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Abstract. Assertion checking traditionally focused on state-based prop-
erties. In a multi-threaded environment, approaches based on shared-
state require complex locking mechanisms to ensure that specifications
are checked atomically (in the same state). In addition to this increased
complexity, locks also negatively affect performance.

In this paper, we extend both the underlying theory and the prac-
tical implementation of SAGA, a run-time checker for single-threaded
Java programs, to multi-threading, while avoiding locks.

1 Introduction

Runtime assertion checking is an important practical method for finding bugs.
However, the scope of run-time assertion checking is restricted mainly to sequen-
tial programs. The main problem of run-time assertion checking of parallel
shared-variable programs in general is because of interference. Take for example
the very simple statement assert x==x;, where x is a field of an object. If after
retrieving the value of the first occurrence of x another thread modifies x then
the assertion may evaluate to false! To prevent this whenever an assertion is
checked, the entire parallel execution has in principle to be “frozen”. This thus
requires control of the underlying execution platform and will in most cases give
rise to severe loss in performance.

In [5] we enhance run-time assertion checking with attribute grammars [9]
for describing properties of histories, e.g., sequences of method calls and returns.
This supports strict programming to interfaces because it allows for interface
specifications abstracting from the state as represented by the program variables.

The main contribution of this paper is an extension to multi-threaded Java
programs which avoids in a natural manner interference problems. As an example
of the expressivity and generality of our approach, we show how to detect at
runtime deadlocks in multithreaded Java programs.

Related Work. To the best of our knowledge, our extension of run-time assertion
checking to multi-threaded programs is the first solution which supports interface
specs and does not require fine-grained control of the JVM execution platform to
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prevent interference in assertion checking as in the purely state-based approaches
of [1,7]. Other state-based approaches like [2,15] require complex atomicity spec-
ifications and locking mechanisms. These latter two approaches further require
substantial extensions both of the specification language and corresponding tool
support for run-time verification.

Besides run-time assertion checking, there are many other tools for run-time
verification of multi-threaded programs. In [16] also an automated code instru-
mentation technique is introduced for the generation of counter-examples of a
given property. These counter-examples are given in terms of partial orders of
events which record particular modes of access to the state. This state-based
approach consequently does not support a design by contract methodology. The
run-time verification of multi-threaded programs as described in [10] affects the
running system by blocking those threads which would violate the property.
Other approaches focus on specific classes of properties, like data-races [3], dead-
lock [13] and restricted protocol-properties [6].

In [12] a process algebraic approach based on an extension of CSP is intro-
duced which supports a strictly separate run-time verification of properties of
data and protocols. In contrast, our approach builts on well-established parser
technology and integrates the run-time verification of both data- and protocol-
oriented properties of multi-threaded programs.

2 Extending the Framework

Our approach to multi-threading is based on the following perspectives:

Thread view : here we specify the behavior of each thread in isolation.
Object view : here we specify the behavior of objects individually.
Global view : here we specify global properties of a program.

All of the above views can be supported by a single formalism: attribute gram-
mars extended with assertions, but the interpretation of the grammars differs
between the various perspectives. We first discuss the required extensions to
communication views and grammars. We then illustrate each of the above views
with a running ‘dining philosophers’ example. The behavior of the philosophers
is specified by a corresponding thread class. The interfaces of the classes defining
the resources, i.e., the forks and the pasta are defined in Fig. 1.

interface Fork {

void get();

void release();

}

interface Pasta {

void eat();

}

Fig. 1. Interfaces forks and pasta
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2.1 Multi-threaded Events

A communication view (as defined in [5]) is a partial mapping which associates a
name to each event, e.g., method calls and returns. In multi-threaded programs,
due to scheduling and locking, there can be a delay between when a method is
called, and when its body starts executing. For synchronized methods, a method
call indicates that a lock was requested, whereas the start of the execution of a
method body indicates that the lock was acquired successfully. To distinguish
these two events, we introduce an ‘exec’ event, that indicates the start of execu-
tion of a method body (and thus, implies acquisition of the lock). See Fig. 4 for a
communication view that uses an ‘exec’ event. Returns of synchronized methods
indicate the release of the lock.

In general, our framework incorporates built-in attributes of an event which
store the objects involved, e.g., the actual parameters. Here we introduce a new
built-in attribute Long threadId which stores the identity of the thread in which
the event occurred. Thread id’s are used in both the object and the global view.

The final addition to our framework are reset-actions. Suppose a user desires
to check the history only when a specific event occurs, and subsequently reset
the history to start a new session. We support this by labeling an event with
a reset(b) action, where b is a boolean expression in which both grammar
attributes of the previous session (the attributes of the grammar start symbol)
and the objects involved in the event can be used. Grammar attributes are
prefixed by the keyword ‘session’. If the condition b is true, the history is parsed
and subsequently reset, with the caveat that attributes values of the previous
session are retained. Figures 2 and 4 both depict views with reset-actions.

2.2 Grammars and Interference Freedom

The context-free grammar underlying an attribute grammar generates in our
approach the valid histories, i.e., traces of events. Event names form the terminal
symbols of the grammar, whereas the non-terminal symbols specify the structure
of valid sequences of events. In our approach, a communication history is valid if
and only if it and all its prefixes are generated by the grammar. The attributes
are used in assertions to specify the data-flow of the valid histories.

State-based specifications for multi-threaded programs introduce race condi-
tions. During evaluation of an assertion in one thread, another thread can change
the state. This implies that different parts of the same assertion are evaluated
in different states. For example, assert o.x==o.x; is not necessarily true any-
more, if o.x is changed by another thread. To solve this problem, we must ensure
exclusive access to all objects occurring in the assertion. This requires complex
locking mechanisms and a fine-grained control over the underlying execution
platform. Furthermore, such a complete ‘lock-down’ of the system can have a
severe negative impact on performance. Our history-based approach avoids these
problems, provided that a grammar is well-formed in the following sense.

Definition 1. A grammar is well-formed if and only if no built-in attributes (of
terminals) are dereferenced.
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This condition is easily checked, and is natural from a conceptual point of view:
whenever an event occurs, only the actual parameters and return value are com-
municated between the caller and the callee. Dereferencing an attribute accesses
the underlying state of the program, and would mean that the grammar does
not only depend on the current history, but potentially on the entire heap! The
above condition ensures that the grammar depends only on the history. Well-
formed grammars allow an elegant solution to the interference problems men-
tioned above. See Sect. 4.2 for more details.

3 Multi-threaded Perspectives

Thread View. In the thread perspective, we specify the behavior of each thread
in isolation by a corresponding communication view and grammar. We associate
a history to each thread, and the grammar generates the set of valid histories of
the thread. Semantically, such thread-local histories can be obtained from the
global history by projection on the value of the threadId attribute1.

The thread perspective is tailored for the specification of properties that each
thread must obey, independently from that of any other threads. Consider for
example a client-server scenario. To avoid blocking access to the Server while
handling the requests of a Client, the server creates a new thread for each client
after accepting an incoming connection, and each client must follow a protocol.

We illustrate the thread view using the running dining philosophers
example. Figure 2 presents the communication view for the Phil thread class.
It introduces the grammar terminals “start”, “get”, “release”, and “eat” for the
corresponding events. Only events from implementations of the Fork interface
with synchronized versions of get and release are selected.

thread view Phil grammar Phil.g {

return Phil.Phil(Fork left, Fork right) start reset(true),

call synchronized void Fork.get() get,

call synchronized void Fork.release() release

reset(callee==session.right),

call void Pasta.eat() eat

}

Fig. 2. Communication view philosophers

Note that we have included the constructor method of the class Phil in the
communication view, which allows us to use its parameters in the attribute

1 There is one subtle technicality: thread id’s can be reused in Java. Hence, two events
that occur in different threads can share the same thread id. This can be detected by
monitoring the void run() method of a Thread class in the communication view.
A call to run signals the creation of the thread, and a return indicates termination.
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S ::= start
(S.left=start.left; S.right=start.right;)

| gf1=get gf2=get eat rf1=release rf2=release
(S.left=start.left; S.right=start.right;)
{ assert gf1.callee == S.left && gf2.callee == S.right; }
{ assert rf1.callee == S.left && rf2.callee == S.right; }

Fig. 3. Attribute grammar for philosopher session

grammar to specify the behavior of the thread instances of class Phil. This
communication view marks each start event, and each release event for which
its callee equals the attribute of the previous session, as a reset.

The grammar in Fig. 3 defines the behavior and the attributes of a session2.
The grammar introduces the aliases gf1, gf2, rf1 and rf2 to distinguish differ-
ent occurences of the same terminal.

Object View. In the object view of a Java program, we specify the interaction of
a single object by means of a corresponding communication view and grammar.
The grammar generates the set of all valid traces of events that the object may
engage in. In a multi-threaded environment, several threads can be active (exe-
cuting) in a single object. Intuitively, the local object histories can be obtained
from the global history by projection on the values of the built-in attributes
caller and callee.

The object view is convenient for specifying a resource that is shared between
different threads. We illustrate this by a specification of the forks in the dining
philosophers example. Figure 4 presents the communication view.

local view ForkView grammar Fork.g specifies Fork {

exec synchronized void get() get,

return synchronized void release() release reset(true)

}

Fig. 4. Communication view of a fork

As explained above, the keyword “exec” indicates events which are triggered
by the start of the execution of the specified method. The grammar in Fig. 5 then
defines the behavior of a session of a Fork object. Note that mutual exclusion
here is simply expressed by the identity between the thread id’s corresponding
to the events which indicate the execution of the get and release methods.

2 Terminals have built-in attributes, which refer to the objects involved. Non-terminals
have user-defined attributes defining properties of sequences of terminals.
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S ::= get release { assert get.threadid==release.threadid; }

Fig. 5. Attribute grammar for fork session

Global View. In the global view, we treat the Java program as a single entity
that we wish to specify. Traditional approaches based on global invariants [4,11]
are supported in this perspective. The grammar generates the set of all valid
global traces of the entire program. In particular, the user can specify the desired
interleavings between events from different threads.

We illustrate the global view by means of a general method for dynamic detec-
tion of deadlocks. We focus on deadlocks that arise from synchronized methods.
Given a multi-threaded program we first introduce the communication view in
Fig. 6, which includes all events of the synchronized methods.

global view DeadlockMyProgram grammar deadlock.g {

call synchronized T C.m() C_m,

return synchronized T C.m() ret_C_m,

exec synchronized T C.m() exec_C_m,

...

}

Fig. 6. Global communication view

Since unsynchronized methods cannot cause a deadlock, the communication
view filters those out. A thread blocks if it calls a synchronized method on an
object that is already locked by another thread. The general idea is to build a
directed “wait-for” graph to capture such dependencies between threads. A dead-
lock corresponds to a cycle in the wait-for graph.

In more detail, the nodes of the graph are thread id’s, and there is an edge
from t1 to t2 if t1 calls a method on some object that is locked by t2. To build
the graph we define three inherited attributes:

– An attribute reqLock of type Map<Long, Object> that maps a thread id (a
Long) to the object for which it requested, but has not yet acquired the lock.

– An attribute hasLock of type Map<Long, Map<Object, Integer> >. Given
a thread id and an object, this map returns the number of times the lock on
that object has been acquired but not released by the thread3. If for a given
thread id, the count becomes 0 for an object, the entry is removed.

– An attribute g storing a directed graph. Any graph library can be used as
long as it has a method void addEdge(Object node1, Object node2) for
adding an edge between node1 and node2 to the graph, and a (pure) method

3 Due to reentrance, locks in Java can be acquired more than once by the same thread.
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boolean noCycle() for cycle detection. For example, DirectedGraph from
the JGraphT library suffices for our purposes.

The two maps and the graph are initialized to empty. Figure 7 shows how the
attributes are updated whenever an event occurs. The graph is built in the last
ε-production using the reqLock and hasLock maps. The assertion formalizes the
no deadlock requirement.

S ::= C m
(
S.reqLock.put(C_m.threadId, C_m.callee);

)
S

| ret C m
(
Map<Object, Integer> m = S.hasLock.get(ret_C_m.threadId);
Integer cnt = m.get(ret_C_m.caller);
if( cnt == 1)m.remove(ret_C_m.caller);
else m.put(ret_C_m.caller, cnt-1);

)
S

| exec C m
(
S.reqLock.remove(exec_C_m.threadId);
Map<Object, Integer> m = S.hasLock.get(exec_C_m.threadId);
int newCnt = 1;
if(m == null){
m = new HashMap<Object, Integer>;
S.hasLock.put(exec_C_m.threadId, m);

} else if(m.get(exec_C_m.callee)!= null)
newCnt = m.get(exec_C_m.callee)+1;

}
m.put(exec_C_m.caller, newCnt);

)
S

| ε
(
for(Long rl : S.reqLock.keySet())
for(Long hl : S.hasLock.keySet())
if(hl.get(rl).containsKey(reqLock.get(rl)))
g.addEdge(rl, hl);

)
{ assert g.noCycle(); }

Fig. 7. Attribute grammar specifying deadlock
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3.1 Combining the Views

Above, we described three different perspectives on a multi-threaded Java pro-
gram: the thread view, the object view and a global view. Thus, to properly
support a separation of concerns, multiple attribute grammars can be present,
each grammar focusing on a specific behavioral property of the program. We
check all grammars independently. If each grammar is considered to be a formal
language (generating the valid histories), this has the same effect as taking the
intersection, or conjunction of the formal languages involved. Note that this also
provides a simple way to specify the intersection of two context-free languages.
Although the intersection of two context-free languages is in general not context-
free, we can specify them separately by two different context-free grammars.

Combining the above views on the dining philosophers ensures that

– All philosophers use their (shared) resources correctly (thread view).
– The resources themselves behave properly (object view).
– No deadlock arises during execution (global view).

4 Tool Architecture

In this section we describe the tool architecture of SAGA (Fig. 8). SAGA inte-
grates four different components: a state-based assertion checker, a parser gen-
erator, a monitor to intercept events and a general tool for meta-programming.
How and when these components are used is explained below by means of a work-
flow. The tool architecture in a single-threaded setting was previously described
in [5], and successfully applied to a large industrial case4 with 150,000 lines of
code and 44 classes, specified by 5 different attribute grammars of 28, 65, 115,
25 en 37 lines, respectively. It is important to note that this application thus
involves storage, updates and parsing of different histories. The main difference
with respect to multi-threaded programs resides in the additional event “exec”
and the different views (i.e., thread, object and global view). Below we describe
how the extensions at the implementation level needed for multi-threading can
be easily incorporated without affecting the overall tool architecture, which has
proven its use in practice, as shown above. Further, we discuss how these exten-
sions avoid the interference problem as explained in the introduction.

4.1 Meta-Program

Suppose that during execution of a multi-threaded Java program, an event listed
in a communication view occurs. The corresponding history should be updated
to reflect the addition of the new event. Hence, the first question is: how to
represent the history? A meta-program written in Rascal [8] generates for each
event in the communication view a ‘token class’ with fields for storing: the caller

4 This case study has successfully been carried out in the EU HATS project (http://
www.hats-project.eu).

http://www.hats-project.eu
http://www.hats-project.eu
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Fig. 8. SAGA tool architecture

and callee, the thread identity, the actual parameters and (for return events only)
the return value. We can then represent a history as a Java List of instances of
token classes.

4.2 Monitoring and Interference

The monitoring component updates the history whenever a relevant event occurs,
and (possibly) triggers the parser.

AspectJ is tailored for monitoring. It can intercept method calls, executions
and returns conveniently with pointcuts, and weave in user-defined code (advice)
that is executed before or after the intercepted event. Each pointcut corresponds
to an event listed in the communication view. The advice is the code that updates
the history.

The code for the aspect is generated from the communication view auto-
matically by the Rascal meta-program. Advice is woven into Java source code,
byte code or at class load-time fully automatically by AspectJ. We store thread-
local histories in a Map<Long, History>, which assigns to each thread id (of
type Long) its history, and use the inter-type declarations of AspectJ to store
the local history of an object in the object itself in a new field named h. This
ensures that whenever the object goes out of scope, so does its history and
consequently reduces memory usage. Furthermore, compared to storing a single
global history, this method avoids the calculation (by projection upon the global
history) of the local object and thread histories. Since in thread-local histories,
the threadId is the same for every event, we reduce memory usage by avoiding
storing it altogether. We store global histories inside a separate Aspect class.
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Figure 9 shows a generated aspect. The first five lines together form a point-
cut, the sixth and seventh line is the advice. The third line identifies the
method name. The fourth line binds the variables ‘clr’ and ‘cle’ to the appro-
priate objects, and together with the first line, determines the full method
signature (thereby distinguishing overloaded methods). The fifth line ensures
that the advice is executed only when assertions are enabled. Assertions can
be enabled for each communication view (and associated grammar) individ-
ually. The sixth line retrieves the thread id, and the seventh line calls a
void synchronous update(Token t) method that appends the new event to
the history. Here, exec_get is the token class (generated by the Rascal meta pro-
gram) corresponding to the event. Since the event was defined in a local object
view, the history is saved in a field cle.h of the callee and will not persist in
the program indefinitely. It will be garbage collected as soon as the callee object
itself is destroyed.

/* exec synchronized void get(); */

before(Object clr, Fork cle):

(execution( synchronized void *.get())

&& this(clr) && target(cle)

&& if(ForkViewAspect.class.desiredAssertionStatus() )) {

long threadId = Thread.currentThread().getId();

cle.h.update(new exec_get(clr, cle, threadId));

}

Fig. 9. Aspect for the event ‘exec synchronized void get()’ from Fig. 4

Our approach avoids interference, as a consequence of which concurrently
running threads of the program need not be locked, because of the following
three main characteristics:

– Whenever the history should be updated with a new event, we create a new
instance of the appropriate token class to store the objects involved in the
event. This new token class object is not changed (or even visible) in the
program under test.

– Assertions in well-formed grammars do not refer to the actual state of the pro-
gram: they are completely determined by the values of the built-in attributes
stored in these newly created objects.

– Event updates that arise from different threads can cause an update to the
same history variable: global histories and local object histories are shared
between threads. We provide exclusive access to the history with update meth-
ods.

4.3 Parser Generator and Assertion Checker

After a history update, SAGA must decide whether it still satisfies the specifi-
cation given by the grammar. A history can be seen as a sequence of tokens (in
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our setting: events). Since the grammar together with the assertions generate
the set of all valid histories, checking whether a history satisfies the specification
reduces to deciding whether the history can be parsed by a parser for the gram-
mar, where moreover during parsing the assertions must evaluate to true. For
events labelled with a reset action, if the associated condition is true, the parser
is triggered and the history subsequently reset (see below for more information
on parsing).

We use ANTLR [14] to create a parser for the given attribute grammar.
During parsing, ANTLR calls a state-based assertion checker to evaluate the

assertions in the grammar. We used standard Java assertions in our grammars.
This ensures compatibility with all Java compilers. The result of the parsing
process is either a parse or assertion error, which indicates that the history vio-
lates the specification given by the attribute grammar, or a parse tree decorated
with new attribute values.

5 Conclusion

The new version of SAGA can be obtained from https://github.com/cwi-swat/
saga. Although we illustrated our framework using synchronized methods, gen-
eral locks as provided in the package java.util.concurrent.locks can be han-
dled just as easily by tracking the methods lock, tryLock and unlock in the
communication view. In [5] we have already reported on a successful application
of our tool to an industrial case study. This led to the integration of SAGA into
the software lifecycle at SDL. Currently, in the context of the European Envis-
age project, we are extending this case to the specification, run-time verification
and monitoring of a distributed cloud application.
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