
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Wavelet Transform in Similarity Paradigm I

Z.R. Struzik, A.P.J.M. Siebes

Information Systems (INS)

INS-R9802 January 31, 1998



Report INS-R9802
ISSN 1386-3681

CWI
P.O. Box 94079
1090 GB  Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB  Amsterdam (NL)

Kruislaan 413, 1098 SJ  Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199



Wavelet Transform in Similarity Paradigm I

Zbigniew R. Struzik, Arno Siebes

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

email: Zbigniew.Struzik@cwi.nl

ABSTRACT

Searching for similarity in time series �nds still broader applications in data mining. However, due to the very

broad spectrum of data involved, there is no possibility of de�ning one single notion of similarity suitable to serve

all applications. We present a powerful framework based on wavelet decomposition, which allows designing and

implementing a variety of criteria for the evaluation of similarity between time series. As an example, two main

classes of similarity measures are considered. One is the global, statistical similarity which uses the wavelet

transform derived Hurst exponent to classify time series according to their global scaling properties. The second

measure estimates similarity locally using the scale-position bifurcation representation derived from the wavelet

transform modulus maxima representation of the time series. A variety of generic or custom designed matching

criteria can be incorporated into the detail similarity measure. We demonstrate the ability of the technique to

deal with the presence of scaling, translation and polynomial bias and we also test sensitivity to the addition

of random noise. Other criteria can be designed and this 
exibility can be built into the data mining system to

allow for speci�c user requirements.
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1. Introduction
Many data mining algorithms exist for (more or less) standard, relational data, see, e.g. [1]. However,

in practice there is much non-relational data. The most important example is time series data. For

example, banks have standard data on their clients, e.g. their names, where they live et cetera, but

also a time series giving the status of their account over time.

To use existing data mining technology on such data means that the time series data has to be

reduced to a �xed number of characteristics. A very simple idea would be to use the current status of

the account as an extra �eld in the table. However, if we are going to use the data for credit scoring,

the current status of the account is likely to miss out on important information. For example, two

clients A and B could have both $10.000 in their account now, which is the normal status for A,

whereas it is a one-time record for B. In such a case, the credit rating would be (much) higher for A

than for B.

In other words, the behaviour of a time series over time is among the important characteristics of

that time series. This means that we have to represent the behaviour of a time series with a �nite

number of characteristics. Of course, this representation should be such that two time series which

show similar behaviour should be close to one another in the representation space, and vice versa.

Crucial in this statement is, of course, what similarity actualy means. The precise meaning of

similarity is strongly dependent on the intended usage of the representation. Sometimes the trend of

the series is the important factor in determining similarity, whereas in other cases it is everything but
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the trend. Sometimes it is global (statistical) behaviour which is important, whereas in other cases it

is highly localised behaviour.

It is, therefore, not possible to de�ne one speci�c measure of similarity between time-series that

is useful under all circumstances. Rather, a 
exible toolbox, in which the user can indicate what is

important in this speci�c case, is necessary. In this paper, we introduce a framework for such similarity

measures based on wavelets. Moreover, we study the two extremes in this spectrum of possibilities

in depth. The framework for similarity as developed in this paper is based on the fractal analysis of

time-series [2, 3, 4] 1.

The topic of the similarity of time-series for data mining is not new. Important papers in this area

are [5] and [6]. As an aside, note that these papers have other motives in showing why this topic

is important. The most important di�erence between [5] and [6] on the one hand and our paper on

the other is the framework. The core criterium for similarity used in [5], de facto requires a priori

determining of what the time-series is and what are the outliers or noise. Only then can the actual

distance, � sausage criterium, work.

Earlier work by the same authors [7] suggested matching in the space of the Discrete Fourier

Transform representation. However, DFT in itself provides only global information. Moreover, as is

also concluded in [5], this approach fails in the presence of linear bias and is rather sensitive to local

outliers.

The work reported on in [6] is based on local transformations of the time-series. Since there is a

choice of the allowed set of transformations, this approach is closer to our approach. Our approach,

however, does not rely on an (implicit) underlying model, and thus is not sensitive to outliers, noise,

and translations of the data.

In other words, we are not building our similarity framework using a particular similarity model.

Rather we utilise a 
exible hierarchical representation of a time-series (up to a certain resolution).

This representation in turn can be tailored to �t matching criteria required. In this approach, one

can build in insensitivity to factors other than matching criteria, these often being outliers, noise,

translation, scaling or polynomial bias.

We will continue with the discussion of similarity in the next section, introducing appropriate

exponents for both global and local characterisation. In section 3, we will introduce the Wavelet

Transform with the appropriate representations. We will elaborate on the global and local similarity

measures in sections 4 and 5 respectively. In both sections examples we will given to account for the

some of the most powerful abilities of the methods. Finally, a closing word will be given in section 6.

2. Global Versus Local Similarity

The global parameter that we will use for characterising (the roughness of) the time series should

not change if we estimate it for the �rst or the second half or any arbitrary part of the time series,

provided the characteristics of the time series do not change in time (stationarity) or with the length

of the sample. The former requires that parameters remain stable with respect to scaling within a

considerable range of scales (scaling, self-a�nity). A good parameter indication of the similarity of

the time series with its parts is the exponent with which one has to re-scale the height of the (sliding)

window with the part of the time series in order to obtain a time series similar to the one compared.

In �gure 1 below, we illustrate this concept for the case of part of the time series compared to the

complete time series itself.

This concept of self-a�nity and the related Hurst exponentH has been developed within the domain

of fractal geometry and is broadly applicable for time series from sources in both natural and computer

sciences. In particular, it can be shown that the exponent H = 0:5 corresponds to the Brownian path

(or trail) - a random process with independent increments - the integral of random noise. H > 0:5

is evidence of a long range positive correlation in the time series, visually e�ecting a time series with

1In this paper we refer to time-series rather than signals. However, the term `signals' is exclusively used in the

signal processing literature to which reference is made. Both mean one and the same thing - the sample (not necessarily

uniform) record of data.
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Figure 1: Shows the horizontal versus vertical rescaling argument that the exponent characterises the

time series globally. Similar rescaling in the bottom left �gure versus a�ne rescaling, bottom right,

of the fractional Brownian motion of H = 0:3. The rescaling factor used for the a�ne rescaling of

(x; y) axis is (a; a0:3), while for the similar case both axis were rescaled using the a factor.

tempered jumps. On the contrary, H < 0:5 gives evidence of a negative correlation, a so-called

anti-correlation, which is displayed by more `wild' behaviour.

As a global measure, H can be successfully used to compare time series which are statistically

similar, provided it is estimated in a trustworthy manner (including the removal of non-stationarities

in the time series and the provision of limits on scaling range and realistic error bounds). For this

purpose, we will use the wavelet transform which has been shown to be a particularly successful tool

in assessing the scaling behaviour of time series [3].

Two arguments for the generalisation of the global notion of similarity suggest themselves: one is

that we could allow the Hurst exponent to vary with position; the other is that we could be interested

in local rather than global similarities between time series. Both require making the characteristics

of the time series local in position. The relevant concept is known as the H�older exponent h of the

function in x0 - if there exists a polynomial Pn(x) of the degree n such that:

jf(x)� Pn(x� x0)j � Cjx� x0jh : (2.1)

Then h is said to be the local H�older exponent of the function and it characterises the scaling of the

function locally for n < h � n + 1. The polynomial Pn corresponds to the Taylor series expansion

of f around x0 up to the order n.

The Wavelet Transform (which we will describe below) has been demonstrated to be a tool ex-

ceptionally well suited to the estimation of this exponent and in fact, as we will see later, global

estimates like the Hurst exponent are obtained through this local H�older exponent by means of taking

an ensemble average in an appropriate partition function.

In conclusion, we have been able to identify two major approaches to identifying the similarity of
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Figure 2: Example time series, H = 0:5 for �rst two, H = 0:2 for the most right. Only the �rst two

time series from the left are statistically similar. On the other hand, the �rst and the third time series

are almost identical in detail if di�erent scaling is neglected.

time series; the global (statistical) similarity and the local, feature based similarity. In the following,

we will demonstrate how to approach both classes with a common formalism based on the wavelet

transform decomposition of time series.

3. Continuous Wavelet Transform and its Maxima Used to Reveal the Structure of
the Time Series

As already mentioned above, the recently introduced Wavelet Transform (WT), see e.g. Ref. [8],

provides a way of analysing local behaviour of functions. In this, it fundamentally di�ers from global

transforms like the Fourier Transform. In addition to locality, it possesses the often very desirable

ability of �ltering the polynomial behaviour of some prede�ned degree.

Conceptually, the wavelet transform is a convolution product of the time series with the scaled and

translated kernel - the wavelet  (x), usually a n� th derivative of a smoothing kernel �(x). This will

also be the approach taken in this work; we chose the Gaussian �(x) = exp(�x2=2) as the smoothing

kernel.

(Wf)(s; b) =
1

s

Z
1

�1

dx f(x) U(s; b) (x) : (3.1)

The scaling and translation actions are incorporated as the operator U(s; b); the scale parameter s

`adapts' the width of the wavelet kernel to the microscopic resolution required, thus changing its

frequency contents, and the location of the analysing wavelet is determined by the parameter b

U(s; b) (x) =  (
x� b

s
) ; (3.2)

where s; b 2 R and s > 0 for the continuous version (CWT). The power given to the normalising

factor s is often chosen to serve a particular purpose. Throughout this work, we will mainly use a

default factor s�1, which conserves the integral
R
dx j (x)j and thus leaves the L1 measure invariant.

This choice allows proper de�nitions for the H�older exponent. For the purpose of the decomposition

of time series, more appropriate is the factor s�1=2, which leads to an invariant L2 measure, and thus

conserves the integral square (energy).

Figure 3 shows how the wavelet transform reveals more and more detail while going towards smaller

scales. The wavelet transform is sometimes referred to as the `mathematical microscope', due to its

ability to focus on weak transient frequencies and singularities in the time series. The wavelet used

determines the optics of the microscope; its magni�cation varies with the scale factor s.
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Figure 3: WT representation of the time series from �gure 2 leftmost. The wavelet used is the Mexican

hat.

Wavelet transformation is an isometry; it does not add or remove any information (in its default

form - i.e. if no additional processing or restriction, e.g. on the scale range, is involved). Formally, this

property can be expressed in the so-called resolution of identity for the inner product of the function

f and g and their wavelet transforms Wf and Wg:

Z
1

0

Z
1

�1

ds db

s
(Wf)(s; b)(Wg)(s; b) = C < f; g >

where

C =

Z
1

0

j ̂(!)j2
!

:

Therefore, reconstruction is possible with the same wavelet  r =  ,

f(x) = C�1 
1

s2

Z
1

�0

Z
1

�1

; dsdb Wf(s; b)  (
x � b

s
)

assuming the wavelet is admissible i.e. C�1 < 1. This corresponds to the requirement that the

wavelet has zero mean - it is a wave function, hence wavelet name

Z
1

�1

 (x) dx = 0 :

In fact, the admissibility requirement is so weak that one can use a di�erent wavelet for reconstruction,

in particular a Dirac delta  r(x) = �(x):
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f(x) = C�1 ;�
1

s

Z
1

0

ds Wf(s; x) :

Concluding, as indicated above, the continuous wavelet transformation completely represents the

function. One can therefore reconstruct the original function from its transform. According to the

de�nition this should be done over an in�nite range of scales. Restricting the range of scales from

above and below can, however, be useful. The upper and lower scale component contain respectively

low and high frequency components of the time series. Depending on the application, one can tune

the range of reconstruction.

Let us show below, �gure 4 left, the reconstruction up to large-scale/low magni�cation level. The

low frequency detail neglected in the reconstruction is close to a constant bias; therefore the original

signal and the reconstructed version are merely shifted with respect to one another. If now the small

scale - high frequency components are skipped in the reconstruction, the original function can thus

be reconstructed to a lesser degree of detail, as shown in �gure 4 right.
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Figure 4: Left: The original and the reconstruction less low frequency bias. Right: The original and

the reconstruction less low frequency bias and high frequency detail.

Let us note that quite frequently it is the singularities, the rapid changes, discontinuities and

frequency transients, and not the smooth, regular behaviour which are interesting in the time series.

While in the following we will largely aim at exploring this point, in the follow up to this work [12] we

are going to address the issue of decomposition of time series into time-frequency atoms, preserving

regular components of time series.

3.1 Accessing Singular Behaviour with the Wavelet Transformation

First, let us demonstrate the wavelet's excellent suitability to address singular aspects of the analysed

time series in a local fashion. As already mentioned, the singularity strength is often characterised

by the so-called H�older exponent, compare Eq.2.1. If we represent the function f through its Taylor

expansion around x = x0:

f(x)x0 = c0 + c1(x� x0) + � � �+ cn(x� x0)
n + Cjx� x0jh(x0) :

It follows directly that if h(x0) is equal to a positive integer n, the function f is n times continuously

di�erentiable in x0. Alternatively, if n < h(x0) < n + 1 the function f is continuous and singular in

x0. In that case, f is n times di�erentiable, but its nth derivative is singular in x0 and the exponent h
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characterises this singularity. The exponent h, therefore, gives an indication of how regular the

function f is in x0, that is the higher the h, the more regular the function f .

The wavelet transform of the function f in x = x0 with the wavelet of at least n vanishing moments,

i.e. orthogonal to polynomials up to (maximum possible) degree n:

Z +1

�1

xm  (x) dx = 0 8m; 0 � m < n ;

reduces to

W (n)f(s; x0) � C

Z
 (x)js xjh(x0) dx � C jsjh(x0)

Z
 (x0)jx0jh(x0) dx0 :

Therefore, we have the following proportionality of the wavelet transform of the singularity n � h �
n+ 1, with the wavelet with n vanishing moments:

W (n)f(s; x0) � jsjh(x0) :

Thus the continuous wavelet transform can be used for detecting and representing the singularities in

the time series even if masked by the polynomial bias. This ability is inherited by the more e�cient

representation based on modulus maxima of CWT, which we will introduce before illustrating the

ability of the WT maxima method to estimate the singularity exponent on examples.
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Figure 5: CWT representation of the Dirac delta D(x0), showing the cone of in
uence (x0 � s) � �.

Due to linear scale used the local maximum line centered at x0 = 0 follows 1=s which in log-log scale

gives �1 slope. Mexican hat wavelet.

In �gure 5 we show the in
uence of the Dirac pulse on the wavelet transform. The range of in
uence

spreads within the entire cone of in
uence, (x0�s) � �, which can be characterised with the standard

deviation � of the wavelet used and therefore increases linearly with the scale.

While the H�older exponent of the singularity can be evaluated from the entire cone of in
uence it is

much more convenient to consider the maximum of the wavelet transform only. It can be shown that

such maximum converges to the singularity and that it can be used for the evaluation of the H�older

exponent of the singularity. Let us consider the following set of examples, see �gure 6 left; a single
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Dirac pulse at D(1024), the saw tooth consisting of an integrated step function at I(2048) and the

(triangular) step function for S(3072�) from the right. The H�older exponent of a Dirac pulse is �1,
and each step of integration results in an increase of this exponent by 1. We, therefore, have h = 0 for

the right sided step function S(3072�) and h = 1 for the integrated step I(2048). In the maxima of

the wavelet transform, we obtain the (logarithmic) slopes of the maxima values very closely following

the correct values of these exponents, see �gure 6 right.
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Figure 6: Left: Maxima representation of a single Dirac pulse. Right: The log-log plot of the central

maximum, and of its logarithmic derivative. Indicated corresponding theoretical lines are �x and �1.
Mexican hat wavelet. Normalisation 1=s.

Indeed, the slope of the maxima lines approaching the singularities re
ects precisely the H�older

exponent of these singularities. This, of course, allows for the estimation of the H�older exponent of

these singularities. For H�older singularities, the process of integration and di�erentiation adds and

subtracts one from the exponent. This can be also veri�ed in the results displayed.

3.2 Wavelet Transform Modulus Maxima Representation

The continuous wavelet transform described in Eq. 3.1 is an extremely redundant representation.

Therefore, other, less redundant representations, are frequently used, including orthogonal represen-

tations and a variety of frames (almost orthogonal representations) [8].

For our purpose of comparison of the local features of time series, one critical requirement is the

translation shift invariance of the representation; nothing other than the boundary coe�cients of the

representation should change, if the time series is translated by some�t, see �gure 8 for an illustration

of this property.

A useful representation satisfying this requirement and of much less redundancy than the CWT is

the Wavelet Transform Modulus Maxima (WTMM) representation, introduced by Mallat [9]. In the

previous subsection we have also demonstrated the possibility of using the local maxima method to

estimate the H�older exponent of singularity.

Both above properties of the maxima lines representation make it particularly useful for our purpose.

The WTMM is derived from the CWT representation by extracting lines of maxima of the modulus of

the wavelet transform. The de�nition of the maxima (minima) along scale, the necessary requirement

for the maximum is zero of the derivative of the WT with respect to the position coordinate x:
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8><
>:

d(Wf)(s;x)

dx
= 0 and

either
d2(Wf)(s;x)

dx2
< 0 for maximum

or
d2(Wf)(s;x)

dx2
> 0 for minimum :

(3.3)

An additional condition for zero of the second derivative identi�es the beginning of the maximum

(minimum) line:

(
d(Wf)(s;x)

dx
= 0

d2(Wf)(s;x)

dx2
= 0 :

(3.4)

An example WTMM tree is shown in �gure 7, together with the highlighted bifurcations of the

maxima lines [4].
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x

Figure 7: WTMM representation of the time series and the bifurcations of the WTMM tree. Mexican

hat wavelet.

As demonstrated above, the wavelet has to be orthogonal to polynomials up to a certain degree n,

in order to access the singularity exponent h by �ltering out the polynomial bias. This operation of

�ltering the polynomial behaviour is nothing other than di�erentiating the time series to the degree

n - the number of vanishing moments of the wavelet. This is evident from the fact that the wavelet

transformation commutes with the operation of di�erentiation:

f(x)  (x; a) = f(x) s
d

dx
�(x; s) = s

d

dx
(f(x) �(x; s)) : (3.5)

Therefore, using wavelets with n vanishing moments one can perform stable derivation of n-th order;

thus one can obtain a smoothed derivative Dn
(�(s)) of the time series at the given scale s. The degree

of derivation can be controlled with n the number of vanishing moments. For n = 1, we obtain the

representation corresponding to the �rst derivative of the function, the local slopes of the input time

series.
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Right: - the common part of the representation does not change (except for �nite size e�ects). First

derivative of the Gaussian wavelet.

D(�(s))f(x) =
1

s2

Z
f(x)  (

x� b

s
) dx (3.6)

Note that the modulus maxima representation makes use of the maximum values of the same

convolution product as the WT, compare Eq 3.1, but with the normalisation factor set to 1=s. The

maxima lines of the wavelet transform performed with the wavelet orthogonal to constants, the �rst

derivative of a smoothing function, is therefore, up to the scaling factor s, proportional, locally in

position and scale, to the strongest values of the �rst derivative of the analysed time series. These

aspects of the decomposition will be further considered in the follow up to this work [12].

4. A Global (Statistical) Estimation of the Similarity of Time Series in the Presence
of Scaling, Translation and Polynomial Bias

In the previous, section we have shown that the maxima lines of the WTMM representation of the

time series are particularly useful for estimating the local scaling parameters of singularities. The

link between this local characterisation and the global scaling properties of the time series has been

developed by Arneodo et al [3].

In particular, one can show that the Hurst exponent is related to the q=2nd moment (correlation)

of the scaling of the measure on the WTMM maxima tree:

s2(H+Pn)�1 �
X

all maxima at scale s

�2(s) (4.1)

where �(s) is the amplitude of the maximum of the WT at the corresponding scale, and the sum -

the partition function - is taken over all the maxima at the given scale s. Pn indicates the degree of

the polynomial o�set of the time series.

This relation (for Pn = 1) can easily be veri�ed in �gure 9 where, in log-log coordinates, the power

law relation 4.1 should result in a straight line. We show the same, second moment for two examples

of random noise and anti-correlated fractional noise. The Hurst exponent can easily be estimated

from the slope of the linear �t to the scaling portion of the plot.

In �gure 9 right, we show the same second moment estimated for the record of the �nancial index. It

falls very well into the same category as the simulated Brownian path - indeed �nancial records are
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Figure 9: Left: the second moments of the modulus maxima representation of the noise samples from

�gure 2 leftmost and rightmost. Right: the same for the real life sample of a �nancial index shown in

�gure 17 left.

known to follow the H=0.5 law very closely, see e.g. [13]. The exponent H can thus be used to classify

global similarity between time series or categorize them on the statistical grounds.

By design, H is limited to taking values from the interval 0 � H � 1. With the WTMM based

formalism, we are able to estimate not only the fractional scaling part but also the degree of the

underlying polynomial Pn. For fBm trails Pn = 1, for the noise time series it would be Pn = 0. It is

therefore more convenient to take the complete exponent � = H + Pn as the (correlation) exponent

representative to our time series.

With this exponent, we are able to distinguish between various categories of time series for 0 < � � 1,

1 < � � 2, 2 < � � 3 or higher. As an illustration, see �gure 10, where we show the scaling of the

WTMM correlation dimension evaluated for random noise, its integral - Brownian trail - and, again,

its integral. For each integration step, the increase of the slope of the second moment is two, and the

corresponding increase of the correlation dimension is one.

Note, that WTMM based formalism will correctly estimate the correlation exponent � only if the

wavelet used has enough vanishing moments. In most practical situations, this condition is satis�ed

with n = 2 or n = 3. For example, n = 1 is enough for noise time series 0 < � � 1, like the leftmost

example in �gure 10 2. But we need a wavelet with at least n = 2 for the 1 < � � 2 class (central

example in �gure 10) and with at least n = 3 for the 2 < � � 3 class (rightmost example in �gure 10).

Of course, it should be noted, that the exponent � is independent of any scaling, translation or poly-

nomial bias up to n�1 degree, which may be a�ecting the investigated time series. Still, considerable

care should be taken to prevent �nite size e�ects from distorting the estimation of the exponent.

Estimation of the exponent � from the scaling of the second moment of the partition function 4.1

picks out the most pronounced feature of the global characteristics of the time series, but is not

complete. Generically, it is possible to calculate the entire range of moments of the partition function,

say from minus ten to plus ten. This range will depend on the length of the available time series,

limiting the number of moments to those meaningful.

Statistically we will observe two distinct behaviours. One possibility is the linear dependence of

the moments, indicating that the Holder exponent in time series takes just one value. In this case,

we call the time series mono-fractal. Another possibility will show the non-linear dependence of the

moments. For such a time series, the Holder exponent varies from point to point, indicating the

presence of multi-fractal scaling.

2In fact, for this example we could even use n = 0 since, as it happens, this noise example does not possess any

constant bias. Still, generically it is a good idea to use higher rather than lower n.
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Figure 10: Left, from the top to bottom: the random noise sample, its integral - Brownian trail and

again its integral. Right, from the top to bottom: corresponding scaling of the second moments of

WTMM maxima.
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A generally accepted approach is calculating the `histogram' of these H�older exponents, known as

the spectrum of singularities, which will show either a single peak for the mono-fractal time series or

a broad spectrum for a multi-fractal. The spectrum of singularities can be calculated either by taking

the Legendre transformation of the exponents extracted from the partition function moments, or the

so-called direct approach, see Muzy [11] for both methods.

Below we show two example spectra for mono-fractal and multi-fractal time series. In the left upper

part of �g. 11, we show the record of a Brownian noise with the (theoretically) single Hurst exponent

H = 0:5. The corresponding spectrum reveals a narrow band near the h = �0:5. In the right upper

part of �g. 11, we show the record of a real-time time series (human heart beat) showing rare, strong

events - peaks far exceeding what one would sense as consistent with the average behaviour. This

phenomenon is re
ected in the spectrum below which shows considerable width. It is also centered at

a very small value of h � 0:1, indicating the presence of strong (long-range) correlations in the time

series.

The key di�erence between the two classes of signals is that one can be represented statistically

with one single exponent h = H while the other requires a wide spectrum f(�); � = h. Nevertheless,

the bulk of the singularities falls near the central value of h, and this exponent provides the often

most relevant characterisation of the time series.

-4

-3

-2

-1

0

1

2

3

4

0 500 1000 1500 2000 2500 3000 3500 4000

’profdat.dat’

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1 1.5 2

’proffalpha.dat’
’proffalpha.dat’

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 500 1000 1500 2000 2500 3000 3500 4000

’nn.16265.night’

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1 1.5 2

’proffalpha.dat’
’proffalpha.dat’

Figure 11: In the left upper plot, the record of a Brownian noise with the (theoretically) single Hurst

exponent H = 0:5. The corresponding spectrum at the left below reveals a narrow band near the

h = �0:5. In the right upper plot, the record of a multi-fractal time series. The corresponding wide

spectrum of singularities at the right below.
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5. Local Similarity Estimation in the Presence of Scaling, Translation and Polyno-
mial Bias

In order to evaluate the local similarity, we will turn to local features of the time series, the bifurcations

of the WTMM tree. Bifurcations [4] form a set of highly sensitive `landmarks' in the WT landscape

of the decomposed function. By re
ecting the scale-position development of the maxima tree, they

capture the singular structure of the time series. Each bifurcation can be represented with its position

and scale coordinates, plus the corresponding value of the WT in the bifurcation point.

Just like the wavelet transform itself, the bifurcations can be evaluated for the time series up to a

certain resolution, meaning that only the coarse features are taken into account. Alternatively a range

of scales can be determined in the application to be covered by WTMM tree and its bifurcations. The

numbers used for our experiments ranged from 20-100 bifurcations covering the span of maximum of

two decades of scales from the highest resolution available.

We will (mainly and unless otherwise indicated) use bifurcations obtained from the WTMM tree of

the wavelet transform of the time series with the Mexican hat wavelet, the second derivative of the

Gaussian kernel. This means that the maxima lines follow singular features in the second derivative

of the function and the bifurcation representation re
ects the structure of these features in the second

derivative of the function. This will allow for looking for similarities with respect to linear bias - such

bias is �ltered out from the time series by the wavelet with two vanishing moments. One can of course

use wavelets with fewer or more vanishing moments to suit one's particular needs.

5.1 Local Distance (Similarity) Measure between Two (or More) Bifurcations

Essentially, the method uses the bifurcation representations of two time series to be compared and

estimates the degree of similarity of these representations. Additionally one can shift both representa-

tions with respect to one another in order to �nd whether there is a better match if shift and scaling

are involved. Note that a shift in the logarithmic scale corresponds with the scaling operation in the

original time series.

The simplest but quite reliable measure of the similarity of two sets of bifurcations is given by the

occurrence of a bifurcation in one representation, within a distance � of some `reference' bifurcation

in the `reference' set of bifurcations. Counting the fraction of reference bifurcations which have such

a matching counterpart in the bifurcation set compared gives the estimate of the similarity between

the two sets - a number from the range 0::1. A useful improvement of this scheme is easily made by

counting only bifurcations in which WT has the same sign. This procedure, subject to one � parameter

only, gives good results.

A straightforward extension to the box of � size is a two-dimensional correlation function which has

a smooth decay of the distance between the bifurcations. As the measure of correlation between two

bifurcation points: biffa(a; �b) and biffb(b; �b), we took for our experiments the auto-correlation func-

tion of two Gaussian kernels C(biffa; biffb). This correlation can be parametrized by the additional

shift in (logarithmic) scale and position �s and �x respectively:

C(biffa; biffb) = C(a; b; �a; �b) =

=
1pp

��a
p
��b

Z
1

�1

e�
1
2
( x�a
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)2 e
�
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=
p
2

p
�a�b e

�

1
2

(b�a)2

�a
2+�b

2

p
�a2 + �b2

: (5.1)

This measure does not, however, decay quickly enough in our experience and therefore we equipped

it with two adjustable parameters Fscale; Fposit, independently a�ecting the decay along position and

scale:
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C(biffa; biffb)(s;p) =
p
2

p
�a�b e

�

1
2

Fposit(b�a)
2

�a
2+�b

2

p
�a2 + �b2

: (5.2)

The resulting half-width along scale, in logarithmic scale coordinates S = log(�), is then:

1=Fscale ln(
4 +

p
15

4�
p
15

) ;

and along position it is:

1=Fposit 2
p
2
p
ln(2)

p
�a2 + �b2 :

Note that without the factor Fscale, the half-width of the measure along the scale is over 4:13 in

logarithmic coordinates. The e�ective neighbourhood within which we would like to locate another

bifurcation is smaller by one order of magnitude (therefore we use Fscale > 10). Also contrary to

the half-width along position, half-width along scale is independent of the location of bifurcations in

position and scale.
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Figure 12: The measure used for matching bifurcations for two values of the parameters Fscale and

Fposit. Left default values Fscale = 1 and Fposit = 1. Right Fscale = 5 and fposit = 5.

With this measure for the correlation of two (or more) bifurcations, we can now estimate the total

correlation of two bifurcation representations of the time series we want to compare. The most

straightforward measure is simply

M(�x;�s) =
1

norm(N1; N2;�x;�s)

N1X
i=1

N2X
j=1

C(biffi; biffj)(�x;�s) V (biffi; biffj) ; (5.3)

where N1 and N2 are the respective numbers of bifurcations in both time series representations

compared. V (biffi; biffj) is an optional factor (but used in all our experiments) which weights the
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correlation in the values of the wavelet transform in WT (biffi) and WT (biffj) respectively. This

can be just a two valued function giving zero for respective values having di�erent signs and one for

consistent sign:

if WT (biffi) : WT (biffj) > 0 then V (biffi; biffj) = 1

else V (biffi; biffj) = 0: (5.4)

Alternatively, as will be used in our last example, it can be a function giving �1 for WT values

with opposite signs and 1 in the case of the same signs. One can of course design continuously valued

correlation functions.

if WT (biffi) : WT (biffj) > 0 then V (biffi; biffj) = 1

if WT (biffi) : WT (biffj) < 0 then V (biffi; biffj) = �1
else V (biffi; biffj) = 0: (5.5)

The norm factor is designed to normalise the measure so that it would reach 1 for two identical

samples and 0 for samples with no resemblance of one another according to the criteria employed.

There is also possibility of extending the measure from 0 to �1 in the case of negative or `anti-match'.

This can for example be done with the weighting factor described above, Eq. 5.5, which will be used

in our last example in the following.

There are several nontrivial issues that need to be taken into account in order to design the ap-

propriate norm. The �rst is the length of the time series, which is generally not equal. Additionally,

since we work with the decomposition of the time series in scale the range of scales may di�er. With

complete wavelet representation these parameters are known, however, in the case of the bifurcation

representation information is only approximately known (through lower bounds only).

The approach we took is to relate the norm factor to the number of bifurcations taking their

geometric mean:

1

norm 1
� 1p

N1 N2

(5.6)

This simple normalising approximates the overlap of the two sets of bifurcations. Even though it is

su�cient for directly comparing two bifurcation representations, the scale and position shift changes

the e�ective overlap of the two samples. In order to compensate for this we introduce two component

normalisation factors. The �rst approximates the change of the e�ective overlap due to the scale shift,

and the second does the same to compensate for the position shift. In the norm2 formula these two

factors look respectively like:

1

norm 2
� 1

exp(�s)

1

1��x exp(�s)
(5.7)

Note that the scale shift �s in the formula above is in the logarithmic scale. The resulting normal-

isation to be used, is therefore a combination of the above factors Eq. 5.6 and Eq. 5.7.

Another aspect which generally needs normalisation is the overlap of the correlation functions

Eq. 5.2 associated with respective bifurcations. As designed, they have in�nite support and therefore

introduce some degree of additional measure due to mutual overlapping. This overlap can be a priori

evaluated and removed, however, we took the liberty of neglecting this bias in the measure. This was

possible due to very quick decay which we imposed on the correlation function Eq. 5.2, and the the
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application of an additional window, cutting o� the tails of this correlation function. (We chose for

the window the scale range spanning j�sj < 0:5 and j�xj < 0:5 exp(�s).)

Last component of the normalisation is actually more related to removing the irrelevant/unlikely

part of the measure for the case of extreme scale position shift. It consists of a band of a certain width

which is too short to contain any trustworthy matches. We set this arbitrarily at one quarter of the

reference sample but this is of course subject to free choice. The e�ective width of the band changes

with the scale shift to give the �nite size factor norm3:

if
1��x
exp(�s)

> 0:25 then
1

norm3

= 1

else
1

norm3

= 0 : (5.8)

Again, this factor is used to modify the total measure 5.3; 1
norm

= 1
norm1

1
norm2

1
norm3

. It results

in the zero measure band visible on the right side, x ! 1, in the measure plots in the experimental

subsections to follow.

In the rest of this section we will demonstrate the ability of the method to localise similarity in time

series using the measure just designed, Eq. 5.3, to compare their intricate structure - the scale-position

behaviour of the second derivative of the time series. This structure is captured by the bifurcation

representation obtained with the wavelet orthogonal to linear bias (n = 2) which, unless otherwise

indicated, we will use in the examples in the rest of this paper. It is, of course, possible to use a

structure of di�erent derivative of the time series or the time series itself by taking a wavelet with an

appropriate n - number of vanishing moments.

5.2 The E�ect of Translation and Scaling

In this example, we demonstrate how the similarities can be found for the time series which is scaled

and translated. Let us take the example time series record, see �gure 13.

Using this example, we will demonstrate that the algorithm using the measure 5.3 to compare two

bifurcation representations is capable of �nding similarities between the time series (or their parts),

with respect to the operations of translation and scaling.
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Figure 13: Example fractal time series consisting of four self-a�ne sub-parts (left). The measure

shows high regularity and reveals the scaling and translation - elements of the invariance of the time

series.
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Instead of comparing one time series with another, in this test we will actually compare the time

series with itself. Covering an adequate scope of values �x;�s reveals in the measure M(�x;�s)

the presence of a very structured self-a�nity relation within this time series - there are four main peaks

located at �x = 0, �x = 1=4, �x = 1=2 and �x = 3=4. In between these, there are lower peaks,

starting from the big peak at �x = 0. The next smaller peak is at �x = 1=16, followed by another

at �x = 2=16, and the next at �x = 3=16. This sequence is repeated at �s = �1:39 = log(1=4).

This, in fact, goes to show that we discovered that within the time series there are four similar

parts, which in sequel contain four similar parts etc. This similarity is evaluated with respect to the

second derivative of the time series - the analysing wavelet is the Mexican hat - all the masking linear

trend at di�erent scales has been removed. Indeed the test time series is an IFS fractal [14] with four

non-overlapping self-a�ne transformations as the construction rule.

5.3 The E�ect of Random Noise

Speaking of the in
uence of random noise has, of course, a very special meaning in the context of

our analysis - most of the example test time series we considered were records of pure or correlated

noise. Still such noise is a perfectly valid and valuable time series (in fact a record which in absence

of an appropriate model seems to be just an uncorrelated noise is likely to contain perfectly coded

information). Therefore, in addition to comparing two di�erent noise records, it makes perfect sense

to evaluate how one noise record is corrupted by other noise.

We took three examples.
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Figure 14: Two independent random walks (left) investigated for the presence of similar parts with

respect to scaling translation and linear bias show only slight local similarities at a residual level of

measure 
uctuations (right).

In the �rst, �gure 14, two independent random walks are scanned for similarities. The level of the

measure remains low but signi�cant within the searched range of scale and position shift. It can be

considered as the 
uctuations of the similarity measure reaching a signi�cant level due to random

occurrences of parts remotely looking like one another. These similarities are more likely to be

assumed when going to higher �x,�s, due to the simple fact of considering the overlap of just a few

bifurcations.

In the second example, �gure 15, we consider two noises created with the same random sequence. One

is uncorrelated with H = 0:5 and the other anti-correlated with H = 0:2. Both are created with the

`random midpoint displacement method', see e.g. [2], using the same random sequence, meaning the

sign of displacement remains the same. Indeed, the similarity measure gives quite good a response,

reaching about 0:5 at no shift.
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Figure 15: Two noises with H = 0:5 and with H = 0:2 created with the same random sequence.

Right, the similarity measure response of about 0:5 at no shift.
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Figure 16: Example random walk with the addition of random noise at �10dB level. Right the

resulting measure.

The third example, �gure 16, demonstrates the in
uence of the additive random noise at a level of

about �10dB (amplitude factor 0.3). The result is a drop in the measure associated with a noticeable

widening of the maximum cone. The resulting measure is at a level of one third of the measure norm

for two identical time series.

5.4 A Real Life Sample within a Sample Example

So far we were matching samples with equal length, this time we took two unequal samples of a real

life time series. Two records of a �nancial index were scanned for the presence of similar parts with

respect to scaling, translation and linear bias.

While from a visual inspection, it is rather di�cult to establish the degree of similarity between the

two, the similarity measure reveals a high degree of similarity at �x = 0:3 and �s = �1:4 (this

corresponds to a shift by 0:3 : 4096 = 1229 samples and rescaling by a factor e�1:4 = 0:25). At almost

maximum level C = 0:87; it is far stronger than the rest of the measure. Applying the shift parameters

to the second plot con�rms a close �t, but only after the linear trend is restored! (Indeed the second
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Figure 17: Above, two example real life time series subject to investigation for the presence of similar

parts with respect to scaling, translation and linear bias. Left below the match revealed in the

maximum of the measure shown at right below.

time series is just a part of the �rst with added linear bias.) We added a relatively strong bias in order

to illustrate our purpose. The method will, of course, also work for smaller levels of bias for which

visual check of the similarity of both time series will be possible. Still, even in such cases, techniques

without the ability to �lter polynomial trends are likely to fail.

5.5 Checking for slope similarity between two independent samples

This last example consists of two correlated fBm walks of unequal length and scaling exponent; H = 0:9

and H = 0:7 respectively, independent from one another. We scanned these two time series for the

similarity in slope which is perhaps the most generic idea of similarity in data mining on time series.

The �rst derivative of the smoothing kernel served for the wavelet - it is sensitive to local slope and

�lters out constant bias. Note that in the examples this far we used the bifurcation set obtained with

the second derivative of the smoothing kernel insensitive to constants and slopes.

For another modi�cation, in the examples so far, only the sign of the value of the wavelet transform

at the bifurcation points was considered in the similarity measure. Here, we slightly modi�ed the

measure function to allow for correlation of sign of the value to reach either 1 or �1 for the case of

correlated (both positive or both negative) and anti-correlated (one positive, one negative) values,

Eq. 5.5. Note that such a measure is still not sensitive to exact values of local slope, although such
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sensitivity can easily be achieved by introducing the appropriate continuous correlation function.

The example time series are shown in �gure 18 left and right above. The scale axis is set in the

direction so that the �rst time series is searched for the presence of parts resembling the second

time series, but this can, of course, be reverted or the scale axis can be extended to cover both

directions. Compared with the previous experiments we also slightly extended the width of the

correlation kernel 5.2 to allow larger deviations for the bifurcation coordinates.

The result of the modi�ed measure is shown in �gure 18 right below, additionally using contours.

The measure revealed one strong maximum at (0:3125;�1:23) but also a strong minimum located

at (0.6125,-1.39). The minimum is an indication of a good `anti-match', which in the slope domain

simply means a good match with the negated slope. In �gure 18 left below, we marked the parts of

the �rst `reference' signal which show best slope similarity with the second `matched' signal, with its

slope una�ected and negated for the two shown matches respectively.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 500 1000 1500 2000 2500 3000 3500 4000

’../../uva/gen/bro/browgen.co’

-1.5

-1

-0.5

0

0.5

1

0 500 1000 1500 2000 2500 3000

’../../uva/gen/bro/browgen.part.co’

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 500 1000 1500 2000 2500 3000 3500 4000

matched parts’../../uva/gen/bro/browgen.co’

max

min

’proscan.out’
   0.544
   0.387
   0.229

  0.0714
 -0.0863
  -0.244
  -0.402
  -0.559
  -0.717
  -0.875
   -1.03

0

0.5

1
-1.5

-1

-0.5

0
-1.5

-1

-0.5

0

0.5

1

Figure 18: Above, two example fBm time series with di�erent Hurst exponent scanned for similarity.

Left has the correlation exponent H = 0:7 while the right one has H = 0:9. Left below the parts of

the time series H = 0:7 above showing greatest similarity and anti-similarity in slope with the entire

H = 0:9 time series. Right below the measure plus contour plot showing the location of the maximum

and the minimum of the similarity measure.

6. Final Remarks and Conclusions
We presented a powerful technique allowing the evaluation of similarity between time series in the pres-

ence of scaling, translation and polynomial bias. Two main classes of similarity evaluation measures
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were distinguished and the appropriate measures were proposed.

The global, statistical similarity was estimated with the Wavelet Transform derived Hurst exponent.

It classi�es time series according to their global scaling properties. The local, detail oriented measure,

used the scale-position bifurcation representation of the wavelet modulus maxima transform of the

time series. It makes it possible to obtain good matches of (the parts of) the time series with respect

to scaling translation and polynomial bias. The degree of the polynomial bias �ltered can be a�ected

as well as the range of the translation and scaling parameters. The measure used for matching the two

bifurcation representations of the time series can also be adapted to the speci�c user requirements.

In addition to this, since they represent two extremes, both the global and the local measure can be

used together with appropriate weighting factors.

Future work on this methodology is expected to include investigating features of the WTMM rep-

resentation other than bifurcations, namely instantaneous frequencies - time-frequency `atoms'.

Along with identifying other then presented generic matching criteria, (e.g. piece-wise linear or IFS

approximation) tailoring the representations to �t speci�c matching criteria will be pursued.

An important aspect of the WTMM representation which has not been fully used in this work is

its hierarchical structure. This can be built into the searching algorithms for increasing speed and

match optimization - selecting best matching parts of the time series. The (bifurcation) tree matching

algorithm presented in [4] is a good candidate for developing the time-series similarity methodology

in this direction.
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