
Chapter 19
A Java-Based Distributed Approach
for Generating Large-Scale Social
Network Graphs

Vlad Şerbănescu, Keyvan Azadbakht and Frank de Boer

19.1 Introduction

Distributed systems and applications require large amounts of resources in terms of
memory and computing power and are becoming a standard for large businesses and
enterprises [12] within and outside the domain of Computer Science. A very impor-
tant topic for distributed applications is Big Data management and more specifically
the generation of large-scale social networks graphs where the number of nodes
reaches very large numbers. Analysis of such networks is of importance in many
areas, e.g., data mining, network sciences, physics, and social sciences [3]. The need
for efficient and scalable methods of network generation is frequently mentioned
in the literature [8], particularly for the preferential attachment process [1, 13, 14].
Barabasi–Albert model, which is based on preferential attachment (PA) [4], is one
of the most commonly used models to produce artificial networks, because of its
explanatory power, conceptual simplicity, and interesting mathematical properties
[13]. Nevertheless the large number of nodes in such graphs may not fit in the mem-
ory on one machine. The need for efficient solutions which provide scalability also
requires more computational resources as well as implementation considerations. As
such, distribution and synchronization are two main challenges. In this chapter, we
investigate as a case study a distributed solution for PA-based graph generationwhich
avoids low level synchronization management, thanks to the notion of cooperative
scheduling and futures.

V. Şerbănescu (B) · K. Azadbakht · F. de Boer
Centrum Wiskunde and Informatica, Science Park 123, 1098 Amsterdam,
XG, Netherlands
e-mail: vlad.serbanescu@cwi.nl

K. Azadbakht
e-mail: kazadbakht@cwi.nl

F. de Boer
e-mail: frb@cwi.nl

© Springer International Publishing AG 2016
F. Pop et al. (eds.), Resource Management for Big Data Platforms,
Computer Communications and Networks, DOI 10.1007/978-3-319-44881-7_19

401

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301660577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

402 V. Şerbănescu et al.

In several examples of distributed applications such as high-energy physics appli-
cations, research digital libraries or secure banking systems with millions of users,
communication between remote machines is a significant challenge. Modeling dis-
tributed communication such that it can be analyzed at development phase for syn-
chronization issues or deadlocks allows the design of reliable and efficient software
that will not require extensive testing and debugging. We provide in this paper a
library that allows a more intuitive mapping from a modeling language, the abstract
behavioral specification language(ABS) [6], to a programming language. Since the
modeling language is tailored toward asynchronous communication, the distributed
implementation of the library will not require any remote object field access or syn-
chronous remote method invocations.

The expressive power of the above-mentioned library is shown in the PA-based
graph generation case study where the array representing the graph is partitioned and
located on remote machines, each is owned by an actor. According to PA, the slots
of each array are resolved by the values from (the same or) other arrays by which
the new connections between the nodes are formed. The future construct provides a
means for each actor on a machine to synchronize on the return value from a process
(i.e., a runtime method execution of an actor) on remote machines. The process itself
can also suspend on a boolean condition (i.e., the continuation of the process can be
activated when the condition is evaluated to True), and then returning the value. As
shown in the case study, using such powerful constructs eliminates the need for low
level synchronizatoin mechanisms.

While the Java language is one of the most popular, intuitive and easy to use
languages in terms of software development and has significant support for paral-
lel and distributed programming, its most basic entity for representing a block of
running code is a Thread which is very expensive memory-wise. There are several
interfaces which abstract lightweight tasks and subtasks, but in order to schedule
and preempt these tasks they still need to be encapsulated in the form of a Thread.
The issue appears when an application requires multiple context switches between
several tasks which have significant call stack sizes. As this number becomes very
large the thread explosion affects the main memory thus the application’s perfor-
mance. The major contribution of this chapter is to provide a library with distributed
support of the actor-based model in the Java language, with enhanced future syn-
chronization capabilities that become available in a distributed setting. Furthermore
we introduce data structures to manage propagation of futures and allow them to be
garbage collected on each machine. We also provide a notification mechanism for
future resolution in order to avoid inefficient busy-waiting loops. The rest of this
paper discusses related work in Sect. 19.2, followed by a detailed explanation of the
new library in Sect. 19.3. We present a case study that is suitable for evaluating our
solution in Sect. 19.4 and its high-level implementation in Sect. 19.5. We draw the
conclusions and present the next steps for this work in Sect. 19.6.

19 A Java-Based Distributed Approach … 403

19.2 Background and Related Work

In the ABS, the core language semantics imposes that all objects created in the
program are actors with an independent behavior, with a possibility to communicate
with other actors and use futures to synchronize at certain execution points. The
language groups actors into Concurrent Object Groups (COG) which allow objects
to communicate with each other synchronously, but apart from the actors in the
same COG, all other actors are considered remote and may only invoke each other
asynchronously. The physical location of an actor in ABS is completely transparent
as there are no virtual machines or IP addresses inserted in this high-level language.
The language features one construct for the asynchronous communication, another
construct for blocking an actor’s execution on a future and a third and very powerful
construct for suspending and scheduling methods within one single actor, a construct
that introduces the notion of cooperative scheduling.

These two latter constructs can be preceded by annotations that allow custom
schedulers to be defined in order to satisfy an application’s specific requirements.
Further annotations can be associated to method calls to specify costs and deadlines
in order to create a very powerful scheduler. All these constructs are written in a very
simple and concise way in ABS, in order to allow system designers a simple view
of their application which can be even large enough to be deployed in a cloud envi-
ronment [7]. However, from this modeling language we need to generate code for
programs to execute on multiple resources, tasks to be submitted to those resources
and also incorporate the powerful schedulers. To this end ABS has several execu-
tion backends in a simulation language (Maude), functional language (Haskell), and
object-oriented languages (Erlang and Java). Our focus for this contribution is the
Java language backend for which the translation process of distributed applications
may create multiple redundant objects, threads, and data structures that significantly
impact performance.

Listing 1 Scheduling in ABS example

interface Ainterface {
Int recursive_m(Int i) ;

}

interface Binterface{
Int compute() ;

}

class A implements Ainterface{

Int recursive_m(Int i){
i f (i>0){

this . recursive_m(i − 1);
}
else{

B computation = new B () ;
Future f = computation ! compute() ;
await f ?

} } }

class B implements Binterface {

Int compute(){
Int result ;

404 V. Şerbănescu et al.

/∗do some work ∗/
return result ;

} }

{ / / Main block:
Int i = 0;
A master_i = new A () ;
List futures = EmptyList;

while (i < 100){
Future f = A ! recursive_m (10);
futures = cons(f , futures) ;

}

while (futures != EmptyList){
Future f = head (futures) ;
futures = ta i l (futures) ;
f . get ;

} }

To illustrate how cooperative scheduling works, we look at a simple program
in Listing 1. The program creates an object of Class A which contains method
“recursive_m.” The construct “o.recursive_m” is a regular synchronous call that
must be executed without any preemption. Inside the method, we create an object of
class B which has a method “compute.” The construct “computation!compute()” is
an asynchronous call that allows the object of class B to execute in parallel themethod
“compute.” At this point there are two constructs for synchronizing with a call that
executes in parallel with the current object. The first construct, “f.get” is at the level
of the object and forces the current object to block and wait for the completion of
method “compute” that was captured in the future f. The second construct “await f
?” is more fine grained in the sense that only the current method that is executing
this statement, namely “computation!compute()” blocks, while subsequent calls of
“computation!compute()” resulting from the main for loop, can be scheduled and
run by the object o. An important observation here is to understand that all calls
like “computation!compute()” are inserted into a queue that each object has and are
scheduled to be run by the same object and not in parallel. The degree of parallelism
is determined by the number of objects created.

The ABS-API library [9–11] was introduced as a solution to translate ABS code
into production code initially for parallel applications. Java 8 new features allow
wrapping of method calls into lightweight lambda expressions such that they can be
put into a scheduling queue of an Executor Service to which the running objects are
mapped, significantly reducing the number of idle Threads at runtime. Furthermore
we minimized the number of threads created by saving the call stack of suspended
methodswithin an actor caused by the “await” statement. Our first solution to achieve
this was to add a central context for all actors in the system and follow this execution
sequence.

• Each asynchronous call/invocation is a message delivered in the corresponding
object’s queue.

• All objects in the same Concurrent Object Group (COG) compete for one Thread.
• A Sweeper Thread decides which task should be created and be available for
execution from the available queues.

• A thread pool executes available tasks based on a work stealing mechanism.

19 A Java-Based Distributed Approach … 405

• On every await statement, we try to optimally suspend the message thread until
the continuation of the call is released.

This Sweeper Thread however becomes a bottleneck when the number of actors
is very large while also making actors dependent on each other. The new library that
is the main contribution of this chapter, however, is tailored to support distributed
actor-based programming and therefore requires a different organization of thread
management and future propagation. Furthermore in a distributed setting there can be
no centralized thread for all actors, therefore we propose a new solution that replaces
the purpose of this thread.

19.3 Description of the Distributed ABS-API Library

In this section we describe the newest version of the ABS-API library that is written
in Java to support an actor programmingmodel in a distributed setting, with enhanced
cooperative scheduling, distributed future control and garbage collection.We present
awhole newand simple format for classifying actors basedon their intendedbehavior.
In this versionweoptimize even further thememorymanagement of actor by reducing
the number of Threads created at runtime. We use certain triggers to determine the
start and ending of a live context and eliminate the use of redundant Threads that
correspond to the running process of an actor.We introduce a class hierarchy of actors
running on remote hosts, on local host and actors whose functionality is reachable
from a remote host. This hierarchy simplifies garbage collection and reduces the
number of peer-to-peer communications between remote hosts, as well as offering a
clear separation between an application runningon a singlemachine or in a distributed
environment.

19.3.1 Actor Class Hierarchy, Naming Scheme
and Asynchronous Communication

In the previous implementation of the ABS-API we had one single interface to allow
an actor programming paradigm. This single interface encapsulated the entire behav-
ior of the actor that comprised of the continuous running cycle, the task message
queue, the single thread restriction and the cooperative scheduling of its suspended
tasks. However, when deploying actors in a distributed environment they have par-
ticular locality and visibility characteristics. It is also important to take into account
how actors will communicate with each other depending on their location and what
elements need to be specific to themachine. Therefore an actor needs to have a global
identity (represented by a JavaURI)making it discoverable on all themachines of the
application while its internal structure exists on only one machine. The URI takes the
format of “IP:actorName”, where IP is the host machine’s address and actorName is

406 V. Şerbănescu et al.

a unique identifier that distinguishes between actors on this machine. This allows for
a scheme where local generation of actors avoids inconsistencies at a global level.
The discovery mechanism is very simple:

• An actor is instantiated on only one machine and is given a URI comprised of the
machine’s IP and a unique name.

• To communicate with a remote actor, a machine requires a reference with the
unique global identifier.

For inter-machine communication each twomachines in the system are connected
by one socket and actors send messages through the machine’s socket streams. Fur-
thermore, each machine maintains a actorMap of all of its actors in order to have a
mapping between the Java URI and the Java reference of the actor such that it can
forward remote requests to the correct actor. A certain special type of actor is intro-
duced that is classified as local and has no global identity such that it is not reachable
by other machines and can only receive messages from other actors on the machine it
runs on. These particular characteristics allow for a simple classification of the actors
according to the class diagrams in Fig. 19.1 and provide a clear separation between
a parallel and a distributed setting.

The diagram in Fig. 19.1, presents how we classify actors based strictly on the
machine on which they reside and therefore their physical existence on the machine.
The API has a parent abstract class called DeploymentComponent which maintains
data specific to the machine. Firstly, it contains a customized ThreadPoolExecutor
to which the actors residing on the machine will submit their tasks. This ThreadPool

Fig. 19.1 Class diagram based on ABS transparency

19 A Java-Based Distributed Approach … 407

Executor is available to all actors on one machine and it has an overridden afterEx-
ecute method to control several behaviors specific to actors which we will discuss
further in this section. Secondly, the class also contains the actorMap of all the
actors that are initialized on one machine such that remote messages can be routed
to the correct actor. Finally, the class contains a table of the socket streams with all
other machines in the system that grows and shrinks dynamically, as more machines
are added to the system. An important observation is to notice that socket streams
are initialized only when a remote actor belonging to a node that was previously
unknown is instantiated in the system and a listener thread is assigned to the stream
processing either incoming messages to the machine and as such, only if the setting
is distributed. The machines communicate through serialized messages and objects
that can be of four types that will be explained in the next two subsections:

• asynchronous method invocations.
• futures that are passed as parameters.
• a resolved future result.
• actor URI or futureID used to identify actors and futures on remote machines.

The DeploymentComponent class is subclassed into a LocalActor class which
represents the simplest abstraction of an actor that is not connected to the outside of
themachine. This actor has amessage queue that can receive asynchronousmessages
that are executed in a FIFO order with submissions to the machine’s thread pool. An
important optimization is introduced in the execution instance of a standard actor.
Instead of spawning a task that continuously loops through an actor’s queue from
the point it is instantiated, the task is now spawned only when the first message
is introduced in the queue and finishes once the queue is empty. Therefore actors
no longer have a live thread corresponding to their run if they are idle. The second
subclass of the DeploymentComponent is the ReachableActor which has two very
distinct behaviors, but ensures the transparency of the ABS language presented in
Sect. 19.2. This class can identify either an actor that is extended with distributed
support to receive remote calls or a remote actor which forwards messages to the
correct machine. In both cases the actor is instantiated with the global identifier
that we discussed earlier in this section, and this identifier distinguishes its general
behavior on the machine. If its identifier’s host IP is the same with the machine IP,
then it behaves like a standard actor, only it is included in the machine’s actorMap
such that incoming messages can be forwarded to it for execution. On the other
hand, if the IP differs from the machine IP, the actor is a remote actor and it is
only a reference used for transparency on the machine. In this case, asynchronous
messages are forwarded to the machine’s output stream such that they can be sent
via the machine socket to the machine where the remote actor actually resides.

408 V. Şerbănescu et al.

19.3.2 Distributed Futures Control

The most important feature of our library is that it now has support for programming
with distributed actors. A more detailed illustration in Fig. 19.2 explains the role of
the ReachableActor on both a local and remote machine. In this setting we have an
actor a1 with a unique global identifier which is a Java URI that is “IP2:a1”, where
IP2 is the IP address of Node 2 on which the actor was instantiated and a1 is a unique
identifier of the actor. Node 1 has a reference to this actor and its interface which
contains method m() is also available. An important objective of our solution is to
avoid actors entering a busy-waiting loop in order to check the resolution of futures.
To achieve this, we insert a remoteUncompletedFutures data structure which retains
all the futures that were generated by calls to remote actors. The machine then sends
a serialized lambda expression of the asynchronous method call to the socket. Each
machine is aware of the senders of incoming messages, therefore when an actor
completes a remote call, the serialized result of the actor can be sent back as a reply.
This behavior is part of the afterExecutemethod of the machine’s main executor and

Fig. 19.2 Future Flow

19 A Java-Based Distributed Approach … 409

is illustrated by the state afterExecture in the state diagram of the actor Fig. 19.4. In
Sect. 19.2 we discussed how messages in an actor are executed in the order that they
arrive in its queue and how the await statement allows for the rescheduling of these
messages. To allow remote actors to identify which reply belongs to which future
in the queue we introduce a naming scheme in the form of “IP:f” where IP is the
address of the actor that will complete the future and f the unique global identifier
(futureID) of the future.

The general mechanism is best described in terms of an example scenario with
two asynchronous calls to the same actor:

1. Node 1 sends the following sequence of messages to actor a1 on Node 2.

• A futureID “IP2:f1” identifying the future that will be generated by the fol-
lowing asynchronous method call.

• A pair< I P2 : a1,m() > representing the first asynchronous method call to
actor a1.

• A futureID “IP2:f2” identifying the future that will be generated by the next
asynchronous method call.

• A pair< I P2 : a1,m() > representing the second asynchronous method call
to actor a1.

2. The two uncompleted futures f1 and f2 and their corresponding identifiers are
stored as mappings as remoteUncompletedFutures.

3. Actor a1 receives from the socket stream the two identifiers and two messages
msg1 and msg2 in the same order and inserts them in the message queue.

4. Actor a1 schedules msg1 and msg2 in a FIFO order on Node 2 main executor
unless rescheduled by an await statement.

5. When either message has finished executing, the afterExecute method of the
main executor sends back the corresponding futureID within either pair< I P2 :
f 1, result > or< I P2 : f 2, result >back to the socket stream where the mes-
sage came from.

6. The socket stream forwards the result to Node 1.
7. Future f1 or f2 is completed with the received result depending on the futureID.

The semantics of ABS allows actor references and futures to be passed remotely
through asynchronous method calls. However the semantics restrict actors from
accessing fields of remote references or making synchronous calls on these ref-
erences. The transparency feature of ABS means that remote futures are accessible
by any actor and can be used together with the await and get statements to synchro-
nize. A more difficult challenge is how futures are propagated throughout the system
as parameters of method calls and when they become available for garbage collec-
tion on each machine. While remote objects that may be passed as parameters are
handled by the class hierarchy, remote futures need a heuristic to be propagated and
notified of completion once they are passed as parameters. A serialized future object,
together with the futureID, needs then to be sent before the actual method call that
contains it, such that it can be identified on the remote machine. This is a different

410 V. Şerbănescu et al.

type of message from the one that just sends a futureID like in the previous scenario,
as the remote actor actually needs the object to call get and await statements on. This
future is then inserted into a table of remotePassedFutures and the corresponding
list of machines to which they have been passed as parameters, or the table is simply
updated with another machine if the future already exists. Whenever an actor passes
a future as a parameter of a remote asynchronous class it takes the following steps:

1. It checks if the future is completed and if so, sends it via the socket stream before
sending the asynchronous call.

2. If it is uncompleted, the future is still sent before the call, but also saved in a
map with the format < futureID : List < DeploymentComponent >> where the
list contains all the remote actors that have received this future as part of an
asynchronous method call.

3. The received future is stored by the actor in the remoteUncompletedFuturesmap.
4. When the future is completed either by:

• a local actor.
• a remote actor as explained in the protocol before.
• a remote actor explained in the next step.

the list of machines that require the future is retrieved and the entry in the map is
removed.

5. The actor sends a pair < futureID, result > to all the machines in the list that
require it.

6. When a machine receives such a pair it completes the future identified by the
futureID with the result and possibly runs steps 3 and 4 itself if it propagated this
future as well.

19.3.3 Actor Execution Context

Actors run in a parallel and distributed environment through simple messages that
are presented in Fig. 19.3. In addition to the usual object-oriented implementation,
an actor exposes a method send which allows it to receive asynchronous method
calls form other actors and this provides parallel execution between the actors. The
class simply creates a lambda expression that takes the form of a Java Runnable or
Callable and subsequently a wrapper future which may be used for synchronization
purposes. In our previous version of the API, each actor had an execution lock that
limited it to one method running at a time.

For a single machine, there was a single thread, called a Sweeper, available across
all actors, that continuously checked all “unlocked” actors and submitted the head of
their queue to the executor service. Actor execution is now demand-driven as shown
in Fig. 19.4, with a single thread that is spawned into the state ready once the first
message is received in the actors queue, moves to state execute and runs all messages
in the queue and goes into state stop once the queue becomes empty, restarting once

19 A Java-Based Distributed Approach … 411

Fig. 19.3 Message encapsulation

Fig. 19.4 Actor state diagram

another message is inserted in the queue. This makes actors completely independent
from each other unless they explicitly call the synchronization mechanisms get and
await.

19.3.4 Synchronization and Cooperative Scheduling

A key feature of the Sweeper thread was that it allowed efficient scheduling of tasks
within an actor. It prevented redundant thread creation by having suspended tasks
of an actor given priority once they were released to compete for the actor’s lock.
With the Sweeper thread deleted from the model of the API, we introduce a new
mechanism to support cooperative scheduling. First of all when a get statement is
called on a future, the actor moves to the state block until the future is resolved. If
an await statement is encountered, the actor invokes another exposed method await
which receives a boolean condition or a future to suspend on and a continuation in

412 V. Şerbănescu et al.

the form of a lambda expression. The actor will then store a mapping of the contin-
uation and the condition or future in a separate map as either futureContinuations
or conditionContinuations specific to each actor and moves to state ready. The main
executor introduced in the library is now responsible when, a thread completes, to run
the afterExecute method which verifies if the method is remote in which case it has
to forward the result to the socket from which it came to avoid a busy-waiting thread
that may do this work. If the method invocation is from a local actor, the after execute
method has to search each actor’s continuation maps to identify the continuations
that may have been resolved by this method (either an existing boolean condition or
the actual future that has been resolved).

19.4 Description of the Preferential Attachment Algorithm

In this paper, we represent social networks through the notion of a graph where nodes
are the members of the network and edges are the connections between them. The
notion of Preferential Attachment (PA) is a specific model of adding a new member
preferentially to a social network.We consider the above-mentioned preference to be
the degree of the nodes, that is, roughly speaking, the more the degree of a node in the
existing graph, the higher probability that it makes a connection with the new node.
In this model, an existing graph of n nodes has a discrete probability distribution for
the nodes with the probabilities P1, P2, . . . , Pn where

∑n
i=1 Pi = 1 and

Pi = deg(i)
∑n

j=1 deg(j)

where deg(i) returns the degree of the node i . One of the existing nodes is then ran-
domly selected based on the above distribution tomake connectionwith the newnode.
The Barabasi–Albert model [4], which is designed to generate scale-free networks
using the preferential attachment mechanism, is one of the most commonly used
models to produce artificial networks, because of its explanatory power, conceptual
simplicity, and interesting mathematical properties [13]. The procedure to generate
a PA-based graph with n nodes starts with a given initial clique with m0 nodes (a
small complete graph). The remaining nodes are then added to the graph so that each
new node makesm distinct connections with the existing graph (1 ≤ m ≤ m0) based
on the distribution. The nodes are added sequentially (i.e., addition of the next node
starts after terminating the addition of the current node) since, as shown in the above
definitions, adding each new node influences the whole distribution.

Adopted fromCopyModel, [8], we employ the array data structure to represent the
graph. As depicted in Fig. 19.5a, from left to right each pair of array slots represents
an edge of the array. In order to set up an array which represents the graph with the
above-mentioned parameters, the array size is

19 A Java-Based Distributed Approach … 413

Fig. 19.5 The array
representing the graph

S = init + 2m ∗ (n − m0)

where init is the size of initial graph which can be a complete graph, init = m0 ∗
(m0 − 1). Figure19.5b shows an abstraction of the array where the node n will be
attached to the existing graph and m = 3. The array can be optimized in terms of
memory since one slot of each pair for all the edges is calculable (e.g., n in Fig. 19.5b).
However we ignore this optimization in this section. The next step is to resolve
the unresolved slots for the node n (depicted by 0) according to the probability
distribution of the existing nodes (i.e., P1, . . . , Pn−1). We simply use a uniform
distribution over all the slots placed previous to the slots regarding node n since the
number of occurrences of each node equals to its degree. Note that the values for
the three unresolved slots must be distinct, which is simply checked via a function.
The sequential solution is fairly straightforward. Given the array with the initial

graph at the beginning slots, according to above properties, the sequential solution
is achieved via adding the nodes sequentially to the array.

However, the solution is more challenging in a parallel or distributed setting. To
this aim, first of all the nodes (and the corresponding array) should be partitioned
so that each partition is resolved by an actor. In the array, each node is represented
by a sequence of slots where the first slot of each pair is the node’s id (e.g., the
slots regarding node n in Fig. 19.5b). If we consider all the partitioned arrays to be
one virtual global array (like what we expect in the sequential approach) then the
direction of dependencies and computations is depicted in Fig. 19.6. The arrow x
in this figure shows a special kind of dependency, unresolved dependency, which

Fig. 19.6 The direction of dependencies (right to left) and computations (left to right)

414 V. Şerbănescu et al.

shows the slot whose resolution is dependent on yet another unresolved slot, target
slot. It is not difficult to see that unresolved dependencies only appear in the parallel
solution. In order to remain consistent with the original PA model, the distributed
approach keeps unresolved dependencies and uses the value of the target slot when it
is resolved. How to keep the dependencies and use their target results after resolution
is a low-level challenge. Figure19.7 shows two different strategies to deal with this
challenge. The first approach (Fig. 19.7a) is already examined in [1]. The second one
(Fig. 19.7b) is adopted from [2], which is for multicore architecture, and tailored to
fit the distributed setting. In the former case, the actor b places the request explicitly
in a data structure and replies to it when the corresponding slot is resolved by the
Actor. On the other side, actor a needs to keep track of the number of required
responses corresponding to the requests. The latter however does not require such low
level explicit synchronization management since it utilizes the notion of cooperative
scheduling [5] via await on boolean conditions [2] to introduce a higher level of
abstraction. Our implemented model follows the latter case.

Fig. 19.7 The process of dealingwith unresolved dependencies in an actor-based distributed setting

19 A Java-Based Distributed Approach … 415

19.5 Implementation of the Algorithm Using the ABS-API
Library

The implementation of the preferential attachment algorithm assumes a settingwhere
the number of machines and actors is established a priori such that the application
can assign predetermined global names to all the actors. In this manner all machines
already have RemoteActor references to the actors they need to communicate with
and corresponding communication streams setup as soon as all actors are instantiated
and initialized. Figure19.8 specifies our solution in a high-level pseudocode, which

Fig. 19.8 The sketch of the proposed approach

416 V. Şerbănescu et al.

represents the scheme depicted in Fig. 19.7b. Each actor is responsible to resolve one
partition of the virtual global array.

As shown in Fig. 19.5b, each node (as a new node) is associated with 2m slots
of the array. Each actor starts processing its corresponding partition. The way array
is partitioned has a considerable influence on the performance since it has a direct
impact on the number of the unresolved dependencies (e.g., Consecutive and Round
Robin Node Partitioning). In this section we abstract from the partitioning details. To
this aim,we introduce two functions in the code. The functionwhichSlot(i) returns the
local index corresponding to the virtual global index i , and the function whichAc-
tor(i) returns the actor index whose associated partition contains the local index
corresponding to the virtual global index i .

The process request suspends on the boolean condition until it evaluates to True.
The continuation is then queued and activated according to the actor’s scheduling
policy. The process delegate is also suspended until the future f is resolved. f ?
returns a boolean value which represents whether the future is resolved or otherwise.
Therefore the await on the future suspends the process until the future is resolved. The
exclamation and dot are for asynchronous and synchronousmethod calls respectively.
Finally the method duplicate checks whether the obtained value will cause a conflict,
that is, a node makes two connections to the same target.

19.6 Conclusion

In this paper we presented a library to generate executable code in Java for an actor-
based modeling language with very fine-grained scheduling heuristics formal analy-
sis and verification tools. In this implementation we added support for distributed
actors, future propagation and significantly reduced the number of threads created
and alive throughout the application’s lifetime ensuring efficient memory consump-
tion and performance. We offered an enhanced API for distributed communication
and explicit control of synchronization. Our focus was on the abstract behavioral
specification language which represents an excellent solution for modeling cloud
applications and this implementation allows the language to be extended with coop-
erative scheduling capabilities and powerful scheduling algorithms.We presented the
details of how our new solution uses the latest Java 8 concurrent library to map the
ABS constructs that invoke the scheduler and also ensure transparency with respect
to actor’s locations. We motivated our contribution by outlining the implementa-
tion of a specific scenario for generating large-social network graphs which can be
deployed in a distributed environment using this library. The next step to this scien-
tific work is to integrate this implementation into the ABS compiler that is currently
in use to translate ABS code into executable Java code and investigate how to provide
syntactic sugaring for ABS asynchronous method invocations. This will allow the
direct modeling of our case study using ABS and testing it against the state-of-the
art implementation in MPI.

19 A Java-Based Distributed Approach … 417

Acknowledgments Partly funded by the EU project FP7-610582 ENVISAGE: Engineering Vir-
tualized Services (http://www.envisage-project.eu). Partly funded by the EU project FP7-612985
UpScale: From Inherent Concurrency to Massive Parallelism through Type-based Optimizations
(http://www.upscale-project.eu).

References

1. Alam, M., Khan, M., Marathe, M.V.: Distributed-memory parallel algorithms for generating
massive scale-free networks using preferential attachment model. Proceedings of the Inter-
national Conference on High Performance Computing, p. 91. Storage and Analysis, ACM,
Networking (2013)

2. Azadbakht, K., Bezirgiannis, N., De Boer, F.S., Aliakbary, S.: A high-level and scalable
approach for generating scale-free graphs using active objects. In: Proceeding of the ACM/SI-
GAPP Symposium on Applied Computing, To appear (2016)

3. Bader, D.A., Madduri, K.: Parallel algorithms for evaluating centrality indices in real-world
networks. In: International Conference on Parallel Processing, 2006. ICPP 2006, 539–550.
IEEE (2006)

4. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439),
509–512 (1999)

5. De Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: Programming
Languages and Systems, pp. 316–330. Springer (2007)

6. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: Abs: A core language for
abstract behavioral specification. In: Formal Methods for Components and Objects, pp. 142–
164. Springer (2010)

7. Johnsen, E.B., Schlatte, R., Tarifa, S.L.T.:Modeling resource-aware virtualized applications for
the cloud in real-time abs. In: Formal Methods and Software Engineering, pp. 71–86 Springer
(2012)

8. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic
models for the web graph. In: Proceedings of the 41st Annual Symposium on Foundations of
Computer Science, 2000, pp. 57–65. IEEE (2000)

9. Nobakht, B., de Boer, F.S.: Programming with actors in java 8. In: Leveraging Applications
of Formal Methods, Verification and Validation. Specialized Techniques and Applications, pp.
37–53. Springer (2014)

10. Serbanescu, V., Azadbakht, K., Boer, F., Nagarajagowda, C., Nobakht, B.: ADesign Pattern for
Optimizations in Data Intensive Applications Using Abs and Java 8. Practice and Experience,
Concurrency and Computation (2015)

11. Serbanescu, V., Nagarajagowda, C., Azadbakht, K., de Boer, F., Nobakht, B.: Towards type-
based optimizations in distributed applications using abs and java 8. In: Adaptive Resource
Management and Scheduling for Cloud Computing, pp. 103–112. Springer (2014)

12. Serbanescu, V.N., Pop, F., Cristea, V., Achim, O.M.: Web services allocation guided by reputa-
tion in distributed soa-based environments. In: 2012 11th International Symposium on Parallel
and Distributed Computing (ISPDC), pp. 127–134. IEEE (2012)

13. Tonelli, R., Concas, G., Locci, M.: Three efficient algorithms for implementing the preferential
attachment mechanism in yule-simon stochastic process. WSEAS Trans. Inf. Sci. Appl. 7(2),
176–185 (2010)

14. Yoo, A., Henderson, K.: Parallel generation of massive scale-free graphs (2010). arXiv preprint
arXiv:1003.3684

http://www.envisage-project.eu
http://www.upscale-project.eu
http://arxiv.org/abs/1003.3684

	19 A Java-Based Distributed Approach for Generating Large-Scale Social Network Graphs
	19.1 Introduction
	19.2 Background and Related Work
	19.3 Description of the Distributed ABS-API Library
	19.3.1 Actor Class Hierarchy, Naming Scheme and Asynchronous Communication
	19.3.2 Distributed Futures Control
	19.3.3 Actor Execution Context
	19.3.4 Synchronization and Cooperative Scheduling

	19.4 Description of the Preferential Attachment Algorithm
	19.5 Implementation of the Algorithm Using the ABS-API Library
	19.6 Conclusion
	References

