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1. INTRODUCTION 

This paper investigates full abstraction of denotational models w.r.t. 
operational ones for two concurrent languages. The languages are non­
uniform in the sense that the meaning of atomic statements generally 
depends on the current state. In particular, they have individual variables 
which store values, and the elementary actions are (mainly) value 
assignments to these variables. The first language, .5fi, has parallel composi­
tion but not communication, whereas the second one, .2"2 , has CSP-like 
communications in addition. Both of the two languages have recursion. For 
each of If?; (i = 1, 2), an operational model IP; is introduced in terms of a 
Plotkin-style transition system, while a denotational model ~; is defined 
compositionally using interpreted operations of the language and some 
fixed point method for defining the meanings of recursive programs. 

We show that, with the nonuniform languages, one needs to represent, 
in the meaning of a process, possible interactions between the process and 
its environment. Merely recording observations of initial and final states or 
possible computation sequences is not enough to obtain compositionality. 
One needs sequences in which there are gaps between steps to represent 
possible actions of the environment. This is essential in order to interpret 
parallel composition compositionally. Furthermore, the model one obtains 
by adding this information is in fact fully abstract w.r.t. the operational 
semantics, which is established by showing how to construct contexts that 
distinguish processes with different meanings. 

The full abstraction problem for programming languages was first raised 
by Milner in [Mi173]. In general, a model ~ for a language .P is called 
fully abstract w.r.t. another model (!), if it makes just enough distinctions to 
be correct (and thus compositional) w.r.t. (!). In other words, it is fully 
abstract w.r.t. (!), if 

Vs 1 , s2 E 2[~[s1] = ~[s2] 

~\IC[ C is a context of .P =>IP[ C[s1]] = (!)[ C[s2]]] ], 

where a context is a statement consisting of the language constructs of 2 
and a place-holder (or a hole) e. and C[s] denotes the result of substituting 
s for e in C. 1 If f$ is fully abstract w.r.t. (!), then ~ is the most abstract of 
those models re which are compositional and satisfy (!) = rx ore for some 
abstraction function rx; i.e., for each of these <i's, there is an abstraction 
function P such that P 0 <c = f$. The models ~; (i = 1, 2) will be denotational 

1 For an operational or denotational model .It for a language It? and a statements E It?, the 
notation ..H[s] is used to denote the value of .It at s. 
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in the sense that apart from being compositional, they treat infinite 
behavior by means of some fixed point construction. 

The mathematical domains we use are complete metric spaces [Niv79, 
BZ82]. In general, the metric approach may have, as a tool in program­
ming language semantics, some advantages over the use of the more 
traditional complete partial orders: First, many definitions can be given 
as the (by Banach's theorem) unique fixed points of some higher-order 
functions. Second, a metric powerdomain can be easily defined (as the 
collection of closed or compact subsets of a given complete metric space). 
In comparison, ordered powerdomains are easily defined as well (by means 
of ideal completion), but often the characterization of their elements is 
rather technical. For some example of the application of metric spaces to 
semantics, see for instance [ABKR89, BM88, Bak91]. 

In Section 2, some mathematical preliminaries on complete metric 
spaces, especially on spaces consisting (of sets) of streams, are given; the 
main body of our paper consists of Sections 3 and 4. 

In Section 3, the first language, 2i, is introduced; an operational model 
(91 is presented in terms of a Plotkin-style transition system; and a denota­
tional model ~1 for £'1 is defined on the basis of a complete metric space 
consisting of sets of streams of pairs of states with some additional infor­
mation. First, the correctness of !7)1 w.r.t. (91 is established, as in [Rut89, 
BR91 ], by means of the fixed point method introduced in [KR90]. The 
full abstraction of !7)1 is shown by means of a context with parallel com­
position: 

Given two statements s1 , s2 E 2'1 with different denotational 
meanings, a suitable statement T called a tester is con­
structed such that the operational meanings of s1 II T and 
s 2 II T are distinct. 2 ( 1) 

A combinatorial method called the testing method, which is the key idea of 
our paper, is proposed for constructing such a tester (Lemma 13 ). This is 
in general applicable to denotational models with a domain consisting of 
sets of streams of pairs of states (possibly with some additional informa­
tion). Thereby, we can construct testers having the following property: 

Given a process p and a finite sequence r = ( < cr 1' cr' 1 ), •.. , 

< cr n, cr~) ), we can construct a tester T and an executable 
sequence i' = ( <0: 1 , a~), ... , <a:k, O-D) with k ~ n such that for 
every process p', the parallel compositions p'TI ~1 [T] can 
execute i' if there is some sequence q such that ( < cr 1 , crl), ... , 

2 The variable T is used to denote a statement when it is considered a tester, while the typi­
cal variable for the set of statements is s. 
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(an• a~))· q E p', and the converse of this holds for p' = p. 
Intuitively, for such T and i', the process p is forced to 
execute the steps (a 1 , a~), ... , (an, O";J (maybe not con­
secutively but in this order), when p II f2l1 [ T] executes the 
steps ((0' 1 , O''i), ... , (O'k, B'D) consecutively. 

By the above property, we can construct such testers T as in (1 ): 

If s 1 and s2 are distinct in their denotational meaning, then, 
putting p;=f2l1[s;] (i= 1, 2), there exists some sequence r 
such that r · q E p 1 for some q but r · q if= p 2 for every q (or vice 
versa). By constructing a tester T and an executable sequence 
i' for rand p=p2 as above, one has i'Ef2J1[s1]TI:::2l1[T] and 
i' if= f2l1 [s2] TI f2l1 [T]. Thus one has a difference between the 
operational meanings of the two statements s1 II T and s2 II T. 

The full abstraction of :::2l1 is established by means of the testing method as 
described above. 

In Section 4, the second language, 2 2 , is introduced; an operational 
model @2 for 2 2 is given as in Section 3. The domain of a denotational 
model f2l2 for 2 2 is a kind of failures model, which was introduced in 
[BHR84 ], and is adapted here to the nonuniform setting. Each element of 
the domain is a set consisting of elements that are represented as 
(((a;, a;, a;));, (a", I')), where CJ;, a;, and CJ 11 are states, a; is an action, 
and I' is a set of communication sorts. These elements are called failures; the 
parts ( (u;, a;, a';)); and (a", I') are called a trace and a refusal, respec­
tively. First, the correctness of f2J2 is established as in Section 3. Then, the 
full abstraction of f2l2 is established by a combination of the testing method 
and the method proposed by Bergstra et al. in [BK088] to establish the 
full abstraction of a failures model for a uniform language without recur­
sion. This method was adapted by Rutten in [Rut89] to be employed for 
a language with recursion in the framework of complete metric spaces, 
which suggests how to use it in the present setting. Given two statements 
s 1 and s 2 of 2 2 , which are distinct in their denotational meanings, then the 
denotational meanings are distinct in the trace parts or in the refusal parts. 
When the distinction is in the trace parts, we can construct a tester by the 
method described above; otherwise we can construct a tester by the 
method of [BK088]. 

Finally, in Section 5, some remarks on related and future work are given. 
For some mathematical proofs, the reader will be referred to [HBR90]. 
Closely related to this paper is the work of Hennessy and Plotkin 

[HP79]. The language treated there, which we denote by £:,0 , is very 
similar to our first language, 2 1 , except that it contains "co'', a coroutine 
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construct, as well as the usual interleaving. In [HP79], a denotational 
model "f/ for .<t'co is constructed and the full abstraction of "f/ is established. 
Interestingly, we can construct a fully abstract model ~co for 2.,0 by slightly 
modifying ~1 ; thus the two models "//, 22'co turn out to be isomorphic (see 
Section 3.6.3 for more comparison with [HP79] ). 

The work of Roscoe [Ros84] is also related to this paper. The language 
treated there, a large subset of occam, is similar to our second language ~ 
in many respects. However, unlike individual variables in £'2 , variables in 
occam are not shared by two of more parallel processes. Thus, the model 
proposed in [Ros84] is different from 222 in its way of involving states into 
the meaning of a statement (see Section 4.6 for more comparison with 
[Ros84] ). 

2. MATHEMATICAL PRELIMINARIES 

As mathematical domains for our operational and denotational models, 
we shall use complete metric spaces composed of (sets of) streams. In this 
section, we present some standard notions on complete metric spaces and 
some notions specific to domains of (sets of) streams. 

First, we assume the notions of metric space, ultra-metric space (or 
non-Archimedian metric space), complete (ultra- )metric space, continuous 
function, closed set, contraction, nonexpansive mapping, and isometry to be 
known. The fact that a contraction from a complete metric space to itself has 
a unique fixed point, known as Banach's Theorem, is conveniently used (for 
the notions and fact above, the reader might consult [Dug66] or 
[Eng77] ). We use the following notation: 

Notation I. ( 1) The usual A-notation is used for denoting functions; 
i.e., for a set A, a variable x, and an expression E(x), the expression 
(A.xeA: E(x)) denotes the function which maps xeA to E(x). For a set X, 
the cardinality of X is denoted by # (X), and the set of nonempty subsets 
of X and the set of finite subsets of X are denoted by p + (X), and Pr(X), 
respectively. For a binary relation R on X, the reflexive and transitive 
closure of R is denoted by R*. For two sets X and Y, the set of functions 
from X to Y is denoted by (X--+ Y). The set of natural numbers is denoted 
by w. Each number n E w is identified with the set { i E w : 0 ~ i < n} as 
usual in set theory, and let ii= { i E w : 1 ~ i ~ n }. The closure of a subset X 
of a topological space M is denoted by xc1s. 

(2) The empty sequence is denoted by e. For a nonempty finite 
sequence q, the last element of q is denoted by last(q). For a set A, the set 
of finite sequences of elements of A is denoted by A <w, and let A+ = 
A <w \ { e }. The set of finite or infinite (with length w) of sequences of 
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elements of A is denoted by A,,"'. For a EA, we sometimes write simply a 
to denote the sequence (a) consisting only of a; further, we sometimes write 
simply A to denote {(a): a EA}. For q1 EA«", q 2 EA ,;w, the concatenation 
of q1 and q2 is denoted by q 1 • q2 • Also for p 1 s A <w, p2 SA,,"', let P1 ·P2 = 

{w 1 ·w 2 :w 1 Ep 1 Aw 2 Ep 2 }. For qEA,,"', the length ofq is denoted by 
lgt(q). For n E w and q EA ,;w, the truncation of q at level n, denoted by 
qCnJ, is the prefix of q with length n if lgt(n) ~ n; otherwise it is q. For 
psA""'w, let p["l={q["J:qEp}. An ordered pair (a0 ,a 1 ) and a triple 
(a0 ,a 1 ,a2 ) (=(a0 , (a 1 ,a2 ))) are distinguished from, but treated as 
sequences (ai)iEn with n being 2 and 3, respectively; for n = 2, 3, we some­
times write (a;) iEn to denote (a0 , •• ., a,,_ 1 ). For n = 2, 3 and i En, the ith 
component oft= (a);en is denoted by n7(t). 

An arbitrary set A can be supplied with a metric d A, called the discrete 
metric, defined by dA(x,y)=O if x=y, otherwise dA(x,y)= l. The space 
(A, dA) is an ultra-metric space. We use the following operation on metric 
spaces. (In our definition the distance between two elements of a metric 
space is always bounded by 1.) 

DEFINITION 1 (Operations on Metric Spaces). Let (M, d), (M1 , d1 ), ••• , 

(M,,,d,,) be metric spaces. (1) For a real number K such that 0<K<l, 
we define idA(M,d))=(M,d'), where d'(x,y)=K·d(x,y), for every 
x, yEM. (2) Let M 1 w ··· l±i M,, denote the disjoint union of M 1 , •. ., M,,, 
which can be defined as ujEil [ {j} x Mj]. A metric du on M1 l±i .. · l±i Mn 
is defined as follows: For (i,x), (j,y)EM 1 l±i .. ·l±iM,,, d0 ((i,x), 
(j, y)) = di(x, y) if i = j; otherwise du( (i, x), (j, y)) = 1. (3) A metric dp 
on the Cartesian product M 1 x · · · x Mn is defined as follows: For 
(x 1 ,. . .,x,,), (y 1 ,. • .,y,,) E M 1 x ··· xM,,, dp((x 1 , .. .,x,,), (y 1,. • .,y,,)) = 

maxjen[di(xj, yj)]. (4) Let fJc1(M) = { X E p(M) : X is closed}. A metric d 8 

on g.Jc1(M), called the Hausdorff distance, is defined as follows: For 
X, YEKJc1(M), dH(X, Y)=max{supxex[fl'(x, Y)], SUPveY[fl'(y,X)]}, 
where g(x,Z)=inf=ez[d(x,z)] for ZsM, xEX. (We use ·the convention 
that sup0=0 and inf0=1.) The space tJncCM)={XEp(M):X is 
closed and nonempty} is supplied with a metric by taking the restriction of 
dH to it. 

Complete metric spaces consisting of streams are introduced as solutions 
of appropriate domain equations as in [BZ82, AR89]. Namely, for 
arbitrary two sets A and B, and for an arbitrary real number K such that 
0 < K < 1, there exists a complete metric space < Q, dQ), which is unique up 
to isometry, satisfying the domain equation: Q ~ B \±:! (Ax id"(Q)). (The 
existence and uniqueness of such Q have been shown in [BZ82] and 
[AR89], respectively.) Note that id" is necessary for the associated functor 
with this domain equation to be contractive, which condition ensures the 
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uniqueness of the solution (see [AR89] ). Henceforth we fix a real number 
K such that 0 < K < l. The metric space < Q, dQ > can be defined in terms of 
projection functions introduced below, where the projection functions are 
very similar to the truncation functions of streams but slightly different 
from them, as we will note below. 

DEFINITION 2 (Projection Functions). (1) Let Q=(A<"'·B)1±1AO). 
We define projection functions if;,,: Q---> Q (n E w) inductively as follows: 
First, an arbitrary element b0 of B is fixed. Let q E Q. (i) if; 0 (q) = b0 . 

(ii) t/l,,+ 1(q)=q if qEB, and i/l,,+ 1(q)=a·t/J,,(q') if q=a·q'. (2) Let P= 
tJ 0 c(Q). For nEW andpEP, let lfn(p)= {t/!,,(q): qEp}. 

Note the difference between truncation and projection: The values of the 
projection functions are members of A <w · B ( s;Q), whereas the values of 
the truncation functions are members of (A <w. B) v A< w not of Q. 

As stated earlier, the metric dQ can also be formulated in terms of projec­
tion functions as follows: 

LEMMAl. (1) For q 1,q2 EQ, dQ(q 1,q2 )=Kmin{n:t/Jn!qi)*t/ln(<12)}-l if 

:ln[tf;,,(qi) # t/ln(q 2 )]; otherwise dQ(q 1 , q2 ) = 0. 
(2) For P1,P2 E P, dp(p1,P2) = Kmin{n:;f,,(pJ),.!fn<P2>}- l if :ln[liJ(P1) # 

liJ,,(Pi)]; otherwise dp(p 1, Pi)= 0. 

(3) For every n E w, there exists B > 0 such that Vp 1 , P2 E 

P[dp(P1, P2) ~ e => liJ,,(P1) = liJ,,(P1)J. 

Proof Omitted (see Appendix 1 of [HBR 90] ). 

The notion of finitely characterized subset is introduced for establishing 
that some subsets of a complete metric space are also complete metric 
spaces. 

DEFINITION 3 (Finitely Characterized Subsets). A subset P' of P is 
finitely characterized iff there exists n E w and P" £ P such that 
Vp E P[p E P'-= -(f(p) E P"]. 

A property <P( ·) defined for elements of P is called finitely characterized, 
if {p E P: <P(p)} is finitely characterized. The next example presents such a 
property. 

EXAMPLE 1. Fix n E w. An element p E P is said to be nonempty at level 
n, if p[nJ n An# 0. Let P' = {p E P : p is nonempty at level n }. Then it is 
immediate that Vp E P[p E P'-= If,,+ i(p) E P']. Thus P' is finitely charac­
terized, and therefore, the property "being nonempty at level n" is finitely 
characterized. Note that P" in Definition 3 is equal to P' here. 

The next lemma states that finitely characterized subsets and inter­
sections of finitely characterized subsets are complete metric spaces with 
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the original metric restricted to them. This lemma will be used in the proof 
of full abstraction to show that the domains of denotational semantics to 
be presented below are complete metric spaces. 

LEMMA 2. (I) Every finitely characterized subset P' of P is closed in P. 

(2) For every family [li> of finitely characterized subsets of P, n [li> is 
closed in P. 

Proof Omitted (see the proof of Lemma 2 of [HBR90] ). 

3. A NONUNIFORM LANGUAGE WITH PARALLEL COMPOSITION 

The first language 2'1 is a nonuniform language with recursion and 
parallel composition but no communication. 

First, an operational model 01 is introduced in terms of a Plotkin-style 
transition system. 

Then a denotational model .011 is defined compositionally by means of 
interpreted operations of the language, with meanings of recursive 
programs as fixed points of the denotational semantic domain, a complete 
metric space consisting of sets of streams of pairs of states. 

The correctness of .011 w.r.t. @1 is established, as in [Rut89] and [BR91 ], 
by means of the fixed point method introduced in [ KR90]. 

Finally, full abstraction of .011 is shown by means of a context with 
parallel composition: 

Given two statements s1 and s2 with different denotational 
meanings, a suitable statement T is constructed such that the 
operational meanings of s1 II T and s2 II Tare distinct. 

For constructing such T, a combinatorial method called the testing method 
is introduced in Lemma 13 (Testing Lemma). By means of this, the full 
abstraction of .9!\ w.r.t. ll\ is established. 

3.1. The Language 2 1 

The language 2'1 is the simplest nonuniform concurrent language with 
recursion: It has parallel composition but no communication, and its 
elementary actions consist only of value assignments to variables. 

Note that sequential composition as in [BK088] is not included in this 
language: We use prefixing of assignment statements as in [Mil80], where 
action prefixing is used in a uniform setting, for simplicity of models for the 
language. However, there is no difficulty in constructing a fully abstract 
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denotational model for a language which is like 2 1 , but which has general 
sequential composition instead of prefixing. 

(From now on we use the phrase "let (x E) M be ... "to introduce a set 
M with variable x ranging over M.) 

Notation 2. ( 1) Let ( v E) V denote some abstract domain of values. 

(2) Let (x E) IVar denote the set of individual variables. 

( 3) Let (er E) E denote the domain of states: E = (IVar --+ V ). 

( 4) Let ( e E) VExp denote the set of value expressions. 

( 5) Let ( b E) BExp denote the set of Boolean expressions. 

We assume a simple syntax (not specified here) for e and b. "Simple" 
ensures at least that no side effects or nontermination occurs in their 
evaluation. The evaluations of e and bin state a are denoted by [e](a) and 
[b] (er), respectively. The full abstraction of a denotational model is 
established under this assumption. 

Let X range over RVar, the set of recursion variables, and let e range 
over SVar, the set of statement variables. Note that recursion variables are 
used as names of statements defined by recursion, while statement variables 
are used as place holders for defining contexts of a language. 

The language 2 1 is introduced as a subset of 2 t, a language with place 
holders. 

DEFINITION 4 (Language 2 1). (1) The set of statements of the non­
uniform concurrent language (SE) 2f is defined by the following 
BNF-syntax: 

Here 0 denotes inaction; (x := e); S denotes the result of prefixing the 
assignment (x := e) to the statement S; If(., ·, ·) is the usual conditional 
construct; + and II denote alternative choice and parallel composition, 
respectively. 3 

Let FV(S) denote the set of statement variables contained in S. 

(2) Let (s E) 2 1 be the set of statements with not statement variable. 
That is, £'1 ={SE2f :FV(S)=0}. For ~ESVar, let 2j={SE2f: 
FV(S)s g} }. 

(3) The set of guarded statements (g E) '§1 is defined by the following 
BNF-syntax: 

3 In this language, the precedence of';', '+', and 'II' is higher than that of·: occurring in 
the construct If(., ·, -). 
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( 4) We assume that each recursion variable X is associated with an 
element g x of ~1 by a set of declarations D = { < X, g x)} x e Rvar. A program 
consists of a pair <s, D). 

In the sequel of this section, we fix a declaration set D = 
{ <X, gx) he RVar· 

For every be BExp, we regard the construct "If(b, ·, · )" as a binary 
operator on statements. Also, for every x e IVar and e E VExp, we regard 
the construct "(x := e); ·" as a unary operator on statements. Thus we get 
as single-sorted signature Yi with the sort of statements; the languages 2 f 
and 2 1 can be formulated as the set of terms and the set of closed terms 
generated by Yi, respectively. 

We introduce the notion of a context and some uses of it as follows: 

Notation 3. Let 2* be a language formulated as the. set of terms 
generated by a signature Y and a variable set g;}· 

(1) For Se.!£* and a sequence of distinct variables (e 1 , .•. ,en), the 
pair <S, (e 1 , ••• ,en)) is called a context of !£*. We sometimes write 
Sce 1, •..• e.i for <S, (e 1, .•• ,en)). When the notation Sce1, ••. ,e.i is used, it is 
always assumed that FV(S) £ g 1 , ••. ,en}· 

(2) For a context Sce1, .•• ,1;.i and S1>···•Sne.f£*, the notation 
S[(S1 , .. ., Sn)/(e 1 , ••• ,en)] denotes the result of simultatneously replacing e; 
in S with S;, i E ii. More simply, we sometimes write Sm .... ,eni[S1 , .•• ,Sn] for 
S[(S1, ... , Sn)/(e1, ... ,en)]. 

( 3) Let ..f be an interpretation, i.e., a set of interpreted operations for 
the signature Y with an underlying domain P (see [Rut90] for a formal 
definition of an interpretation for a signature); let Sce 1 •.•• ,enl be a context. 
For p 1 , ••• ,pneP, let [Sl" [(el> ... , en)/(p 1 , ••• ,pn)] denote the interpreta­
tion of S under ..f with the assignment of the value p; to the variable 
C iefi. More simply, we sometimes write [Scei ..... enilJ'" (p 1 , ... ,pn) for 
[S] ..... [(p1, ... ,pn)J(e1' ... ,en)]. 

3.2. Operational Model l!i1 for 2 1 

The operational model l!i1 rests on a transition system --+ 1 of the style of 
[ Plo81 ] . The transition relation --+ 1 £ ( 2 1 x }; ) x ( 2 1 x £) is defined as 
follows. For s 1 , s2 E21 and a 1, a 2 e£, we write <s1 , a 1 )--+ 1 <s2 , a 2 ) for 
( (s1' a 1 ), <s2 , a 2 )) E --+ 1 for easier readability. 

DEFINITION 5 (Transition Relation --+ 1 ). The transition relation --+ 1 is 
defined as the smallest relation satisfying the following rules ( 1) to ( 6 ). For 
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ael:, xeIVar, and vEV, the notation a[v/x] is used to denote a state a' 
which is the same as a except that a' (x) = v. 

(1) ((x :=e); s, a)-+ 1 (s, a[[e](a)/x]). 

(2) (s1,a)-+ 1 (s,a') ([e](a)=tt) 
(If(b, s1, s2 ), a)-+ 1 (s, a') 

(3) (s2 ,a)-+ 1 (s,a') ([e](a)=.ff) 
(If(b, s1, s2 ), a)-+ 1 (s, a') 

(4) 
( s 1 , a) -+ 1 (s, a') 

(s1 +s2 , a)-+1 (s, a') 
(s2 +s1,a)-+ 1 (s,a') 

(s1,a)-+ 1 (s,a') 
(5) 

(s1 II Sz, a)-+1 (s II Sz, a') 

(6) 

The last rule, called the recursion rule, stipulates that for each declaration 
( X, g x) ED, transitions of the recursion variable X are derived from those 
of its body g x, as usual. 

Let us call a statement s E Sf1 finitely branching iff for every a EI:, 

{ ( s', CJ 1 > E Sf1 x I: : < s, a) -+ 1 ( s', a')) is finite. Then, the transition rela­
tion -+ 1 is finitely branching in the following sense: 

LEMMA 3. Every s E L 1 is finitely branching. 

Proof By induction on the structure of s. See the proof of Lemma 3 of 
[HBR90] for details. I 

An operational model (!\ is defined by means of -+ 1 as the fixed point of 
a higher-order mapping ifi{'. 

DEFINITION 6 (Operational Model (91 for 2'i ). 
(1) Let Mi= (2'1-+ (.E-+ &Dnc(.E"'"))), equipped with a metric d 

defined as in Section 2. Then, let tf'f: Mi-+ Mi be defined as follows: For 
f E Mi, s E 2'i , and (J E .E, 

{u {CJ' f(s')(a'): (s, a)-+1 (s', a')} 

tf'i'(f)(s)(a)= if :J(s',a')[(s,a)-+ 1 (s1,0" 1 )], 

{ c} otherwise. 

643/115/1-11 
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The right-hand side of the above equation is closed by Lemma 3, and 
therefore, indeed, 'l'f(f) e Mf. Moreover, it is immediate from the above 
definition that forf,f'eMf, d('l'f(f), 'Pf(f))~K·d(f,f'), where K(<l) 
is the fixed positive real number introduced in Section 2. Thus, 'l'f is a 
contraction from M f to M f. 

(2) Let the operational model (!)1 be the unique fixed point of 'l'f. By 
the definition, one has @1:21 -+(L'-+t-J 0 c(.E"'w)), and for each se21 and 
<J'EL', 

{u {u' ·@1[s'](u'): (s, u)-+1 (s', u')} 
@1[s](u)= if 3(s',u')[(s,u)-+ 1 (s',u')], 

{ e} otherwise. 

Note that (!)1 is not compositional, as the following example shows. 

EXAMPLE 2. Let x E IVar. Then 

(!)1 [(x := O); (x := x + 1 ); O] = d.1i[(x := O); (x := 1 ); O] 

= (.A.u: {(u[O/x], u[l/x])} ), 

but 

@1[((x := O); (x := x + l); 0) 11 ( (x := 2); O)] 

#(91[((x:=O);(x:=l);O) 11 ((x:=2);0)]. 

3.3. Denotational Mode! !!P1 for 2 1 

The denotational model !JP1 is defined compositionally by means of inter­
preted operations of the language. 

The denotational semantic domain P 1 is a complete metric space 
consisting of sets of streams of pairs of states. The meaning of a recursion 
variable X with the declaration (X, gx) is defined as the fixed point of the 
contraction which maps each process p e P 1 to the interpretation of g x 
under the interpreted operations with the assignment of p to X. It turns out 
that the fixed point is the unique solution of the equation X = g x under the 
interpretation consisting of the interpreted operations. 

The domain P 1 is defined by: 

DEFINITION 7 (Denotational Semantic Domain P 1 for 2 1 ). ( 1 ) Let Q 1 
be the unique solution of Q1 ~ L'\:tl((L' x L') x id"( Qi)). One has Q 1 ~ 
((L' xL')<"' ·L')u (L' x rr 
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(2) For PEt<Jn0 (Qi), and rE(.Ex.E)<"', the remainder ofp with 
prefix r, denoted by p[r], is defined by p[r]={qEQ 1 :r·qEp}. 

(3) The initial state of a sequence q E Q 1 u (.Ex .E) +, denoted by 
istate 1(q), is defined as follows: Let istate 1(q)=cr if q=(<a,a'))·q', and 
let istate 1(q)=cr" ifq=(cr"). 

( 4) For p E P nc(Q 1) and cr E .E, P< cr) is the set of those elements of 
p whose initial state is cr. That is, P< a)= { q E p : istate 1 (q) = cr }. 

( 5) Let p E g.J nc( Q 1 ), and n E OJ. The process p is uniformly nonempty 
at !eve I n iff 

Vr E (.Ex .Er [p[r] r' 0 =Va E .E[p[rJ<cr) # 0]]. 

Moreover, p is uniformly nonempty iff it is uniformly nonempty at every 
level n E w. 

( 6) The set P 1 , the domain of processes for 2'1 , is given by 

P 1 = {PE g;J nc( Q 1 ) : p is uniformly nonempty}. 

Remark 1. A subset P of i\'Jnc(Q 1 ) is said to be closed under taking 
remainders iff VpEP, VrE(L'x.E)<w[p[r]#0=p[r]EP]. Given an 
arbitrary subset P 0 of if<JnJQi), it is routine to check that the largest subset 
P~ of p nc( Q 1 ) which is included in P 0 and closed under taking remainders 
is given by P~={pEt<Jnc(Qi):VrE(.Ex.E)<w[p[r]#0=p[r]EP0]}. 
Thus P 1 is the largest subset of g;J nc( Qi) which is included in 
{ p E g;:> ncC Q 1 ) : p is uniformly nonem pty at level 0} and closed under taking 
remainders. 

It is needed that each element of p E P 1 is uniformly nonempty, for 
defining a parallel composition II as a binary operation on P 1 in the sequel. 

LEMMA 4. The set p 1 is closed in g;J net Qi), and therefore, p l is a com­
plete metric space with the original metric of &onc(Q 1) restricted to it. 

Proof The closedness can be established using Lemma 2. See the proof 
of Lemma 4 of [HBR90], for details. I 

The interpretation Y-, for the signature of 2'1 is defined as follows: 

DEFINITION 8 (Interpretation f 1 for Signature of £'; ). ( 1) 01 = 
{(cr): crEL'}. 

(2) For xEIVar and eEVExp, the function asg 1(x,e):P 1 --+P1, 
which is the interpretation of the unary operator "(x := e ); ·" on 
statements, is defined as follows: For every p E P 1 , asg 1 (x, e )(p) = 
{ ( < cr, a[[e] (a )/x])). p : cr E .E}, where ( <cr, a[ [e](a )/x])) · p denotes the 
concatenation of ( (cr, a[[e](cr)/x])) and p. 
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(3) For be BExp, the function if(b): P 1 x P 1 ~ P 1, which is the inter­
pretation of the binary operator "If(b, ·, · )" on statements, is defined as 
follows: For every p 1, Pi E P 1, if(b )(p1, p 2) = U ue i: [if( [b] (er)= tt, Pr <er), 
P2(u))]. 

(4) For pEPr. pn ((ExE)xQ1) is called the action part of p and 
denoted by p +, and the set p n 01 is called the inaction part of p. The action 
part of the alternative composition of two processes is the union of the 
action parts of those processes, and its inaction part is the intersection of 
the inaction parts of them. That is, for p 1, P2EP1, p 1 + p2 =Pt upt u 
{(er): (a) EP111P2}· 

( 5) For p 1, p 2 e P 1, let p 1 # p 2 be the intersection of the inaction 
parts of p 1 and p 2 • The parallel composition TI: P 1 x P 1 ~ P 1 is defined 
recursively as follows: For every Pi. p 2EP1, 

Pr TI P1 =(Pi lLP2) u (P2 lLP1) u (Pr # P2), 
(2) 

Pr lLP2 = U {<u, er')· (Pi[ (a, er')] TI P2): P1[ (u, a')]# 0}. 

Formally the operation TI is defined as the fixed point of a suitably defined 
contraction: Let Mi=(P1xP1), ai:Mi~Mj be defined as follows: For 
Fe ML and Pl>P2EPi. .Q~(F)(p,,p2 )=.Q~(F)(p 1 ,p2 )u.QHF)(p2,P1)u 
(P1 #p2), where DHF)(p1,p2)= U{(a,a') ·F(p1[(u,a')],p2): 
p 1[(a,u')]#0}. It is shown that ai(F)(p1,p2) is nonempty and 
uniformly nonempty at level 0 as follows: For every a EE, suppose 
13er'[.Qi(F)(p1>p2)[(a,a')]#0]. Then, by the definition of DL one 
has -i:Ju'[p1[ (a, a')]# 0] and 1:Ja'[p2[ (a, u')] # 0]. Thus, by the 
fact that p 1 and p 2 are uniformly nonempty at level 0, one has 
(a) e (p1 #Pi). Moreover, .Q~(F)(p" p 2 ) is uniformly nonempty at level 
n ~ 1, since .Q~(F)(s 1 , s2 ) and .Q~(F)(s2 , si) are uniformly nonempty at 
level n by their definitions. Hence .Q~(F)(p 1 ,p 2)eP 1 . It is immediate that 
.Qj is a contraction. Let TI =fix(.QD, and ll=DHTI). 

(6) Let §,_ = {01, {asg1(x, e): (x, e) e IVar x VExp }, {if(b): be 
BExp }, +,TI}. 

The next lemma follows immediately from Definition 8 (5). We shall use 
it for establishing the full abstraction of the denotational model .@1 defined 
below. 

LEMMA 5. (1) (a, a') ·q E Pr TI p2 <=> (q E (p 1[ (u, u') J TI Pi)) v (q e 
(P1 TIP2[(u,a')])). 

(2) Vp1,P2EP1[P1 TIPi=P2 TIP1l 

In terms of the interpretation §,_, the denotational model .@1 is defined 
as follows: 
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DEFINITION 9 (Denotational Model !2>1 for 2 1 ). The model !2!1 : £"1 -;. P 1 
is defined by induction on the structure of s E 2 1• 

(1) First, for each recursion variable X, !2!1 [X] is defined as the fixed 
point of a contraction defined in terms of the declarations. Let D = 

{ <X, g x) he RVar be the set of declarations. Let Mf = (RVar-;. P 1), and let 
ll1:Mf-;.Mf be defined as follows: For pEMf, XERVar, fl 1(p)(X)= 

[gxl"°1 [(p(Y[), ... ,p(Y;ixi))/(Y[, ... , Y?rx))], where {Y[, ... , Y?rx)} is the 
set of recursion variables contained in g x· (See Notation 3 for the notation 
[gxlY1 ( ···).)The mapping ll1 is a contraction from Mf to Mf. Let pp= 
fix(fl1). For XERVar, let us define XD1, the denotational meaning of Xby 
XS?i = Po(X). 

(2) Next, for a composite statement sE21 , !2>1 [s] is defined as 
follows: For each operator F of 2'i with arity r, and s 1, ... , s, E 2 1 , let 
.!2>1[F(s1, ... ,s,)]=F'J11(!2!1[s1], ... ,!2!1[s,]), where F 91 is the interpreted 
operation in J11 corresponding to F. 

Several properties, including the so-called image finiteness for elements of 
P 1, are introduced. It is shown that the denotational meaning of each state­
ment in 2 1 has these properties; this fact is used to establish the full 
abstraction of !2>1 • 

DEFINITION 10 (Image Finiteness for Elements of P 1 ). Let p E P 1 and 
n E W. 

( 1) The process p is image finite at level n, written IFin \nl(p ), iff Vr E 
(Ix I)", V rJ [ {a' E J; : r · <a, rJ 1 ) E p[" + 1 l} is finite]. The process p is image 
finite, written IFin 1(p), iff VnEw[IFin\"l(p)]. 

(2)(i) We say that only a finite number of individual variables are 
relevant to the nonterminating part of p at level n, written FIRN~l(p), iff 
there exists .'!£ E k;Jr(IVar) such that the following holds: 

VrE(J:xJ:t, ViTE((IVar\ff)-;. Vt [rEp[nJ 

-=Vi E n[rc~(r(i)) I (IVar\ff) = rci(r(i)) I (IVar\X)] 

/\ ( <(rc](r(i)) j .'!£) U B(i))je2lien Ep[nl]. (3) 

That is, for each rE(J:xJ:in, if rEp["J, then, in every step r(i)= 
<rc~(r(i)),rci(r(i))) or r (iEn), the value for xEIVar\fl is not changed, 
i.e., (*}:rc~(r(i)) j(IVar\X)=rci(r(i)) j(IVar\Et), and one may change 
the value nJ(r(i))(x) (jE2) arbitrarily, i.e., (t):(<(rc](r(i))JX)u 
5(i))1 e 2LenEP[nJ for arbitrary O'E((IVar\'?{)-;.V)n. Conversely, for 
arbitrary O' E ( (IVar\X)-;. V)", if one has ( *) and (t), then r E p["J. (See 
Remark 3 below for a motivation of this definition.) 
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(ii) Similarly, we say that only a finite number of individual 
variables are relevant to the terminating part of p at level n, written 
FIRT\n1(p), iff there exists Pr E &Jr(IVar) such that 

Vq E (.Ex .zr . .z, Ver E ( (IVar\Pr)-+ V)" + 1 [q E p 

~Vi En [n~(q(i)) I (IVar\Er) = ni(q(i)) I (IVar\Er)] 

/\ (<(nJ(q(i)) IPI)uc1(i))je 2);en·((q(n) 1El')uc1(n))Ep]. (4) 

(iii) We say that only a finite number of individual variable are rele­
vant top, written FIR 1(p), iff \In Ew[FIRN\nl(p) A FIRTi"l(p)]. 

(3) Pf={pEP 1 :1Fin1(p)AFIR 1(p)}. 

Remark 2. It is immediate that {pEP 1 : IFin 1(p)} is the largest subset 
of P 1 which is included in {pEP 1 :IFIN\0 l(p)} and closed under taking 
remainders, 

Remark 3. ( 1) Note that for some set D of declarations and some 
statement s, we cannot take one Et E p rOVar) such that ( 3) holds for every 
n EW and p = §[s]. For example, suppose IVar = {xn: n E w} and RVar = 
{Xn:nEw}, and let D={(Xn,(xn:=l);Xn+i):nEw}, p=§1[Xo]. 
Then, the greater nEw is given, the greater El'E &or(IVar) should be taken 
so that one has ( 3 ). 

(2) It is easy to check that for Er 1 ,X2 Eg.Jr(IVar) with :1l' 1 £El 2 , the 
property (3) (resp. (4)) for El=El 1 implies (3) (resp.(4)) for :7l'=El2 • 

It turns out that the denotational meaning of each statement is a mem­
ber of Pi, which is used for establishing the full abstraction of f» 1• 

LEMMA 6. ( 1 ) The set Pt is closed in P 1 • 

(2) VpEPi", VrE(.ExJ;)<"'[p[r]#0=>p[r]EPf]. That is, Pf is 
closed under taking remainders. 

(3) The set Pt is closed under all interpreted operations of.!£ 1 • 

(4) § 1[2 1]£P[. 

(5) V'pEf» 1[2 1], VrE(.ExJ;)«" [p[r]#0=>p[r]EPf]. 

Proof Similar to the proof of Lemma 4. See the proof of Lemma 6 of 
[HBR90], for details. I 

3.4. Correctness of § 1 with Respect to 01 

The correctness of the denotational model is shown as in [Rut89]: For 
the denotational model § 1 , an alternative formulation, called an inter­
mediate model, is given, in terms of the same transition system which was 
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sed for the definition of @1 . Let 1§1 be the intermediate model. Then the 
Jrrectness is proved by showing that, for an appropriate abstraction func­
on rx 1 , both rx1 ° fJ51 and @1 are a fixed point of the same contraction, which 
y Banach's Theorem has a unique fixed point. 

.4.1. Intermediate Model for £'1 and Semantic Equivalence 

First, the intermediate model @1 , which is an alternative formulation of 
91 , is defined in terms of the transition relation -+ 1 . 

DEFINITION 11 (Intermediate Model eJ1 for £f1 ). 

(1) Let Mi= (.Pi-+ P 1 ), and let !£'1 : M 1 -+ M 1 be defined as follows: 
'or FE MI> se £fi. 

lf'1(F)(s)= U {((a, a')) ·F(s'): a EE/\ (s, u) -+ 1 (s', a')} 

u { (a) : u EE /\ 13 (s', a') [ (s, u) -+ 1 (s', a')]}. 

~he right-hand side of the above equation is closed by Lemma 3; !£'1 is a 
ontraction from M 1 to M1 . 

(2) Let @1 =fix(lf'i). By the definition, one has, for sE2J., that 

@1 [ s] = LJ { ( ( u, a')) · fD1 [ s'] : u E E /\ ( s, u) -+ 1 ( s', u') } 

u{(u):uE.E /\ 13(s',u)[(s,u)-+ 1 (s',u')]}. 

It turns out that ?A is identical to ~1 • 

LEMMA 7 (Semantic Equivalence for 2 1 ). ( 1) Let F be an operator of 
~ with arity r, and let s 1' ... , s, E £'1. Then one has 

<!\ [F(s 1 , ••• , s,)] = F"1( fD1 [s i], ... , @1 [s,] ). 

(2) For SE.Pi, one has m,[s] =~1[s]. 

As a preliminary to the proof of Lemma 7, we give the next lemma 
;tating that the operation TI is distributive w.r.t. set-theoretical union. 

LEMMA 8 (Distributivity of TI in P 1). For k,l~l, and Pt>···•Pk, 
7~, ... ,p/EP 1, 

U [pJ TI U (p;J = U CP; TI p;J. 
iek }ei (i,j)ekxi 

Proof Omitted (see Appendix 2 of [HBR90] ). I 
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Proof of Lemma 7. (1) Here we prove the claim for the operator II. 
For the other operators this is proved (more straightforwardly) in a 

similar fashion. Let H 1 = ( 2 1 x 2 1 -t P 1 ), and let F, GE Hi_ be d~:i;:_ed as 

follows: For s1, s2 E21, F(s 1 , s2 )=@1[s1 II s2], G(s1, s2)=((Hs1] II (1)1[s2]. 

Moreover, let ffi: H 1 -tH 1 be defined as follows: For /EH 1 and s1' 

S2E 21, 

fff(s 1 , s2 )= {(o-): -r3<s;, <7 1 )[<s1' r5)-t 1 <s;, Cf 1
)] 

A 13<s2,o-)[<s2 ,o-)-t 1 <s2,r5')]}. 

Then ff~ is a contraction. Let s 1, s2 E 2 1 • By the definition of @1 and -t 1, 

and Lemma 3, one has F(s 1 ,s2 )=ff~(F)(s 1 ,s2 ). That is, F=fix(ffD. 

Next, let us show that G =fix( ff D- By the definition of TI, one has 

= U {( (<T, Cf')) · (@1[s1][ <u, o-' >]TI @1[s2]): @1 [s1] [ <Cf, Cf 1 >] # 0} 

=U {(<<7,o-'>l·(U {m1[s;]: <s[,Cf>-+1 <s;,(f'>} TI m1[s2]): 

3s;[<s1, u)-> 1 <s~, u')]} 

= U { ( < o-, <7' > l · ( U { m1 [s;] TI ml h] : <s 1' (f > _, l <s;, (f' >}) : 

3s; [<s1> o- >--+ 1 <s'1 , Cf' > J} (by Lemma 8) 

=LJ {(<r5,a'))·(@1[s;] TI iD1[s2]): (s1,Cf)-+ 1(s;,<7')} 

=ffHG)(s1> s2 ). 
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The other fact (t) follows immediately from the definition of *· Thus 
one has G(s1,s2 )=~~(G)(s 1 ,s2 ), i.e., G=fix(~~). Thus, by Banach's 
Theorem, one has F= G, i.e., 

(2) First, let us show, for X E RVar, that (H &1 [X] = .@i[X]. Let 
(X, gx) ED. Then, 

ffi1 [ X] = ffi1 [g x] (by the definition of ffl1) 
- [ ] J1 - x - x x x - gx [((91[Y1], ... ,(91[Y1<xl])/(Y1' ... , Yt!Xl)] (by ( 1 )), (5) 

where { Yf, ... , Yfcx)} is the set of recursion variables contained in gx. 
Hence (A.X E RVar: <P'1[X]) is the fixed point of II1 defined in Definition 9. 
Therefore by the definition of .@1[X], one has (t). It follows from this 
and ( 1 ), by induction on the structure of s e 2i , that V s E 2'1 [ (?\ [ s] = 
.@1[s]J. I 

3.4.2. Correctness of .@1 with Respect to (91 

An abstraction function IX 1 : P 1 - (E - &JncC.E.;"')) is defined as follows. 
First, it is defined as the fixed point of a higher-order contraction. Next, it 
is shown that for a process p, 1X(p) is characterized as the set of histories 
of executable elements of p, where the notions of history and executability 
to be formally defined below. 

DEFINITION 12 (Abstraction Function IX1 for 2'i). (1) Let M~ = 
(Pf-+ (.E-+ &Jnc(L'.;"'))), and let LJ 1 : M 1 - M~ be defined as follows: For 
FEM~, pEPf, and <1EL', 

L1 1(F)(p)(<1)= U {(<1') ·F(p[(<1, u')])(u') :p[(u, u')] i:0} 

uif((<1)Ep, {e}, 0). 

Note that the right-hand side of the the above equation is nonempty, since 
p is uniformly nonempty at level 0. Thus the mapping L1 1 is a contraction 
from M~ to M~. 

(2) Let IX 1 = fix(LJ 1 ). By this definition, it holds for p e Pt and <1 EE, 
that 

IX 1 (p )( <1) = U { (a') ·IX 1 (p [<a, a')])( a') : p [ < u, a')] #- 0} 

uif((a)Ep, {e}, 0). 

The abstraction function is to be characterized in another way. First, we 
need some preliminary definitions. 
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Intuitively, a sequence ( < <J ;, <J;) ); in a process represents a possibility of 

executing the step (<J;, <J;) if the process is in the state <J;. After this execu­

tion. the process is in the state a;. Thus a sequence ( (<J;, (}";));such that 

the second component of each element (<J;, a;) is the same as the first 

component of the next element (<J;+ 1 , <J;+ 1 ) represents a possibility of 

executing the steps (a0 , a0), (a 1, aj), ... , and therefore is called 

executable. In other words, a sequence is executable when it has no gaps. 

DEFINITION l 3 (Histories of Elements of Q 1 ). Let q E Q 1 u (I: x I:)< w. 

(1) The sequence q is executable, written Exec 1(q), iff 

3vEWU {w}, 

3( < u ;, a;)); e" [q = (<a;, a;) Lev /\ Vi E v [ i + 1 E v => a; = a; +- 1 ]] 

V 3kEW, 3( (a;, <J;) );ek, 

3ak[q=((u;,<J;));ek·(uk) /\ ViEk[a;=a;+ 1]]. 

Let E1 = { q E Q 1 u (I: x I:) <w: Exec 1(q) }. For <J EI:, let E 1 (<J) = 

{ q EE 1 \ { e} : istate 1 ( q) = a}. 
(2) Let q be executable. The history of q, denoted by hist 1(q), is 

defined by 

if q=((a;,a;));ev• 

if q=((a;,<J;));ek·((J"k). 

Now we can give another formulation of cx 1 as follows: 

LEMMA 9 (Another Formulation of Abstraction Function o:: 1 ). ( 1) For 

p E p r' (J EI, one has ex 1 (p )( (J) = {hist I ( q) : q E p n El< a>}. 

(2) Vk ~ 1, Vp1, ... ,Pk EPt, V<J[cx1(U;d [p;])(a) = UiEk [cx1(p;)(a)J]. 

Proof Omitted (see Appendix 3 of [HBR90]). I 

By means of this lemma, one has the correctness of .0!1 . 

LEMMA 10 (Correctness of .0!1 ). ( 1 ) ex 1 o (!\ = d\ . 

(2) ex10£2i1=L01. 

Proof ( 1) By showing that ex 1 o (!51 is the fixed point of 'Pf defined in 

Definition 6. 

(2) Immediate from (1) and Lemma 7 (2). I 

3.5. Full Abstraction of .0!1 with Respect to CD1 

The f~~l abstraction of .0!1 is shown by means of a context with parallel 
compos1t1on: 
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Given two statements s 1 , s 2 E 2 1 with different denotational 

meanings, a suitable statement T called a tester is con­

structed such that the operational meanings of s 1 II T and 

s 2 II T are distinct. ( 6) 

A combinatorial method for constructing such a tester is proposed in 

Lemma 13 (Testing Lemma). Using this method, we can construct testers 

having the following property: 

Given a process and a finite sequence r = ( ( (J 1 , er;), ... , 

(a,,, (J~) ), we can construct a tester T and an executable 

sequence r = ( (a 1 , 0''1 ), ••• , (a k> O'D) with k?; n such that for 

every process p', the parallel composition p' TI .<:2\[T] can 

execute r if there is some sequence q such that ( (a 1 , a'1 ), ..• , 

(a,,,(J~))·qEp', i.e., p'[(a1 ,a;), ... ,(a,,,a~)]#0, and 

the converse of this holds for p' = p. Intuitively, for such T 

and r, the process p is forced to execute the steps (a 1, a'1 ), •.. , 

(a,,, (J~) (perhaps not consecutively but in this order) 

when p TI .91 [T] executes the steps (<al• 0''1), ... , < ab a~>) 
consecutively. 

By the above property, we can construct such testers T as in ( 6) as follows: 

Ifs 1 and s2 are distinct in their denotational meanings, then, 

putting P;= f~\[s,] (i= 1, 2), there exists some sequence r 

such that p 1[r]#0 but p 2[r]=0 (or vice versa). By 

constructing a tester T and an executable sequence r for 

r and p =p2 as above, one has rE.0:\[s 1] TI £2\[T] and 

r 1.91 [ s2 ] TI .0\ [ T]. Thus one has a difference between the 

operational meanings of the two statements s 1 II T and s2 II T. 

First, the notion of full abstraction is defined: 

DEFINITION 14 (Full Abstraction). Let 2 be a language and (! an 

operational model for !£. A denotational model :?2 is said to be fully 

abstract w.r.t. the operational model (!' iff for every s1 , s2 E 2 1 , one has 

V( E SVar, VS E £"i( lr:'[S<~ 1 [s 1 ]] = @[S1 ~ 1 [s 2 ]]] ~ .0:'[s1] = .0:'[s2]. 

For a language !£ which can be formulated as the set of terms generated 

by a single-sorted signature, and an operational model (!' for it, a fully 

abstract compositional model for 2 w.r.t. (! is unique in the following 

sense and exists if !£ has no recursion, as was shown in [BK088]. 

LEMMA 11 (Uniqueness and Existence of Fully Abstract Compositional 

Model). If two compositinal models q and :?2' are fully abstract w.r.t. d', 
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then there is an isomorphism from ft![£"] to ft!'[£']; i.e., there is a bijection 
<fJ: '.?[.~] _. .Q'[.!i']; i.e., there is a bijection <p: 07[2] ~ 07'[2] such that 
j(ir every operator Fin .!£' with arity r, and Pi, ... ,prE07[2], one has 
<p(FD(p 1 •••• ,p,)) = F''"(<p(pi), ... , q;(p,)). In other words, the fully abstract 
compositional model is unique except for isomorphism. 

Moreorer, there exists a fully abstract compositional model, !I 2 has no 

recursion. 

Proof See Proposition 7.1.l of [BK088]. I 
Let us proceed to establish the full abstraction of 071 w.r.t. (1)1 , stated by 

the following theorem, under the assumption that V is infinite. The reader 
might expect that the same result can be obtained without this assumption, 
but it is necessary. In fact, if V is finite, then f!J1 is not fully abstract w.r.t. 

C1 (see Example 3 in Section 3.6.1 ). 

THEOREM 1 (Full Abstraction of q;1 ). Let V be infinite. Then, for every 

s 1 • s2 E .51'1 , one has 

To establish Theorem 1, we present the following lemma, from which 
Theorem 1 follows easily. (In the remainder of this paper, we fix an element 
r of V, and for :;( E g;J r(IVar) we set I£"= {er EI : V' x E (IVar\:?r) 
[er(x) = i'] }. ) 

LEMMA 12 (Uniform Distinction Lemma for 2 1 ). Let .!J[ E (&;Jr(IVar)\ 

{0}). 

(1) For every rE(I'*x.E'!f')<w, 

Vp1.P2EPfep1[r]#0 Ap2[r]=0 

==> 'r:lao EL£, 3TE £'1[a1(P1 TI 071[T] Hero)\cx1(P2 TI £2\[T] )(er0 ) # 0]]. 

(7) 

(2) For every qE (I£ x I"l')<w ·If, 

Vp1. P2 E Pt[q EP1\P2 

==>Vero EL.-f, :ITE£'1[<X1(P1 TI 071[T] )(ero)\cx1(P2 TI «?2\ [T] )(er0 ) # 0]]. 

(8) 

Proof of Theorem_ l. Let p 1 = f!J1[s 1], p2 = «il11 [s2], and suppose p 1 # p 2 • 

We can assume, without loss of generality, that there exists q such that 

q E P 1 and q rt ?2: Th~ proof is given by distinguishing two cases according 
to whether q 1s mfimte or finite. 
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Case 1. Suppose q is infinite. First, let us show by contradiction that 
there is an n E w such that q[nJ ~ (p,)[nJ. Assume, to the contrary that 

[ ] - ' 
Vn E w[p2[q n ] =I= 0]. Then, by the closedness of p2 , one has q E p2 , which 
contradicts the fact q~p2 . Hence, there is new such that p2[q[nJJ=0. 
From the fact that FIR 1(p;) (i= 1, 2) and from Remark 3(2), it 
follows that there is an ErE(&or(IVar)\{0}) such that (3) holds for 
p = P; (i = 1, 2 ). Fix such an Er, and let a= ().x E (IVar\.¥): v) and 
r=(<(nj(q(i)) j,q[)ua)je2l;en· Then re(E¥xE¥t. It follows from the 
fact that q[nJE((pi)[nJ\(p2 )[nJ) and (3), for p=p; (i=l,2), that 
re((p 1 )[nJ\(P2)[nJ). Thus applying Lemma 12(1), one has 3Te 

2'1[a1(.~1[s1] TI 2J1[T])\a1(~1[s] TI ~1[T])=l=0]. 

Case 2. Suppose q is finite. Then one obtains the same result in a 
similar fashion to that for Case 1, but using Lemma 12(2) instead of 
Lemma 12( 1) used in Case 1. I 

3.5.1. Proof of Lemma 12 

Testers for proving Lemma 12(1) (resp. Lemma 12(2)) are constructed 
by induction on the length re (E ¥ x E ¥) <w (resp. q E (Er x ..[ ¥) <w . ..[ ¥ ). 

The following lemma is used to construct testers for r (or q) with length 
n + 1 by means of testers for r (or q) with length n. The assumption that 
V is infinite will be essentially used in the proof of Lemma 13. 

LEMMA 13 (Testing Lemma for .Pi). Let Ere(f.Jr(IVar)\{0}), pePf, 
and r:J 1, r:J 11 , r:Jo EE:£· Then there are two finite sequences r 1, r 2 E (I'¥ x E ¥) <w 

such that the following hold: 

(1) r 1 · <r:J', r:J 11
) ·r2 EE1<r:Jo)-

(2) For every tester T' E .,Sfi, there exists another tester TE 2i such 
that the following hold: 

(i) ~1 [T][r 1 ·r2J=~1[T'], 

(ii) The process p is forced to execute the step <r:J', a") q_nd for­
bidden to execute any other steps when the parallel composition P II ~1 [T] 
executes the sequence: r 1 • ( r:J', r:J 11 ) • r 2 • That is, the following holds for every 
q'EQ1: 

r 1 • < r:J 1
, r:J 11

) • r2 · q' E P TI ~1 [T] 

~ p[ <(J', r:J 11 ) J # 0 /\ q' Ep[ (r:J', f5 11 > J TI ~1[T']. (9) 

The proof of this lemma will be given later. First, we will prove the 
following corollary, and thereby, Lemma 12. 
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COROLLARY 1. Let El'E(&ar(IVar)\{0}), pEP[, (a',a")EL.cz·XL!![, 
and er 0 EI:.¥. Then there are two finite sequences p 1 , p2 E (.E.'2.) <w such that 
for every tester T' E 2 1 there exists another tester TE 2 1 such that, putting 
a 1 =last(p 1 ·a"· p 2 ), the following hold: 

( 1) For every p' E P (, one has 

If p' E I:"'w[p'[ (er', er")]# 0 A p' E ct 1(p'[ (a', a")] TI Et\ [T'] )(a 1) 

=> p 1 . a" . P2 . p' E Cl 1 (p' TI E.01 [ 11 )(er on ( 10) 

(2) For p' = p, the converse of (10) holds. That is, 

If p' EI:"' w [p 1 · er" · P2 · p' ex 1 (p TI E.01 [ 11 )(a o) 

=> p [<a', a") J # () A p' E et 1 (p [<er', er")] TI E.01 [ T'] )(a 1)]. (11) 

Proof Take r 1, r2 as in Lemma 13, and put p 1 = hist 1(r 1 ), 

p 2 =hist 1(r2 ), and let a 1=last(p 1·a"·p 2 ). Also, for T', take T as in 
Lemma 13. 

Part (I). Let p'EP[, and p'EI:"'w. Suppose p'[(a',er")J#0 and 
p'Ect 1(p'[(er', a")] TI .0J1[T'])(er 1 ). Then, by Lemma 9(1), there exists 

q'E(p'[(er',a")] TI E.01[T']) such that q'eE 1(a 1 ) A hist 1(q')=p'. Fix 
such q'. By Lemma 13(1), one has r 1 ·(a', a")-r 2 ·q'EE 1(a0 ). By 
Lemma 13(2)(i), q'E(p'[u',a")JTIE.01[11[r1·r2 ]). Thus, applying the 
=-part of Lemma 5(1) successively, one has r,-q'E(p'[(a',u")JTI 
E.01[11 [rJ]), (er', u") · r 2 • q' E (p' TI E.01[11 [r1]), a~d r 1 ·(er', er")· r 2 · 

q' E (p' II .111[11). Hence, p 1 ·er"· p 2 · p' = hist 1(r1 ·(a', u") · r 2 · q') E 

r!.1(P 1 TI .0J1[T])Ca-ol· 

Part (2). Let p' E .E"'w, and suppose p 1 ·er"· p2 • p' E rx 1 (p TI .0J1 [1] )(er0 ). 

Then, by Lemma 9( 1 ), there exists q' such that ( * ): q' EE 1<a 1 ) A 
histi(q')=p'. Fix such q'. By (9), one has p[(a',cr")]#0 and 
q'Ep[(cr',er")JTI.071[T']. Thus, by (*), one has p'=hist 1(q')E 
ct1(P[ (a', er")] TI .0J1[T'])(ui). I 

Proof of Lemma 12. Let Et E (tJr(IVar)\ {0} ). 

Part (1). We will prove that (7) holds for every rE(Ld·XLd·)<"' by 
induction on the length of r. 

Induction Base. Let lgt(r)=O, i.e., let r=e, and let p 1 , p2 ePr Then 
one has (7) vacuously, since \fp E P( [p[c:] = p # 0], and therefore it does 
not hold thatp 1[r]#0 Ap2 [r]=0. 

Induction Step. Let k E w, and assume that the claim holds for every r 
such that lgt(r) ~ k. Fix an arbitrary sequence r of length k + 1, say 
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r = (a', a")· r. Let Pi. p 2 E Pf such that ( * ): (i) P1 [r] =I= 0, (ii) P2[r] = 0. 
Finally let a 0 E .E !¥'. We distinguish two cases according to whether 
P2[ (a', a")]= 0 or not. 

Case 1. Suppose p2 [<a', a")] = 0. Then, applying Corollary 1 with 
p =Pi and T' = 0, there are p1, p 2 , T such that: 

(i) '<:/pePf,'<:/p'e.E"'"'[p[(a',a")] 

=1=0 A p'eo: 1(p[(a', a")] TI()d(ai) 

=P1 ·a" ·P2·P 1 Ert.1(P TI ~1[T])(ao)], (12) 

(ii) '<:/ p' E .E"' 0'[p1 ·a"· P2 · p' E 0:1(P2 TI ~1 [T] )(ao) 

=> P2[ (a', a")] =I= 0 A p' E a1 (P2[ (a', a")] TI 01)(ai)], 

where a 1 = last(p 1 ·a"· p 2 ). By ( * )(i ), there exists p' E o: 1 (p E o: 1 (p 1 [r] TI Oi) 
(a 1 ). Let us fix such a p'. By (12)(i) for p=p1o one has p1 ·a"·p2 ·p'e 
0:1(P1 TI ~1 [T] )(a0 ). Next, assume (for the sake of contradiction) that 
P 1 ·a"· P 2 · p' E 0: 1 (p2 TI ~i[T] )(a0 ). Then, by ( 12 )(ii), one has p 2 [ (a', a")] 
=I= 0, which contradicts the fact that p 2 [ ((J'', a")]= 0- Hence, p1 ·a"· p2 • 

P1 €f rJ.1 (P2 TI ~i[T] )(ao). 

Case 2. Suppose P:i[(a',a")]=/=0, and let us denote p 1[(a',a")] 
and p2 [ <a', a")] by p; and p;, respectively. Then, one has, by ( * ), that 
(t): p~[r] =I= 0 A p;[r] = 0- Applying Corollary 1 with p = p 2 , there are 
p 1, p 2 such that for every T' E 2 1 there exists T satisfying 

(i) \:Ip ePf, \:Ip' e.E"'"'[p[ (a', a")] 

=1=0 A p'ea1(p[(a',a")] TI ~1 [T'])(cr1) 
=>Pi· a"· P2 · p' E a1(P TI ~1[T] )(ao)J, 

(ii) \:Ip' E .E"'"'[p 1 ·a"· p2 · p' E a,(pz TI 2}1[T1 )(ao) 

(13) 

=>p2 [(a', a")] =1=0 /\ p'Ea 1(Pi[(cr', a")] TI ~1[T'])(ai)], 

where (J'1 = last(p1 ·a"· p2 ). By the induction hypothesis and (t), there are 
T0 and p' such that 

Let p=p 1 ·a"·p2 ·p', and take T such that (13) holds for T'=T0 • By 
(13)(i) for p=p 1 and (14), one has peo: 1(p1 TI ~1 [T])(cr0 ). Next, assume 
(to obtain a contraction) that p 1 ·a"· p, · p' E a1(p2 TI ~1 [T] )(a0 ). Then, it 
follows from (13)(ii) that p'ea1(p; TI ~1-[T0])(ai), which contradicts (14). 
Thus, p 1 ·a"·p2 ·p'£to: 1(P2TI2}1[T])(a0). Summing up, in this case too 
there is a p such that peo:1(p 1 TI 2}1[T])((J'o)\a1(P2 TI 2}1[T])(a0 ). 
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Part 2. In order to establish part (2 ), we will prove that (8) holds for 
every q E (.E"' x L.'l·) < w · .E f¥, by induction on the length of q. 

Induction Base. Let lgt(q)= 1, say q=(O''). Let p 1 , p 2 EPt such that 
q E p 1 \ p 2 , and let O' 0 E .E :r. Since £[ is finite and nonempty, we can put £l = 

{x 1 , ... , xr}· Then, let us set T= (x 1 := O''(xi)); ... ; (xr := O''(xr)); 0, and t = 

2i\[J1. By the definition of IT, one has ((O'S, 0''1 ), ••• , (0'~-1' O'~), O'')EP1 IT t, 
i.e., (a'1' ... , O'~)Ecx: 1 (p 1 TI t)(0' 0 ), where O';= 0' 0 [(a'(xi), ... , <T'(x;))/(x 1 , ••• , x;)] 
(iu+l). Let us prove, by contradiction, that ((O'S,<T'1 ), •. ., 

(a~_ 1, <T~), O'') ~p 2 TI t. Indeed, if ( (O'S, O'; ), .. ., (<T~_ 1 , O'~), a') EP2 TI t, 
then the first r-steps (O'S, <T;), ... , (<T~_ 1 , <T~) must stem from the right­
hand side t. Thus, it must hold that (<T')Ep 2 Tit[((<TS,er;), ... , 
<a~_ 1 , er~))] = P2 TI 01 • However, this is impossible since _( <T') ~ P2. 
Summing up, one has ((a~,a'1 ), .•. ,(a~_ 1 ,<T~),a')~P2llt, 1.e., 
(er;, .. ., a~H 1X1(P2 TI t)(ero). 

Induction Step: Similar to the induction step of part ( 1 ). I 
Finally, let us prove Lemma 13. A crucial ingredient of the proof is the 

fact that the value of a variable can be changed from any value to any 
other value in one atomic step, by means of an assignment statement. 

Proof of Lemma 13. The proof is formulated by supposing that £l is 
reduced to one variable, £[ = { x}, which simplifies the proof, allowing us 
to identify a state a E .E :r with its value a(x) E V. However, the lemma still 
holds when '!£' is composed of more than one variable, as established in 
Appendix 4 of [HBR90]. For v E V, let O'(v) = (Jcy E IVar : if(y = x, v, ii)). 

Trying to construct a desired tester T, we first observe that the composi­
tion p TI 0\[T] must be in the state a' when p executes the step (er', a"). 
Therefore, if <T0 (x)#er'(x), then 2&1[T] must execute the step (a, a') for 
some a, and therefore, T must have an assignment "x := er'(x)" in it. 
Moreover, we need a trick for forbidding p to execute the step (er, a') 
instead of 2&1 [T] and forbidding ~1 [T] to execute the step <a', a") 
instead of p. The proof of Lemma 13 is given by distinguishing two cases 
according to whether er0{x) = a'(x). 

Case 1. When a0(x) = <T'(x), we can easily construct two sequences r 1 , 

r2 satisfying (1) and (2) of Lemma 13 as follows: Let r 1 = c:, r2 = 

(a", a(ui)), where v1 is chosen such that 

Note that the right-hand side of (15)(ii) is finite since p is image finite by 
Definition 10, and therefore, there is a v1 satisfying (15). It is immediate 
that Lemma 13( 1) holds. Let us show Lemma 13(2). For every T' E 2'1 , let 
T= (x := vi); T'. It is immediate that (2)(i) holds. Let us show (2)(ii), i.e., 
that (9) holds for every q' E Q 1. 
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Suppose (a', a"> . <(j", a(v1) >. q' Ep TI f01 [T]. Let us show that the first 
t:Vo steps, <(j', (j") and <(j", O'(v 1)), must stem from p and f01[T], respec­
tively. The first step cannot stem from f01[T] by (15)(i). Also, the second 
step cannot stem from p by (15)(ii). Thus one has the desired result. 

Case 2. When a 0 (x) =I u'(x), we can construct two sequences r 1 r 2 

satisfying ( 1) and ( 2) of Lemma 13 as follows. Let r 1 = < (j 0 , u' ) and :2 = 
((j", cr(v 1)), where v1 is chosen such that 

{ 

(i) v1 rj:. {veV: (a0 , (j 11 ) • ((j 1, (j"). (u", O'(v)) ep[3l}, 

(ii) V1 =f(j'(x), 
(iii) v1 =I a"(x), (16) 

(iv) v1 1:- {veV: (a', u"). (u", O'(v)) ep[2l}. 

Note that the right-hand sides of (16)(i) and (iv) are finite, since p is image 
finite by Definition 10, and therefore, there is v1 satisfying (16). It is 
immediate that ( 1) holds. Let us show (2 ), i.e., that for every T' e ..2"1 , there 
exists TE ft'i satisfying (2 )(i), (2)(ii). A tester T with these properties can 
be constructed in the following format: For v0 , v', ii1 , i!2 e V, and s e ..2"1 , 

let 

We set T=F((j 0 (x), (j'(x), v1 , v2 , T'), where v2 is chosen such that(*): (i) 
v2 =1a"(x), (ii) v2 =1v 1• In this case also, it is immediate that (2)(i) holds. 
Let us show (2 )(ii), i.e., that (9) holds for every q' e Q 1• First, put 
t'=~1 [T'], t=f01[T]. 

Suppose < O"o, (j 1 > . < (j 1
, 0" 11 > . < (j 11

, a( V1)) . q' E p TI t. Let us show that the 
first three steps, (cr0 , (j 1 ), ((j 1, (j 11 ), <(j", O'(vi)), must stem from t, p, t, 
respectively. 

First, Jet us show by contradiction that the first step (a 0 , u') cannot 
step from p. Assume that the first step stems from p, i.e., that (a', u") · 
(a", a(v 1)) ·q'ep[(u0 , a')] TI t. Then the second step (a', a") must stem 
from either of p[ (p0 , (j 1 )] or t; Let us show that it can stem from neither 
of them. Suppose that the second step stems from t, i.e., < (j", O'(vr)) · q' E 

p[ (a 0 , a')] II t[ (a', (j 11 )]. Then t[ (a', u")] =10, and therefore, under 
the assumption that a0(x)=la'(x), the assignment "x:=v 2" must be 
executed in the second step, which yields a"(x) = v2 • Howe~er, this con­
tradicts (*)(i).Thus (a",O'(v 1))·q'ep[(a0 ,a')·(a',a")] II t. The third 
step (a", O'(v 1)) cannot step from p[ (u0 , a')· (a', a")], since, by (16)(i), 
p[(a0 ,a')-((j1,cr")·(u",O'(v1))]=0. Thus the third step must stem 
from t, which implies v1 =a'(x) or v1 =v2 • However, both are impossible 
by (16)(ii) and (*)(ii), respectively. Summing up, the first step cannot stem 

643/115/1·12 
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from p, and therefore, it must stem from t. Thus one has < 6', 6") · 
(6",if(v 1))·q'Ep TI t[(6 0 ,a')]. 

Next let us show the second step (a', 6") cannot stem from 
t[(60 , 6'>J. Ifit stems from t[(a0 , 6'>], then t[(60 , 6') ·(a', a">J #0, 
which implies, by the form of T, that 6"(x) = v1. This contradicts (16)(iii). 
Thus the second step must stem from p, and therefore, < 6", O'(vi)) · 
q'Ep[(a-',a-")JTI t[(a0 ,a')]. 

Finally, the third step (a", if(v 1 )> cannot stem from p[(a-', a")], 
since p[ (a', a-")· (a", if(vi))] = 0, by (16)(iv). Thus the third step must 
stem from t[(a0 ,a')], and therefore, q'Ep[(a-',6")JTit[(a0 ,a')­
(a",O'(vi))], that is, q'Ep[(a-',a")JTI 9 1[T']. I 

Remark 4. Note that if 60(x)#a'(x) and 6'(x)#a"(x), then a simpler 
tester T= (x := a'(x)); (x := v1 ); T', with v1 satisfying (16), is sufficient to 
establish the above lemma. However, if 60 (x) # a'(x) and a'(x) = a"(x), 
then we need a tester defined in the format (17) to exclude the possibility 
that the first three steps of the parallel composition may stem from p, t, 
and t, respectively. 

3.6. Comparison of 9 1 and Other Models 

3.6.1. Comparison with a More Abstract Model than 9 1/or 2'1 with V Finite 

As stated earlier, the assumption that V is infinite is necessary for the full 
abstraction of 9 1 • In fact, if V is finite, then we can construct another 
compositional model § 1 which is correct w.r.t. C\ and more abstract than 
9 1 . Thus 9 1 cannot be fully abstract w.r.t. C\. The model § 1 is constructed 
from 9 1 by abstracting from certain redundant information present in £&1 , 

as follows: 

DEFINITION 15. LetpE&J(Q1). (1) Let qEp, and (n,i)Ewx2. Let 
us say q is pruned away from p at place (n, i) iff q is infinite and 
q ~ q[n + i] . (E 1 ( n;(q(n))) n (L' X .E)w) s; p. 

(2) A pruning function A: go(Qi)-+ tJ(Qi) is defined as follows: 
A(p)={qEp:-i3(n,i>Ewx2[q is pruned away from p at place 
(n, i)] }. 

(3) For sE.21 , let § 1[s] =A(91[s]). 

Since executable passes in 91[s] are the same as those in 9 1[s] (sE2i) 
by the definition of A, one has the correctness of 91 w.r.t. (01 : 

LEMMA 14. Cl. 1 0 91 = Cl.1 0 91 = C\ . 

Moreover, we can show that 91 is compositional w.r.t. all the operators 
of fi'i. For this purpose, we define another set of semantic operations from 
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that defined in Definition 8. For each syntactical operator F with arity r 
of 2'i, a semantic operation F with domain (P 1 ) has been defined in 
Definition 8; we can extend the domain of F from (P 1 )' to (gJ(Q 1 ))' 

straightforwardly except for F = II. As to II, we can extend the domain of ~ 
to (p(Q 1)) 2 by means ofa merge operation on elements ofQ 1 ; this opera­
tion can be defined as in [Hor91 ], where merge operation on infinite 
sequences (taking communication into account) is defined. 

DEFINITION 16. ( 1) Let r E w. For a meaning function g with 
dom(go) = 2'1' and sE (21 )', let g[S] = (g[s(i)] );er- Also, for a function/ 
with dom(f)=go(Qi), andpE{&o(Q 1))', letf(p)=(f(p(i)));er· 

(2) Let «I'; be the set of syntactical operators of 2 1 , and for r E w, let 
Y;(r) ={FEY;: the arity of Fis r}. Let FEY;(r) and F be the semantic 
operation corresponding to F in the interpretation structure .:11• From F, 
let us define another semantic operation f: as follows: For every 
pE (&»(Qi))', let F(p) = A(F(p)). 

From the semantic operations ft, one obtains the compositionality of !5 1 

w.r.t. all the operators of 2 1 : 

LEMMA 15. For every rE wand FE S'~(r), one has WE (21)' [.~~\[F(s)] = 
f:(.@1 [S])]. 

Proof Let rEw and FEY;(r). It can be shown that (*): VpE 
(go(Qi))' [A(F(p)) = A(F(A(p)))]. From this one obtains the desired 
result as follows: Let 8E(21)', and p=g1[S]. Then 

.@1[F(s)] = A(go1[F(s)]) 

= A(F(p)) 

= A(F(A(p))) 

= fr(4\[S]) 

(by the definition of !5 1 ) 

(by the compositionality of 9 1) 

(by(*)) 

(by the definition of J5 1 and F). I 

When V is finite, the model .@1 is strictly more abstract than g 1, as can 
seen from the following example. Thus 9 1 is not fully abstract in this case. 

EXAMPLE 3. Assume that V = { 0, 1 }. Moreover, let us assume, for sim­
plicity, that IV ar = { x }. Then L' is identified with V. Let g = ( (x := O); Xo) + 
((x := 1); X 0 ), and suppose (X0 ,g)ED. Then, setting s 1 =.X0 +If(x=O, 
(x := O); If(x = 0, X 0 , 0), X0 ), and s2 = If(x = 0, ((x := O); If(x = 0, Xo, 0)) + 
((x := 1 ); X 0 ), X 0 ), one has g 1[s 1][ (0, 0)-<1, 1)] # 0, but 9_1~s2] [ (O,.., 0) · 
( 1, 1)] = 0. Thus, ( *) 9 1 [s1] # 9 1 [s 2]. However, ~y the defimt10n of 9 1 an~ 
A, one has (t) f21 [s1] = A(g1[s1]) = A(EZ'i [s2]) = fll1[s2] = {q E 9\[s2]: q is 
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finite v q is infinite and executable}, since if q ( E Qi) is infinite and 
executable, then q E 271 [s;] (i = 1, 2). Thus, for every context S(~l e !i' t, 
one has 01 [ S( 0 [s1 ]] = 0: 1 (~1 [S(~J[s 1 ]])=ex1 (~1 [S (~J [s2]]) = l!\ [Sio[s2Jl 
From this and ( * ), it follows that 271 is not fully abstract w.r.t. c'.P1. 

Note that, when V is infinite, we cannot construct a statement yielding 
all infinite paths, such as X0 in the above lemma; thus (t) in the above 
example does not hold when V is infinite. Moreover, for every s E !i'1, it is 

shown that 

(18) 

as follows: First, for every q E 271[s], (n, i) E w x 2, it does not hold that 
qCn+il.(E 1(n}(q(n)))n(.ExI)w)s;;;p, since £11[s] is image finite by 
Lemma 6(4). Hence, qE211[s] is not pruned away from 211[s] at place 
(n; i).Thus, one has (18). 

3.6.2. Comparison with a Less Abstract Model than £11 for !i'1 

In [BR91 ], another denotational model 21; for a language, which is like 
Yi but has general sequential composition instead of prefixing, was 
proposed. The model 21; was presented on the basis of the domain: P; = 
,fJnc(Q; ), where Q; ~ { 8} u (.E-+ (.E-+ Q;) ). The outline of 21; is as follows 
(the interpretation of the parallel composition is omitted, since this is not 
necessary for the present purpose): 

(i) §;[x :=e);s] ={(AO': (a[[e](a)/x], q)): qE£1'1[s] }. 

(ii) The operation +' : P; x P; -+ P; is defined by { i;} + p = 
p+{i;}=p and, for p 1 , p 2 #{a}, p 1 +p2 is the set-theoretic union of p 1 

and p 2 • 

(iii) §;[If(b, S1, Sz])J = {(AO': if([b](a) = tt, q1(0'), q2(a))); qi E 
E?;[sr] 11 q E ,@; [s2] }. 

It turns out that 21; is not fully abstract w.r.t. 271 as the next example 
shows. Thus, 21'1 is less abstract than 271 • 

EXAMPLE 4. Let us assume, for simplicity, that IVar= {x}. Then, .Eis 
identified with V. Let q1 =((x:=O);O)+((x:=l);O), and 

s2 = If(x=O, (x := O); 0, (x := 1); O)+ If(x=O, (x := 1); 0, (x := O); 0). 

Then(*) £C,[s 1]=2&1[s2]={((v,v')):vEV11(v'=Ovv'=1)}·0 1• On 
t~e other hand, £C;[s 1]={q1>q2 }, where q 1 =(AvEV:(O,c:)), q2 = 
(1.vEV: <t,e)). Also, 21;[s 2]={q;,q;}, where q;=(AvEV: if(v=O, 
(0, e), < 1, e) )), q; = (Av EV: if(v = 0, (1, e), (0, i:) )). Hence (t) 2f;'1[s 1] ¥­
sc; [s2]. If 921; is also fully abstract, then one has Vs1' s2 E 2'1 [£11 [s 1] = 
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~1[s2] <=>~as1] =~'1[s2]], which contradicts (*) and (t). Hence ~~ 
cannot be fully abstract. 

3.6.3. Comparison with Hennessy and Plotkin's Resumptions Model 

The language treated in [HP79], which we denote by Sf.:0 , is very 
similar to 2'1 , except that it contains "co", a coroutine construct, as well as 
the usual interleaving. On the basis of a set (a e) Act of primitive actions, 
(se) Sf.:o is given by s::=al(s1,s2 )1If(b,s1,s2 )1While(b,s)l(s1+s2) 
l(s1lls2)l(s 1 cos2 ). A transition relation -+£;£f.,0 xStr with Str=L'u 
(Sf.:o x L') is defined, as -+Jo with the help of a given interpretation 
d : Act-+ (L'-+ E) (see Section 2 of [HP79] ). The expression <s, a)-+ a' 
means that the configuration <s, a) terminates with state a'. The opera­
tional semantics P,6 treated in [HP79] is defined as follows: For every 
statement s and state a, .@[s] (a)= {a' : <s, a)-+* a'} u if(3C<sn, an) lnew 
[<so,ao) = <s,a) /\ Vnew[(sn,an) -+ (sn+ 1,a11 +1)]], {..L},0). 
Obviously f!4 is more abstract than another operational semantics 
(!)co: Sf.:o -+ (L'-+ Pnc(L'"'"'\ { e})) which is constructed by slightly modifying 
@1 in the obvious way. Then, a denotational model 'JI" for Sf.:0 is defined on 
the bases of a domain R which is the solution of a domain equation in the 
category of non-deterministic domains. Furthermore, the full abstraction of 
"// w.r.t. fJe is established under the following three assumptions (see the 
paragraph immediately preceding Lemma 5.6 of [HP79]): 

(i) The set L' of states is infinite. (ii) For each aeL', there 
exists a statement K(a) E Act such that Va'[d[K(a)] 
(a')= a]. (iii) For each a EI, there exists an expression 
is(er)eBExp such that Va'[[is(a)](a')=tt<=>a'=a]. (19) 

We can construct a denotational model fl2co for Sf.,0 by slighly modifying 
!'21. First, the underlying domain P co is defined by slightly modifying P 1 as 
follows: P co= t<Jnc(Qc0 ), where Qco is the solution of domain equation: 
Qco ~ (L' x { <J, er) : a EL'}) 1±1 (Ix L') x id"(Qc0 ) with 'J' being some 
symbol standing for termination. Writing j(a) for (j, a) for the sake 
of readability, one has Qco ~(Ix I) <w • { ((a, j(a'))): a, a' EL'} 1±1 

(Exrr, as with Q 1. Then, the model fl2c0 -+(L'-+Pc0 ) is defined by 
~c0 [s] (a)= ~~0 [s](a) u £&~0 [s](a), where £&~0 [s](a) and ~~0 [s](a) are the 
terminating and non terminating parts of !l&co [ s] (a); these parts are defined 
as follows: First, ~~0 [s](a) = { (<er;, a;') );en· (<a,,, j(a~))): n E w /\ ao = 
a/\ 3(s;);e(n+l) [s0 ::s /\ Vien[<s;, a;)-+ <s;+t• o-;)J /\ <sn, <In)-+ s~]}. 
Next, ~~0 [s](a) = {(<a;, a; ))iew: a0 = <J /\ 3(s;);ew [so= s /\Vi E w[ (s;, a;) 
-+ <s. a')]]} The model !!fi can also be formulated by means of 1+ [, l .. co 

appropriate semantic operations and Banach's Theorem, as !'21. 
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Interestingly, the full abstraction of 0Jc0 can also be established under the 

assumptions ( 19 ). Thus, the two models "Y and 0Jc0 are isomorphic in the 

sense of Lemma 11, while the two models are constructed rather differently. 

The proof of its full abstraction is outlined below. 

Proof of Full Abstraction of 0Jco· Let Si. s 2 E 2,,0 such that f0co[s1] i= 
Pc0 [s2]. Then, either £21~0 [s 1 ] i=£21~0 [s2], or £21~0 [s1] i=0>~0 [s2]. Let us set 

P; = ftc0 [s;] (i = 1, 2). 

Case 1. Suppose f0~0 [s 1 ] i= f0~0 [s 2 ]. Then, we can assume, without loss 

of generality, that there exists q such that qE0>~0 [s 1 ]\f0~0 [s 2]. Thus, by 

the closedness of p 2 , there exists (<er;,er';));E(m+IJ such that(*) 
(<a;, er;));E(m+l)Epfm+tJ\p~m+lJ for some mEW. As in [HP79], we can 

construct an appropriate tester T0 for distinguishing s 1 and s2 as follows: 

First, let T,,,= If(is(er~1 ), K(ii), K(ii')), where a, ii' will be chosen below. 

Then T; (iEm,) are defined by T;=If(is(er;), (K(er;+il; T;+ 1 ), K(a')). We 

choose ii and ii' so that ( t) ii~ Uk E (m + ll ( {er : (<er;, er;)); Ek · ( (a b er)) E 
p~k + 1J} ), (t) ii' i= ii. Note that the right-hand side of (t) is finite since the 

transition relation --+ is finitely branching, and thus, by the assumption 

(19)(i), we can choose such states. Then, obviously one has ( <er0 , er;), 

(er~, er 1 ), ... , (er,,,, er;,,), (er,,,., j(O:))) E f0c0 [s 1 co T0], and therefore , ( **) 

iiE,qfi[s 1 co T0](er0 ). On the other hand, by the conditions (t) and (Hone 

can show that 0:EP8[s2 co T0](er 0 )=(<a;, er;));E(m+iJEP~m+ 1J. Thus, 

since (<er;,er;));E(m+ii~P~"'+ 1 J, one has (ttl a~£?.6'[s 2 co T0](a0 ). By(**) 
and (tt), one has P8[s1 co T0] i= P8[s2 co T0]. 

Case 2. Suppose f0~0 [s 1 ] i= 0>~0 [s 2 ]. Then, we can assume, without loss 

of generality, that there exists ((ll;,er;));E,,,·(<ern,,j(a;,,)))Ep 1\p 2 

(mEw). Let us choose ii so that (it) O:~{er;:iE(m+l)}u 

{er: ((er;,a;));E(m+ 11 ·(<er;,,,er))Ep~"'+ 2 J}, and let T=(K(ii)); T' with T' 

being an arbitrary statement. Then obviously one has ((er;, er;));E(m+ll. 

(<a;,,, 0:)) E (p 1; T) [m + 2J. On the other hand, by the condition ( U) it is 

impossible that (<er;,er;));E(m+iJ·((ll;,,,o:))E(p2 ;T)[m+ 2 l. Hence, one 

has ((a;,ll;));E(m+1 1·(<er;,,,ii))E(p1;T)[m+ 2J\(p 2 ;T)[m+ 2 J. Thus, one 

obtains the same proposition as ( *) in Case 1, replacing (<a;, er; ) ) ; E (m + 11 
by ( < ll;, <J;) );E (rn + 11 · (<er;,,, ii)), and P; by (p;; T) for i = 1, 2. Hence, one 

can construct T0 such that P8[(s 1; T)co T0] i=.%'[(s2 ; T)co T 0], as in 
Case 1. I 

The full abstraction result for "f/" and q;co essentially depends on the "co" 

construct; without this, the two models would not be fully abstract w.r.t. .%', 

which is also conjectured by Hennessy and Plotkin for "Y (see [HP79, 
Sect. 6] ). 
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4. A NONUNIFORM LANGUAGE WITH COMMUNICATION 

The second language Iii is a nonuniform language which has CSP-like 
communications in addition to all constructs of the first language. An 
operational model (()2 for 2'2 is given as in Section 3. 

The domain of a denotational model £02 for 2'2 is a kind of failures 
model, introduced in [BHR84 ], adapted to the non uniform setting. Each 
element of the domain is a set consisting of such elements as 
(((a;,a;, a;>);, (a", r>>, where a;, a;, and a" are states, a; is an action, 
and I' is a set of communication sorts. These elements are called failures; 
the parts ((a;, a;, a;>); and (a", r> are called a trace and a refusal, 
respectively. 

First, the correctness of ~2 is established as in Section 3. Then, the full 
abstraction of ~2 is established by a combination of the testing method 
introduced in Section 3 and the method proposed by Bergstra et al. in 
[BK088] to establish the full abstraction of a failures model for a uniform 
language without recursion. This method was adapted by Rutten in 
[Rut89] to employ it for a language with recursion in the framework of 
complete metric spaces, which suggests how to use it in the present setting. 

The full abstraction of the denotational model for 2'2 is established as 
follows: Given two statements s1 and s2 of 2'2 which are distinct in their 
denotational meanings, the denotational meanings are distinct in the trace 
parts or in the refusal parts. When the distinction is in the trace parts, we 
can construct a tester by the testing method; otherwise we can construct a 
tester by the method of Bergstra et al. 

4.1. The Language 2'2 

In addition to all constructs of Sfi, the language Iii has CSP-like com­
munications; i.e., it has inputs "( c? x )" and outputs "( c ! e )" for all channels 
c, individual variables x, and value expressions e. 

DEFINITION 17 (Language 2'2 ). The set of statements of the nonuniform 
concurrent language (SE) .Pt is defined by the following BNF-syntax: 

Here X ranges over RVar, the set of recursion variables; ~ ranges over 
SVar, the set of place holders used for defining contexts as in Definition 4. 
In addition, c ranges over Chan, the set of communication channels. Let 
(s E) fii ={SE .Pt: FV(S) = 0}; for~ E SVar, let 2'~ ={SE .Pt: FV(S) ~ 
{ ~} }. 
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Then the set of guarded statements (g e) ~2 is defined by the following 
BNF-syntax: 

We assume that each recursion variable X is associated with an element gx 
of ~2 by a set of declarations D = { (X, gx)} xeRYar-

In the sequel of this section, we fix a declaration set D = 
{ <X, g x) he RYar· As for 2i, 2 f and 2 2 can be formulated as the set of 
terms and the set of closed terms generated by a signature Yi, respectively. 

4.2. Operational Model (!)2 for 2; 

An operational model (!)2 for 2; is defined in terms of a transition rela­
tion -+ 2 • The following definition is given as a preliminary to the definition 
of -+ 2 • 

DEFINITION 18 (Actions). (1) The set of communication sorts, (ye) C, 
is given by C = { c ! : c E Chan} u { c? : c e Chan}. 

(2) The set of actions, (a E) A, is given by A= (C x V) u { t }. 

(3) The set of action sorts, (A E) ASort, is given by Asort =Cu { t }. 

( 4) A function sort: A-+ ASort is defined as follows: For a EA, 
sort( a)= y if a= (y, v) EC x V; otherwise sort( a)= t. I 

The transition relation -+ 2 c;:;; (22 x L') x Ax (22 x L') is defined as follows. 
For s 1,s2 e22 , er 1,a2 EL', and aeA, we write (s1 ,er 1 )--=4 2 (s2 ,u2 ) for 
( (s1 , er 1 ), a, (s2 , u2 )) E -+ 2 • For c !, c? EC and v E V, we sometimes write 
c! v and c? v for (cl, v) and (c?, v), respectively. 

DEFINITION 19 (Transition Relation -+ 2 ). The transition relation -+ 2 is 
defined as the smallest relation satisfying the following rules ( 1) to (9 ): 

(1) ((x :=e);s,er)~ 2 (s, er[[e](er)/x]) 

(2) ((c! e); s, er) (c!,[e](u)) 2 (s, er) 

(3) ( (c? x); s, er) ~2 (s, er[v/x]) (v E V) 

(4) (si. er) ~2 (s, er') ([b](er) = tt) 
(If(b, S1, S2). er> ~2 (s, 0' 1 > 
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(5) <s2, u) __::.2 <s, (}"') ([b](a)=ff) 
<If(b, s1i s 2 ), u) __::. 2 <s, u') 

<s1, <J) __::. 2 <s, u') 
(6) a , (aEA) 

<s1 + s2 , u) - 2 <s, ()) 
<s2 + S1, <J) __::.2 <s, ()') 

(7) <s1 , u) __::. 2 <s, u') ( A) 
<s2 II s1, ()) __::.2 <s II s2 , a') a e 

(s2 II s1, <J) __::. 2 <s2 II s, a') 

< s 1, <J ) ~ 2 < s~, u), < s 2, a) ...:2!; 2 ( s2, a' ) 
(8) (ceChan,veV) 

<s1 II S2, u) ~2 <s~ II s;, a') 

<s2 II S1, u)~2 <s2 II s~, a') 

(9) <gx,a)__::_.2<s',a')(<X )eD) 
<x > a < , ') • gx , a - 2 s, u 

For <s. (}") e 2i x.E, let act(s, ()) = {aE A: :J<s', u') E 2'2 x .E[ (s, a)---4 2 

<s', a')]}. Moreover, let sact(s, a)= sort[act(s, ())]. 

The transition relation is image finite in the sense of part ( 1) of the 
following lemma: 

LEMMA 16. For every s E 2 2, <J E .E, the following hold: 

(1) For every ae A, the set { <s', u') e 2 2 xE: (s, a) ~2 (s', u')} 
is finite. 

(2) asort(s, u) is finite. 

(3) For every c E Chan, the set { v e V : < c !, v) e act(s, u)} is finite. 

Proof These are shown in a fashion similar to the proof of 
Lemma 3. I 

In terms of the transition relation -+ 2 , the operational model @2 is 
defined as follows: 

DEFINITION 20 (Operational Model {!}2 for 22). (1) Let M~ = 
(22 -+ (.E-+ &Onc((A x .E)"'"'))), and let 'Pf: M~-+ Mf be defined as follows: 
ForfEMf, se.!fi, and ue.E, 

'Pf(f)(s)(u) = U {<a, ()1
) f(s')(a'): (s, a) ~2 (s', u')} 

ulf(r~act(s, u), {t:}, 0). 

It follows that 'Pf is a contraction from Mg' to Mf, as in Definition 6. 
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(2) Let the operational model @2 be the unique fixed point of If'~. By 
the definition, one has @2 : .2j --> ( L' --> &O nc( (A x L'),,; w) ), and for each s E 2'2 

and O" E .E, 

r'.D2 [s](a) = U {<a, a')· C02 [s'](a'): (s, CJ) ~2 (s', a')} 

u If(r ef: act(s, a), { e}, 0). 

4.3. Denotational Model 012 for -2'; 

The domain of a denotational semantic domain P 2 for 2'2 is a kind of 
failures model, which was introduced in BHR84 ], adapted to the non­
uniform setting. Each element of the domain is a set consisting of such 
elements as (((a;, a;, CJ;));, (CJ", I')), where O";, a;, and CJ" are states, a; 

is an action, and r is a set of communication sorts. These elements are 
called failures. Formally P 2 is defined by: 

DEFINITION 21 (Denotational Semantic Domain P 2 for -2';). (1) Let 
Q2 be the unique solution of Q 2 ~(.ExgJ(C)) \ti ((..ExAx.E)xid,(Q 2 )). 

One has Q 2 ~((.Ex Ax .E)<w ·(.Ex p(C))) u (.Ex Ax .E)w. 

(2) For PEPnc(Q 2 ) and rE(L'xAx.E)<w, the remainder of p with 
prefix r, denoted by p[r], is defined by p[r] = { q' E Q 2 : r · q' E p }. 

(3) ForqEQ 2 u(.ExAx.E)+,letistate2(q)=aifq=(<CJ,a,CJ'))·q', 
and let istate2( q) = a" if 3F[ q = ( < O""' r >)]. 

(4) For PE Pnc(Q 2 ) and O" E .E, let p(a) = {q E p: istate2 (q) = O" }. 

(5) The process p E PnJQ2 ) is uniformly nonempty at level iff 

VrE(L'xAx.E)" [p[r]#0=>VO"EL'[p[r](a)#0JJ. 

Moreover, p is uniformly nonempty iff p is uniformly nonempty at every 
level n E w. 

( 6) Let P 2 , the domain of processes for 2'2 , be given by 

P 2 = {p E ~(Q2 ): p is uniformly nonempty }. 

(7) For yEC, let y=c? if y=c!; otherwise y=c? and y=c!. 
Moreover, for FE &'J(C), let f= {Y: yEr}. 

We have the following lemma for P 2 , which is similar to Lemma 4 
for P 1 • 

LEMMA 17. The set P 2 is closed in &'Jnc(Q 2 ), and therefore, P 2 is a 
complete metric space with the original metric of Pnc(Q 2 ). 
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Proof This is proved in a similar fashion to the proof of Lemma 4. I 
The interpretation J 2 for the signature of £2 is defined as follows: 

DEFINITION 22 (Interpretation J 2 for Signature of 2 2 ). (1) 02 = 
{ ( (O', I')): (O', I') EI x t<J(C) }. 

(2) For xEIVar and eEVExp, asg2(x,e):P2 ~P2 is defined as 
follows: For pEP2 , 

asg2 (x, e )(p) = {( (O', r, er[ [e](O')/x])) ·p: O' EI}. 

(3) For cEChan and eEVExp, out(c,e) :P2 ~P2 is defined as 
follows: For pEP2 , 

out(c, e)(p)= {((O', (c!, [e](O')), O')) ·P: O"EL'} 

u { ( < O', r > ) : er E .r " r £ C\ { c ! } } . 

(4) For cEChan and xEIVar, inp(c,x):P2 ~P2 is defined as 
follows: For p E P 2 , 

inp(c, x)(p) = { ( (O', c? v, er[v/x])) ·p: O' EE A vE V} 

u { ( <er, r)) : er E .r " r £ C\ { c? } } . 

(5) For b E BExp, if(b): P 2 x P 2 ~ P 2 is defined as follows: For 
P1.P2EP2, 

if(b)(p 1 , p2 ) = LJ [if( [b](O") = tt, Pi (er), P2(0'))]. 
aeE 

(6) For pEP2, pn((ExAxE)xQ2) is called the action part of p 
and denoted by p +. 

For p 1,PzEP2, p 1 + p2 is defined as in Definition 8 by 

A process p E P 2 is said to be downward closed at level 0 if 

Ver, V I'[((O', I')) E p => V I"[I" £I'=> ( (er, I")) E p]]. 

It follows immediately from the definition of + that if p 1 and p2 are 
downward closed, then 

P1 .f. P2=P( upi u {(<O', I'))EL'X g:J(C): 3((0', I'1))Ep1; 

3((0', I'2)}EPz[I'£I'1 nI'2J}. 
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(7) We have the unique operation TI:P2xP2-P2 satisfyi!1g the 
following equation; the existence and uniqueness of such an operat10n are 
obtained as in Definition 8(5). For P1,P2EP2, 

where 

p 1 lL p 2 = U { (a, a, a'>· (p 1 [(a, a, a'>] TI P2) : P1 [(a, a, a')]# 0 }, 

p 1 1> p2 = ( U { ((a, r, a'>)· (p 1 [(a, c ! v, a>] TI Pi[< a, c? v, a')]) : 

)
cls 

p 1 [(a, c! v, a)]# 0 "p2 [ (a, c? v, a')]# 0} , 

p 1 # p2 = {((a, T>): 3((a, I'1))Ep1, 

3( (a, I'2)) Ep 2[(C\I'i) n (C\I'2) = 0" I'£:I'1 n I'2J }. 

Note that taking closure in the right-hand side of (20) is necessary, as 
Example 5 shows below. 

(8) .~2 = {02 , { asg2(x, e): (x, e) e IVar x VExp }, 

{if(b) :beBExp}, .+,TI, 
{ out(c, e): c E Chan A e E VExp}, 

{ inp(c, x): c E Chan Ax E IVar} }. 

EXAMPLE 5. Let us assume, for simplicity, that IVar = { x} and 
V = { l' }. Then the set of states consists only of one state denoted by v. 
Moreover assume that Chan= { C;: i E w} and c 1 # ci for i # j. Let p 1 and 
p2 be defined by p 1 ={q,,:new}, p2 ={((v,c11 ?v,v), (v,0)):new}, 
where q,, = (v, c,,! v, v> · (v, c0 ! v, v> ... (v, c0 ! v, v) · (v, 0). Then p 1 and 

n 

p 2 belong to P 2 , and moreover they are image finite, which notion is to 
be defined in Definition 24. Nevertheless, it is shown that the right-hand 
side of (20) without taking closure is not closed as follows. This set 
is :q;,:new}, where q;1 =(v,r,v)-(v,c0 !v,v) .. -(v,c0 !v,v)-(v,0). 

n 

This is not closed, since the infinite sequence ( ( v, r, v ), ( v, c0 ! v, v >. 
< v, co! v, l1 ), ... ) is a member of its closure but is not a member of it. 

The next lemma follows immediately from Definition 22(7 ). 
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LEMMA 18. \ipl, P2 E P2[P1 TI P2 = P2 TI P1]. 

In terms of the interpretation 5o, the denotational model ft', is defined 
by induction on the structure of s ~ 2"2 , as in Definition 9. " 

DEFINITION 23 (Denotational Model ::22 for ~). First, a contraction 
ll2 from Mi= (RVar-+ P 2 ) to itself is defined as in Definition 9( 1 ), 
using 5 2 instead of 5 1 . Let Po= fix( 17 2 ), and for X ER Var, let us define 
X 5\ the denotational meaning for X, by: X 92 = p0 (X). Next, for each 
operator F of 2"2 with arity r, and s 1 , •.. , s, E 2"2 , let 2?'2 [F(s 1, ..• , s2 )] = 
F"2(2?'2 [s 1], ••• , 2?'2 [sr] ), where FJ2 is the interpreted operation corre­
sponding to F. 

Several properties including the so-called image .finiteness for elements of 
P 2 are introduced. It will be shown that the denotational meaning of each 
statement in f.!'2 has these properties; this fact is used for establishing the 
full abstraction of :!l!2 . 

DEFINITION 24 (Image Finiteness for Elements of P 2 ). Let p E P 2 and 
n E W. 

(1) The process p is image finite at level n, written IF in~· 1( p ), iff 

\fr E (.Ex Ax LY"' [p[r] # 0 

= \ir; E .E, \i a EA [ { r;' E.[ : p[r] [ ( r;, a, r;' >] # 0} is finite]]. 

The process p is image finite, written IFin 2(p), iff \in E w[IFin~nl(p)]. 

(2) The process p is finite w.r.t. action sorts at level n, written 
ASFin(nl(p), iff 

\fr E (.Ex Ax I') <w [p[r J # 0 =>\fr; E I'[sact( p[r ], r;) is finite]]. 

The process p is .finite w.r.t. action sorts, written ASFin(p), iff \in E 

w [ASFin<n 1(p)]. 

(3) The process p is finite w.r.t. output values at !euel n, written 
OVFin tnl(p ), iff 

\irE (.[ x Ax..[)<'" [p[r] # 0 

=\fr; E .E, \ic E Chan[ { v E V: 3r;'[p[r] [ (r;, c ! v, r;') J # 0]} is finite]]. 

The process p is finite w.r.t. output values, written OVFin(p ), iff 
\in E w[OVFin (nl(p)]. 
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( 4) The process p satisfies the disjointness inaction condition at level 
n, written mc<nl(p ), iff 

'v'r E (.Ex Ax Er [p[r] # 0 
~ 'v'Cl EE, :i.~ s;; p(sact(p[r], Cl) n C)['v' I'E p(C)[( <Cl, I')) E p[r] 

<:> 3R E~[I' ('\ R = 0]]]]. 

The process p satisfies the disjointness inaction condition, written DIC(p ), iff 
'v'n E w[DJC<nl(p)]. (See Example 5, for a motivation of this definition.) 

(5) Properties FIRN¥'l(p), FIRT~nl(p), and FIR2 (p) are defined as 
FIRN\nl(p ), FIRT\nl(p ), and FIR 1 (p) in Definition 10(2 ). Formally, these 

are defined as follows: 
(i) First, FIRN~n>(p) iff there exists !1/'e f<Jr(IVar) such that 

the following holds: 'v're(ExAxEt, 'v'O'e((IVar\9l")-+Vt[rep[nJ<:> 
Vien[n~(r(i)) f (IVar\X) = n~(r(i)) i(IVar\X)] /\ (((n6(r(i)) 19l")uO'(i), 
rri(r(i)), n~(r(i)) I ff) u O'(i)) );en Ep["J]. That is, for each r E (.Ex Ax E)", 
if rEp["J, then, in every step r(i)= (n6(r(i)), ni(r(i)), nf(r(i))) of r (ien), 
the value for xeIVar\9l" is not changed, i.e., (*) n6(r(i)) I (IVar)\El)= 
n~(r(i)) / (IVar\.¥), and one may change the value n](r(i) )(x) (} = 0, 2) 
arbitrarily, i.e., (t) (((n6(r(i)) /El)uO'(i), ni(r(l)), (n6(r(i)) /ff)u 
O'(i)) );En E p[n] for arbitrary O' E (IVar\El")-+ vin. Conversely, for arbitrary 
8e(IVar\ff)-+ Vt, if one has(*) and (t), then rEp[nJ. 

(ii) Similarly, FIRT~">(p)<=>3!1l°Efo>r(IVar), 'v'qe(ExAxE)"· 
(l'xg<J(C)), 'v'ae(IVar\X)-+V)"+ 1 [qep<=>'v'ien[n6(q(i)) l(IVar\El")= 
7t~(q(i)) /(IVar\ff)] /\ (((n6(q(i)) I Er) u a(i), nf(q(i)), (n~(q(i)) IX) u 
8(i)));e 11 ·(((n~(q(n)) fX)u8(n), ni(q(n))))ep]. 

(iii) FIR 2(p)<=>VnEcv[FIRN~">(p) /\ FIRT~"l(p)]. 
(6) Pt= {peP2 : IFin2(p) 11 ASFin(p) /\ OVFin(p) A DIC(p) /\ 

FIR2(P) }. 

Remark 5. Though the condition DIC<0 >( ·) might seem too com­
plicated, it is characterized in terms of a simpler condition D( ·) defined as 
follows: For pEP2 , (*) D(p)<=> 'v'a[3I'[ (a, I') Ep] => 3R £:; sact(s, a) n C, 
'v'I'[(a,I')Ep<=>I'nR=0]]. Let P' be the smallest subset of P 2 which 
includes {p E P 2 : D(p)} and is closed under set-theoretical union; i.e., 
let P'={UP":P"s;;P2AUP"eP2 11Vp'eP"[D(p')]}. Then one has 
P'= {peP2 : DJC<0 >(p)}. The part P'2 {peP2 : DJC< 0 l(p)} is shown as 
follows (the other part is shown more straightforwardly). Let p e P 2 with 
mc<0 l(p), and E'={a:3I'[(Cl,I')Ep]}. Then for each ae.E', there 
exists~" such that 'v'I'[(a,I')Ep<=>3Re~"[I'nR=0]]. Fix such~"' 
and for eac~RefLe.r·(~"), put p(R)={qep:lgt(q)~2}u{<a,I'): 
a_el"AI'nR(a)=0}. Then, one has D(p(R)) and p=U{p(R): 
REOaer·(~")}, and therefore, peP'. 
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Also, as is obvious from Remark 1, the set {pEP2 : DIC(p)} is defined 
as the largest subset of P 2 which is included in {pEP 2 : DJC(0 l(p)} and 
closed under taking remainders, where closedness under taking remainders 
for subsets of P 2 is defined as in Remark 1. It is easy to check that the 
downward closedness of p E P 2 follows from that fact that DIC(p ). 

It turns out that the denotational meaning of each statement is a 
member of Pt, which is used for establishing the full abstraction of q;2. 

LEMMA 19 (1) The set Pi is closed in P 2 • 

(2) VpEPi, VrE(L'xAx.E)<w [p[r]#0=p[r]EPf]. 
(3) The set Pi is closed under all interpreted operations of .ct'2. 
( 4) q;2 [ .ct'2 J £ pi . 
( 5 ) V p E q;2 [ .ct'2 J, V r E ( .E x .E) < w [ p [ r J # 0 = p [ r J E P t ]. 

Proof These propositions are proved in a fashion similar to the proof 
of Lemma 6. Here we prove the essential part of ( 3 ), i.e., that V p 1 , p 2 E 
P 2 [DIC(pi) /\ DIC(p 1 II p2)]. Let us show by induction on nEw that the 
following holds for every n E w: 

Vpl' P2 E P2[DIC(n)(P1) /\ mc(n)(P2) = mc(n)(P1 TI P2H (21) 

Induction Base. Let p 1,p2 EP 2 such that DIC(01(p 1) and DIC(01 (pi), 
and fix CJ E .E. By the definition of DIC(01 (- ), there exists fJli; £ 
p(sact(p;, er) n C) such that 

(i=l,2). 

Let &ll = { R 1 u R 2 : R 1 E fJli1 /\ R 2 E fJlt2 /\ R 1 n R 2 = 0 }. Then one has, by the 
definitions of TI and#, that VI'[<CJ,I')Ep 1 TIP2~3REfJli[I'nR=0]], 
which implies that DIC(01 (p 1 TI P2l· 

Induction Step. For every k E w, it is immediate by the definition of TI, 
that (21) with n = k + 1 follows from (21) with n = k. I 

4.4. Correctness of ::22 with Respect to CJ2 

The correctness of g 2 w.r.t. (!)2 is established as that of ,0Z1 w.r.t. 01, by 
means of an intermediate model @2 . 

4.4.1. Intermediate Mode! for .ct'2 and Semantic Equivalence 

First, the intermediate model @2 , which is an alternative formulation of 
!:22 , is defined in terms of the transition relation ~ 2 • 
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DEFINITION 25 (Intermediate Model rfl2 for 2'2). We have the unique 
mapping i!\: !1'2 __. P 2 satisfying the following condition (the existence and 
uniqueness of such a mapping are obtained as in Definition 11 ): Fors E 2'2 , 

{i\[s] = LJ { (<er, a, er'))· rfl2 [s']: <er, a, er') EI x Ax .E 

/\ (s, er) ~2 <er', er')} u {((er, T)): (er, I') Eix p(C) 

/\ r ~ act(s, er)/\ r n sact(s, er)= 0 }. 

We have the distributivity of IT in P 2 as we had that in P 1 (cf. Lemma 8). 

LEMMA 20 (Distributivity of IT in P2l· Let k, I~ 1, P1' ... ,Pk• 

p;, .. ., p; E Pi: 

U [pJ ITU CPJJ = U [p; IT Pil 
iek je[ (i,J>ekx[ 

Proof Omitted {see Appendix 5 of [HBR90] ). I 
By means of the above lemma, we will establish the equivalence between 

!22 and @2 as we have established Lemma 7. 

LEMMA 21 (Semantic Equivalence for 2'2). ( 1) Let F be an operator of 
21' with arity r, and let s 1 , ... , s, E 2'2 . Then one has 

&'2[F(s 1 , •.• , s,)] = F....-2(@2[s i], ... , @2 [s,] ). 

(2) For sE2'2 , one has @2[s] =£&2[s]. 

Proof (1) The proof is similar to that of Lemma 7. Here we prove the 
claim for the operator II. For the other operators this is proved (more 
straightforwardly) in a similar fashion. Let H 2 = (2; x !£2 --> P 2 ), and let 
F,GEH2 be defi~ed as follows: For s 1 , s2 E2'2 , F(s1's2 )=&2 [s 1 lls2], 

G(s 1 ,s2 )=&'2[s 1]11rfl2 [s2]. Moreover, let ff~:H2 ->H 2 be defined as 
follows: For fE H 2 and s1 , s2 E 2'2 , 

§ ~(f)(s 1, s2) =ff Hfl(s1, s2) u ff ~(f)(s2 , s 1 ) u ff ;-U)(s 1 , s2 ) 

u § ;-(f)(s2 , s1 ) u ff i (f)(s 1 , s 2 ), where 

§r(f)(s1,s2)=U {((a,a,a'))·f(s;,s2 ): (s 1 ,a)~ 2 (s'1,cr')}, and 

.?f(.f)(s1' s2) = U {((a, r, a')) ·f(s;, s;): :le, :Iv[ (s 1 , er) ~2 (s~, a) 

/\ <s2,a)~ 2 (s' 2 ,a')]}, 

::F: (f )(s 1, s2) = { ( (er, r)) : r ~ act(s 1 , a) /\ r <t act(s 1 , er) /\ sact(s 1 , er) 

n sact(s2 , a)= 0 /\ r n (sact(s 1 , er) u sact(s2 , er))= 0 }. 

Then, § ~ is a contraction. 
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Let s 1 , s2 E2"2 . By the definition of &2 and ---t 2 , one has F(s1>s2 )= 
ff~(F)(s 1 , s2 ); i.e., F=fix(ff). Thus, for obtaining the desired result, it suf­
fices to show that G =ff~( G). By the definition of TI, one has 

u 
<i,j>=<l.2),(2,1> 

Thus, for showing G = ff~(G), it suffices to show that(*) (i92 [s;] u_@2 [s1])= 
ff H G)(s;, s) ( (i, j) = < 1, 2 ), (2, 1) ), (t) (@2[s,] e> &2 [sJ) =ff ;;(G)(s1 , s2 ) 

((i,j)=(l,2), (2,1)), and (t)(i91 [s 1] # &Js2])=fft(G)(s1 ,s2 ). The 
fact ( *) can be shown as ( *) in the proof of Lemma 7 ( 1 ); ( t) is shown as 
follows: 

lii2[s;] e> &2[s1] 

643i!l5/l-13 

= U {((a, T, a'))· (lP2[s;] [(a, c! v, a) J ~ @2[s1][a, c? v, a')]): 

lD2 [s;] [ < o-, c ! v, a)]# 0 A @2 [sj] [ < o-, c? v, a')]# 0} 

(taking closure is omitted, since ASFin(0)(@2[sk]) and 

OV Fin(0l(@2[sk]) (k= 1, 2) by Lemma 16(2) and (3), 

and therefore, the above set U { (<a, r, a'))··· } is closed) 

= U {((a, T, a'))·( U {lD2[s;]: (s;: a) ~2 (s;, a)} 

TIU {0Jsj]: (si, a) ~2 (sj, a')}} 

:is;[ (s;, o-) ~2 (s;, o-)] A :is; [(s1, a) ~2 (s;, a')]} 

=U {c<a,r,a'))·(U {G2[s;] ~ iB2[sj]: 

(s;, a) ~2 (s;, a)/\ (si, a) ~2 (sj, a')}): 

A :ls)[ (s1, o-) ~2 (sj, a') J} 
=ff!;(G)(s;, sJ 

(by Lemma 20) 
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For showing (H it suffices, by the definition of =IF, to show the following 
for every (er, I') eEx g;J(C): 

3(er, I'1 > e lD2 [s1], 3(er, I'2) E iD2[s2] [(C\I'i) 

n (C\I'2) = 0 /\I'£ I'1 n I'2] 

<=> r ~ act(s1, er)/\ 't' ~ act(s2, er)/\ sact(s1, er) n sact(s2, er)= 0 

/\ r n (sact(s1, er) u sact(s2, er))= 0. (22) 

The <=-part of (22) is obtained by putting I'1 = C\sact(s1, a), 
I'2 = C\sact(s2, a). Let us show the ==>-part. Suppose the left-hand side of 
(22) holds, and fix such I'1, I'2. By the definition of@2 , (**) r~act(s 1 , a). 
Moreover, I'1nsact(s1,u)=0, and therefore, (tt) sact(s1,a)r;;.C\I'1. 
Similarly (:U) r ~ act(s2 , er), and sact(s2, er)£ C\I'2 , i.e., ( ***) sact(s2, a)£ 
C\I'2 • By the left-hand side of (22), (tt), and (**), one has (tttl 
sact(s1,a)nsact(s2 ,u)r;;.C\I'1nC\I'2 =0. By the left-hand side of (22), 
I'£I'1 r;;.C\sact(s1, er}, and therefore, (ttt) I'n sact(s 1 , u) = 0. Similarly 
(****) r n sact(s2 , er)= 0. By ( ** ), (H), (ttt), (HH ( **** ), one has the 
right-hand side of (22). Thus one has (22). 

(2) Similar to the proof of the part (2) of Lemma 7. I 

4.4.2. Correctness of ~2 with Respect to @2 

As a preliminary to the proof of the correctness, an abstraction functior 

ix 2 :P2 -+(l'-+t.Jnc((AxE).,."')) is defined as follows. Like ix 1, this functior 
is formulated in two ways, first as the fixed point of a higher-order map· 
ping, and second as the set of histories. 

DEFINITION 26 (Abstraction Function ix 2 for ..%). We have the unique 
mapping ix 2 :P~-+(E-+pnc((AxE).,."')) satisfying the following (the 
existence and uniqueness of such a mapping are obtained as in Definiti01 
12): For every pePf, ereE, 

et2(p)(er) = U { ((a, er')) ·et2(p[ (u, a, er') ])(er'): 

3q e Q2 [( (er, a, er')) · q E p]} 

uif(3I'ep(C)[((er,I'))ep], {e},0). 

The abstraction function is characterized in another way. First, we neec 
some preliminary definitions. 
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DEFINITION 27 (Histories of Elements of Q2 ). Let q E Q2 u (L' x Ax L') <w. 

(1) The sequence q is executable, written Exec2(q), iff 

3v E w u { w }, 3( ( O' i' ai, u;) Lev [q = ( ( a1, ai, u;) )1e v 

/\ 'v'iEv[i+1Ev~a;=a1 + 1 JJ 

V 3k E W, 3( (ai, a;, a;) )iek> 3(uk> I') [q = ( (a1, ai, a;) )iek 

Let E2={qEQ2u(L'xAxL')< 00 :Exec2{q)}. For aEL', let E2(a)= 
{ q E E 2 \ { e} : istate2 ( q) =a}. 

(2) Let q be executable. The history of q, denoted by hist2(q), is 
defined by 

if q=((a;, a;, u;));ev• 

if q= ( (u;, a;, a;) Lek· ( (ak, I')). 

The next lemma is shown in a fashion similar to Lemma 9. 

LEMMA 22 (Another Formulation of the Abstraction Function cx 2 ). (1) 
For p E Pt, a EL', one has cx 2(p)(a) = {hist2(q) : q E p n E 2(u) }. 

(2) 'rfk~ l, 'v'p 1 ,. • .,PkEPt, 'v'a[a2(U1e/C [p;])(u)= U1e/C [cx2(PJ(a)]]. 

By means of this lemma, we have the correctness of Pfi2• 

LEMMA 23 (Correctness of Pfi2 ). (1) cx2 ° ?92 = (!)2· 

(2) CX2°.@2=(!)2· 

Proof ( 1) By showing that cx 2 o @2 is the fixed point of 'l'~ defined in 
Definition 20. 

(2) Immediate from (1) and Lemma 21(2). I 

4.5. Full Abstraction of ~2 with Respect to @2 

As for 2'1 , we present the following lemma to establish the full abstrac­
tion of .@2 ; 

LEMMA 24 (Uniform Distinction Lemma for .292 ). Let .9l E (Pr(IVar)\ 
{0} ). 
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(1) For every re(E.¥xAx.E.¥)<"', 

'v'p1,P2EPHP1[r] #0 AP2[r] =0 

=>'v'ae.E.¥, 3Te.2';[a2(P1 TI .@2[T])(a)\a2(P2 TI .@2[T])(O'):i=0]]. 

(23) 

Vp1,p2ePt[qep1\P2 

=>'v'ae.E.¥, 3Te£;[a2(p1 TI .@2[T])(a)\a2(P2 TI .@2[T])(<J):i=0]J. 

(24) 

The proof of this lemma is given later. First, note that the full abstrac­
tion of .@2 follows immediately from Lemma 24, in the same way as 
Theorem 1 follows from Lemma 12. 

THEOREM 2 (Full Abstraction of .@2). Let V be infinite. Then, for every 
s1,s2e.2';, one has 

We present the following lemma as a preliminary to the proof of Lemma 
24. For its proof we assume that V is infinite. 

LEMMA 25 (Testing Lemma for 9'2). Let &te(tJr(IVar)\{0}), pePf, 
(a',a,a")e(.E.¥xAx.E.¥), a0 e.E.¥. Then there are two finite sequences 
r1 , r 2 e (.E .i'" x Ax E.¥) <w such that the following hold: 

(1) r1 ·(a', a, 0' 11
) ·r2EE2(ao). 

(2) For every tester T' e 9'2 , there exists another tester Te 9'2 such 
that the following hold: 

(i) .@2[T] [r1 · r2] = .@2[T'], 

(ii) \tq' eQ 2[r 1 ·(a', a, a") ·r2 ·q' ep TI .@2 [T] =>p[ (<J', a, 0" 11 )] # 
0 A q' e p[ ( rr', a, 0'11

)] TI .@2[T']]. 

Proof The proof is formulated by supposing that fl£ is reduced to one 
variable: fl£ = {x }, as Lemma 13. However, the lemma still holds when fr 
is composed of more than one variable, as Lemma 13. For v e V, let O'( v) 
be defined as in Lemma 13. The proof is given by distinguishing two cases 
according to whether a 0(x) = a'(x). 
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Case 1. When a 0(x)=a'(x), we can easily construct two sequences r 1 , 

r2 satisfying (1 ), (2) of Lemma 25 as follows: r 1 = e and r 2 =(CJ", r, a(v 1) ), 

where v1 is chosen such that 

(i) V 1 =!= a"(x), (ii) V1 ~ {veV: (CJ', a, Cl")· (Cl", r, a(v)) Ep[2J}. 

(25) 

Note that the right-hand side of (25)(ii) is finite by Definition 24, and 
therefore, there is v1 satisfying (25). It is shown that (1) and (2) of Lemma 
25 hold in a similar fashion to the corresponding part in the proof of 
Lemma 13. 

Case 2. When CJ 0 (x)=/=CJ'(x), we can construct two sequences r 1 , r2 , 

satisfying (1) and (2) of Lemma 25 as follows: r 1 =<CJ0 ,r,CJ'), r2 = 
<a", r, a(vi)), where v1 is chosen such that 

(ii) v1 =!= a'(x), (26) { 

(i) v 1 ~{vEV: (CJ0 ,r,CJ 11 )·(CJ1,a,rJ11 )·«r",r,cr(v))Ep[3J}, 

(iii) v1 =!= a"(x), 

(iv) v1 ~ {veV: <rJ', a, rJ 11 ) ·<CJ", r, cr(v))Ep[2J}. 

Note that the right-hand sides of (26)(i) and (iv) are finite by Definition 
24, and therefore, there is v1 satisfying (26). In this case also, it is 
shown that ( 1) and (2) of Lemma 25 hold in a similar fashion to the 
corresponding part in the proof of Lemma 13. I 

The following proposition follows immediately from Lemma 25 as 
Corollary 1 followed from Lemma 13; this corollary is to play a central 
role in the proof of Lemma 24. 

COROLLARY 2. Let g[E(,f.Jr(IVar)\{0}), pEPf, (a',a,rJ")e(I:Y'x 
AxI:J"), and CJ0Eix. Then, there are p1,p2 E(AxL':Y')<w such that for 
every T' E 2 2 there exists TE 2; such that, putting CJ 1 = last(p 1 ·a"· Pz), the 
following hold: 

(I) For every p' E Pi', one has 

Vp' E (Ax I).;w [p'[ <a', a, a")]=!= 0 

/\ p'ea2(p'[<CJ', a,a")] TI S&2[T'])(ai) 

= p 1 ·a"· P2 · p' E ctz(p' TI S&2[T] )(rJolJ. (27) 
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(2) For p' = p, one has the converse of (28 ). That is, 

Vp'E(AxE).,'° [p 1 ·er" ·P2 ·p'Ea2(P TI !02[T])(ao) 

=> p[ (<T', a, a")] i= 0 /\ p' E a2(p[ <er', a, er")] TI £02 [T'] )(a i)]. (28) 

Proof of Lemma 24. Let El"E(t.Jr(IVar)\{0}). 

Part ( 1 ). The first part is proved by means of Corollary 2, as Lemma 

12(1) was proved by means of Corollary 1, by induction on the length of 

rE(L'xxAxEgr)<'°. 

Part (2). We will prove that (24) holds for every q E (.Ex x Ax .E:!E) <w · 

(.Ex x p ( C) ), by induction on the length of q. The proof is similar to the 

proof of the corresponding part of Lemma 12 except for the induction base, 

which is established by means of the method of [BK088] with some adap­

tation to the present setting; the induction step can be established using the 

testing method (Corollary 2 ). 

Induction Base. Let lgt(q)=l and q=(<a',I'')). Suppose qEp 1 and 

qt/=p 2 , and let <TEE.'<. We will construct a tester T such that ((r, cr'))E 

a2 (P1 TI £02[1l)(cr)\a 2(p2 TI £02 [T])(er). Since P2 satisfies the disjointness 

inaction condition, there exists ~2 such that ( *) ~2 s;: gJ ( sact(p 2 , a) n C) 

and (t) V I'E p(C)[( (er', I')) EP2 <=> :JR E ~2 [I' n R = 0]]. Fix such an 

~2 , and let (t) I'"=sact(p2 , cr)nI". By (t) and the fact that qt/=p2 , one 

has VR'E~2[I"nR'i=0]. The set sact(p 2 ,cr) is finite since ASFin(P2), 

which implies that I'" is finite. Let I'"= { y 1, ... , y n }. Since fll: is finite and 

nonempty, we can put Er= { x 1, ... , x,} as in the proof of Lemma 12. Let us 

set T=:(x 1 :=er'(x1)); ... ; (x,:=a'(x,)); T', and T'=O+<ft(f;")+ ··· + 

~(Yn), where ~(y) = (c! v); 0 if y = c! with v E V arbitrary, and <ft(y) = (c? x); 

0 if y = c? with x E IVar arbitrary. With this tester T, we will show that 

((r,er'1), ... , (r,er~))Ea2(P 1 TI £02[T])(cr)\a2(p 2 TI £02[T])(a), where a;= 
cr[(cr'(xi), ... , cr'(x;))/(x1, ... , x;)] (i Er+ 1 ). 

First, let us show that ( < r, <T; ), ... , ( r, er~)) E a2(p 2 TI £02 [ T] )( cr ). Under 

the assumption that q E p 1 , one has ( **) ( < cr', I")) E p 1. Moreover, by the 
definition of T', one has that (tt) ((cr', C\I'"))E£02[T']. Moreover, 

(C\I") n (C\(C\I'")) = (C\I") n I'" 

= (C\I") n sact(p2 , cr) n I" (by (t)) = 0. 

By this ( ** ), (tt ), and the definitions of TI and *, one has that 

((<T~,r,cr;), ... ,(a~-1,r,<T~),(er',0))Ep 1 TI!02 [T], i.e., (HJ: (<r,O"'i), 
... , (r, er~))Ea2(P 1 II !02[T])(cr). 

Nex.! let us show, by contradiction, that ((r,a'i), ... ,(r,er~))t/= 
a2(P2 II !02[T] )(~). Assume, to the contrary, that ( ***) ( < r, er'1 ), ... , 
(r, er~))Ea2(P2 II !02[T])(cr). Then, by the definition of a 2 , one has that 
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( (~~, r, a~), .. ., <a~ -1' r, a~), (a', 0)) Ep2 TI 9 2 [T]. Hence, ( (u', 0)) E 

P2 II ~z[T][(<_a~, r, aj),. . ., <u~_ 1 , r, er~))] =p2 TI 9 2 [T']. By this and the 

definitions of II and#, there exist I'1, I'2 Ep(C) such that 

( i) (<er', I'1 ) ) E f2, 

(ii) (<er',I'2))E92[T'], 

(iii) (C\I'i) n (C\I'2 ) = 0. 

(29) 

Moreover, there exists R' E !Jll2 such that I'1 n R' = 0. Fix such R'. Then 

(tttl C\I'1~R'. By the fact that ((er',I"))~p2 , one has that (Ut) 
I" n R' #- 0. By (29)(ii), one has that I'2 n I'"= 0, i.e., C\I'2 2 I'", and 
therefore ( ****) C\I'2 2 I'". Thus 

(C\I'i) n C\I'2 2 R' n I'" (by (ttt) and ( ****)) 

=R'n(sact(p2 ,er)nI") (by(t)) 

= R' n I" (since R' s; sact(p2 , er) by ( *)) #- 0 (by CHtl J. 

This contradicts (29 )(iii). Hence ( ***) is false, and therefore, one has that 
(( r, er~),. . ., < r, a~))~ rx 2(p 2 TI 9 2 [T] )(er). By this and (tt ), one has that 
( <r, er~), .. ., <r, er~)) Erx 2(p 1 TI 9 2[T])(er)\rx2(p 2 TI 9 2 [T])(a). 

Induction Step. By means of Corollary 2, the induction step is 
established, in a similar fashion to the induction step of the proof of 
Lemma 12( 1 ). 

4.6. Comparison of 9 2 and Roscoe's Model for Occam 

Roscoe, in [Ros84 ], constructed a denotational model for a large subset 
of occam. The language in [Ros84] is similar to Sf2 in many respects. 
However there are several differences between the two: One major dif­
ference is that, unlike individual variables in 2;, variables in occam (except 
read-only ones) are not shared by two or more parallel processes, and 
therefore, intermediate states of one process cannot directly affect another 
process. Thus, in [Ros84 ], a denotational model Cef! can be constructed (for 
the language) without taking account of intermediate states: The model <€ 
is constructed as a hybrid of the failures model for CSP (proposed in 
[BHR84] and improved in [BR84] ), and the conventional model for 
sequential languages which defines the meaning of a program as a relation 
between initial and final states. We expect that a model for Sf2 can be con­
structed along the lines of Cef!, and will be more abstract than 9 2 in nature. 
However, it will not be compositional w.r.t. II, since processes of Sf2 have 
shared variables. 
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5. CONCLUDING REMARKS 

We conclude this paper with some remarks about possible extensions of 
the reported results and related works. There are two directions for such 
extensions. One is to investigate fully abstract models for other languages, 
e.g., a nonuniform concurrent language with process creation and (a form 
of) local variables as the language 2 3 in [BR91]. The other is to investigate 
fully abstract denotational models for the same language 2 1 (or 2 2 ) w.r. t. 
other operational models, which might be more abstract than the one 
treated in this paper. 

For instance, it might be possible to construct a fully abstract denota­
tional model for an operational model @' for l.fi which is defined by 
slightly modifying @ in Sectin 3.6.3 as follows: For every statement s and 
state a, @'[s](a)={a'::Js'[(s,a)(--*i)* (s',a') A 1:J(s11,a")[(s',a') 
--*i (s", a")JJ} vif(3((sn, an)lnew [(s0 , ao)= (s, a) A lfnEm[(sn, an) 
--* 1 (sn+t•Cin+i)J], {J_},0). It was shown in [AP86] that there is no 
fully abstract denotational model w.r.t. !!$' if the language has countable 
nondeterminism. However, it is still to be investigated whether there is a 
fully abstract denotational model w.r.t. !!$', since the language 2 1 does not 
have counable nondeterminism. It seems that ~1 is not fully abstract w.r.t. 
!!$'; at least, we cannot establish the full abstraction w.r.t. !!$' as we have 
done w.r.t. IP1, since there are s 1, s2 E21 such that ~1 [s 1]#~1 [s 2], but 
VTE 2 1[86''[s1 II T] = f4'[s 2 II T]]. This is easily verified by putting s1 = 0 
and s2 =(x :=x); 0. 

For 2 2 , a language for communicating concurrent systems, there are 
several possible operational models besides IP2 , defined in Section 4. There 
are several dimensions for classifying operational model for such a 
language; such a classification and comparative study of these models were 
presented in [Gla90]. One of those dimensions is the dichotomy of linear 
time versus branching time: a model is called a linear time model, if it iden­
tifies processes differing only in the branching structure of their execution 
paths; otherwise it is called a branching time model. Another dimension is 
the dichotomy of weak versus strong: a model is called weak, if it identifies 
processes differing only in their internal or silent actions (denoted by r in 
this paper); otherwise it is called strong. Also, there are two kinds of 
languages, i.e., uniform languages and nonuniform languages. By combina­
tion of these criteria, one has eight types of operational models, and for 
each of them, one has the problem of constructing a fully abstract 
denotational model, or of characterizing somehow the fully abstract 
compositional model. The results on these problems obtained so far are 
summarized in Table 1. 

As described in the introduction, fully abstract model for uniform 
languages w.r.t. strong operational models of the linear time variety were 
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TABLE I 
Results on Fully Abstract Models for Communicating Processes 

Linear Time Strong Uniform [BK088]: Characterization of a fully abstract 
compositional model.* 1 

[Rut89]: Construction of a fully abstract 
denotational model.*" 

Nonuniform This paper: Construction of a fully abstract 
denotational model w.r.t. an operational model 
with states. *3 

'?:With respect to an operational model 
without states. *4 

Weak Uniform [Hor91]: Characterization of fully abstract 
models for a CCS-like language.* 5 

Non uniform 0•6 

Branching Time Strong Uniform [Mil80, Mil85, Mil89]: Characterization of a 
fully abstract compositional model for CCS. *7 

[GV88]: Characterization of fully abstract 
compositional models in general.* 8 

[ Rut90]: Construction of fully abstract 
denotational models. *9 

Nonuniform ? 
Weak Uniform [Mil80, Mil85, Mil89]: Characterization of a 

fully abstract compositional model. · JO 

Non uniform ? 

investigated in [BK088] and [Rut89] (cf .. *l, •2 in Table 1). The opera­
tional model (()2 for a nonuniform language introduced in Section 4 is a 
strong model of the linear time variety. Also, it involves information about 
states. A fully abstract denotational model w.r.t. this is presented in this 
paper ( cf. •3 in Table 1 ). 

We can define a more abstract operational model (!)i for 2 2 by ignoring 
states as follows: For every statement s and state a, @{[s](a) = 

U { (a) · ((; i[s'] (a') : < s, a) ~ 2 < s', a">} u if( r rt act(s, a), { c;}, 0 ). It is to 
be investigated whether [i;2 is fully abstract w.r.t. @i (cf *4 in Table 1 ). It 
seems more difficult to construct fully abstract denotational models w.r.t. 
weak operational models. A weak operational model @i* for 5!'2 is defined 
by means of (!}j as follows: For every statements and state a, 0f*[s](a) = 

{p\r :pE(!ii[s](a)}, where p\r is the result of ignoring r's in pE 
(Cu { r}) «w. In [Hor91 ], fully abstract models for CCS-like languages 
were constructed w.r.t. weak linear semantics with divergence, in the 
uniform setting ( cf. *5 in Table 1 ); it remains for future research to con­
struct such models in the nonuniform setting (cf. *6 in Table l ). A related 
discussion is found in the last section of [BK088]. 
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In [Mil80, Mil85, Mil89], Milner showed that a strong operational 
model for CCS of the branching time variety is compositional ( cf. * 7 in 
Table 1). Moreover, it was shown in [GV88] that branching time and 
strong operational models are in general compositional under certain 
conditions ( cf. *8 in Table 1 ). Denotational models equivalent to those 
operational models were presented in [Rut90]; the denotational models 
are fully abstract w.r.t. the operational models by definition ( cf. *9 in 
Table 1 ). 

In [Mil80], [Mil85], and [Mil89], Milner characterized a fully 
abstract compositional model for CCS w.r.t. observation equivalence ~ 
( cf. * 10 in Table 1 ). This relation ~ is a weak operational equivalence 
relation of the branching time variety. Milner characterized observation 
congruence ~c. which is the coarsest congruence relation included in ~, 
as follows: For every two statements s 1 and s 2 , s1 ~c s2 iff 
\laEAct[;\<;,J>=<l. 2 >.o.i> [\ls'[s;--".-.s' = :ls"[s1 (~)*--".-. (~)*s" /\ 
s' ~ s"]]] ], where Act is the set of all actions including r ( cf. [Mil89, 
Definition 7.2] ). While this model is not denotational in the sense 
explained in the introduction, it seems worthwhile to investigate whether 
such a characterization is possible in the linear time setting. 

The full abstraction problem can be treated in another framework, i.e., 
in the setting of complete partial ordered sets or complete lattices. For a 
treatment of the full abstraction problem for a concurrent language in this 
setting see [HP79]. In [Hen88], which is based on [DH83, Hen83, Hen 
85], Henessy showed in detail the full abstraction of a denotational model 
consisting of acceptance trees equipped with a complete partial order, w.r. t. 
testing equivalence. 

For a survey of the full abstraction problem for sequential languages, see 
[BCL85]. In [St86], the general question concerning the existence of fully 
abstract models was treated in an algebraic context. 
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