
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Scaling Bayesian Network Discovery Through Incremental Recovery

R. Castelo and A. Siebes

Information Systems (INS)

INS-R9901 March 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301660638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report INS-R9901
ISSN 1386-3681

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Scaling Bayesian Network Discovery
Through Incremental Recovery

Robert Castelo Arno Siebes

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

{robert,arno}@cwi.nl

ABSTRACT

Bayesian networks are a type of graphical models that, e.g., allow one to analyze the interaction among the

variables in a database. A well-known problem with the discovery of such models from a database is the

“problem of high-dimensionality”. That is, the discovery of a network from a database with a moderate to

large number of variables quickly becomes intractable.

Most solutions towards this problem have relied on prior knowledge on the structure of the network, e.g.,

through the definition of an order on the variables. With a growing number of variables, however, this becomes

a considerable burden on the data miner. Moreover, mistakes in such prior knowledge have large effects on the

final network.

Another approach is rather than asking the expert insight in the structure of the final network, asking the

database. Our work fits in this approach. More in particular, before we start recovering the network, we first

cluster the variables based on a chi-squared measure of association. Then we use an incremental algorithm to

discover the network. This algorithm uses the small networks discovered for the individual clusters of variables

as its starting point.

We illustrate the feasibility of our approach with some experiments. More in particular, we show that in the

case where one knows the network, and thus the order, our algorithm yields almost the same network which is,

moreover, still an I-map.

1991 Mathematics Subject Classification: 62-07, 62-09, 62A15, 62H20, 62H30, 68P10, 68T05, 90B40

1991 Computing Reviews Classification System: G.3, I.2.8

Keywords and Phrases: bayesian networks, incremental algorithm, hierarchical clustering of variables, heuristic

search.

Note: This work has been carried out under the Esprit-IV project Keso.

1. Introduction

The analysis of interactions among variables is an important aspect of data analysis. Many models
for such an analysis have a graphical representation which simplifies the interpretation of the results.
Depending on the sort of interactions one wants to discover, a certain graphical representation is
used. Our work is focused on Bayesian Networks [14], a type of recursive graphical models [12] .
They represent conditional and marginal (in)dependencies by means of acyclic digraphs (also known
as DAGs).

Algorithms for the discovery of Bayesian Networks from databases have been developed, based on
Bayesian techniques and search techniques from machine learning and optimization; c.f., [4, 13, 6]. As
an aside, note that from the search techniques in machine learning, hill-climbing or greedy search is
probably the most popular.

The problem with the standard algorithms is that they do not scale well in the number of variables
(or attributes) in the database. This problem is known as the problem of high-dimensionality. From

2

the perspective of data mining, however, scaling is of utmost importance, both in the number of
records and in the number of variables. In this paper we present an algorithm that performs well for
moderate sized networks of, say, around 50 nodes.

We are not the first to tackle the problem of high dimensionality. One set of approaches stems from
a common idea: introduce topological constraints in the discovery process. These constraints may take
form of a restriction in the sort of graphical models considered [7], or an order among variables that
prohibits certain connections in the graph [4]. It is also possible to constrain the degree of connectivity
of the graph, by setting a maximum number of parent nodes for every node1.

In all of these cases, one specifies prior knowledge through these constraints. In the case of the order
constraint, a complete order on the variables has to be defined. This order constrains the possible
arcs: a node can only have arcs to nodes that are later in the order. Such prior knowledge is often
not available or, at best, only partial. A mistake may lead to a model that reflects very little from
the true model that underlies the data.

A different type of approach is to ask the database rather than the expert. That is, induce the prior
information from the database. One approach of this kind was proposed by Singh and Valtorta [18].
They use χ2 conditional independence tests to generate an order on the variables. Once the order is
constructed they propose that the algorithm from Cooper and Herskovits [4] is used to discover the
network from the database.

Our approach also relies on the database for prior information. However, it does not rely on an
order at all. Rather, we use a χ2-statistic on pairs of variables to compute a similarity matrix over
the variables. Next we use a hierarchical cluster algorithm to group similar variables together. Then
we use an incremental search strategy to discover the network.

The advantage of this approach vs. that of Singh and Valtorta is twofold. Firstly, we do not use
the χ2-values for testing and, hence, we are less sensitive for unreliable χ2-values and we do not need
α-tuning. Secondly, we do not constrain the search space at all; this advantage is not only with regard
to Singh and Valtorta, but to all other proposed algorithms.

The downside is then, of course, that our approach does not work well with almost fully connected
networks. From a exploratory analysis point of view, however, such tightly connected networks are not
very informative anyway. It is the I-map (independency map) information ([14],p. 92) that interests
the data miner during exploratory analysis. Note, that if one wants to use the Bayesian Network for
prediction [15], rather than explanatory analysis, or, in general, as a probabilistic expert system [9],
constraining the search space may be a more reasonable approach. In that case, one is more interested
in goodness of prediction rather than goodness of fit.

In the next section we discuss the problem of high dimensionality in more depth. The third section
describes our algorithm, both the clustering phase and the incremental algorithm are discussed in
detail. Section 4 deals with experiments and results. It is shown for three given datasets that our
algorithm performs as quick as using an order. In particular, we show that our algorithm recovers
almost the original model from which the datasets are sampled, without requiring any order nor any
other sort of prior knowledge from the expert. Moreover, the resulting network is still an I-map,
i.e., the results the data miner is most interested in are preserved. In the fifth and final section we
formulate our conclusions.

2. High Dimensionality in Bayesian Networks

The problem of high dimensionality in Bayesian Networks stems from the total number of possible
models. This corresponds to the number of acyclic digraphs given n nodes [16] which is exponential
in the number of nodes.

So, it is probably no surprise that finding the network that fits the database for a degree of connec-
tivity greater than one is known to be NP-hard [6]. Therefore, greedy search techniques that at each
step consider the addition of a new arc and the deletion and reversal of existing arcs are often used.

1every node in the graph represents a variable

3. Smart Hill-Climbing 3

If we consider this search process, given n variables, we realize that without an order we will generate
at each step of the search a neighbourhood of n2 networks (slightly less to avoid directed cycles) when
generating all possible additions of arcs. If we use a complete order on the variables, then the size of
the neighbourhood we generate at each step of the search reduces to the arithmetic sum of the first n
natural numbers, i.e. n(1 + n)/2. It may reduce even more if we consider also a maximum number of
incident arcs per variable (a degree of connectivity).

This reduction of the search space leads the discovery process towards certain class of models,
and our local maxima will reflect this bias. When the order is good then we are not only improving
efficiency but also we are going to obtain a better model than without using any order. Because in
the latter case the search process may get stuck in some bad local maxima.

If the order is wrong the bias will act negatively in addition to the already existing problem of
finding a bad local maxima, if a greedy search strategy is used (e.g. hill-climbing).

In other words, a greedy search for the network, as outlined above, quickly becomes infeasible if
the number of variables in the database grows. Constraining the search space using an order on
the variables allows for higher dimensional databases. However, for a moderate sized database with,
say, 50 variables, defining such an order is a non-trivial task. Moreover, mistakes in the order may
yield rather bad networks. Therefore, we introduce in the next section a methodology to explore the
search space in a way so that it is feasible to recover moderate sized networks without the need of a
pre-defined order on the variables.

3. Smart Hill-Climbing

3.1 Hierarchical Clustering of Variables
Cluster analysis comprises a broad set of techniques that allow to find groups (clusters) of data units
or variables such that, the entities within one group are more similar to each other than to those in
other groups.

Hierarchical clustering organizes these groups as a tree where the root node contains the whole set
of entities and the leaves contain one single entity each. The structure of the tree from the leaves to
the root node aggregates at each level entities into clusters. Those procedures that generate the tree
in this direction are known as agglomerative. For more details about cluster analysis in general, and
this section in particular, the reader may consult [1].

To speed-up the discovery of Bayesian Networks, we are interested in groups of variables that
are likely to interact (strongly) with each other. Such a kind of cluster analysis is, thus, based on
a pairwise measure of association between variables. The measure used is discussed in detail below.
Using this measure, we compute a lower triangular similarity matrix (or simply similarity matrix) over
the variables. Using this similarity matrix, we cluster the variables agglomeratively using complete
linkage [1]. Complete linkage ensures that all pairs of members in a cluster satisfy a minimum degree
of similarity. This procedure is also discussed in detail below.

Cramér’s V for similarity The similarity measure for variables we use should capture the existence
of the sort of interaction we try to discover using the Bayesian Network, viz., marginal and conditional
(in)dependencies. Independence of categorical variables is traditionally tested using a χ2 statistic. It
is well-known that when enough data is available, χ2 statistics are rather accurate in characterizing
the significance of a relationship.

Since we need to compare the relative strengths of the relationships between the variables in the
clustering process, the χ2 values themselves are not that useful given their dependence on the degrees
of freedom. Therefore, we use the transformation of the χ2 value introduced by Cramér [5]. This is
a normalization of the χ2 value to the interval [0, 1], in which 0 means independence and 1 means a
perfect association.

4

Let N be the sample size and i, j the cardinalities of the variables, then Cramér’s V is given by:

√
χ2

N min(i− 1, j − 1)

As an aside, note that a known weak point of transformations of χ2 statistics is that they lack an
operational interpretation ([10],p. 740). Such as an interpretation in terms of power of prediction, or
in terms of entropy. However, since we are interested in marginal and conditional (in)dependencies
this poses no problem for us.

The complete linkage agglomerative procedure Using Cramér’s V, we compute the similarity matrix
of the variables in the database. Next we cluster the variables hierarchically using complete linkage
[1] as illustrated in figure 1.

1. Begin with n clusters each consisting of exactly one variable. Let the
clusters be labeled with the numbers 1 through n.

2. Search the similarity matrix for the most similar pair of clusters. Let the
chosen clusters be labeled p and q and let their associated similarity be
spq ; p > q.

3. Reduce the number of clusters by 1 through merger of clusters p and q.
Let the new cluster t be placed in row and column of cluster q.

4. Update the similarity matrix entries of former column q (now t) in order
to reect the revised similarities between the new cluster t and all other
existing clusters in the following way:

str = min(spr; sqr) 8r

5. Delete row and column of the similarity matrix pertaining to cluster p.

6. Perform steps 2 to 5 a total of n � 1 times (at which point all variables
will be in one cluster). At each stage, record the identity of the clusters
which are merged and the value of similarity between them in order to
retrieve the hierarchy.

Figure 1: Complete linkage agglomerative algorithm

Anderberg [1] proves that this procedure has an algorithmic cost of O(2n2 − 9n/2). To build the
similarity matrix we need to compute the measure of association over n(n − 1)/2 pairs of variables.
In other words, the whole clustering procedure is O(n2) in the number of variables. Since this is a
pre-processing phase of the Bayesian Network discovery algorithm and is, thus, only performed once,
this puts no effective limit on the number of variables.

3.2 Building an incremental strategy from the hierarchy
Each search strategy has a unique way of searching through a vast, and often entangled, search space.
Sophisticated search procedures, like simulated annealing, may perform very well, but require fine-
tuning of their parameters. Hill-climbing is a very simple search strategy that has no parameters.
Winston [19] describes improvements such as beam-search, best-first search and branch-and-bound.
Moreover, he lists characteristics of the search space to which the hill-climber is sensitive. These are

3. Smart Hill-Climbing 5

foothills (large amounts of local maxima), plateaus (a practically flat search space with few and narrow
peaks), and ridges (narrow paths to the top).

Empirically it is easy to see that search spaces for Bayesian Networks often have such characteristics.
Moreover, if the search space is constrained, such as with an order on the variables, the problem of
ridges may become aggravated. Our incremental algorithm is intended to avoid parts of the search
space that contain such problems as far as possible.

In the previous subsection we have discussed how the variables are clustered. Now we have to extract
the necessary clusters from the hierarchical tree of clusters; we have to flatten the tree. Deciding a
priori which clustering yields the best results is a non-trivial task. Our experiments have shown us
that in general many small clusters give good results. Therefore, the user may specify a cluster-size
(cs) and the algorithm in figure 2 extracts clusters of more or less that size; they may contain one
variable more, or one less.

algorithm incr strategy(tree t, node top root, int cs, list small) return list

node r; s; w

list inc strat; children; sub inc strat

r := root node(t)

children := t:children(r)

children:gotop()

while :children:end() do

s := children:next()

if jsj � cs� 1 and jsj � cs+ 1 then inc strat:add(s)

else if jsj < cs� 1 then small:add(s)

else

ts := t:sub tree(s)

sub inc strat := incr strategy(ts; top root; cs; small)

inc strat:concatenate(sub inc strat)

if r = top root then

small:gotop()

while :small:end() do

s := small:next()

w:add content(s)

if jwj � cs� 1 then

inc strat:add(w)

w:empty content()

if :w:isempty() then inc strat:add(w)

return inc strat

Figure 2: Algorithm to flatten a hierarchy of variables.

The algorithm explores recursively a tree t of a hierarchical clustering of variables in depth-first. At
the moment it finds a node with a number of variables of, plus/minus one cluster size (cs), it does not
go further in that branch. It stores that set of variables in an ordered list (inc strat), and continues
the exploration.

If a node contains less variables than the given cluster size minus one, then the algorithm stores
these variables in a temporal ordered2 list (small) This list containing the small sets of variables is
used globally by the successive calls of the algorithm by passing it by reference. When the top call
of the algorithm has explored all its branches, it creates sets of the proper size out of the small list,
by joining its elements. Every set created in this way is then added to the inc strat list, which it

2note, this order is simply from left to right in the tree

6

will contain finally the whole set of variables in clusters of a certain size. The ordered list inc strat
returned by the algorithm, indicates which subnetworks must be recovered first, and in which order
the incremental algorithm, that discovers the whole Bayesian Network, should operate.

algorithm incremental bayesnet(list vars, int cs) return bayesian network

tree t

list inc strat; small; nets

node r; s

bayesian network b; w

t := hierarchical clustering(vars)

r := root node(t)

inc strat := incr strat(t; r; cs; small)

inc strat:gotop()

while :inc strat:end() do

s := inc strat:next()

b := mine bayesian network(s; EMPTY NET)

nets:add(b)

inc strat:gotop()

s := inc strat:next()

nets:gotop()

w := nets:next()

while :nets:end() do

s := s [inc strat:next()

w := w [nets:next()

w := mine bayesian network(s; w)

return w

Figure 3: Algorithm to discover incrementally a Bayesian Network.

Figure 3 shows the incremental algorithm for Bayesian Networks discovery. In the specification of
this algorithm, the function mine bayesian network is a call to the data mining server to create and
run a mining task that recovers a Bayesian Network from the database. The function mine bayes-
ian network returns the recovered network and has as input parameters the set of variables and the
initial Bayesian Network. Note that during the incremental process, the initial network is formed by
the current discovered network plus the next small network in inc strat.

4. Experiments and Results

4.1 Experimental Design
The experiments have been carried out in a research prototype from an industrial data mining system
[8] which, among other models3, supports recovering Bayesian Networks from data. The system
incorporates the BIC (or Schwarz [17]) model selection criterion, the Cooper and Herskovits bayesian
measure [4] and the bayesian dirichlet equivalent (BDeu) [6] where uninformative priors for the dirichlet
parameters are used [2]. We have used this latter model selection criterion in the experiments for this
paper.

The search engine of the system harbours among others a beam search where we can tune the width
of the beam. Thus we can use a hill-climber by setting this parameter to one. The neighbourhood is
generated at each step of the search by an operator that creates all feasible4 networks with one arc
more, one arc less and one arc reversed. The operator takes into account whether we provide some

3association rules, decision rules and decision trees
4without directed cycles

4. Experiments and Results 7

complete/partial order among the set of variables and/or a maximum number of parents per node.
The system has a client-server architecture and the algorithm described in the previous section

resides, in this prototype, in the client. Because we have ran the experiments in a shared server and
using a shared network, we will report the time of our experiments normalized to the time the system
takes to perform the analysis using the standard order approach. Our aim in this section is to show
that our approach performs similarly5 to the order approach when a perfect order is known; both in
time and fit of the discovered models.

We use synthetic datasets created using a Monte-Carlo method [11]. This method was also used for
the experimentation by [4], an important difference between their experiments and ours is, however,
as follows. In [4], the authors set up the parameters of the network by hand, whereas we generated
them from a dirichlet distribution6. The advantage of doing it this way is that our synthetic dataset
is closer to a real world dataset. Because it means that the evidence supporting some dependencies
may actually be too weak if the sample size is not large enough.

If one introduces sharp probabilities in the model from which one samples, then of course the
learning process is going to be quicker because the shape of the search space becomes sharper.

4.2 Exploiting Loose Connections
First we are going to show that a hierarchical clustering of variables, which uses the association
measure described in section 3.1.1, is able to capture clusters containing variables which are more
likely to interact among each other, than with others.

For this purpose we design a Bayesian Network with a honeycombed structure that will help to see
clearly how the groups of interacting variables are observed, see figure 4.a.

12

11

10

9

 8

7

13

19

18

17

16

1514

 6

5

 4

32

 1

20

4140

39

38

37

36

42

48

47

46

4544

43

3526

25

24

2322

21

27

34

33

32

31

30

29

28

9

 8

7

 6

5

 4

10

17

16

1514

13

12

11

32

 1

18

4140

39

38

37

36

35

42

10

48

47

46

4544

43

34

25

24

2322

21

20

19

26

33

32

31

30

29

28

27

 6

5

 4

32

 1

7

14

13

12

11

10

9

 8

15

4140

39

38

37

34

33

42

23 48

47

46

4544

43

32

22

21

20

19

18

17

16

23

31

30

29

28

24

25

26

27

36

35

36

35

9

 8

7

 6

5

 4

3

10

17

16

1514

13

12

11

2

 1

18

4140

39

38

37

36

35

42

38

48

47

46

4544

43

34

25

24

2322

21

20

19

26

33

32

31

30

29

28

27

(a) (b) (c) (d)

Figure 4: Honeycombed structures: (a) original network, (b) (c) (d) clusters of networks obtained
from the three samples

From this honeycombed Bayesian Network we sample three datasets, each of ten thousand records.
For each sample the set of probabilities of the network is newly generated. Thus the three datasets
reflect different amounts of evidence in the model. By doing this we can check empirically that the
approach works as we expected.

Using the algorithm described in section 3.2 to flatten the hierarchy of clusters, with an input cluster
size of four, we obtain the clusters of variables. Every cluster is used as the set of variables from which
we recover an initial Bayesian Network. Every initial Bayesian Network resembles a connected part
of the original network. Figures 4.b, 4.c and 4.d outline the clusters and networks found for each
dataset.

5it performs better when the order is not known
6creating its parametric vector at random

8

4.3 Using an Incremental Strategy
Once the clusters have been obtained, the system recovers the Bayesian Networks corresponding to
each cluster of variables. Since the amount of variables per network is very small we use a beam search
strategy with a beam width of 3, to recover the small initial networks. When all these networks are
recovered then the incremental strategy starts.

To make our point clear, we count at each step of the search the current number of models in the
neighbourhood that improve the model currently selected by the hill-climber. From those models the
hill-climber will pick up the best one. The number of models that improve the fit at every moment of
the search gives an idea of the shape of the search space.

The time axis is normalized to the time necessary using a perfect order in every different dataset.
The time measured comprises the whole process from doing the hierarchical clustering of variables
first, until the last step of the incremental strategy is finished. It also includes the overhead of the
client-server connection through the network and the time the system uses to set up and manage the
mining tasks.

The first step in the incremental strategy is to recover the set of small networks. Once these
networks are available, the incremental process uses them one by one to build the final network. The
hierarchical clustering of variables took, on average over the three samples, around 4% of the time.
The recovery of the small networks took less than 1% of the time7.

Figure 5 shows the first four steps of the incremental strategy for the first sample of the honeycombed
Bayesian Network. This picture illustrates how the network is discovered incrementally.

12

11

10

9

 8

7

13

19

18

17

16

1514

 6

5

 4

32

 1

20

4140

39

38

37

36

42

48

47

46

4544

43

3526

25

24

2322

21

27

34

33

32

31

30

29

28

12

11

10

9

 8

7

13

19

18

17

16

1514

 6

5

 4

32

 1

20

4140

39

38

37

36

42

48

47

46

4544

43

3526

25

24

2322

21

27

34

33

32

31

30

29

28

12

11

10

9

 8

7

13

19

18

17

16

1514

 6

5

 4

32

 1

20

4140

39

38

37

36

42

48

47

46

4544

43

3526

25

24

2322

21

27

34

33

32

31

30

29

28

12

11

10

9

 8

7

13

19

18

17

16

1514

 6

5

 4

32

 1

20

4140

39

38

37

36

42

48

47

46

4544

43

3526

25

24

2322

21

27

34

33

32

31

30

29

28

Figure 5: First four steps, from left to right, of the incremental strategy for the first sample of the
honeycombed Bayesian Network. A dot line encloses the part of the network that at each step is being
discovered.

Figure 6, shows how the performance evolves at every step of the incremental strategy, by plotting in
the amount of better-fit models w.r.t. time. In this picture there are two plots per sample. The upper
one compares the perfect order performance8 with the performance of the successive mining tasks
where the Bayesian Network is recover incrementally. The incremental approach starts considering
an analysis of much lower dimension than the original one, therefore less models improve the fit at
each step, and the process takes short time. At the following step the dimension of the analysis is
extended, but the initial model has already some reasonable fit, so that the amount of models that
improve the fit is not as large as we started from an initial empty model.

In the lower plots, the accumulated number of models that improve the current fit are given for our
incremental algorithm. It is immediate that the incremental algorithm searches through a smaller set
of feasible models.

A fundamental issue we should discuss now is, how good is the fit of the models discovered using
7further these networks could be recovered in parallel
8which also uses a maximum number of parent nodes set to three

4. Experiments and Results 9

1

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b

e
r

o
f

b
e

tt
e

r-
fi
t

m
o

d
e

ls

Time

Performance incremental vs. perfect order

perfect order
incremental

1

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b

e
r

o
f

b
e

tt
e

r-
fi
t

m
o

d
e

ls

Time

Performance incremental vs. perfect order

perfect order
incremental

1

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b

e
r

o
f

b
e

tt
e

r-
fi
t

m
o

d
e

ls

Time

Performance incremental vs. perfect order

perfect order
incremental

1

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b

e
r

o
f

b
e

tt
e

r-
fi
t

m
o

d
e

ls

Time

Performance incremental vs. perfect order

perfect order
incremental

1

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b

e
r

o
f

b
e

tt
e

r-
fi
t

m
o

d
e

ls

Time

Performance incremental vs. perfect order

perfect order
incremental

1

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b

e
r

o
f

b
e

tt
e

r-
fi
t

m
o

d
e

ls

Time

Performance incremental vs. perfect order

perfect order
incremental

(sample 1) (sample 2) (sample 3)

Figure 6: Comparison between using a perfect order among variables, and using an incremental
strategy without any order

Sample Mis. Ext. Rev. BDeu ord. BDeu inc. BDeu inc.(bs3)
1 1 3 4 -249864.9211 -249872.6124 -249866.6809
2 2 4 4 -256545.6734 -256566.0208 -256547.7731
3 4 3 5 -249231.1803 -249300.3495 -249231.2086

Table 1: Fit of the Bayesian Networks discovered using the incremental approach for the three different
samples.

the incremental strategy. In general, for any synthetic dataset, if the sample size is large enough,
one recovers the original9 network, provide we use a perfect order among the variables. For the
honeycombed structure from which we sampled, the sample size we used does not seem to be large
enough. Using a perfect order, we recovered, in all three different samples, the original network with
the exception of a few missing arcs. The evidence supporting those connections is not large enough,
thus they are not discovered with the incremental strategy either.

On the table 1 we may see how good is the fit of the models discovered using the incremental
approach. The table contains the structural difference on the second, third and fourth column, and
the log-likelihood (BDeu measure [6]) of the models recovered using a perfect order and the incremental
approach, in the sixth and seventh column respectively.

First note that the missing column is true for both the perfect order search and our incremental
search. In other words, there was not enough evidence in the database for these arcs.

Secondly, real structural differences are given by the extra and reversed10 columns. The important
9also known as gold standard

10arcs that were originally compelled and appear reversed in the discovered model

10

remark is that all reversed arcs are actually covered11 [6] in the discovered model because of the effect
of some missing or extra arc. This means that I-mapness holds given the evidence in the sample.

In other words, the differences between the true model and the recovered model are only in the
extra arcs. Experiments show that these are caused by the greedy search. Using a beam search of
width three, better networks were discovered, see table 1 (column 7). For instance, in the second
sample the structural differences reduced from (4,4) to (2,1). The increase of time with respect to the
incremental hill-climbing is a factor of 3.74 on average over the three samples.

5. Conclusions and Discussion

Bayesian Networks are a valuable tool in exploring the interactions among the variables in a database.
Most discovery algorithms, however, suffer from the problem of high dimensionality. That is, with a
growing number of variables the discovery of a network quickly becomes infeasible. Most solutions
towards this problem require extensive a priori knowledge.

The approach we presented in this paper asks the data rather than the expert. More precisely, we
cluster the variables using Cramér’s V as a similarity measure and then we discover the network incre-
mentally. With experiments we show that the resulting models are comparable with those recovered
using a prior information if that is available. The big advantage is, of course, that we need not this
a priori information. As an aside, note that our algorithm works in a rather general setting and is,
thus, perhaps also applicable for other types of graphical models.

Improvements of the current algorithm can probably be found using less greedy search techniques
and by using more sophisticated search operators, [3]. Experiments in this vein are underway. Com-
bining our approach with a, partial, order provided by the expert is also a possibility. Preliminary
experiments show that the networks are retrieved faster, but fit not as good as those retrieved using
only our approach.

The size of the clusters to be used is the only parameter in our algorithm. We cannot provide a
general policy on what the best cluster size is. In our experiments, we have seen that the size should
be between four and eight. However, this may very well depend on the data. In other words, if it all
possible, the domain-expert should pick out the good clusters!

11the parent set of the sink node is formed by the source node and its parent set

11

References

1. Michael R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.

2. W.L. Buntine. Theory refinement on bayesian networks. In P. Smets B.D. D’Ambrosio and P.P.
Bonissone, editors, Proceedings of Uncertainty in Artificial Intelligence, volume 7, pages 52–60,
Los Angeles, 1991. Morgan Kaufmann.

3. D.M. Chickering. Learning equivalence classes of bayesian network structures. In Proceedings of
the 12th. Conference on Uncertainty in Artificial Intelligence, pages 150–157. Morgan Kaufmann,
1996.

4. Gregory F. Cooper and Edward Herskovits. A bayesian method for the induction of probabilistic
networks from data. Machine Learning, 9:309–347, 1992.

5. Harald Cramér. Mathematical Methods of Statistics. Princeton University Press, Princeton, 1946.

6. D. Geiger D. Heckerman and D.M. Chickering. Learning bayesian networks: The combination of
knowledge and statistical data. Machine Learning, 20:197–243, 1995.

7. Azaria Paz Dan Geiger and Judea Pearl. Learning simple causal structures. International Journal
of Intelligent Systems, 8:231–247, 1993.

8. Data Distilleries. http://www.ddi.nl.

9. J.M. Gutiérrez E. Castillo and A.S. Hadi. Expert Systems and Probabilistic Network Models.
Springer, New York, 1997.

10. Leo A. Goodman and William H. Kruskal. Measures of association for cross classifications. Journal
of the American Statistical Association, 49:733–764, 1954.

11. Max Henrion. Propagating uncertainty in bayesian networks by probabilistic logic sampling.
In Proceedings of the 2nd. Conference on Uncertainty in Artificial Intelligence, pages 149–163.
Elsevier Science, 1988.

12. Steffen L. Lauritzen. Graphical Models. Oxford Science, 1996.

13. David Madigan and Adrian E. Raftery. Model selection and accounting for model uncertainty
in graphical models using occam’s window. Journal of the American Statistical Association,
89(428):1535–1546, 1994.

14. J. Pearl. Probabilistic Reasoning in intelligent systems. Morgan Kaufmann, 1988.

15. Gregory M. Provan and Moninder Singh. Learning bayesian networks using feature selection. In

12 References

Fisher D. and Lenz H.-J., editors, Learning from Data: Artificial Intelligence and Statistics V,
pages 291–300, New York, 1996. Springer Verlag.

16. R.W. Robinson. Counting labeled acyclic digraphs. In Frank Harary, editor, New Directions in
the Theory of Graphs, pages 239–273. Academic Press, New York, 1973.

17. Gideon Schwarz. Estimating the dimension of a model. Annals of Statistics, 6(2):461–464, 1978.

18. Moninder Singh and Marco Valtorta. An algorithm for the construction of bayesian network struc-
tures from data. In Proceedings of the 9th. Conference on Uncertainty in Artificial Intelligence,
pages 259–265. Morgan Kaufmann, 1993.

19. Patrick Henry Winston. Artificial Intelligence. Addison-Wesley, 1977.

