on the
right, connected with each other. The resulting connector guarantees that, after one step,
all the output nodes will have received the same message from exactly one input port In,
chosen non-deterministically. This results from (1) the synchronous replication of each of the
messages received, which guarantees that data can only flow in an input node if the same data
can also flow in all the output nodes; and (2) from the merge of the messages, that guarantees
that the data flowing in each of the outputs can only come from one of the inputs, excluding
the possibility of dataflow on the remaining inputs.

Figure 10: Leader election in Reo

4 Discussion

We now compare Orc and Reo on some issues of philosophy and design.

Focus of Control In Orc, control lies with the orchestrator: an Orc expression initiates
contact with external sites. On the other hand, Reo assumes that control is initiated
externally to a connector by a component. The request to write data to or read data
from a node is subsequently handled by the connector. This is how Reo coordinates, by
controlling when such requests can succeed, though from the perspective of web services,
control is inverted.

Component/Service Instantiation In Reo, components are attached externally to a con-
nector, whereas Orc can dynamically initiate contact with services. Orc is thus more
dynamic, although it is tightly bound to the actual sites being called. These limitations
seem easy to lift.

One-off Interaction vs. Streams Orc expressions unfold over their life-time, so each piece
of syntax is reduced once and each site call is performed once. On the other hand, Reo
establishes rigid connections between parties, as it makes the assumption that parties
will continuously communicate.
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Dynamics As an Orc expression reduces, its ‘configuration’ changes dynamically. For in-
stance, f >x> g creates a new instance of g for each value produced by f . This was
encoded in Reo by calculating a bound on the number of values produced by f and
duplicating the circuitry for g. As Reo’s connectivity is more or less fixed, and Orc ex-
pressions ‘fire’ only once, our encoding introduces a lot of connectors that are used only
once. In very recent work by Koehler et al. [KLA07, KCPA08] the authors present how
to model dynamic reconfiguration of Reo connectors using a high level approach based
on graph transformation techniques. The authors go further with this idea, and propose
a framework where dataflow triggers the reconfiguration process. This framework can
be the basis for self adapting and dynamically reconfigurable connectors.

Asynchrony vs. Synchrony Orc offers highly asynchronous connectives that gracefully
deal with failing sites. Reo is highly synchronous and susceptible to failure. Recall that
failure can also be handled with timed connectors, as mentioned in Section 2.2, although
this solution is less transparent, as failure must explicitly be handled. In principle,
synchrony (or in any case, atomicity) can form the basis of high-level abstractions.

5 Related Work

Bruni et al. [BMT06] present a static encoding of Orc into Petri nets. However, their encoding
is not faithful to the Orc model, as it assumes that each primitive site returns either a valid
value or some value to state that it will not return a value. Orc, on the other hand, gracefully
deals with sites which do not return values. Our encoding into Reo more accurately handles
the absence of dataflow. Our encoding also considers the data values passed around, in con-
trast to Bruni et al.’s encoding, which passes only Petri net tokens. Bruni et al. also present
an encoding of full Orc into the Join calculus—an expressive calculus for concurrent processes
developed at INRIA. The Join calculus provides a simple support for distributed program-
ming, intentionally avoiding some communication constructs that are difficult to implement
in a distributed setting. This calculus supports some synchrony, by introducing patterns that
correspond to multiple events which must all be present for the pattern to be recognized.
However, the Join-calculus is not highly synchronous like Reo, as it does not propagate syn-
chrony through composition. The precise relationship between the Join calculus and Reo is
left for future work.

Many other coordination languages exist, and these are compared in some earlier sur-
veys [PA98, AHM96]. We can fairly safely say that few (coordination) languages offer the
degree of synchrony that Reo offers. Obvious exceptions are synchronous languages such
as Esterel [Ber00]. These languages are useful for programming reactive systems, though
they lack non-determinism, and in general seem not to be directly useful for coordinating
distributed systems. To remedy this situation, the GALS (globally asynchronous, locally
synchronous) model [Cha84, DMK+06] has been adopted, whereby local computation is syn-
chronous and communication between different machines is asynchronous.

As with Orc, the GALS model adopts the arguably correct view that distributed systems
must be programmed asynchronously. Reo is also able to express such distinctions, and
more, through the many choices of synchrony or asynchrony—the result depends upon how
a connector is deployed to a distributed system. Reo claims that instead of synchrony, it is
really implementing atomicity, and hence a basic form of transaction [Arb04]. This has not
yet been convincingly demonstrated.

A method for comparing expressiveness was proposed by de Boer and Palamidessi [BP94],
where they introduce a notion of language embedding refined with some “reasonable” condi-
tions. Brogi and Jaquet used this method to compare coordination models with Linda-like
operations and a shared dataspace [BJ03]. Our attempt to prove that Reo could not be
encoded is based on a result of Palamidessi where she compares the expressiveness of the
π-calculus and the πa-calculus, which follows a similar approach to [BP94], but not for the
same class of languages. However, it is not clear how this result could be used to prove the
encodability of Orc− into Reo.

The idea of reusing the expressiveness results with the π-calculus was already successfully
used to compare expressiveness in other contexts. A good example is the work from Philips and
Vigliotti [PV04], where they compare the expressiveness of ambient calculi against different
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dialects of the π-calculus, providing also a good overall perspective on existing expressiveness
results with respect to the π-calculus.

6 Conclusion and Future Work

We have compared Orc and Reo, by encoding the non-recursive fragment of Orc into Reo,
by discussing the failure of the encoding in the other direction, and by comparing a number
of design decisions. Orc is highly asynchronous and deals well with failure. Reo supports
a high degree of synchrony, and potentially high-level abstractions. An obvious omission is
a comparison of the efficiency of the two models. Unfortunately, both implementations are
too preliminary for this to have any real meaning. The extension of our encoding to full
Orc requires either recursively-defined or dynamically reconfigurable Reo connectors. These
extensions to Reo are interesting on their own, and are the subject of future work.

Note that, despite the expressiveness power provided by Reo, we can still have feasible
implementations in asynchronous networks. This is mainly because problems such as the
leader election can be solved in real networks by assuming that the system is not completely
symmetric, i.e., we can assume unique identifiers exist for every entity in a network which
can be used to break the symmetry.
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tion of Reo connectors triggered by dataflow. In The 8th International Workshop
on Graph Transformation and Visual Modeling Techniques (GT-VMT), 2008. To
appear.

[KLA07] Christian Koehler, Alexander Lazovik, and Farhad Arbab. Connector rewrit-
ing with high-level replacement systems. In The 6th International Workshop on
Foundations of Coordination Languages and Software Architectures (FOCLASA
2007), 2007.

[Mil99] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge
University Press, June 1999.

[PA98] George A. Papadopoulos and Farhad Arbab. Coordination models and languages.
In M. Zelkowitz (Ed.), The Engineering of Large Systems, volume 46 of Advances
in Computers, pages 329–400. Academic Press, 1998.

[Pal97] Catuscia Palamidessi. Comparing the expressive power of the synchronous and
the asynchronous pi-calculus. In POPL, pages 256–265, 1997.

[PV04] Iain Phillips and Maria Grazia Vigliotti. Electoral systems in ambient calculi. In
Igor Walukiewicz, editor, FoSSaCS, volume 2987 of Lecture Notes in Computer
Science, pages 408–422. Springer, 2004.

[SH05] Munindar P. Singh and Michael N. Huhns. Service-Oriented Computing: Seman-
tics, Processes, Agents. John Wiley & Sons, 2005.

A Proofs

Proof. (Lemma 2.4) The proof follows by induction on the structure of h:
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• h = f | g
We know that [[h]] = (F ∗ ‖0,0,0 ∗ G) � ~Of∪ ~Og

, where F := [[f ]] : {If} ∪ ~Vf → ~Of and

G := [[g]] : {Ig} ∪ ~Vg → ~Og. Therefore [[h]] : {I} ∪ ~Vf ∪ ~Vg → ~Of ∪ ~Og The only possible
reduction step of ‖0,0,0 is by I(v) to ‖1,v,v, where v is a data value, and only after this
reduction step the input nodes of F and G can be fired. Since we know by induction
hypothesis that the property is valid for F and G, then we conclude that node I is always
triggered before the outputs. By induction hypothesis we also know that nodes in ~Vf

and ~Vg can still be fired by F or G before node I is fired. We conclude that only nodes
in ~Vf ∪ ~Vg can be fired by [[h]] before node I is fired.

• h = f >x> g
We know that [[h]] = (F ∗ |〉x|〉0,〈0,..,0〉 ∗ G1 ∗ . . . ∗ Gn) � ~Og1∪...∪ ~Ogn

, where |〉x|〉0,〈0,..,0〉 :

{I, Of1 , .., Ofn} → {If , Ig, X}, F := [[f ]] : {Of1, .., Ofn} and Gj := [[g]] : {Igj}∪ ~Vg → ~Ogj ,
for any j between 1 and n. Therefore [[h]] : {I}∪ ~Vf ∪ ~Vg → ~Og1∪ . . .∪ ~Ogn . By induction
hypothesis we know that the output nodes of F and G cannot occur until their input
nodes are fired, and consequently the nodes X1, .., Xn cannot be fired either. The only
possible boundary nodes of [[h]] that can be fired are I and nodes in ~Vf ∪ ~Vg. Note that
firing of nodes in ~Vf ∪ ~Vg can occur before their input node is fired. Node If is only fired
when node I is fired (by definition of |〉x|〉0,〈0,..,0〉), and only after the output nodes of F
are fired can the input nodes of Gj be fired.

• h = g where x :∈ f
This case is very similar to when h = f | g. The same arguments presented for that case
are also valid here: by induction hypothesis we can also claim that F and G can only
fire their output nodes after their input nodes are fired, which only occurs after node I
is fired. The difference with respect to f | g is that we only need to consider the output
nodes of G, and G may have an input node labelled by X, which will be dependant on
the flow of data on one of the output nodes of F. The only possible observation of [[h]]
until node I is fired correspond to dataflow in ~Vf or in ~Vg\X.

• h = M(x1, .., xn, v1, .., vm)
We know that [[h]] = (M0,〈0,..,0〉,V,0,0 ∗ Mk) �!k, where k is fresh, Mk is a Reo com-
ponent corresponding to site M , and V = 〈v1, .., vm〉. We can derive that [[h]] :
{I, X1, .., Xn, ?k} → {!k}. The component Mk can only be executed when node Mk
is fired, which can only occur in the same synchronous step as the firing of node I and
of the output ends of the FIFO1 channels associated to the arguments of M (recall that
the component Tn+1 is synchronous). Initially the only possible behaviour of [[h]] is to
fire input nodes other than I, i.e., nodes in {X1, .., Xn}, until every FIFO1 channel
associated to each variable is full. When this occurs, the only possible behaviour is:

M0,〈α1,..,αn〉,〈v1,..,vm〉,0,0
I(y),Mk(〈α1,..,αn,v1,..,vm〉)−−−−−−−−−−−−−−−−−−→ M1,〈0,..,0〉,〈0,..,0〉,0,0,

triggering the execution of site M , and only after the site returns a value in node ?k the
connector evolves, flowing data in its only output node !k.

Proof. (Theorem 2.10)
In Section 2.4 we express a weak bisimulation between a non-recursive Orc expression f

and its encoding into Reo [[f ]]. Here we present an exaustive proof that f ∼ [[f ]], by presenting
a valid bisimulation.

For this proof we use Corolary 2.6, which guarantees that only nodes in the environment
can succeed until the input node is fired, and that each input node is fired at most once. The
proof follows by induction on the structure of h.

• h = M(v1, .., vm), where v1, .., vm are values.
Let v = 〈v1, .., vm〉. The only possible reduction of h is:

M(v)
Mk(v)−−−−→?k

k?v′
−−−→ let(v′)

!v′
−−→ 0,
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where v′ is the value returned by site M . The only possible reduction of [[h]] is:

M0,〈〉,v,0,0 ∗Mk
I(x),Mk(v)−−−−−−→ M1,〈〉,〈0,..,0〉,0,0 ∗Mk

?k(?v′)−−−−→ M1,〈〉〈0,..,0〉,1,v′ ∗Mk

!k(v′)−−−→ M1,〈〉,〈0,..,0〉,1,0 ∗Mk.

Since ̂{I(x), Mk(v)} = {Mk(v), τ}, ̂{?k(?v′)} = {k?v′}, and ̂{!k(v′)} = {!v′}, we can de-
fine a weak bisimulation RM = {(M(v),M0,〈〉,v,0,0∗Mk), (?k,M1,〈〉,〈0,..,0〉,0,0∗Mk), (let(v

′),
M1,〈〉〈0,..,0〉,1,v′ ∗Mk), (0,M1,〈〉,〈0,..,0〉,1,0 ∗Mk)}, which allow us to conclude that h ∼ [[h]].

Note that the value k referred in both systems is the same value. This means that the
translation of a primitive site does not choose any fresh k but the exact same value as
the reduction semantics of Orc. Since we need one different value for each instance of
the site M in both reduction semantics, the value will still be fresh.

• h = M(x1, .., xn, v1, .., vm), where x1, .., xn are variables.
To make the explanation easier, we will assume that the arguments of M are sorted: the
first n arguments are variables, and the following m arguments are values. Furthermore,
we assume that the last variables are always the first to be instantiated. Since the
evaluation of M is strict, then the only possible behaviour is to instantiate variables,
replacing them by data values. We consider the application of a substitution to be an
internal action:

M(x1, .., xn, v1, .., vm)
τ−→ [v′j/xj , .., v

′
n/xn].M(x1, .., xn, v1, .., vm)

= M(x1, .., xj−1, v
′
j , .., v

′
n, v1, .., vm)

We can label this action by τ because, in Orc’ semantics, when a substitution occurs it
is either labelled by τ , or ignored if some other action also occurs.

In this case [[h]] = M0,〈0,..,0〉,〈v1,..,vm〉,0,0 ∗Mk : {I, X1, .., Xn} → O. Equivalently to the
reduction of the Orc expression, we have:

M0,〈0,..,0〉,〈v1,..,vm〉,0,0 ∗Mk

Xj(v′
j),..,Xn(v′

n)
−−−−−−−−−−−→ M0,〈0,..,0,v′

j ,..,v′
n〉,〈v1,..,vm〉,0,0 ∗Mk

Note that ̂{Xj(v′j), .., Xn(v′n)} = {τ}. We can then define a relation

R′M = {(M(x1, .., xi−1, v
′
i, .., v

′
n, v1, .., vm),M0,〈0,..,0,v′

j ,..,v′
n〉,〈v1,..,vm〉,0,0 ∗Mk)

| 1 ≤ i ≤ n}
∪ {(?k,M1,〈0,..,0〉,〈0,..,0〉,0,0 ∗Mk),

(let(v′),M1,〈0,..,0〉〈0,..,0〉,1,v′ ∗Mk),
(0,M1,〈0,..,0〉,〈0,..,0〉,1,0 ∗Mk)}

The second part of R′M is a bisimulation for the same reasons we presented to show
that the relation RM is a bisimulation, defined in the first case of the proof. The main
difference with RM is the R′M has also all the possible combinations for when there are
variables that are not instantiated. In this case (h, [[h]]) ∈ R′M , and the fact that the
only possible behaviour of an expression with the same format as h and its translation
is the behaviour described before yields that R′M is in fact a bisimulation.

• h = f | g
Let F = [[f ]] and G = [[g]]. We know by the induction hypothesis that there exist two
bisimulations, ≈f and ≈g, such that f ≈f F and g ≈g G. Let v be a data value. Based
on these bisimulations, we define ≈ such that h ≈ [[h]]:

≈ = {(f ′ | g′, F ′ ∗ ‖0,0,0 ∗G′) , (f ′ | g′, F ′ ∗ ‖1,v,v ∗G′)
| f ′ ≈f F ′ ∧ g′ ≈g G′ ∧ F ′ ∈ F−I ∧G′ ∈ G−I}

∪ {(f ′ | g′, F ′ ∗ ‖1,0,v ∗G′)
| f ′ ≈f F ′ ∧ g′ ≈g G′ ∧ F ′ ∈ F+I ∧G′ ∈ G−I}

∪ {(f ′ | g′, F ′ ∗ ‖1,v,0 ∗G′)
| f ′ ≈f F ′ ∧ g′ ≈g G′ ∧ F ′ ∈ F−I ∧G′ ∈ G+I}

∪ {(f ′ | g′, F ′ ∗ ‖1,0,0 ∗G′)
| f ′ ≈f F ′ ∧ g′ ≈g G′ ∧ F ′ ∈ F+I ∧G′ ∈ G+I}

We now prove that ≈ is a weak bisimulation as defined in Definition 2.8, by proving
that the two implications, numbered by (i) and (ii), are verified for every element in ≈.
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– f ′ | g′ ≈ F ′ ∗ ‖0,0,0 ∗G′ where f ′ ≈f F ′, g′ ≈g G′, F ′ ∈ F−I , and G′ ∈ G−I .
(i) The possible reduction steps for f ′ | g′ are:

f ′ | g′
a−→ f ′′ | g′ f ′ | g′

b−→ f ′ | g′′ f ′ | g′
a,b−−→ f ′′ | g′′

Since f ′ ≈f F ′ and g′ ≈g G′, we can conclude for each of these cases:

(i.1) Exists F ′′ and b such that ba′ = a, F ′
a′
⇒ F ′′ and f ′′ ≈f F ′′. With respect

to F ′′ we can still consider two cases:

(i.1.1) F ′′ ∈ F−I : The input node is not fired so F ′ ∗ ‖0,0,0 ∗ G′
a′
⇒

F ′′ ∗ ‖0,0,0 ∗ G′ and f ′′ | g′ ≈ F ′′ ∗ ‖0,0,0 ∗ G′ (because f ′′ ≈f

F ′′ ∧ g′ ≈g G′ ∧ F ′′ ∈ F−I ∧G′ ∈ G−I).
(i.1.2) F ′′ ∈ F+I : The input node is fired so F ′ ∗ ‖0,0,0 ∗ G′

τ⇒ F ′ ∗
‖1,v,v ∗G′

a′
⇒ F ′′ ∗‖1,0,v ∗G′ and f ′′ | g′ ≈ F ′′ ∗‖1,0,v ∗G′ (because

f ′′ ≈f F ′′ ∧ g′ ≈g G′ ∧ F ′′ ∈ F+I ∧G′ ∈ G−I).
(i.2) Analogous to (i.1).

(i.3) Exists F ′′, G′′, a′, and b′ such that ba′ = a, bb′ = b, F ′
a⇒ F ′′, G′

b⇒ G′′,
f ′′ ≈f F ′′, and g′′ ≈g G′′. With respect to F ′′ and G′′ we have four
cases:
(i.3.1) F ′′ ∈ F+I and G′′ ∈ G−I . The input node of F ′ is fired and the

input node of G′ is not fired. This means that F ′ ∗ ‖0,0,0 ∗G′
τ−→

F ′∗‖1,v,v ∗G′
a′,b′
−−−→ ‖1,0,v ∗F ′′∗G′′, and f ′′ | g′′ ≈ F ′′∗‖1,0,v ∗G′′,

for some data value v (because f ′′ ≈f F ′′ ∧ g′′ ≈g G′′ ∧ F ′′ ∈
F+I ∧G′′ ∈ G−I).

(i.3.2) F ′′ ∈ F−I and G′′ ∈ G+I . Analogous to (i.3.1).
(i.3.3) F ′′ ∈ F−I and G′′ ∈ G−I . Analogous to (i.3.1).
(i.3.4) F ′′ ∈ F+I and G′′ ∈ G+I . Analogous to (i.3.1).

(ii) The possible reduction steps for F ′ ∗ ‖0,0,0 ∗G′ are:
(ii.1) ‖0,0,0 ∗ F ′ ∗G′

τ−→ F ′ ∗ ‖1,v,v ∗G′.
We know that f ′ | g′

τ⇒ f ′ | g′, f ′ ≈f F ′, g′ ≈g G′, F ′ ∈ F−I , and
F ′ ∈ F−I , therefore f ′ | g′ ≈ F ′ ∗ ‖1,v,v ∗G′.

(ii.2) F ′ ∗ ‖0,0,0 ∗G′
τ−→ F ′′ ∗ ‖0,0,0 ∗G′.

Since F ′ ∈ F−I and the input node of F ′ is not fired (because of the
combinator ‖0,0,0), then, by Corollary 2.6, F ′′ ∈ F−I . Since F ′

τ−→ F ′′,
then f ′

τ⇒ f ′′ and f ′′ ≈f F ′′. Therefore f ′ | g′
τ⇒ f ′′ | g′ and f ′′ | g′ ≈

F ′′ ∗ ‖0,0,0 ∗G′.
(ii.3) F ′ ∗ ‖0,0,0 ∗G′

τ−→ F ′ ∗ ‖0,0,0 ∗G′′.
Analogous to (ii.2)

(ii.4) Combination of the previous cases, for which the proves are analogous:
(ii.2) and (ii.3), (ii.1) and (ii.2), (ii.1) and (ii.3), and (ii.1), (ii.2) and
(ii.3).

– f ′ | g′ ≈ F ′ ∗ ‖1,v,v ∗G′ where f ′ ≈f F ′, g′ ≈g G′, F ′ ∈ F−I , and G′ ∈ G−I .
This case is very similar to the previous one.

– f ′ | g′ ≈ F ′ ∗ ‖1,0,v ∗G′ where f ′ ≈f F ′, g′ ≈g G′, F ′ ∈ F+I , and G′ ∈ G−I .
(i) The possible reduction steps for f ′ | g′ are:

f ′ | g′
a−→ f ′′ | g′ f ′ | g′

b−→ f ′ | g′′ f ′ | g′
a,b−−→ f ′′ | g′′

Since f ′ ≈f F ′ and g′ ≈g G′, we can conclude for each of these cases:

(i.1) Exists F ′′ and a′ such that ba′ = a, F ′
a′
⇒ F ′′ and f ′′ ≈f F ′′. Since

F ′ ∈ F+I , then by Corollary 2.6 F ′′ ∈ F+I . Therefore F ′ ∗ ‖1,0,v ∗G′
a′
⇒

F ′′ ∗ ‖1,0,v ∗G′ and f ′′ | g′ ≈ F ′′ ∗ ‖1,0,v ∗G′ (because f ′′ ≈f F ′′ ∧ g′ ≈g

G′ ∧ F ′′ ∈ F+I ∧G′ ∈ G−I).

(i.2) Exists G′′ and b′ such that bb′ = b, G′
b⇒ G′′ and g′′ ≈g G′′. With respect

to G′′ we can still consider two cases:

(i.2.1) G′′ ∈ G−I : The input node is not fired so F ′ ∗ ‖1,0,v ∗ G′
b′
⇒

F ′ ∗ ‖1,0,v ∗ G′′ and f ′ | g′′ ≈ F ′ ∗ ‖1,0,v ∗ G′′ (because f ′ ≈f

F ′ ∧ g′′ ≈g G′′ ∧ F ′ ∈ F+I ∧G′′ ∈ G−I).
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(i.2.2) G′′ ∈ G+I : The input node is fired so F ′ ∗ ‖1,0,v ∗ G′
b′
⇒ ‖1,0,0 ∗

F ′ ∗G′′ and f ′ | g′′ ≈ F ′ ∗ ‖1,0,0 ∗G′′ (because f ′ ≈f F ′ ∧ g′′ ≈g

G′′ ∧ F ′ ∈ F+I ∧G′′ ∈ G+I).

(i.3) Exists F ′′, G′′, a′, and b′ such that ba′ = a, bb′ = b, F ′
a′
⇒ F ′′, G′

b′
⇒ G′′,

f ′′ ≈f F ′′, and g′′ ≈g G′′. We know F ′′ ∈ F+I , as explained in (i.1).
With respect to G′′ we have two cases:

(i.3.1) G′′ ∈ G−I : The input node is not fired so F ′ ∗ ‖1,0,v ∗ G′
a′,b′
⇒

F ′′ ∗ ‖1,0,v ∗ G′′ and f ′′ | g′′ ≈ F ′′ ∗ ‖1,0,v ∗ G′′ (because f ′′ ≈f

F ′′ ∧ g′′ ≈g G′′ ∧ F ′′ ∈ F+I ∧G′′ ∈ G−I).

(i.3.2) G′′ ∈ G+I : The input node is fired so F ′′ ∗ ‖1,0,v ∗ G′
a′,b′
⇒ F ′′ ∗

‖1,0,0∗G′′ and f ′′ | g′′ ≈ F ′′∗‖1,0,0∗G′′ (because f ′′ ≈f F ′′∧g′′ ≈g

G′′ ∧ F ′′ ∈ F+I ∧G′′ ∈ G+I).
(ii) The possible reduction steps for F ′ ∗ ‖1,0,v ∗G′ are:

(ii.1) ‖1,0,v ∗ F ′ ∗G′
a−→ F ′′ ∗ ‖1,0,v ∗G′.

By Corollary 2.6, F ′′ ∈ F+I . Since F ′
a−→ F ′′, then f ′

ba⇒ f ′′ and

f ′′ ≈f F ′′. Therefore f ′ | g′
ba⇒ f ′′ | g′ and f ′′ | g′ ≈ F ′ ∗ ‖1,0,v ∗G′.

(ii.2) F ′ ∗ ‖1,0,v ∗G′
b−→ F ′ ∗ ‖1,0,v ∗G′′.

Since G′ ∈ G−I and the input node of G′ is not fired (because of the

combinator ‖1,0,v), then by Corollary 2.6 G′′ ∈ G−I . Since G′
b−→ G′′,

then g′
bb⇒ g′′ and g′′ ≈g G′′. Therefore f ′ | g′

bb⇒ f ′ | g′′ and f ′ | g′′ ≈
F ′ ∗ ‖1,0,v ∗G′′.

(ii.3) F ′ ∗ ‖1,0,v ∗G′
b−→ F ′ ∗ ‖1,0,0 ∗G′′.

Since G′ ∈ G−I and the combinator ‖1,0,v evolves to ‖1,0,0, then the

input node is fired, i.e., G′′ ∈ G+I . Since G′
b−→ G′′, then g′

bb⇒ g′′ and

g′′ ≈g G′′. Therefore f ′ | g′
bb⇒ f ′ | g′′ and f ′ | g′′ ≈ F ′ ∗ ‖1,0,0 ∗G′′.

(ii.4) F ′ ∗ ‖1,0,v ∗G′
a,b−−→ F ′′ ∗ ‖1,0,v ∗G′′.

Analogous to proofs in (ii.1) and (ii.2).

(ii.5) F ′′ ∗ ‖1,0,v ∗G′
a,b−−→ F ′′ ∗ ‖1,0,0 ∗G′′.

Analogous to proofs in (ii.1) and (ii.3).

– The remaining cases are analogous.

Before proving the cases when h = f >x> g and when h = g where x :∈ f , we introduce
another necessary lemma.

Lemma A.1. (The same as Lemma 2.9.) Let h ∈ Orc− and hv
def
= [v/x].h. We claim

that substitution does not change the behaviour of the translation, i.e.,

If h ∼ [[h]] and [[h]]
X(v)−−−→ Hv then hv ∼ Hv,

where x is a free variable in h, v is a data value, and Hv is obtained by sending value v
in node X.

Proof. We need to prove that hv ∼ Hv, where hv is obtained by substituting variable
x by value v, and Hv is obtained by sending value v in node X. Recall that we are
assuming that each variable name is unique, and node X is associated with variable x.

Using induction on the structure of h, we can easily verify that, for h = f | g, h = f >y>
g, or h = g where y :∈ f , where x 6= y, the result follows directly. The node X can only
exist in [[f ]] and [[h]] (and can be fired), and if the property holds for f and g, then it also
holds for h. Therefore, it is enough to consider the case when h = M(x1, .., xn, v1, .., vm).
Furthermore, the only relevant case is when x ∈ {x1, .., xn}.
We now consider, without lost of generality, that h = M(x1, .., xn, x, v1, .., vm). Then
hv = M(x1, .., xn, v, v1, .., vm), and [[hv]] = M0,〈0,..,0〉,〈v,v1,..,vm〉 ∗ Mk. Since h and hv

are calls to primitive sites, then we can conclude, by the beginning of the proof of
Theorem 2.10, that h ∼ [[h]] and hv ∼ [[hv]]. Consider now the connector [[h]], obtained
by rule (d) in Fig. 6. Connector Hv corresponds to the same connector after data v
flows in input node X, i.e., Hv = M0,〈0,..,0,v〉,〈v1,..,vn〉. It is now enough to prove that
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the possible behaviour of [[hv]] and Hv is the same, since the assumption that hv ∼ [[hv]]
will guarantee that also hv ∼ Hv.

The only difference between [[hv]] and Hv is that in the former the value v is in FIFO1
channel whose input end is connected to a primitive that never returns data, while in
the latter the value v is in a FIFO1 channel whose input end is connected to a One
Time node labelled by one. The One Time node, although also connected to node X,
will always guarantee that no flow will occur on any of its ends, which corresponds to
the behaviour of the primitive that never returns data and a node that can never flow
data again. Therefore [[hv]] and Hv have the same behaviour.

• h = f >x> g
Let n = #f , and 1 ≤ j ≤ n. Also let F = [[f ]] and Gj = [[g]]. We know by the induction
hypothesis that there exist n + 1 bisimulations, ≈f and ≈gj , such that f ≈f F and
g ≈gj Gj. Based on these, we define ≈ such that h ≈ [[h]]:

≈ = {(f ′ >x> g′, F ′ ∗ |〉x|〉0,〈0,..,0〉 ∗G′1 ∗ . . . ∗G′n)
| f ′ ≈f F ′ ∧ g′ ≈gj G′j ∧ F ′ ∈ F−I ∧G′j ∈ G−I}

∪ {(f ′ >x> g′ | [v1/x].g′ | . . . | [vr/x].g′, F ′ ∗ |〉x|〉1,〈α1,..,αn〉∗
G′1 ∗ . . . ∗G′n)
| f ′ ≈f F ′ ∧ F ′ ∈ F+I ∧ v1, .., vn are values
∧ ∀m∈{1,..,r}.([vm/x].g′ ≈gs G′m ∧G′m ∈ G+I ⇔ αm = 0)
∧ ∀m∈{r+1,..,n}.(g

′ ≈gm G′m ∧G′m ∈ G−I ∧ αm = 0)}

We now prove that ≈ is a weak bisimulation as defined in Definition 2.8, by proving
that the two implications, numbered by (i) and (ii), are verified for every element in ≈.

– f ′ >x> g′ ≈ F ′ ∗ |〉x|〉0,〈0,..,0〉 ∗ G′1 ∗ G′n where f ′ ≈f F ′, g′ ≈gj G′j , F ′ ∈ F−I , and
G′j ∈ G−I .

(i) Since F ′ ∈ F−I , then by Corollary 2.6 F ′ cannot produce any observation of
the form !v. This and the fact that f ′ ≈f F ′ implies that possible reduction
steps of f ′ can only be f ′

a−→ f ′′, where !v /∈ a. Therefore the only possible
reduction step of f ′ >x> g′ is by a to f ′′ >x> g′.

Since f ′ ≈f F ′, we know that exists F ′′ and a′ such that ba′ = a, F ′
a′
⇒ F ′′

and f ′′ ≈f F ′′.With respect to F ′′ we can consider two cases:

(i.1) F ′′ ∈ F−I : The input node is not fired, so F ′∗|〉x|〉0,〈0,..,0〉∗G′1∗. . .∗G′n
a′
−→

F ′′ ∗ |〉x|〉0,〈0,..,0〉 ∗G′1 ∗ . . . ∗G′n and f ′′ >x> g′ ≈ F ′′ ∗ |〉x|〉0,〈0,..,0〉 ∗G′1 ∗
. . . ∗G′n (because f ′′ ≈f F ′′ ∧ g′ ≈g G′j ∧ F ′′ ∈ F−I ∧G′j ∈ G−I).

(i.2) F ′′ ∈ F+I : The input node is fired, so F ′ ∗ |〉x|〉0,〈0,..,0〉 ∗G′1 ∗ . . . ∗G′n
a′
−→

F ′′ ∗ |〉x|〉1,〈0,..,0〉 ∗G′1 ∗ . . . ∗G′n, and f ′′ >x> g′ ≈ F ′′ ∗ |〉x|〉1,〈0,..,0〉 ∗G′1 ∗
. . . ∗G′n (because f ′′ ≈f F ′′ ∧ g′ ≈g G′j ∧ F ′′ ∈ F−I ∧G′j ∈ G−I).

(ii) The behavour of F ′ ∗ |〉x|〉0,〈0,..,0〉 ∗G′1 ∗ . . . ∗G′n depends mainly on F ′.
The possible reduction steps of F ′ ∗ |〉x|〉0,〈0,..,0〉 ∗G′1 ∗ . . . ∗G′n are:

(ii.1) If F ′
a−→ F ′′, then, with respect to F ′′, the possible behaviour of the

connector is:
(ii.1.1) F ′′ ∈ F−I : The input node is not fired, so F ′ ∗ |〉x|〉0,〈0,..,0〉 ∗G′1 ∗

. . . ∗ G′n
a−→ F ′′ ∗ |〉x|〉0,〈0,..,0〉 ∗ G′1 ∗ . . . ∗ G′n. This corresponds

to the reduction step f ′ >x> g′
ba⇒ f ′′ >x> g′, and f ′′ >x>

g′ ≈ F ′′ ∗ |〉x|〉0,〈0,..,0〉 ∗G′1 ∗ . . . ∗G′n (because f ′′ ≈f F ′′ ∧ g′ ≈g

G′j ∧ F ′′ ∈ F−I ∧G′j ∈ G−I).
(ii.1.2) F ′′ ∈ F+I : The input node is fired, so F ′ ∗ |〉x|〉0,〈0,..,0〉 ∗ G′1 ∗

. . . ∗ G′n
a−→ F ′′ ∗ |〉x|〉1,〈0,..,0〉 ∗ G′1 ∗ . . . ∗ G′n. This corresponds

to the reduction step f ′ >x> g′
ba⇒ f ′′ >x> g′, and f ′′ >x>

g′ ≈ F ′′ ∗ |〉x|〉1,〈0,..,0〉 ∗G′1 ∗ . . . ∗G′n (because f ′′ ≈f F ′′ ∧ g′ ≈g

G′j ∧ F ′′ ∈ F+I ∧G′j ∈ G−I).

(ii.2) Let F ′
a−→ F ′′, and let the arity of each G′j be {Igj} ∪ ~Vg → ~Ogj . As

described in (i), !v /∈ a, and none of the output nodes are fired (so the
buffers will not change their values). The input node of each G′j has
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not been fired yet (G′j ∈ G−I), therefore ~Ogj cannot be fired. The input
node cannot be fired because the associated FIFO1 channel is empty.

The only possible behaviour is then G′j
X−→ G′′j , where nodes(X) ⊆ ~Vg.

Note that, since each node in ~Vg is common to every connector Gj , then
they will be all triggered in the same step. We conclude that the possible

behaviour, with respect to Gj , is: F ′ ∗ |〉x|〉0,〈0,..,0〉 ∗ G′1 ∗ . . . ∗ G′n
X−→

F ′ ∗ |〉x|〉0,〈0,..,0〉 ∗ G′′1 ∗ . . . ∗ G′′n. Note that g′ ≈gj G′j and G′j
X−→ G′′j ,

where bX = {τ}, therefore g′
τ−→ g′′, and g′′ ≈gj G′′j . We can then

conclude that f ′ >x> g′′ ≈ F ′ ∗ |〉x|〉0,〈0,..,0〉 ∗ G′′1 ∗ . . . ∗ G′′n (because
f ′ ≈f F ′ ∧ g′′ ≈g G′′j ∧ F ′′ ∈ F−I ∧G′j ∈ G−I).

– f ′ >x> g′ | [v1/x].g | . . . | [vr/x].g ≈ F ′ ∗ |〉x|〉1,〈α1,..,αn〉 ∗ G′1 ∗ . . . ∗ G′n, where
f ′ ≈f F ′ ∧ F ′ ∈ F+I ∧ v1, .., vn are values ∧ ∀m∈{1,..,r}.([vm/x].g′ ≈gm G′m ∧G′m ∈
G+I ⇔ αm = 0)∧∀m∈{r+1,..,n}.(g

′ ≈gm G′m ∧G′m ∈ G−I ∧αm = 0). Let h′ and H ′

be these two elements of the composition. We have to prove that for every possible
behaviour of h′ and H ′, the bisimulation conditions still apply.

(i) Since h′ is a parallel composition of several Orc expressions, the possible be-
haviour of h′ is:

(i.1) if f ′
!vr+1,..,!vs,a
−−−−−−−−→ f ′′, where !w /∈ a, then h′

a−→ f ′′ >x> g′ | [v1/x].g |
. . . | [vr/x].g | [vr+1/x].g | . . . | [vs/x].g. Since f ′ ≈f F ′, then exists a′

such that ba′ = {!vr+1, .., !vs, a} and F
a′
−→ F ′′. Furthermore, a′ must be

equal to {!k1(vr+1), .., !ks−r+1(vs), a
′′}, where {!k1, .., !ks−r+1} are output

nodes of F ′, and ca′′ = a. Let then 〈α′1, .., α′n〉 be the new buffer content
after the values {vr+1, .., vs} flow into the corresponding buffer. Let also,

for each output vt, G′′t be such that G′t
Xt(vt)−−−−→ G′′t , where Xt corresponds

to the variable x in [vt/x].g. We know that F ′ ∗ |〉x|〉1,〈α1,..,αn〉 ∗G′1 ∗ . . .∗
G′n

a′′
−−→ F ′′ ∗ |〉x|〉1,〈α′

1,..,α′
n〉 ∗ G′1 ∗ . . . ∗ G′r ∗ G′′r+1 ∗ . . . ∗ G′′s ∗ . . . ∗ G′′n.

We now need to show that the resulting connector is bisimilar to f ′′ >
x > g′ | [v1/x].g | . . . | [vr/x].g | [vr+1/x].g | . . . | [vs/x].g. Since
F ′ ∈ F+I , then also F ′′ ∈ F+I . Since the input node of none of G′j was
fired, and ∀m∈{r+1,..,s}.G

′′
m ∈ G−I , then the restriction regarding the

α’s is stil valid. Finally, since for every m ∈ {r + 1, .., s} we have that
g′ ≈gm G′m, then by Lemma A.1 we conclude that [vm/x].g′ ≈gm G′′m,
which guarantees that they are bisimilar.

(i.2) if [vm/x].g′
b−→ [vm/x].g′′, then h′

b−→ f ′ > x > g′ | [v1/x].g′ | . . . |
[vm/x].g′′ | . . . | [vr/x].g. Since [vm/x].g′ ≈gm G′m, then exists b′ such

that bb′ = a, G′m
b′
−→ G′′m, and [vm/x].g′′ ≈gm G′′m. There are two cases

with respect to G′′m.
(i.2.1) if G′′m ∈ G−I , then also G′m ∈ G−I (by Corolary 2.6). Therefore

F ′ ∗ |〉x|〉1,〈α1,..,αn〉 ∗G′1 ∗ . . .∗G′n
b′
−→ F ′ ∗ |〉x|〉1,〈α1,..,αn〉 ∗G′1 ∗ . . .∗

G′′m∗. . .∗G′n. Furthermore, f ′ >x> g′ | [v1/x].g | . . . | [vm/x].g′′ |
. . . | [vr/x].g ≈ F ′∗|〉x|〉1,〈α1,..,αn〉∗G′1∗. . .∗G′′m∗. . .∗G′n (because
f ′ ≈f F ′ ∧ F ′ ∈ F+I ∧ ∀m∈{1,..,r}.([vm/x].g′ ≈gm G′m ∧ G′m ∈
G+I ⇔ αm = 0)∧∀m∈{r+1,..,n}.(g

′ ≈gm G′m ∧G′m ∈ G−I ∧αm =
0)).

(i.2.2) if G′′m ∈ G+I , then there are two more cases with respect to G′m:
(i.2.2.1) – if G′m ∈ G−I , then F ′ ∗ |〉x|〉1,〈α1,..,αn〉 ∗ G′1 ∗ . . . ∗
G′n

b′
−→ F ′ ∗ |〉x|〉1,〈α1,..,αn〉 ∗G′1 ∗ . . . ∗G′′m ∗ . . . ∗G′n. Furthermore,

f ′ >x> g′ | [v1/x].g | . . . | [vm/x].g′′ | . . . | [vr/x].g ≈ F ′ ∗
|〉x|〉1,〈α1,..,αn〉 ∗G′1 ∗ . . . ∗G′′m ∗ . . . ∗G′n (because f ′ ≈f F ′ ∧ F ′ ∈
F+I ∧ ∀m∈{1,..,r}.([vm/x].g′ ≈gm G′m ∧ G′m ∈ G+I ⇔ αm = 0) ∧
∀m∈{r+1,..,n}.(g

′ ≈gm G′m ∧G′m ∈ G−I ∧ αm = 0)).
(i.2.2.1) – if G′ ∈ G+I , then I ∈ nodes(b′), where I is the main
input node of G′m. The firing of node I makes the FIFO1 chan-
nel attached to it to become empty, i.e., the corresponding α
value becomes zero. The FIFO1 must be full since the firing
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of node I is guaranteed by assuming that ≈gm is a bisimula-
tion. Let 〈α′1, ..α′n〉 be the new α values after replacing αm by
zero. We can then conclude that F ′ ∗ |〉x|〉1,〈α1,..,αn〉 ∗ G′1 ∗ . . . ∗
G′n

b′
−→ F ′ ∗ |〉x|〉1,〈α′

1,..,α′
n〉 ∗ G′1 ∗ . . . ∗ G′′m ∗ . . . ∗ G′n. Further-

more, f ′ >x> g′ | [v1/x].g | . . . | [vm/x].g′′ | . . . | [vr/x].g ≈
F ′∗|〉x|〉1,〈α′

1,..,α′
n〉∗G′1∗. . .∗G′′m∗. . .∗G′n (because f ′ ≈f F ′∧F ′ ∈

F+I ∧ ∀m∈{1,..,r}.([vm/x].g′ ≈gm G′m ∧ G′m ∈ G+I ⇔ αm =
0) ∧ ∀m∈{r+1,..,n}.(g

′ ≈gm G′m ∧G′m ∈ G−I ∧ αm = 0)).
(i.3) any combination of (i.1) and (i.2), for which the prove is identical.

(ii) The possible behaviour of F ′ ∗ |〉x|〉1,〈α1,..,αn〉 ∗G′1 ∗ . . . ∗G′n is:

(ii.1) With respect to F ′, let F ′
a−→ F ′′. We know that F ′ ∈ F+I , therefore

F ′′ ∈ F+I . Let ~Of be the output nodes of F ′. There are two possible
cases:
(ii.1.1) If ~Of ∩ nodes(a) = ∅, then we know that F ′ ∗ |〉x|〉1,〈α1,..,αn〉 ∗

G′1 ∗ . . . ∗ G′n
a−→ F ′′ ∗ |〉x|〉1,〈α1,..,αn〉 ∗ G′1 ∗ . . . ∗ G′n. Since

f ′ ≈f F ′, then f ′
ba⇒ f ′′ and f ′′ ≈f F ′′. Therefore f ′ >x>

g′ | [v1/x].g | . . . | [vr/x].g
ba⇒ f ′′ >x> g′ | [v1/x].g | . . . | [vr/x].g.

We conclude that f ′′ > x > g′ | [v1/x].g | . . . | [vr/x].g ≈
F ′′ ∗ |〉x|〉1,〈α1,..,αn〉 ∗ G′1 ∗ . . . ∗ G′n (because f ′′ ≈f F ′′ ∧ F ′′ ∈
F+I ∧ ∀m∈{1,..,r}.([vm/x].g′ ≈gm G′m ∧ G′m ∈ G+I ⇔ αm =
0) ∧ ∀m∈{r+1,..,n}.(g

′ ≈gm G′m ∧G′m ∈ G−I ∧ αm = 0)).

(ii.1.2) If ~Of ∩ nodes(a) 6= ∅, then some output nodes of F ′ are fired.
Let a = a′ ] ~Xf correspond to the partition of a into the out-
put nodes (a′) and the input variable nodes ( ~Xf ). Note that,
by Lemma 2.3, the input node cannot be fired a second time.
Let a′ = {Or+1(vr+1), .., Os(vs)}. In this case ba = ba′ ∪ {τ}.
Then we know that f ′

ba⇒ f ′′. The firing of the output nodes
will fill some FIFO1 channels. Let 〈α′1, .., α′n〉 be the values of
the FIFO1 channels after the output node are fired. Since for
each connector Gm connected to these FIFO1 channels Gm ∈
G−I , then the conditions over the α’s will still hold. Further-
more, the firing of the output nodes will also trigger the actions
X = {Xr+1(vr+1), .., Xs(vs)} corresponding to the variable x in
the connectors G′r+1, .., G

′
s, who evolve to G′′r+1, .., G

′′
s , respec-

tively. We can then conclude that F ′ ∗ |〉x|〉1,〈α1,..,αn〉 ∗ G′1 ∗
. . . ∗ G′n

a∪X−−−→ F ′′ ∗ |〉x|〉1,〈α′
1,..,α′

n〉 ∗ G′1 ∗ . . . ∗ G′′r+1 ∗ . . . ∗ G′′s ∗
. . . ∗ G′n. We also conclude that ∀m∈{r+1,..,s}.(g

′ ≈gm G′m),
and by Lemma A.1 [vm/x].g′ ≈gm G′′m. Therefore f ′ > x >

g′ | [v1/x].g′ | . . . | [vr/x].g′
â∪X=a′∪{τ}⇒ f ′′ >x> g′ | [v1/x].g′ |

. . . | [vs/x].g′, and f ′′ > x > g′ | [v1/x].g | . . . | [vs/x].g ≈
F ′′ ∗ |〉x|〉1,〈α′

1,..,α′
n〉 ∗G′1 ∗ . . . ∗G′′r+1 ∗ . . . ∗G′′s ∗ . . . ∗G′n (because

f ′′ ≈f F ′′ ∧ F ′′ ∈ F+I ∧ ∀m∈{1,..,r}.([vm/x].g′ ≈gm G′m ∧G′m ∈
G+I ⇔ αm = 0) ∧ ∀m∈{r+1,..,s}.([vm/x].g′ ≈gm G′′m ∧ G′m ∈
G−I) ∧ ∀m∈{s+1,..,n}.(g

′ ≈gm G′m ∧G′m ∈ G−I ∧ αm = 0)).
(ii.2) With respect to G′m, where 1 ≤ m ≤ r, we have two different cases:

(ii.2.1) If G′m ∈ G−I , then G′m
a−→ G′′m, where a, with respect to G′′m,

can be:
(ii.2.1.1) – If G′′m ∈ G−I , then a corresponds to the firing of in-
put nodes associated with variables. If the variable is attached
to one of the outputs of F ′, then this case is the same as (ii.1.2).
If is not associated to an output node of F ′, then the vari-
able is not x, which means it is common to all F ′, G1, .., Gn.
Let F ′′, G′′1 , .., G′′n be the connectors after firing a, and let a =
{X1(v

′
1), .., Xt(v

′
t)}. This corresponds to the substitution σ =

[v′1/x1, .., v
′
t/xt] to f ′ >x> g′ | [v1/x].g′ | . . . | [vn/x].g′, which
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corresponds to the application of that sustitution of all oc-
curences of f ′ and g′. Since f ′ ≈f F ′ and ∀m∈{1,..,n}.(g

′ ≈gm

G′m), then, by Lemma A.1, σ.f ′ ≈f F ′′ and ∀m∈{1,..,n}.(σ.g′ ≈gm

G′′m). We can conclude that σ.f ′ >x> σ.g′ | [v1/x].σ.g′ | . . . |
[vn/x].σ.g′ ≈ F ′′ ∗ |〉x|〉1,〈α1,..,αn〉 ∗G′′1 ∗ . . . ∗G′′n. Note that the
application of the substitution is considered to be an internal
transition.
(ii.2.1.2) – If G′′m ∈ G+I , then Igm ∈ nodes(a), where Igm is
the main input node of G′m. This also triggers the FIFO1 chan-
nel connected to Igm, changing αm to zero. Let 〈α′1, .., α′n〉 the
α values after the step. Then F ′ ∗ |〉x|〉1,〈α′

1,..,α′
n〉 ∗ G′1 ∗ . . . ∗

G′n
a−→ F ′ ∗ |〉x|〉1,〈α1,..,αn〉 ∗ G′1 ∗ . . . ∗ G′′m ∗ . . . ∗ G′n. Since

g′ ≈gm G′m, then g′
ba⇒ g′′, and we conclude that f ′ > x >

g′ | [v1/x].g′ | . . . | [vr/x].g′
ba⇒ f ′ >x> g′ | [v1/x].g′ | . . . |

[vm/x].g′′ | [vr/x].g′, and f ′ >x> g′ | [v1/x].g′ | . . . | [vm/x].g′′ |
[vr/x].g′ ≈ F ′ ∗ |〉x|〉1,〈α1,..,αn〉 ∗G′1 ∗ . . . ∗G′′m ∗ . . . ∗G′n.

(ii.2.2) If G′m ∈ G+I , then G′m
a−→ G′′m and G′′m ∈ G+I . If a con-

tains a node corresponding to an input variable other than x,
then the situation is equivalent to case (ii.2.1.1). Otherwise,

since [vm/x].g′ ≈gm G′m, then [vm/x].g′
ba⇒ [vm/x].g′′, and

[vm/x].g′′ ≈gm G′′m. Therefore F ′ ∗ |〉x|〉1,〈α1,..,αn〉 ∗ G′1 ∗ . . . ∗
G′n

a−→ F ′ ∗ |〉x|〉1,〈α1,..,αn〉 ∗ G′1 ∗ . . . ∗ G′′m ∗ . . . ∗ G′n, f ′ >x>

g′ | [v1/x].g′ | . . . | [vr/x].g′
ba⇒ f ′ >x> g′ | [v1/x].g′ | . . . |

[vm/x].g′′ | [vr/x].g′, and f ′ >x> g′ | [v1/x].g′ | . . . | [vm/x].g′′ |
[vr/x].g′ ≈ F ′ ∗ |〉x|〉1,〈α1,..,αn〉 ∗G′1 ∗ . . . ∗G′′m ∗ . . . ∗G′n (because
f ′ ≈f F ′ ∧ F ′ ∈ F+I ∧ ∀m∈{1,..,r}.([vm/x].g′ ≈gm G′m ∧ G′m ∈
G+I ⇔ αm = 0)∧∀m∈{r+1,..,n}.(g

′ ≈gm G′m∧G′m ∈ G−I∧αm =
0)).

(ii.3) With respect to G′m, where r + 1 ≤ m ≤ n, we know that G′m ∈ G−I .
Let G′m

a−→ G′′m. Since αm = 0, then the input node cannot be fired, and
therefore G′′m ∈ G−I . The possible behaviour for G′m is then to fire input
nodes associated with variables. If node X, associated with variable x,
is fired, then the corresponding output node of F ′ is also fired, which
corresponds to the case proven in (ii.1.1). If another node is fired, then
this corresponds to the case proven in (ii.2.1.1). Combination of these
cases follow a similar prove.

(ii.4) Any combination of the (ii.1), (ii.2) and (ii.3), for which the proofs are
identicals.

• h = g where x :∈ f
Let n = #f , and 1 ≤ j ≤ n. Also let F = [[f ]] and G = [[g]]. We know by the induction
hypothesis that there exist 2 bisimulations, ≈f and ≈g, such that f ≈f F and g ≈g G.
Let v be any data value. Based on these bisimulations, we define ≈ such that h ≈ [[h]]:

≈ = {(g′ where x :∈ f ′, F ′ ∗Wx
0,0,0,0 ∗G′)

, (g′ where x :∈ f ′, F ′ ∗Wx
1,v,v,0 ∗G′)

| f ′ ≈f F ′ ∧ g′ ≈g G′ ∧ F ′ ∈ F−I ∧G′ ∈ G−I}
∪ {(g′ where x :∈ f ′, F ′ ∗Wx

1,v,0,0 ∗G′)
| f ′ ≈f F ′ ∧ g′ ≈g G′ ∧ F ′ ∈ F−I ∧G′ ∈ G+I}

∪ {(g′ where x :∈ f ′, F ′ ∗Wx
1,0,v,δ ∗G′)

| f ′ ≈f F ′ ∧ g′ ≈g G′ ∧ F ′ ∈ F+I ∧G′ ∈ G−I ∧ δ ∈ {0, 1}}
∪ {(g′ where x :∈ f ′, F ′ ∗Wx

1,0,0,δ ∗G′)
| f ′ ≈f F ′ ∧ g′ ≈g G′ ∧ F ′ ∈ F+I ∧G′ ∈ G+I ∧ δ ∈ {0, 1}}

The proof that ≈ is in fact a bisimulation follow similar lines to the previous cases, and
is omitted.
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