
INFORMATION AND COMPUTATION 115, 125-178 (1994)

Fully Abstract Denotational Models for

Nonuniform Concurrent Languages

E. HORITA

Centre for Mathematics and Computer Sciences,
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands; and

NTT Software Laboratories, 3-9-11 Midori-Cho,
Musashino-Shi, Tokyo 180, Japan

J. W. DE BAKKER*

Centre for Mathematics and Computer Science,
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands; and

Departments of Mathematics and Computer Science,
Free University of Amsterdam, The Netherlands

AND

J. J. M. M. RUTTEN*

Centre for Mathematics and Computer Science,
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

This paper investigates full abstraction of denotational model w.r.t. operational

ones for two concurrent languages. The languages are nonuniform in the sense that
the meaning of atomic statements generally depends on the current state. The first
language, 5!'1 , has parallel composition but no communication, whereas the second
one, ~, has CSP-like communications in addition. For each of 2'; (i= I, 2), an

operational model &; is introduced in terms of a Plotkin-style transition system,
while a denotational model fi!; for Y, is defined compositionally using interpreted

operations of the language, with meanings of recursive programs as fixed points in
appropriate complete metric spaces. The full abstraction is shown by means of a
context with parallel composition:

Given two statements s 1 and s2 with different denotational meanings, a
suitable statement T is constructed such that the operational meanings of
s 1 II T and s2 II Tare distinct.

A combinatorial method for constructing such T is proposed. Thereby the full
abstraction of £01 and !3J2 w.r.t. 11.\ and &2 , respectively, is established. That is, q;; is
most abstract of those models 'G' which are compositional and satisfy <Sj = rx 0 '(f for
some abstraction function :x (i = 1, 2). :!') 1994 Academic Press, Inc.

*Partially supported by ESPRIT Basic Research Action (3020) Integration.

125
0890-5401/94 $6.00

Copyright !f;l 1994 by Academic Press, Inc.
AU rights of reproduction in any form reserved.

126 HORITA, DE BAKKER, AND RUTTEN

1. INTRODUCTION

This paper investigates full abstraction of denotational models w.r.t.
operational ones for two concurrent languages. The languages are non­
uniform in the sense that the meaning of atomic statements generally
depends on the current state. In particular, they have individual variables
which store values, and the elementary actions are (mainly) value
assignments to these variables. The first language, .5fi, has parallel composi­
tion but not communication, whereas the second one, .2"2 , has CSP-like
communications in addition. Both of the two languages have recursion. For
each of If?; (i = 1, 2), an operational model IP; is introduced in terms of a
Plotkin-style transition system, while a denotational model ~; is defined
compositionally using interpreted operations of the language and some
fixed point method for defining the meanings of recursive programs.

We show that, with the nonuniform languages, one needs to represent,
in the meaning of a process, possible interactions between the process and
its environment. Merely recording observations of initial and final states or
possible computation sequences is not enough to obtain compositionality.
One needs sequences in which there are gaps between steps to represent
possible actions of the environment. This is essential in order to interpret
parallel composition compositionally. Furthermore, the model one obtains
by adding this information is in fact fully abstract w.r.t. the operational
semantics, which is established by showing how to construct contexts that
distinguish processes with different meanings.

The full abstraction problem for programming languages was first raised
by Milner in [Mi173]. In general, a model ~ for a language .P is called
fully abstract w.r.t. another model (!), if it makes just enough distinctions to
be correct (and thus compositional) w.r.t. (!). In other words, it is fully
abstract w.r.t. (!), if

Vs 1 , s2 E 2[~[s1] = ~[s2]

~\IC[C is a context of .P =>IP[C[s1]] = (!)[C[s2]]]],

where a context is a statement consisting of the language constructs of 2
and a place-holder (or a hole) e. and C[s] denotes the result of substituting
s for e in C. 1 If f$ is fully abstract w.r.t. (!), then ~ is the most abstract of
those models re which are compositional and satisfy (!) = rx ore for some
abstraction function rx; i.e., for each of these <i's, there is an abstraction
function P such that P 0 <c = f$. The models ~; (i = 1, 2) will be denotational

1 For an operational or denotational model .It for a language It? and a statements E It?, the
notation ..H[s] is used to denote the value of .It at s.

FULLY ABSTRACT MODELS FOR CONCURRENCY 127

in the sense that apart from being compositional, they treat infinite
behavior by means of some fixed point construction.

The mathematical domains we use are complete metric spaces [Niv79,
BZ82]. In general, the metric approach may have, as a tool in program­
ming language semantics, some advantages over the use of the more
traditional complete partial orders: First, many definitions can be given
as the (by Banach's theorem) unique fixed points of some higher-order
functions. Second, a metric powerdomain can be easily defined (as the
collection of closed or compact subsets of a given complete metric space).
In comparison, ordered powerdomains are easily defined as well (by means
of ideal completion), but often the characterization of their elements is
rather technical. For some example of the application of metric spaces to
semantics, see for instance [ABKR89, BM88, Bak91].

In Section 2, some mathematical preliminaries on complete metric
spaces, especially on spaces consisting (of sets) of streams, are given; the
main body of our paper consists of Sections 3 and 4.

In Section 3, the first language, 2i, is introduced; an operational model
(91 is presented in terms of a Plotkin-style transition system; and a denota­
tional model ~1 for £'1 is defined on the basis of a complete metric space
consisting of sets of streams of pairs of states with some additional infor­
mation. First, the correctness of !7)1 w.r.t. (91 is established, as in [Rut89,
BR91], by means of the fixed point method introduced in [KR90]. The
full abstraction of !7)1 is shown by means of a context with parallel com­
position:

Given two statements s1 , s2 E 2'1 with different denotational
meanings, a suitable statement T called a tester is con­
structed such that the operational meanings of s1 II T and
s 2 II T are distinct. 2 (1)

A combinatorial method called the testing method, which is the key idea of
our paper, is proposed for constructing such a tester (Lemma 13). This is
in general applicable to denotational models with a domain consisting of
sets of streams of pairs of states (possibly with some additional informa­
tion). Thereby, we can construct testers having the following property:

Given a process p and a finite sequence r = (< cr 1' cr' 1), •.. ,

< cr n, cr~)), we can construct a tester T and an executable
sequence i' = (<0: 1 , a~), ... , <a:k, O-D) with k ~ n such that for
every process p', the parallel compositions p'TI ~1 [T] can
execute i' if there is some sequence q such that (< cr 1 , crl), ... ,

2 The variable T is used to denote a statement when it is considered a tester, while the typi­
cal variable for the set of statements is s.

128 HORITA, DE BAKKER, AND RUTTEN

(an• a~))· q E p', and the converse of this holds for p' = p.
Intuitively, for such T and i', the process p is forced to
execute the steps (a 1 , a~), ... , (an, O";J (maybe not con­
secutively but in this order), when p II f2l1 [T] executes the
steps ((0' 1 , O''i), ... , (O'k, B'D) consecutively.

By the above property, we can construct such testers T as in (1):

If s 1 and s2 are distinct in their denotational meaning, then,
putting p;=f2l1[s;] (i= 1, 2), there exists some sequence r
such that r · q E p 1 for some q but r · q if= p 2 for every q (or vice
versa). By constructing a tester T and an executable sequence
i' for rand p=p2 as above, one has i'Ef2J1[s1]TI:::2l1[T] and
i' if= f2l1 [s2] TI f2l1 [T]. Thus one has a difference between the
operational meanings of the two statements s1 II T and s2 II T.

The full abstraction of :::2l1 is established by means of the testing method as
described above.

In Section 4, the second language, 2 2 , is introduced; an operational
model @2 for 2 2 is given as in Section 3. The domain of a denotational
model f2l2 for 2 2 is a kind of failures model, which was introduced in
[BHR84], and is adapted here to the nonuniform setting. Each element of
the domain is a set consisting of elements that are represented as
(((a;, a;, a;));, (a", I')), where CJ;, a;, and CJ 11 are states, a; is an action,
and I' is a set of communication sorts. These elements are called failures; the
parts ((u;, a;, a';)); and (a", I') are called a trace and a refusal, respec­
tively. First, the correctness of f2J2 is established as in Section 3. Then, the
full abstraction of f2l2 is established by a combination of the testing method
and the method proposed by Bergstra et al. in [BK088] to establish the
full abstraction of a failures model for a uniform language without recur­
sion. This method was adapted by Rutten in [Rut89] to be employed for
a language with recursion in the framework of complete metric spaces,
which suggests how to use it in the present setting. Given two statements
s 1 and s 2 of 2 2 , which are distinct in their denotational meanings, then the
denotational meanings are distinct in the trace parts or in the refusal parts.
When the distinction is in the trace parts, we can construct a tester by the
method described above; otherwise we can construct a tester by the
method of [BK088].

Finally, in Section 5, some remarks on related and future work are given.
For some mathematical proofs, the reader will be referred to [HBR90].
Closely related to this paper is the work of Hennessy and Plotkin

[HP79]. The language treated there, which we denote by £:,0 , is very
similar to our first language, 2 1 , except that it contains "co'', a coroutine

FULLY ABSTRACT MODELS FOR CONCURRENCY 129

construct, as well as the usual interleaving. In [HP79], a denotational
model "f/ for .<t'co is constructed and the full abstraction of "f/ is established.
Interestingly, we can construct a fully abstract model ~co for 2.,0 by slightly
modifying ~1 ; thus the two models "//, 22'co turn out to be isomorphic (see
Section 3.6.3 for more comparison with [HP79]).

The work of Roscoe [Ros84] is also related to this paper. The language
treated there, a large subset of occam, is similar to our second language ~
in many respects. However, unlike individual variables in £'2 , variables in
occam are not shared by two of more parallel processes. Thus, the model
proposed in [Ros84] is different from 222 in its way of involving states into
the meaning of a statement (see Section 4.6 for more comparison with
[Ros84]).

2. MATHEMATICAL PRELIMINARIES

As mathematical domains for our operational and denotational models,
we shall use complete metric spaces composed of (sets of) streams. In this
section, we present some standard notions on complete metric spaces and
some notions specific to domains of (sets of) streams.

First, we assume the notions of metric space, ultra-metric space (or
non-Archimedian metric space), complete (ultra-)metric space, continuous
function, closed set, contraction, nonexpansive mapping, and isometry to be
known. The fact that a contraction from a complete metric space to itself has
a unique fixed point, known as Banach's Theorem, is conveniently used (for
the notions and fact above, the reader might consult [Dug66] or
[Eng77]). We use the following notation:

Notation I. (1) The usual A-notation is used for denoting functions;
i.e., for a set A, a variable x, and an expression E(x), the expression
(A.xeA: E(x)) denotes the function which maps xeA to E(x). For a set X,
the cardinality of X is denoted by # (X), and the set of nonempty subsets
of X and the set of finite subsets of X are denoted by p + (X), and Pr(X),
respectively. For a binary relation R on X, the reflexive and transitive
closure of R is denoted by R*. For two sets X and Y, the set of functions
from X to Y is denoted by (X--+ Y). The set of natural numbers is denoted
by w. Each number n E w is identified with the set { i E w : 0 ~ i < n} as
usual in set theory, and let ii= { i E w : 1 ~ i ~ n }. The closure of a subset X
of a topological space M is denoted by xc1s.

(2) The empty sequence is denoted by e. For a nonempty finite
sequence q, the last element of q is denoted by last(q). For a set A, the set
of finite sequences of elements of A is denoted by A <w, and let A+ =
A <w \ { e }. The set of finite or infinite (with length w) of sequences of

130 HORITA, DE BAKKER, AND RUTTEN

elements of A is denoted by A,,"'. For a EA, we sometimes write simply a
to denote the sequence (a) consisting only of a; further, we sometimes write
simply A to denote {(a): a EA}. For q1 EA«", q 2 EA ,;w, the concatenation
of q1 and q2 is denoted by q 1 • q2 • Also for p 1 s A <w, p2 SA,,"', let P1 ·P2 =

{w 1 ·w 2 :w 1 Ep 1 Aw 2 Ep 2 }. For qEA,,"', the length ofq is denoted by
lgt(q). For n E w and q EA ,;w, the truncation of q at level n, denoted by
qCnJ, is the prefix of q with length n if lgt(n) ~ n; otherwise it is q. For
psA""'w, let p["l={q["J:qEp}. An ordered pair (a0 ,a 1) and a triple
(a0 ,a 1 ,a2) (=(a0 , (a 1 ,a2))) are distinguished from, but treated as
sequences (ai)iEn with n being 2 and 3, respectively; for n = 2, 3, we some­
times write (a;) iEn to denote (a0 , •• ., a,,_ 1). For n = 2, 3 and i En, the ith
component oft= (a);en is denoted by n7(t).

An arbitrary set A can be supplied with a metric d A, called the discrete
metric, defined by dA(x,y)=O if x=y, otherwise dA(x,y)= l. The space
(A, dA) is an ultra-metric space. We use the following operation on metric
spaces. (In our definition the distance between two elements of a metric
space is always bounded by 1.)

DEFINITION 1 (Operations on Metric Spaces). Let (M, d), (M1 , d1), ••• ,

(M,,,d,,) be metric spaces. (1) For a real number K such that 0<K<l,
we define idA(M,d))=(M,d'), where d'(x,y)=K·d(x,y), for every
x, yEM. (2) Let M 1 w ··· l±i M,, denote the disjoint union of M 1 , •. ., M,,,
which can be defined as ujEil [{j} x Mj]. A metric du on M1 l±i .. · l±i Mn
is defined as follows: For (i,x), (j,y)EM 1 l±i .. ·l±iM,,, d0 ((i,x),
(j, y)) = di(x, y) if i = j; otherwise du((i, x), (j, y)) = 1. (3) A metric dp
on the Cartesian product M 1 x · · · x Mn is defined as follows: For
(x 1 ,. . .,x,,), (y 1 ,. • .,y,,) E M 1 x ··· xM,,, dp((x 1 , .. .,x,,), (y 1,. • .,y,,)) =

maxjen[di(xj, yj)]. (4) Let fJc1(M) = { X E p(M) : X is closed}. A metric d 8

on g.Jc1(M), called the Hausdorff distance, is defined as follows: For
X, YEKJc1(M), dH(X, Y)=max{supxex[fl'(x, Y)], SUPveY[fl'(y,X)]},
where g(x,Z)=inf=ez[d(x,z)] for ZsM, xEX. (We use ·the convention
that sup0=0 and inf0=1.) The space tJncCM)={XEp(M):X is
closed and nonempty} is supplied with a metric by taking the restriction of
dH to it.

Complete metric spaces consisting of streams are introduced as solutions
of appropriate domain equations as in [BZ82, AR89]. Namely, for
arbitrary two sets A and B, and for an arbitrary real number K such that
0 < K < 1, there exists a complete metric space < Q, dQ), which is unique up
to isometry, satisfying the domain equation: Q ~ B \±:! (Ax id"(Q)). (The
existence and uniqueness of such Q have been shown in [BZ82] and
[AR89], respectively.) Note that id" is necessary for the associated functor
with this domain equation to be contractive, which condition ensures the

FULLY ABSTRACT MODELS FOR CONCURRENCY 131

uniqueness of the solution (see [AR89]). Henceforth we fix a real number
K such that 0 < K < l. The metric space < Q, dQ > can be defined in terms of
projection functions introduced below, where the projection functions are
very similar to the truncation functions of streams but slightly different
from them, as we will note below.

DEFINITION 2 (Projection Functions). (1) Let Q=(A<"'·B)1±1AO).
We define projection functions if;,,: Q---> Q (n E w) inductively as follows:
First, an arbitrary element b0 of B is fixed. Let q E Q. (i) if; 0 (q) = b0 .

(ii) t/l,,+ 1(q)=q if qEB, and i/l,,+ 1(q)=a·t/J,,(q') if q=a·q'. (2) Let P=
tJ 0 c(Q). For nEW andpEP, let lfn(p)= {t/!,,(q): qEp}.

Note the difference between truncation and projection: The values of the
projection functions are members of A <w · B (s;Q), whereas the values of
the truncation functions are members of (A <w. B) v A< w not of Q.

As stated earlier, the metric dQ can also be formulated in terms of projec­
tion functions as follows:

LEMMAl. (1) For q 1,q2 EQ, dQ(q 1,q2)=Kmin{n:t/Jn!qi)*t/ln(<12)}-l if

:ln[tf;,,(qi) # t/ln(q 2)]; otherwise dQ(q 1 , q2) = 0.
(2) For P1,P2 E P, dp(p1,P2) = Kmin{n:;f,,(pJ),.!fn<P2>}- l if :ln[liJ(P1) #

liJ,,(Pi)]; otherwise dp(p 1, Pi)= 0.

(3) For every n E w, there exists B > 0 such that Vp 1 , P2 E

P[dp(P1, P2) ~ e => liJ,,(P1) = liJ,,(P1)J.

Proof Omitted (see Appendix 1 of [HBR 90]).

The notion of finitely characterized subset is introduced for establishing
that some subsets of a complete metric space are also complete metric
spaces.

DEFINITION 3 (Finitely Characterized Subsets). A subset P' of P is
finitely characterized iff there exists n E w and P" £ P such that
Vp E P[p E P'-= -(f(p) E P"].

A property <P(·) defined for elements of P is called finitely characterized,
if {p E P: <P(p)} is finitely characterized. The next example presents such a
property.

EXAMPLE 1. Fix n E w. An element p E P is said to be nonempty at level
n, if p[nJ n An# 0. Let P' = {p E P : p is nonempty at level n }. Then it is
immediate that Vp E P[p E P'-= If,,+ i(p) E P']. Thus P' is finitely charac­
terized, and therefore, the property "being nonempty at level n" is finitely
characterized. Note that P" in Definition 3 is equal to P' here.

The next lemma states that finitely characterized subsets and inter­
sections of finitely characterized subsets are complete metric spaces with

132 HORITA, DE BAKKER, AND RUTTEN

the original metric restricted to them. This lemma will be used in the proof
of full abstraction to show that the domains of denotational semantics to
be presented below are complete metric spaces.

LEMMA 2. (I) Every finitely characterized subset P' of P is closed in P.

(2) For every family [li> of finitely characterized subsets of P, n [li> is
closed in P.

Proof Omitted (see the proof of Lemma 2 of [HBR90]).

3. A NONUNIFORM LANGUAGE WITH PARALLEL COMPOSITION

The first language 2'1 is a nonuniform language with recursion and
parallel composition but no communication.

First, an operational model 01 is introduced in terms of a Plotkin-style
transition system.

Then a denotational model .011 is defined compositionally by means of
interpreted operations of the language, with meanings of recursive
programs as fixed points of the denotational semantic domain, a complete
metric space consisting of sets of streams of pairs of states.

The correctness of .011 w.r.t. @1 is established, as in [Rut89] and [BR91],
by means of the fixed point method introduced in [KR90].

Finally, full abstraction of .011 is shown by means of a context with
parallel composition:

Given two statements s1 and s2 with different denotational
meanings, a suitable statement T is constructed such that the
operational meanings of s1 II T and s2 II Tare distinct.

For constructing such T, a combinatorial method called the testing method
is introduced in Lemma 13 (Testing Lemma). By means of this, the full
abstraction of .9!\ w.r.t. ll\ is established.

3.1. The Language 2 1

The language 2'1 is the simplest nonuniform concurrent language with
recursion: It has parallel composition but no communication, and its
elementary actions consist only of value assignments to variables.

Note that sequential composition as in [BK088] is not included in this
language: We use prefixing of assignment statements as in [Mil80], where
action prefixing is used in a uniform setting, for simplicity of models for the
language. However, there is no difficulty in constructing a fully abstract

FULLY ABSTRACT MODELS FOR CONCURRENCY 133

denotational model for a language which is like 2 1 , but which has general
sequential composition instead of prefixing.

(From now on we use the phrase "let (x E) M be ... "to introduce a set
M with variable x ranging over M.)

Notation 2. (1) Let (v E) V denote some abstract domain of values.

(2) Let (x E) IVar denote the set of individual variables.

(3) Let (er E) E denote the domain of states: E = (IVar --+ V).

(4) Let (e E) VExp denote the set of value expressions.

(5) Let (b E) BExp denote the set of Boolean expressions.

We assume a simple syntax (not specified here) for e and b. "Simple"
ensures at least that no side effects or nontermination occurs in their
evaluation. The evaluations of e and bin state a are denoted by [e](a) and
[b] (er), respectively. The full abstraction of a denotational model is
established under this assumption.

Let X range over RVar, the set of recursion variables, and let e range
over SVar, the set of statement variables. Note that recursion variables are
used as names of statements defined by recursion, while statement variables
are used as place holders for defining contexts of a language.

The language 2 1 is introduced as a subset of 2 t, a language with place
holders.

DEFINITION 4 (Language 2 1). (1) The set of statements of the non­
uniform concurrent language (SE) 2f is defined by the following
BNF-syntax:

Here 0 denotes inaction; (x := e); S denotes the result of prefixing the
assignment (x := e) to the statement S; If(., ·, ·) is the usual conditional
construct; + and II denote alternative choice and parallel composition,
respectively. 3

Let FV(S) denote the set of statement variables contained in S.

(2) Let (s E) 2 1 be the set of statements with not statement variable.
That is, £'1 ={SE2f :FV(S)=0}. For ~ESVar, let 2j={SE2f:
FV(S)s g} }.

(3) The set of guarded statements (g E) '§1 is defined by the following
BNF-syntax:

3 In this language, the precedence of';', '+', and 'II' is higher than that of·: occurring in
the construct If(., ·, -).

134 HORITA, DE BAKKER, AND RUTTEN

(4) We assume that each recursion variable X is associated with an
element g x of ~1 by a set of declarations D = { < X, g x)} x e Rvar. A program
consists of a pair <s, D).

In the sequel of this section, we fix a declaration set D =
{ <X, gx) he RVar·

For every be BExp, we regard the construct "If(b, ·, ·)" as a binary
operator on statements. Also, for every x e IVar and e E VExp, we regard
the construct "(x := e); ·" as a unary operator on statements. Thus we get
as single-sorted signature Yi with the sort of statements; the languages 2 f
and 2 1 can be formulated as the set of terms and the set of closed terms
generated by Yi, respectively.

We introduce the notion of a context and some uses of it as follows:

Notation 3. Let 2* be a language formulated as the. set of terms
generated by a signature Y and a variable set g;}·

(1) For Se.!£* and a sequence of distinct variables (e 1 , .•. ,en), the
pair <S, (e 1 , ••• ,en)) is called a context of !£*. We sometimes write
Sce 1, •..• e.i for <S, (e 1, .•• ,en)). When the notation Sce1, ••. ,e.i is used, it is
always assumed that FV(S) £ g 1 , ••. ,en}·

(2) For a context Sce1, .•• ,1;.i and S1>···•Sne.f£*, the notation
S[(S1 , .. ., Sn)/(e 1 , ••• ,en)] denotes the result of simultatneously replacing e;
in S with S;, i E ii. More simply, we sometimes write Sm ,eni[S1 , .•• ,Sn] for
S[(S1, ... , Sn)/(e1, ... ,en)].

(3) Let ..f be an interpretation, i.e., a set of interpreted operations for
the signature Y with an underlying domain P (see [Rut90] for a formal
definition of an interpretation for a signature); let Sce 1 •.•• ,enl be a context.
For p 1 , ••• ,pneP, let [Sl" [(el> ... , en)/(p 1 , ••• ,pn)] denote the interpreta­
tion of S under ..f with the assignment of the value p; to the variable
C iefi. More simply, we sometimes write [Scei enilJ'" (p 1 , ... ,pn) for
[S] [(p1, ... ,pn)J(e1' ... ,en)].

3.2. Operational Model l!i1 for 2 1

The operational model l!i1 rests on a transition system --+ 1 of the style of
[Plo81] . The transition relation --+ 1 £ (2 1 x };) x (2 1 x £) is defined as
follows. For s 1 , s2 E21 and a 1, a 2 e£, we write <s1 , a 1)--+ 1 <s2 , a 2) for
((s1' a 1), <s2 , a 2)) E --+ 1 for easier readability.

DEFINITION 5 (Transition Relation --+ 1). The transition relation --+ 1 is
defined as the smallest relation satisfying the following rules (1) to (6). For

FULLY ABSTRACT MODELS FOR CONCURRENCY 135

ael:, xeIVar, and vEV, the notation a[v/x] is used to denote a state a'
which is the same as a except that a' (x) = v.

(1) ((x :=e); s, a)-+ 1 (s, a[[e](a)/x]).

(2) (s1,a)-+ 1 (s,a') ([e](a)=tt)
(If(b, s1, s2), a)-+ 1 (s, a')

(3) (s2 ,a)-+ 1 (s,a') ([e](a)=.ff)
(If(b, s1, s2), a)-+ 1 (s, a')

(4)
(s 1 , a) -+ 1 (s, a')

(s1 +s2 , a)-+1 (s, a')
(s2 +s1,a)-+ 1 (s,a')

(s1,a)-+ 1 (s,a')
(5)

(s1 II Sz, a)-+1 (s II Sz, a')

(6)

The last rule, called the recursion rule, stipulates that for each declaration
(X, g x) ED, transitions of the recursion variable X are derived from those
of its body g x, as usual.

Let us call a statement s E Sf1 finitely branching iff for every a EI:,

{ (s', CJ 1 > E Sf1 x I: : < s, a) -+ 1 (s', a')) is finite. Then, the transition rela­
tion -+ 1 is finitely branching in the following sense:

LEMMA 3. Every s E L 1 is finitely branching.

Proof By induction on the structure of s. See the proof of Lemma 3 of
[HBR90] for details. I

An operational model (!\ is defined by means of -+ 1 as the fixed point of
a higher-order mapping ifi{'.

DEFINITION 6 (Operational Model (91 for 2'i).
(1) Let Mi= (2'1-+ (.E-+ &Dnc(.E"'"))), equipped with a metric d

defined as in Section 2. Then, let tf'f: Mi-+ Mi be defined as follows: For
f E Mi, s E 2'i , and (J E .E,

{u {CJ' f(s')(a'): (s, a)-+1 (s', a')}

tf'i'(f)(s)(a)= if :J(s',a')[(s,a)-+ 1 (s1,0" 1)],

{ c} otherwise.

643/115/1-11

136 HORITA, DE BAKKER, AND RUTTEN

The right-hand side of the above equation is closed by Lemma 3, and
therefore, indeed, 'l'f(f) e Mf. Moreover, it is immediate from the above
definition that forf,f'eMf, d('l'f(f), 'Pf(f))~K·d(f,f'), where K(<l)
is the fixed positive real number introduced in Section 2. Thus, 'l'f is a
contraction from M f to M f.

(2) Let the operational model (!)1 be the unique fixed point of 'l'f. By
the definition, one has @1:21 -+(L'-+t-J 0 c(.E"'w)), and for each se21 and
<J'EL',

{u {u' ·@1[s'](u'): (s, u)-+1 (s', u')}
@1[s](u)= if 3(s',u')[(s,u)-+ 1 (s',u')],

{ e} otherwise.

Note that (!)1 is not compositional, as the following example shows.

EXAMPLE 2. Let x E IVar. Then

(!)1 [(x := O); (x := x + 1); O] = d.1i[(x := O); (x := 1); O]

= (.A.u: {(u[O/x], u[l/x])}),

but

@1[((x := O); (x := x + l); 0) 11 ((x := 2); O)]

#(91[((x:=O);(x:=l);O) 11 ((x:=2);0)].

3.3. Denotational Mode! !!P1 for 2 1

The denotational model !JP1 is defined compositionally by means of inter­
preted operations of the language.

The denotational semantic domain P 1 is a complete metric space
consisting of sets of streams of pairs of states. The meaning of a recursion
variable X with the declaration (X, gx) is defined as the fixed point of the
contraction which maps each process p e P 1 to the interpretation of g x
under the interpreted operations with the assignment of p to X. It turns out
that the fixed point is the unique solution of the equation X = g x under the
interpretation consisting of the interpreted operations.

The domain P 1 is defined by:

DEFINITION 7 (Denotational Semantic Domain P 1 for 2 1). (1) Let Q 1
be the unique solution of Q1 ~ L'\:tl((L' x L') x id"(Qi)). One has Q 1 ~
((L' xL')<"' ·L')u (L' x rr

FULLY ABSTRACT MODELS FOR CONCURRENCY 137

(2) For PEt<Jn0 (Qi), and rE(.Ex.E)<"', the remainder ofp with
prefix r, denoted by p[r], is defined by p[r]={qEQ 1 :r·qEp}.

(3) The initial state of a sequence q E Q 1 u (.Ex .E) +, denoted by
istate 1(q), is defined as follows: Let istate 1(q)=cr if q=(<a,a'))·q', and
let istate 1(q)=cr" ifq=(cr").

(4) For p E P nc(Q 1) and cr E .E, P< cr) is the set of those elements of
p whose initial state is cr. That is, P< a)= { q E p : istate 1 (q) = cr }.

(5) Let p E g.J nc(Q 1), and n E OJ. The process p is uniformly nonempty
at !eve I n iff

Vr E (.Ex .Er [p[r] r' 0 =Va E .E[p[rJ<cr) # 0]].

Moreover, p is uniformly nonempty iff it is uniformly nonempty at every
level n E w.

(6) The set P 1 , the domain of processes for 2'1 , is given by

P 1 = {PE g;J nc(Q 1) : p is uniformly nonempty}.

Remark 1. A subset P of i\'Jnc(Q 1) is said to be closed under taking
remainders iff VpEP, VrE(L'x.E)<w[p[r]#0=p[r]EP]. Given an
arbitrary subset P 0 of if<JnJQi), it is routine to check that the largest subset
P~ of p nc(Q 1) which is included in P 0 and closed under taking remainders
is given by P~={pEt<Jnc(Qi):VrE(.Ex.E)<w[p[r]#0=p[r]EP0]}.
Thus P 1 is the largest subset of g;J nc(Qi) which is included in
{ p E g;:> ncC Q 1) : p is uniformly nonem pty at level 0} and closed under taking
remainders.

It is needed that each element of p E P 1 is uniformly nonempty, for
defining a parallel composition II as a binary operation on P 1 in the sequel.

LEMMA 4. The set p 1 is closed in g;J net Qi), and therefore, p l is a com­
plete metric space with the original metric of &onc(Q 1) restricted to it.

Proof The closedness can be established using Lemma 2. See the proof
of Lemma 4 of [HBR90], for details. I

The interpretation Y-, for the signature of 2'1 is defined as follows:

DEFINITION 8 (Interpretation f 1 for Signature of £';). (1) 01 =
{(cr): crEL'}.

(2) For xEIVar and eEVExp, the function asg 1(x,e):P 1 --+P1,
which is the interpretation of the unary operator "(x := e); ·" on
statements, is defined as follows: For every p E P 1 , asg 1 (x, e)(p) =
{ (< cr, a[[e] (a)/x])). p : cr E .E}, where (<cr, a[[e](a)/x])) · p denotes the
concatenation of ((cr, a[[e](cr)/x])) and p.

138 HORITA, DE BAKKER, AND RUTTEN

(3) For be BExp, the function if(b): P 1 x P 1 ~ P 1, which is the inter­
pretation of the binary operator "If(b, ·, ·)" on statements, is defined as
follows: For every p 1, Pi E P 1, if(b)(p1, p 2) = U ue i: [if([b] (er)= tt, Pr <er),
P2(u))].

(4) For pEPr. pn ((ExE)xQ1) is called the action part of p and
denoted by p +, and the set p n 01 is called the inaction part of p. The action
part of the alternative composition of two processes is the union of the
action parts of those processes, and its inaction part is the intersection of
the inaction parts of them. That is, for p 1, P2EP1, p 1 + p2 =Pt upt u
{(er): (a) EP111P2}·

(5) For p 1, p 2 e P 1, let p 1 # p 2 be the intersection of the inaction
parts of p 1 and p 2 • The parallel composition TI: P 1 x P 1 ~ P 1 is defined
recursively as follows: For every Pi. p 2EP1,

Pr TI P1 =(Pi lLP2) u (P2 lLP1) u (Pr # P2),
(2)

Pr lLP2 = U {<u, er')· (Pi[(a, er')] TI P2): P1[(u, a')]# 0}.

Formally the operation TI is defined as the fixed point of a suitably defined
contraction: Let Mi=(P1xP1), ai:Mi~Mj be defined as follows: For
Fe ML and Pl>P2EPi. .Q~(F)(p,,p2)=.Q~(F)(p 1 ,p2)u.QHF)(p2,P1)u
(P1 #p2), where DHF)(p1,p2)= U{(a,a') ·F(p1[(u,a')],p2):
p 1[(a,u')]#0}. It is shown that ai(F)(p1,p2) is nonempty and
uniformly nonempty at level 0 as follows: For every a EE, suppose
13er'[.Qi(F)(p1>p2)[(a,a')]#0]. Then, by the definition of DL one
has -i:Ju'[p1[(a, a')]# 0] and 1:Ja'[p2[(a, u')] # 0]. Thus, by the
fact that p 1 and p 2 are uniformly nonempty at level 0, one has
(a) e (p1 #Pi). Moreover, .Q~(F)(p" p 2) is uniformly nonempty at level
n ~ 1, since .Q~(F)(s 1 , s2) and .Q~(F)(s2 , si) are uniformly nonempty at
level n by their definitions. Hence .Q~(F)(p 1 ,p 2)eP 1 . It is immediate that
.Qj is a contraction. Let TI =fix(.QD, and ll=DHTI).

(6) Let §,_ = {01, {asg1(x, e): (x, e) e IVar x VExp }, {if(b): be
BExp }, +,TI}.

The next lemma follows immediately from Definition 8 (5). We shall use
it for establishing the full abstraction of the denotational model .@1 defined
below.

LEMMA 5. (1) (a, a') ·q E Pr TI p2 <=> (q E (p 1[(u, u') J TI Pi)) v (q e
(P1 TIP2[(u,a')])).

(2) Vp1,P2EP1[P1 TIPi=P2 TIP1l

In terms of the interpretation §,_, the denotational model .@1 is defined
as follows:

FULLY ABSTRACT MODELS FOR CONCURRENCY 139

DEFINITION 9 (Denotational Model !2>1 for 2 1). The model !2!1 : £"1 -;. P 1
is defined by induction on the structure of s E 2 1•

(1) First, for each recursion variable X, !2!1 [X] is defined as the fixed
point of a contraction defined in terms of the declarations. Let D =

{ <X, g x) he RVar be the set of declarations. Let Mf = (RVar-;. P 1), and let
ll1:Mf-;.Mf be defined as follows: For pEMf, XERVar, fl 1(p)(X)=

[gxl"°1 [(p(Y[), ... ,p(Y;ixi))/(Y[, ... , Y?rx))], where {Y[, ... , Y?rx)} is the
set of recursion variables contained in g x· (See Notation 3 for the notation
[gxlY1 (···).)The mapping ll1 is a contraction from Mf to Mf. Let pp=
fix(fl1). For XERVar, let us define XD1, the denotational meaning of Xby
XS?i = Po(X).

(2) Next, for a composite statement sE21 , !2>1 [s] is defined as
follows: For each operator F of 2'i with arity r, and s 1, ... , s, E 2 1 , let
.!2>1[F(s1, ... ,s,)]=F'J11(!2!1[s1], ... ,!2!1[s,]), where F 91 is the interpreted
operation in J11 corresponding to F.

Several properties, including the so-called image finiteness for elements of
P 1, are introduced. It is shown that the denotational meaning of each state­
ment in 2 1 has these properties; this fact is used to establish the full
abstraction of !2>1 •

DEFINITION 10 (Image Finiteness for Elements of P 1). Let p E P 1 and
n E W.

(1) The process p is image finite at level n, written IFin \nl(p), iff Vr E
(Ix I)", V rJ [{a' E J; : r · <a, rJ 1) E p[" + 1 l} is finite]. The process p is image
finite, written IFin 1(p), iff VnEw[IFin\"l(p)].

(2)(i) We say that only a finite number of individual variables are
relevant to the nonterminating part of p at level n, written FIRN~l(p), iff
there exists .'!£ E k;Jr(IVar) such that the following holds:

VrE(J:xJ:t, ViTE((IVar\ff)-;. Vt [rEp[nJ

-=Vi E n[rc~(r(i)) I (IVar\ff) = rci(r(i)) I (IVar\X)]

/\ (<(rc](r(i)) j .'!£) U B(i))je2lien Ep[nl]. (3)

That is, for each rE(J:xJ:in, if rEp["J, then, in every step r(i)=
<rc~(r(i)),rci(r(i))) or r (iEn), the value for xEIVar\fl is not changed,
i.e., (*}:rc~(r(i)) j(IVar\X)=rci(r(i)) j(IVar\Et), and one may change
the value nJ(r(i))(x) (jE2) arbitrarily, i.e., (t):(<(rc](r(i))JX)u
5(i))1 e 2LenEP[nJ for arbitrary O'E((IVar\'?{)-;.V)n. Conversely, for
arbitrary O' E ((IVar\X)-;. V)", if one has (*) and (t), then r E p["J. (See
Remark 3 below for a motivation of this definition.)

140 HORITA, DE BAKKER, AND RUTTEN

(ii) Similarly, we say that only a finite number of individual
variables are relevant to the terminating part of p at level n, written
FIRT\n1(p), iff there exists Pr E &Jr(IVar) such that

Vq E (.Ex .zr . .z, Ver E ((IVar\Pr)-+ V)" + 1 [q E p

~Vi En [n~(q(i)) I (IVar\Er) = ni(q(i)) I (IVar\Er)]

/\ (<(nJ(q(i)) IPI)uc1(i))je 2);en·((q(n) 1El')uc1(n))Ep]. (4)

(iii) We say that only a finite number of individual variable are rele­
vant top, written FIR 1(p), iff \In Ew[FIRN\nl(p) A FIRTi"l(p)].

(3) Pf={pEP 1 :1Fin1(p)AFIR 1(p)}.

Remark 2. It is immediate that {pEP 1 : IFin 1(p)} is the largest subset
of P 1 which is included in {pEP 1 :IFIN\0 l(p)} and closed under taking
remainders,

Remark 3. (1) Note that for some set D of declarations and some
statement s, we cannot take one Et E p rOVar) such that (3) holds for every
n EW and p = §[s]. For example, suppose IVar = {xn: n E w} and RVar =
{Xn:nEw}, and let D={(Xn,(xn:=l);Xn+i):nEw}, p=§1[Xo].
Then, the greater nEw is given, the greater El'E &or(IVar) should be taken
so that one has (3).

(2) It is easy to check that for Er 1 ,X2 Eg.Jr(IVar) with :1l' 1 £El 2 , the
property (3) (resp. (4)) for El=El 1 implies (3) (resp.(4)) for :7l'=El2 •

It turns out that the denotational meaning of each statement is a mem­
ber of Pi, which is used for establishing the full abstraction of f» 1•

LEMMA 6. (1) The set Pt is closed in P 1 •

(2) VpEPi", VrE(.ExJ;)<"'[p[r]#0=>p[r]EPf]. That is, Pf is
closed under taking remainders.

(3) The set Pt is closed under all interpreted operations of.!£ 1 •

(4) § 1[2 1]£P[.

(5) V'pEf» 1[2 1], VrE(.ExJ;)«" [p[r]#0=>p[r]EPf].

Proof Similar to the proof of Lemma 4. See the proof of Lemma 6 of
[HBR90], for details. I

3.4. Correctness of § 1 with Respect to 01

The correctness of the denotational model is shown as in [Rut89]: For
the denotational model § 1 , an alternative formulation, called an inter­
mediate model, is given, in terms of the same transition system which was

FULLY ABSTRACT MODELS FOR CONCURRENCY 141

sed for the definition of @1 . Let 1§1 be the intermediate model. Then the
Jrrectness is proved by showing that, for an appropriate abstraction func­
on rx 1 , both rx1 ° fJ51 and @1 are a fixed point of the same contraction, which
y Banach's Theorem has a unique fixed point.

.4.1. Intermediate Model for £'1 and Semantic Equivalence

First, the intermediate model @1 , which is an alternative formulation of
91 , is defined in terms of the transition relation -+ 1 .

DEFINITION 11 (Intermediate Model eJ1 for £f1).

(1) Let Mi= (.Pi-+ P 1), and let !£'1 : M 1 -+ M 1 be defined as follows:
'or FE MI> se £fi.

lf'1(F)(s)= U {((a, a')) ·F(s'): a EE/\ (s, u) -+ 1 (s', a')}

u { (a) : u EE /\ 13 (s', a') [(s, u) -+ 1 (s', a')]}.

~he right-hand side of the above equation is closed by Lemma 3; !£'1 is a
ontraction from M 1 to M1 .

(2) Let @1 =fix(lf'i). By the definition, one has, for sE2J., that

@1 [s] = LJ { ((u, a')) · fD1 [s'] : u E E /\ (s, u) -+ 1 (s', u') }

u{(u):uE.E /\ 13(s',u)[(s,u)-+ 1 (s',u')]}.

It turns out that ?A is identical to ~1 •

LEMMA 7 (Semantic Equivalence for 2 1). (1) Let F be an operator of
~ with arity r, and let s 1' ... , s, E £'1. Then one has

<!\ [F(s 1 , ••• , s,)] = F"1(fD1 [s i], ... , @1 [s,]).

(2) For SE.Pi, one has m,[s] =~1[s].

As a preliminary to the proof of Lemma 7, we give the next lemma
;tating that the operation TI is distributive w.r.t. set-theoretical union.

LEMMA 8 (Distributivity of TI in P 1). For k,l~l, and Pt>···•Pk,
7~, ... ,p/EP 1,

U [pJ TI U (p;J = U CP; TI p;J.
iek }ei (i,j)ekxi

Proof Omitted (see Appendix 2 of [HBR90]). I

142 HORITA, DE BAKKER, AND RUTTEN

Proof of Lemma 7. (1) Here we prove the claim for the operator II.
For the other operators this is proved (more straightforwardly) in a

similar fashion. Let H 1 = (2 1 x 2 1 -t P 1), and let F, GE Hi_ be d~:i;:_ed as

follows: For s1, s2 E21, F(s 1 , s2)=@1[s1 II s2], G(s1, s2)=((Hs1] II (1)1[s2].

Moreover, let ffi: H 1 -tH 1 be defined as follows: For /EH 1 and s1'

S2E 21,

fff(s 1 , s2)= {(o-): -r3<s;, <7 1)[<s1' r5)-t 1 <s;, Cf 1
)]

A 13<s2,o-)[<s2 ,o-)-t 1 <s2,r5')]}.

Then ff~ is a contraction. Let s 1, s2 E 2 1 • By the definition of @1 and -t 1,

and Lemma 3, one has F(s 1 ,s2)=ff~(F)(s 1 ,s2). That is, F=fix(ffD.

Next, let us show that G =fix(ff D- By the definition of TI, one has

= U {((<T, Cf')) · (@1[s1][<u, o-' >]TI @1[s2]): @1 [s1] [<Cf, Cf 1 >] # 0}

=U {(<<7,o-'>l·(U {m1[s;]: <s[,Cf>-+1 <s;,(f'>} TI m1[s2]):

3s;[<s1, u)-> 1 <s~, u')]}

= U { (< o-, <7' > l · (U { m1 [s;] TI ml h] : <s 1' (f > _, l <s;, (f' >}) :

3s; [<s1> o- >--+ 1 <s'1 , Cf' > J} (by Lemma 8)

=LJ {(<r5,a'))·(@1[s;] TI iD1[s2]): (s1,Cf)-+ 1(s;,<7')}

=ffHG)(s1> s2).

FULLY ABSTRACT MODELS FOR CONCURRENCY 143

The other fact (t) follows immediately from the definition of *· Thus
one has G(s1,s2)=~~(G)(s 1 ,s2), i.e., G=fix(~~). Thus, by Banach's
Theorem, one has F= G, i.e.,

(2) First, let us show, for X E RVar, that (H &1 [X] = .@i[X]. Let
(X, gx) ED. Then,

ffi1 [X] = ffi1 [g x] (by the definition of ffl1)
- [] J1 - x - x x x - gx [((91[Y1], ... ,(91[Y1<xl])/(Y1' ... , Yt!Xl)] (by (1)), (5)

where { Yf, ... , Yfcx)} is the set of recursion variables contained in gx.
Hence (A.X E RVar: <P'1[X]) is the fixed point of II1 defined in Definition 9.
Therefore by the definition of .@1[X], one has (t). It follows from this
and (1), by induction on the structure of s e 2i , that V s E 2'1 [(?\ [s] =
.@1[s]J. I

3.4.2. Correctness of .@1 with Respect to (91

An abstraction function IX 1 : P 1 - (E - &JncC.E.;"')) is defined as follows.
First, it is defined as the fixed point of a higher-order contraction. Next, it
is shown that for a process p, 1X(p) is characterized as the set of histories
of executable elements of p, where the notions of history and executability
to be formally defined below.

DEFINITION 12 (Abstraction Function IX1 for 2'i). (1) Let M~ =
(Pf-+ (.E-+ &Jnc(L'.;"'))), and let LJ 1 : M 1 - M~ be defined as follows: For
FEM~, pEPf, and <1EL',

L1 1(F)(p)(<1)= U {(<1') ·F(p[(<1, u')])(u') :p[(u, u')] i:0}

uif((<1)Ep, {e}, 0).

Note that the right-hand side of the the above equation is nonempty, since
p is uniformly nonempty at level 0. Thus the mapping L1 1 is a contraction
from M~ to M~.

(2) Let IX 1 = fix(LJ 1). By this definition, it holds for p e Pt and <1 EE,
that

IX 1 (p)(<1) = U { (a') ·IX 1 (p [<a, a')])(a') : p [< u, a')] #- 0}

uif((a)Ep, {e}, 0).

The abstraction function is to be characterized in another way. First, we
need some preliminary definitions.

144 HORITA, DE BAKKER, AND RUTTEN

Intuitively, a sequence (< <J ;, <J;)); in a process represents a possibility of

executing the step (<J;, <J;) if the process is in the state <J;. After this execu­

tion. the process is in the state a;. Thus a sequence ((<J;, (}";));such that

the second component of each element (<J;, a;) is the same as the first

component of the next element (<J;+ 1 , <J;+ 1) represents a possibility of

executing the steps (a0 , a0), (a 1, aj), ... , and therefore is called

executable. In other words, a sequence is executable when it has no gaps.

DEFINITION l 3 (Histories of Elements of Q 1). Let q E Q 1 u (I: x I:)< w.

(1) The sequence q is executable, written Exec 1(q), iff

3vEWU {w},

3(< u ;, a;)); e" [q = (<a;, a;) Lev /\ Vi E v [i + 1 E v => a; = a; +- 1]]

V 3kEW, 3((a;, <J;));ek,

3ak[q=((u;,<J;));ek·(uk) /\ ViEk[a;=a;+ 1]].

Let E1 = { q E Q 1 u (I: x I:) <w: Exec 1(q) }. For <J EI:, let E 1 (<J) =

{ q EE 1 \ { e} : istate 1 (q) = a}.
(2) Let q be executable. The history of q, denoted by hist 1(q), is

defined by

if q=((a;,a;));ev•

if q=((a;,<J;));ek·((J"k).

Now we can give another formulation of cx 1 as follows:

LEMMA 9 (Another Formulation of Abstraction Function o:: 1). (1) For

p E p r' (J EI, one has ex 1 (p)((J) = {hist I (q) : q E p n El< a>}.

(2) Vk ~ 1, Vp1, ... ,Pk EPt, V<J[cx1(U;d [p;])(a) = UiEk [cx1(p;)(a)J].

Proof Omitted (see Appendix 3 of [HBR90]). I

By means of this lemma, one has the correctness of .0!1 .

LEMMA 10 (Correctness of .0!1). (1) ex 1 o (!\ = d\ .

(2) ex10£2i1=L01.

Proof (1) By showing that ex 1 o (!51 is the fixed point of 'Pf defined in

Definition 6.

(2) Immediate from (1) and Lemma 7 (2). I

3.5. Full Abstraction of .0!1 with Respect to CD1

The f~~l abstraction of .0!1 is shown by means of a context with parallel
compos1t1on:

FULLY ABSTRACT MODELS FOR CONCURRENCY 145

Given two statements s 1 , s 2 E 2 1 with different denotational

meanings, a suitable statement T called a tester is con­

structed such that the operational meanings of s 1 II T and

s 2 II T are distinct. (6)

A combinatorial method for constructing such a tester is proposed in

Lemma 13 (Testing Lemma). Using this method, we can construct testers

having the following property:

Given a process and a finite sequence r = (((J 1 , er;), ... ,

(a,,, (J~)), we can construct a tester T and an executable

sequence r = ((a 1 , 0''1), ••• , (a k> O'D) with k?; n such that for

every process p', the parallel composition p' TI .<:2\[T] can

execute r if there is some sequence q such that ((a 1 , a'1), ..• ,

(a,,,(J~))·qEp', i.e., p'[(a1 ,a;), ... ,(a,,,a~)]#0, and

the converse of this holds for p' = p. Intuitively, for such T

and r, the process p is forced to execute the steps (a 1, a'1), •.. ,

(a,,, (J~) (perhaps not consecutively but in this order)

when p TI .91 [T] executes the steps (<al• 0''1), ... , < ab a~>)
consecutively.

By the above property, we can construct such testers T as in (6) as follows:

Ifs 1 and s2 are distinct in their denotational meanings, then,

putting P;= f~\[s,] (i= 1, 2), there exists some sequence r

such that p 1[r]#0 but p 2[r]=0 (or vice versa). By

constructing a tester T and an executable sequence r for

r and p =p2 as above, one has rE.0:\[s 1] TI £2\[T] and

r 1.91 [s2] TI .0\ [T]. Thus one has a difference between the

operational meanings of the two statements s 1 II T and s2 II T.

First, the notion of full abstraction is defined:

DEFINITION 14 (Full Abstraction). Let 2 be a language and (! an

operational model for !£. A denotational model :?2 is said to be fully

abstract w.r.t. the operational model (!' iff for every s1 , s2 E 2 1 , one has

V(E SVar, VS E £"i(lr:'[S<~ 1 [s 1]] = @[S1 ~ 1 [s 2]]] ~ .0:'[s1] = .0:'[s2].

For a language !£ which can be formulated as the set of terms generated

by a single-sorted signature, and an operational model (!' for it, a fully

abstract compositional model for 2 w.r.t. (! is unique in the following

sense and exists if !£ has no recursion, as was shown in [BK088].

LEMMA 11 (Uniqueness and Existence of Fully Abstract Compositional

Model). If two compositinal models q and :?2' are fully abstract w.r.t. d',

146 HORITA, DE BAKKER, AND RUTTEN

then there is an isomorphism from ft![£"] to ft!'[£']; i.e., there is a bijection
<fJ: '.?[.~] _. .Q'[.!i']; i.e., there is a bijection <p: 07[2] ~ 07'[2] such that
j(ir every operator Fin .!£' with arity r, and Pi, ... ,prE07[2], one has
<p(FD(p 1 •••• ,p,)) = F''"(<p(pi), ... , q;(p,)). In other words, the fully abstract
compositional model is unique except for isomorphism.

Moreorer, there exists a fully abstract compositional model, !I 2 has no

recursion.

Proof See Proposition 7.1.l of [BK088]. I
Let us proceed to establish the full abstraction of 071 w.r.t. (1)1 , stated by

the following theorem, under the assumption that V is infinite. The reader
might expect that the same result can be obtained without this assumption,
but it is necessary. In fact, if V is finite, then f!J1 is not fully abstract w.r.t.

C1 (see Example 3 in Section 3.6.1).

THEOREM 1 (Full Abstraction of q;1). Let V be infinite. Then, for every

s 1 • s2 E .51'1 , one has

To establish Theorem 1, we present the following lemma, from which
Theorem 1 follows easily. (In the remainder of this paper, we fix an element
r of V, and for :;(E g;J r(IVar) we set I£"= {er EI : V' x E (IVar\:?r)
[er(x) = i'] }.)

LEMMA 12 (Uniform Distinction Lemma for 2 1). Let .!J[E (&;Jr(IVar)\

{0}).

(1) For every rE(I'*x.E'!f')<w,

Vp1.P2EPfep1[r]#0 Ap2[r]=0

==> 'r:lao EL£, 3TE £'1[a1(P1 TI 071[T] Hero)\cx1(P2 TI £2\[T])(er0) # 0]].

(7)

(2) For every qE (I£ x I"l')<w ·If,

Vp1. P2 E Pt[q EP1\P2

==>Vero EL.-f, :ITE£'1[<X1(P1 TI 071[T])(ero)\cx1(P2 TI «?2\ [T])(er0) # 0]].

(8)

Proof of Theorem_ l. Let p 1 = f!J1[s 1], p2 = «il11 [s2], and suppose p 1 # p 2 •

We can assume, without loss of generality, that there exists q such that

q E P 1 and q rt ?2: Th~ proof is given by distinguishing two cases according
to whether q 1s mfimte or finite.

FULLY ABSTRACT MODELS FOR CONCURRENCY 147

Case 1. Suppose q is infinite. First, let us show by contradiction that
there is an n E w such that q[nJ ~ (p,)[nJ. Assume, to the contrary that

[] - '
Vn E w[p2[q n] =I= 0]. Then, by the closedness of p2 , one has q E p2 , which
contradicts the fact q~p2 . Hence, there is new such that p2[q[nJJ=0.
From the fact that FIR 1(p;) (i= 1, 2) and from Remark 3(2), it
follows that there is an ErE(&or(IVar)\{0}) such that (3) holds for
p = P; (i = 1, 2). Fix such an Er, and let a= ().x E (IVar\.¥): v) and
r=(<(nj(q(i)) j,q[)ua)je2l;en· Then re(E¥xE¥t. It follows from the
fact that q[nJE((pi)[nJ\(p2)[nJ) and (3), for p=p; (i=l,2), that
re((p 1)[nJ\(P2)[nJ). Thus applying Lemma 12(1), one has 3Te

2'1[a1(.~1[s1] TI 2J1[T])\a1(~1[s] TI ~1[T])=l=0].

Case 2. Suppose q is finite. Then one obtains the same result in a
similar fashion to that for Case 1, but using Lemma 12(2) instead of
Lemma 12(1) used in Case 1. I

3.5.1. Proof of Lemma 12

Testers for proving Lemma 12(1) (resp. Lemma 12(2)) are constructed
by induction on the length re (E ¥ x E ¥) <w (resp. q E (Er x ..[¥) <w . ..[¥).

The following lemma is used to construct testers for r (or q) with length
n + 1 by means of testers for r (or q) with length n. The assumption that
V is infinite will be essentially used in the proof of Lemma 13.

LEMMA 13 (Testing Lemma for .Pi). Let Ere(f.Jr(IVar)\{0}), pePf,
and r:J 1, r:J 11 , r:Jo EE:£· Then there are two finite sequences r 1, r 2 E (I'¥ x E ¥) <w

such that the following hold:

(1) r 1 · <r:J', r:J 11
) ·r2 EE1<r:Jo)-

(2) For every tester T' E .,Sfi, there exists another tester TE 2i such
that the following hold:

(i) ~1 [T][r 1 ·r2J=~1[T'],

(ii) The process p is forced to execute the step <r:J', a") q_nd for­
bidden to execute any other steps when the parallel composition P II ~1 [T]
executes the sequence: r 1 • (r:J', r:J 11) • r 2 • That is, the following holds for every
q'EQ1:

r 1 • < r:J 1
, r:J 11

) • r2 · q' E P TI ~1 [T]

~ p[<(J', r:J 11) J # 0 /\ q' Ep[(r:J', f5 11 > J TI ~1[T']. (9)

The proof of this lemma will be given later. First, we will prove the
following corollary, and thereby, Lemma 12.

148 HORITA, DE BAKKER, AND RUTTEN

COROLLARY 1. Let El'E(&ar(IVar)\{0}), pEP[, (a',a")EL.cz·XL!![,
and er 0 EI:.¥. Then there are two finite sequences p 1 , p2 E (.E.'2.) <w such that
for every tester T' E 2 1 there exists another tester TE 2 1 such that, putting
a 1 =last(p 1 ·a"· p 2), the following hold:

(1) For every p' E P (, one has

If p' E I:"'w[p'[(er', er")]# 0 A p' E ct 1(p'[(a', a")] TI Et\ [T'])(a 1)

=> p 1 . a" . P2 . p' E Cl 1 (p' TI E.01 [11)(er on (10)

(2) For p' = p, the converse of (10) holds. That is,

If p' EI:"' w [p 1 · er" · P2 · p' ex 1 (p TI E.01 [11)(a o)

=> p [<a', a") J # () A p' E et 1 (p [<er', er")] TI E.01 [T'])(a 1)]. (11)

Proof Take r 1, r2 as in Lemma 13, and put p 1 = hist 1(r 1),

p 2 =hist 1(r2), and let a 1=last(p 1·a"·p 2). Also, for T', take T as in
Lemma 13.

Part (I). Let p'EP[, and p'EI:"'w. Suppose p'[(a',er")J#0 and
p'Ect 1(p'[(er', a")] TI .0J1[T'])(er 1). Then, by Lemma 9(1), there exists

q'E(p'[(er',a")] TI E.01[T']) such that q'eE 1(a 1) A hist 1(q')=p'. Fix
such q'. By Lemma 13(1), one has r 1 ·(a', a")-r 2 ·q'EE 1(a0). By
Lemma 13(2)(i), q'E(p'[u',a")JTIE.01[11[r1·r2]). Thus, applying the
=-part of Lemma 5(1) successively, one has r,-q'E(p'[(a',u")JTI
E.01[11 [rJ]), (er', u") · r 2 • q' E (p' TI E.01[11 [r1]), a~d r 1 ·(er', er")· r 2 ·

q' E (p' II .111[11). Hence, p 1 ·er"· p 2 · p' = hist 1(r1 ·(a', u") · r 2 · q') E

r!.1(P 1 TI .0J1[T])Ca-ol·

Part (2). Let p' E .E"'w, and suppose p 1 ·er"· p2 • p' E rx 1 (p TI .0J1 [1])(er0).

Then, by Lemma 9(1), there exists q' such that (*): q' EE 1<a 1) A
histi(q')=p'. Fix such q'. By (9), one has p[(a',cr")]#0 and
q'Ep[(cr',er")JTI.071[T']. Thus, by (*), one has p'=hist 1(q')E
ct1(P[(a', er")] TI .0J1[T'])(ui). I

Proof of Lemma 12. Let Et E (tJr(IVar)\ {0}).

Part (1). We will prove that (7) holds for every rE(Ld·XLd·)<"' by
induction on the length of r.

Induction Base. Let lgt(r)=O, i.e., let r=e, and let p 1 , p2 ePr Then
one has (7) vacuously, since \fp E P([p[c:] = p # 0], and therefore it does
not hold thatp 1[r]#0 Ap2 [r]=0.

Induction Step. Let k E w, and assume that the claim holds for every r
such that lgt(r) ~ k. Fix an arbitrary sequence r of length k + 1, say

FULLY ABSTRACT MODELS FOR CONCURRENCY 149

r = (a', a")· r. Let Pi. p 2 E Pf such that (*): (i) P1 [r] =I= 0, (ii) P2[r] = 0.
Finally let a 0 E .E !¥'. We distinguish two cases according to whether
P2[(a', a")]= 0 or not.

Case 1. Suppose p2 [<a', a")] = 0. Then, applying Corollary 1 with
p =Pi and T' = 0, there are p1, p 2 , T such that:

(i) '<:/pePf,'<:/p'e.E"'"'[p[(a',a")]

=1=0 A p'eo: 1(p[(a', a")] TI()d(ai)

=P1 ·a" ·P2·P 1 Ert.1(P TI ~1[T])(ao)], (12)

(ii) '<:/ p' E .E"' 0'[p1 ·a"· P2 · p' E 0:1(P2 TI ~1 [T])(ao)

=> P2[(a', a")] =I= 0 A p' E a1 (P2[(a', a")] TI 01)(ai)],

where a 1 = last(p 1 ·a"· p 2). By (*)(i), there exists p' E o: 1 (p E o: 1 (p 1 [r] TI Oi)
(a 1). Let us fix such a p'. By (12)(i) for p=p1o one has p1 ·a"·p2 ·p'e
0:1(P1 TI ~1 [T])(a0). Next, assume (for the sake of contradiction) that
P 1 ·a"· P 2 · p' E 0: 1 (p2 TI ~i[T])(a0). Then, by (12)(ii), one has p 2 [(a', a")]
=I= 0, which contradicts the fact that p 2 [((J'', a")]= 0- Hence, p1 ·a"· p2 •

P1 €f rJ.1 (P2 TI ~i[T])(ao).

Case 2. Suppose P:i[(a',a")]=/=0, and let us denote p 1[(a',a")]
and p2 [<a', a")] by p; and p;, respectively. Then, one has, by (*), that
(t): p~[r] =I= 0 A p;[r] = 0- Applying Corollary 1 with p = p 2 , there are
p 1, p 2 such that for every T' E 2 1 there exists T satisfying

(i) \:Ip ePf, \:Ip' e.E"'"'[p[(a', a")]

=1=0 A p'ea1(p[(a',a")] TI ~1 [T'])(cr1)
=>Pi· a"· P2 · p' E a1(P TI ~1[T])(ao)J,

(ii) \:Ip' E .E"'"'[p 1 ·a"· p2 · p' E a,(pz TI 2}1[T1)(ao)

(13)

=>p2 [(a', a")] =1=0 /\ p'Ea 1(Pi[(cr', a")] TI ~1[T'])(ai)],

where (J'1 = last(p1 ·a"· p2). By the induction hypothesis and (t), there are
T0 and p' such that

Let p=p 1 ·a"·p2 ·p', and take T such that (13) holds for T'=T0 • By
(13)(i) for p=p 1 and (14), one has peo: 1(p1 TI ~1 [T])(cr0). Next, assume
(to obtain a contraction) that p 1 ·a"· p, · p' E a1(p2 TI ~1 [T])(a0). Then, it
follows from (13)(ii) that p'ea1(p; TI ~1-[T0])(ai), which contradicts (14).
Thus, p 1 ·a"·p2 ·p'£to: 1(P2TI2}1[T])(a0). Summing up, in this case too
there is a p such that peo:1(p 1 TI 2}1[T])((J'o)\a1(P2 TI 2}1[T])(a0).

150 HORITA, DE BAKKER, AND RUTTEN

Part 2. In order to establish part (2), we will prove that (8) holds for
every q E (.E"' x L.'l·) < w · .E f¥, by induction on the length of q.

Induction Base. Let lgt(q)= 1, say q=(O''). Let p 1 , p 2 EPt such that
q E p 1 \ p 2 , and let O' 0 E .E :r. Since £[is finite and nonempty, we can put £l =

{x 1 , ... , xr}· Then, let us set T= (x 1 := O''(xi)); ... ; (xr := O''(xr)); 0, and t =

2i\[J1. By the definition of IT, one has ((O'S, 0''1), ••• , (0'~-1' O'~), O'')EP1 IT t,
i.e., (a'1' ... , O'~)Ecx: 1 (p 1 TI t)(0' 0), where O';= 0' 0 [(a'(xi), ... , <T'(x;))/(x 1 , ••• , x;)]
(iu+l). Let us prove, by contradiction, that ((O'S,<T'1), •. .,

(a~_ 1, <T~), O'') ~p 2 TI t. Indeed, if ((O'S, O';), .. ., (<T~_ 1 , O'~), a') EP2 TI t,
then the first r-steps (O'S, <T;), ... , (<T~_ 1 , <T~) must stem from the right­
hand side t. Thus, it must hold that (<T')Ep 2 Tit[((<TS,er;), ... ,
<a~_ 1 , er~))] = P2 TI 01 • However, this is impossible since _(<T') ~ P2.
Summing up, one has ((a~,a'1), .•. ,(a~_ 1 ,<T~),a')~P2llt, 1.e.,
(er;, .. ., a~H 1X1(P2 TI t)(ero).

Induction Step: Similar to the induction step of part (1). I
Finally, let us prove Lemma 13. A crucial ingredient of the proof is the

fact that the value of a variable can be changed from any value to any
other value in one atomic step, by means of an assignment statement.

Proof of Lemma 13. The proof is formulated by supposing that £l is
reduced to one variable, £[= { x}, which simplifies the proof, allowing us
to identify a state a E .E :r with its value a(x) E V. However, the lemma still
holds when '!£' is composed of more than one variable, as established in
Appendix 4 of [HBR90]. For v E V, let O'(v) = (Jcy E IVar : if(y = x, v, ii)).

Trying to construct a desired tester T, we first observe that the composi­
tion p TI 0\[T] must be in the state a' when p executes the step (er', a").
Therefore, if <T0 (x)#er'(x), then 2&1[T] must execute the step (a, a') for
some a, and therefore, T must have an assignment "x := er'(x)" in it.
Moreover, we need a trick for forbidding p to execute the step (er, a')
instead of 2&1 [T] and forbidding ~1 [T] to execute the step <a', a")
instead of p. The proof of Lemma 13 is given by distinguishing two cases
according to whether er0{x) = a'(x).

Case 1. When a0(x) = <T'(x), we can easily construct two sequences r 1 ,

r2 satisfying (1) and (2) of Lemma 13 as follows: Let r 1 = c:, r2 =

(a", a(ui)), where v1 is chosen such that

Note that the right-hand side of (15)(ii) is finite since p is image finite by
Definition 10, and therefore, there is a v1 satisfying (15). It is immediate
that Lemma 13(1) holds. Let us show Lemma 13(2). For every T' E 2'1 , let
T= (x := vi); T'. It is immediate that (2)(i) holds. Let us show (2)(ii), i.e.,
that (9) holds for every q' E Q 1.

FULLY ABSTRACT MODELS FOR CONCURRENCY 151

Suppose (a', a"> . <(j", a(v1) >. q' Ep TI f01 [T]. Let us show that the first
t:Vo steps, <(j', (j") and <(j", O'(v 1)), must stem from p and f01[T], respec­
tively. The first step cannot stem from f01[T] by (15)(i). Also, the second
step cannot stem from p by (15)(ii). Thus one has the desired result.

Case 2. When a 0 (x) =I u'(x), we can construct two sequences r 1 r 2

satisfying (1) and (2) of Lemma 13 as follows. Let r 1 = < (j 0 , u') and :2 =
((j", cr(v 1)), where v1 is chosen such that

{

(i) v1 rj:. {veV: (a0 , (j 11) • ((j 1, (j"). (u", O'(v)) ep[3l},

(ii) V1 =f(j'(x),
(iii) v1 =I a"(x), (16)

(iv) v1 1:- {veV: (a', u"). (u", O'(v)) ep[2l}.

Note that the right-hand sides of (16)(i) and (iv) are finite, since p is image
finite by Definition 10, and therefore, there is v1 satisfying (16). It is
immediate that (1) holds. Let us show (2), i.e., that for every T' e ..2"1 , there
exists TE ft'i satisfying (2)(i), (2)(ii). A tester T with these properties can
be constructed in the following format: For v0 , v', ii1 , i!2 e V, and s e ..2"1 ,

let

We set T=F((j 0 (x), (j'(x), v1 , v2 , T'), where v2 is chosen such that(*): (i)
v2 =1a"(x), (ii) v2 =1v 1• In this case also, it is immediate that (2)(i) holds.
Let us show (2)(ii), i.e., that (9) holds for every q' e Q 1• First, put
t'=~1 [T'], t=f01[T].

Suppose < O"o, (j 1 > . < (j 1
, 0" 11 > . < (j 11

, a(V1)) . q' E p TI t. Let us show that the
first three steps, (cr0 , (j 1), ((j 1, (j 11), <(j", O'(vi)), must stem from t, p, t,
respectively.

First, Jet us show by contradiction that the first step (a 0 , u') cannot
step from p. Assume that the first step stems from p, i.e., that (a', u") ·
(a", a(v 1)) ·q'ep[(u0 , a')] TI t. Then the second step (a', a") must stem
from either of p[(p0 , (j 1)] or t; Let us show that it can stem from neither
of them. Suppose that the second step stems from t, i.e., < (j", O'(vr)) · q' E

p[(a 0 , a')] II t[(a', (j 11)]. Then t[(a', u")] =10, and therefore, under
the assumption that a0(x)=la'(x), the assignment "x:=v 2" must be
executed in the second step, which yields a"(x) = v2 • Howe~er, this con­
tradicts (*)(i).Thus (a",O'(v 1))·q'ep[(a0 ,a')·(a',a")] II t. The third
step (a", O'(v 1)) cannot step from p[(u0 , a')· (a', a")], since, by (16)(i),
p[(a0 ,a')-((j1,cr")·(u",O'(v1))]=0. Thus the third step must stem
from t, which implies v1 =a'(x) or v1 =v2 • However, both are impossible
by (16)(ii) and (*)(ii), respectively. Summing up, the first step cannot stem

643/115/1·12

152 HORITA, DE BAKKER, AND RUTTEN

from p, and therefore, it must stem from t. Thus one has < 6', 6") ·
(6",if(v 1))·q'Ep TI t[(6 0 ,a')].

Next let us show the second step (a', 6") cannot stem from
t[(60 , 6'>J. Ifit stems from t[(a0 , 6'>], then t[(60 , 6') ·(a', a">J #0,
which implies, by the form of T, that 6"(x) = v1. This contradicts (16)(iii).
Thus the second step must stem from p, and therefore, < 6", O'(vi)) ·
q'Ep[(a-',a-")JTI t[(a0 ,a')].

Finally, the third step (a", if(v 1)> cannot stem from p[(a-', a")],
since p[(a', a-")· (a", if(vi))] = 0, by (16)(iv). Thus the third step must
stem from t[(a0 ,a')], and therefore, q'Ep[(a-',6")JTit[(a0 ,a')­
(a",O'(vi))], that is, q'Ep[(a-',a")JTI 9 1[T']. I

Remark 4. Note that if 60(x)#a'(x) and 6'(x)#a"(x), then a simpler
tester T= (x := a'(x)); (x := v1); T', with v1 satisfying (16), is sufficient to
establish the above lemma. However, if 60 (x) # a'(x) and a'(x) = a"(x),
then we need a tester defined in the format (17) to exclude the possibility
that the first three steps of the parallel composition may stem from p, t,
and t, respectively.

3.6. Comparison of 9 1 and Other Models

3.6.1. Comparison with a More Abstract Model than 9 1/or 2'1 with V Finite

As stated earlier, the assumption that V is infinite is necessary for the full
abstraction of 9 1 • In fact, if V is finite, then we can construct another
compositional model § 1 which is correct w.r.t. C\ and more abstract than
9 1 . Thus 9 1 cannot be fully abstract w.r.t. C\. The model § 1 is constructed
from 9 1 by abstracting from certain redundant information present in £&1 ,

as follows:

DEFINITION 15. LetpE&J(Q1). (1) Let qEp, and (n,i)Ewx2. Let
us say q is pruned away from p at place (n, i) iff q is infinite and
q ~ q[n + i] . (E 1 (n;(q(n))) n (L' X .E)w) s; p.

(2) A pruning function A: go(Qi)-+ tJ(Qi) is defined as follows:
A(p)={qEp:-i3(n,i>Ewx2[q is pruned away from p at place
(n, i)] }.

(3) For sE.21 , let § 1[s] =A(91[s]).

Since executable passes in 91[s] are the same as those in 9 1[s] (sE2i)
by the definition of A, one has the correctness of 91 w.r.t. (01 :

LEMMA 14. Cl. 1 0 91 = Cl.1 0 91 = C\ .

Moreover, we can show that 91 is compositional w.r.t. all the operators
of fi'i. For this purpose, we define another set of semantic operations from

FULLY ABSTRACT MODELS FOR CONCURRENCY 153

that defined in Definition 8. For each syntactical operator F with arity r
of 2'i, a semantic operation F with domain (P 1) has been defined in
Definition 8; we can extend the domain of F from (P 1)' to (gJ(Q 1))'

straightforwardly except for F = II. As to II, we can extend the domain of ~
to (p(Q 1)) 2 by means ofa merge operation on elements ofQ 1 ; this opera­
tion can be defined as in [Hor91], where merge operation on infinite
sequences (taking communication into account) is defined.

DEFINITION 16. (1) Let r E w. For a meaning function g with
dom(go) = 2'1' and sE (21)', let g[S] = (g[s(i)]);er- Also, for a function/
with dom(f)=go(Qi), andpE{&o(Q 1))', letf(p)=(f(p(i)));er·

(2) Let «I'; be the set of syntactical operators of 2 1 , and for r E w, let
Y;(r) ={FEY;: the arity of Fis r}. Let FEY;(r) and F be the semantic
operation corresponding to F in the interpretation structure .:11• From F,
let us define another semantic operation f: as follows: For every
pE (&»(Qi))', let F(p) = A(F(p)).

From the semantic operations ft, one obtains the compositionality of !5 1

w.r.t. all the operators of 2 1 :

LEMMA 15. For every rE wand FE S'~(r), one has WE (21)' [.~~\[F(s)] =
f:(.@1 [S])].

Proof Let rEw and FEY;(r). It can be shown that (*): VpE
(go(Qi))' [A(F(p)) = A(F(A(p)))]. From this one obtains the desired
result as follows: Let 8E(21)', and p=g1[S]. Then

.@1[F(s)] = A(go1[F(s)])

= A(F(p))

= A(F(A(p)))

= fr(4\[S])

(by the definition of !5 1)

(by the compositionality of 9 1)

(by(*))

(by the definition of J5 1 and F). I

When V is finite, the model .@1 is strictly more abstract than g 1, as can
seen from the following example. Thus 9 1 is not fully abstract in this case.

EXAMPLE 3. Assume that V = { 0, 1 }. Moreover, let us assume, for sim­
plicity, that IV ar = { x }. Then L' is identified with V. Let g = ((x := O); Xo) +
((x := 1); X 0), and suppose (X0 ,g)ED. Then, setting s 1 =.X0 +If(x=O,
(x := O); If(x = 0, X 0 , 0), X0), and s2 = If(x = 0, ((x := O); If(x = 0, Xo, 0)) +
((x := 1); X 0), X 0), one has g 1[s 1][(0, 0)-<1, 1)] # 0, but 9_1~s2] [(O,.., 0) ·
(1, 1)] = 0. Thus, (*) 9 1 [s1] # 9 1 [s 2]. However, ~y the defimt10n of 9 1 an~
A, one has (t) f21 [s1] = A(g1[s1]) = A(EZ'i [s2]) = fll1[s2] = {q E 9\[s2]: q is

154 HORITA, DE BAKKER, AND RUTTEN

finite v q is infinite and executable}, since if q (E Qi) is infinite and
executable, then q E 271 [s;] (i = 1, 2). Thus, for every context S(~l e !i' t,
one has 01 [S(0 [s1]] = 0: 1 (~1 [S(~J[s 1]])=ex1 (~1 [S (~J [s2]]) = l!\ [Sio[s2Jl
From this and (*), it follows that 271 is not fully abstract w.r.t. c'.P1.

Note that, when V is infinite, we cannot construct a statement yielding
all infinite paths, such as X0 in the above lemma; thus (t) in the above
example does not hold when V is infinite. Moreover, for every s E !i'1, it is

shown that

(18)

as follows: First, for every q E 271[s], (n, i) E w x 2, it does not hold that
qCn+il.(E 1(n}(q(n)))n(.ExI)w)s;;;p, since £11[s] is image finite by
Lemma 6(4). Hence, qE211[s] is not pruned away from 211[s] at place
(n; i).Thus, one has (18).

3.6.2. Comparison with a Less Abstract Model than £11 for !i'1

In [BR91], another denotational model 21; for a language, which is like
Yi but has general sequential composition instead of prefixing, was
proposed. The model 21; was presented on the basis of the domain: P; =
,fJnc(Q;), where Q; ~ { 8} u (.E-+ (.E-+ Q;)). The outline of 21; is as follows
(the interpretation of the parallel composition is omitted, since this is not
necessary for the present purpose):

(i) §;[x :=e);s] ={(AO': (a[[e](a)/x], q)): qE£1'1[s] }.

(ii) The operation +' : P; x P; -+ P; is defined by { i;} + p =
p+{i;}=p and, for p 1 , p 2 #{a}, p 1 +p2 is the set-theoretic union of p 1

and p 2 •

(iii) §;[If(b, S1, Sz])J = {(AO': if([b](a) = tt, q1(0'), q2(a))); qi E
E?;[sr] 11 q E ,@; [s2] }.

It turns out that 21; is not fully abstract w.r.t. 271 as the next example
shows. Thus, 21'1 is less abstract than 271 •

EXAMPLE 4. Let us assume, for simplicity, that IVar= {x}. Then, .Eis
identified with V. Let q1 =((x:=O);O)+((x:=l);O), and

s2 = If(x=O, (x := O); 0, (x := 1); O)+ If(x=O, (x := 1); 0, (x := O); 0).

Then(*) £C,[s 1]=2&1[s2]={((v,v')):vEV11(v'=Ovv'=1)}·0 1• On
t~e other hand, £C;[s 1]={q1>q2 }, where q 1 =(AvEV:(O,c:)), q2 =
(1.vEV: <t,e)). Also, 21;[s 2]={q;,q;}, where q;=(AvEV: if(v=O,
(0, e), < 1, e))), q; = (Av EV: if(v = 0, (1, e), (0, i:))). Hence (t) 2f;'1[s 1] ¥­
sc; [s2]. If 921; is also fully abstract, then one has Vs1' s2 E 2'1 [£11 [s 1] =

FULLY ABSTRACT MODELS FOR CONCURRENCY 155

~1[s2] <=>~as1] =~'1[s2]], which contradicts (*) and (t). Hence ~~
cannot be fully abstract.

3.6.3. Comparison with Hennessy and Plotkin's Resumptions Model

The language treated in [HP79], which we denote by Sf.:0 , is very
similar to 2'1 , except that it contains "co", a coroutine construct, as well as
the usual interleaving. On the basis of a set (a e) Act of primitive actions,
(se) Sf.:o is given by s::=al(s1,s2)1If(b,s1,s2)1While(b,s)l(s1+s2)
l(s1lls2)l(s 1 cos2). A transition relation -+£;£f.,0 xStr with Str=L'u
(Sf.:o x L') is defined, as -+Jo with the help of a given interpretation
d : Act-+ (L'-+ E) (see Section 2 of [HP79]). The expression <s, a)-+ a'
means that the configuration <s, a) terminates with state a'. The opera­
tional semantics P,6 treated in [HP79] is defined as follows: For every
statement s and state a, .@[s] (a)= {a' : <s, a)-+* a'} u if(3C<sn, an) lnew
[<so,ao) = <s,a) /\ Vnew[(sn,an) -+ (sn+ 1,a11 +1)]], {..L},0).
Obviously f!4 is more abstract than another operational semantics
(!)co: Sf.:o -+ (L'-+ Pnc(L'"'"'\ { e})) which is constructed by slightly modifying
@1 in the obvious way. Then, a denotational model 'JI" for Sf.:0 is defined on
the bases of a domain R which is the solution of a domain equation in the
category of non-deterministic domains. Furthermore, the full abstraction of
"// w.r.t. fJe is established under the following three assumptions (see the
paragraph immediately preceding Lemma 5.6 of [HP79]):

(i) The set L' of states is infinite. (ii) For each aeL', there
exists a statement K(a) E Act such that Va'[d[K(a)]
(a')= a]. (iii) For each a EI, there exists an expression
is(er)eBExp such that Va'[[is(a)](a')=tt<=>a'=a]. (19)

We can construct a denotational model fl2co for Sf.,0 by slighly modifying
!'21. First, the underlying domain P co is defined by slightly modifying P 1 as
follows: P co= t<Jnc(Qc0), where Qco is the solution of domain equation:
Qco ~ (L' x { <J, er) : a EL'}) 1±1 (Ix L') x id"(Qc0) with 'J' being some
symbol standing for termination. Writing j(a) for (j, a) for the sake
of readability, one has Qco ~(Ix I) <w • { ((a, j(a'))): a, a' EL'} 1±1

(Exrr, as with Q 1. Then, the model fl2c0 -+(L'-+Pc0) is defined by
~c0 [s] (a)= ~~0 [s](a) u £&~0 [s](a), where £&~0 [s](a) and ~~0 [s](a) are the
terminating and non terminating parts of !l&co [s] (a); these parts are defined
as follows: First, ~~0 [s](a) = { (<er;, a;'));en· (<a,,, j(a~))): n E w /\ ao =
a/\ 3(s;);e(n+l) [s0 ::s /\ Vien[<s;, a;)-+ <s;+t• o-;)J /\ <sn, <In)-+ s~]}.
Next, ~~0 [s](a) = {(<a;, a;))iew: a0 = <J /\ 3(s;);ew [so= s /\Vi E w[(s;, a;)
-+ <s. a')]]} The model !!fi can also be formulated by means of 1+ [, l .. co

appropriate semantic operations and Banach's Theorem, as !'21.

156 HORITA, DE BAKKER, AND RUTTEN

Interestingly, the full abstraction of 0Jc0 can also be established under the

assumptions (19). Thus, the two models "Y and 0Jc0 are isomorphic in the

sense of Lemma 11, while the two models are constructed rather differently.

The proof of its full abstraction is outlined below.

Proof of Full Abstraction of 0Jco· Let Si. s 2 E 2,,0 such that f0co[s1] i=
Pc0 [s2]. Then, either £21~0 [s 1] i=£21~0 [s2], or £21~0 [s1] i=0>~0 [s2]. Let us set

P; = ftc0 [s;] (i = 1, 2).

Case 1. Suppose f0~0 [s 1] i= f0~0 [s 2]. Then, we can assume, without loss

of generality, that there exists q such that qE0>~0 [s 1]\f0~0 [s 2]. Thus, by

the closedness of p 2 , there exists (<er;,er';));E(m+IJ such that(*)
(<a;, er;));E(m+l)Epfm+tJ\p~m+lJ for some mEW. As in [HP79], we can

construct an appropriate tester T0 for distinguishing s 1 and s2 as follows:

First, let T,,,= If(is(er~1), K(ii), K(ii')), where a, ii' will be chosen below.

Then T; (iEm,) are defined by T;=If(is(er;), (K(er;+il; T;+ 1), K(a')). We

choose ii and ii' so that (t) ii~ Uk E (m + ll ({er : (<er;, er;)); Ek · ((a b er)) E
p~k + 1J}), (t) ii' i= ii. Note that the right-hand side of (t) is finite since the

transition relation --+ is finitely branching, and thus, by the assumption

(19)(i), we can choose such states. Then, obviously one has (<er0 , er;),

(er~, er 1), ... , (er,,,, er;,,), (er,,,., j(O:))) E f0c0 [s 1 co T0], and therefore , (**)

iiE,qfi[s 1 co T0](er0). On the other hand, by the conditions (t) and (Hone

can show that 0:EP8[s2 co T0](er 0)=(<a;, er;));E(m+iJEP~m+ 1J. Thus,

since (<er;,er;));E(m+ii~P~"'+ 1 J, one has (ttl a~£?.6'[s 2 co T0](a0). By(**)
and (tt), one has P8[s1 co T0] i= P8[s2 co T0].

Case 2. Suppose f0~0 [s 1] i= 0>~0 [s 2]. Then, we can assume, without loss

of generality, that there exists ((ll;,er;));E,,,·(<ern,,j(a;,,)))Ep 1\p 2

(mEw). Let us choose ii so that (it) O:~{er;:iE(m+l)}u

{er: ((er;,a;));E(m+ 11 ·(<er;,,,er))Ep~"'+ 2 J}, and let T=(K(ii)); T' with T'

being an arbitrary statement. Then obviously one has ((er;, er;));E(m+ll.

(<a;,,, 0:)) E (p 1; T) [m + 2J. On the other hand, by the condition (U) it is

impossible that (<er;,er;));E(m+iJ·((ll;,,,o:))E(p2 ;T)[m+ 2 l. Hence, one

has ((a;,ll;));E(m+1 1·(<er;,,,ii))E(p1;T)[m+ 2J\(p 2 ;T)[m+ 2 J. Thus, one

obtains the same proposition as (*) in Case 1, replacing (<a;, er;)) ; E (m + 11
by (< ll;, <J;));E (rn + 11 · (<er;,,, ii)), and P; by (p;; T) for i = 1, 2. Hence, one

can construct T0 such that P8[(s 1; T)co T0] i=.%'[(s2 ; T)co T 0], as in
Case 1. I

The full abstraction result for "f/" and q;co essentially depends on the "co"

construct; without this, the two models would not be fully abstract w.r.t. .%',

which is also conjectured by Hennessy and Plotkin for "Y (see [HP79,
Sect. 6]).

FULLY ABSTRACT MODELS FOR CONCURRENCY 157

4. A NONUNIFORM LANGUAGE WITH COMMUNICATION

The second language Iii is a nonuniform language which has CSP-like
communications in addition to all constructs of the first language. An
operational model (()2 for 2'2 is given as in Section 3.

The domain of a denotational model £02 for 2'2 is a kind of failures
model, introduced in [BHR84], adapted to the non uniform setting. Each
element of the domain is a set consisting of such elements as
(((a;,a;, a;>);, (a", r>>, where a;, a;, and a" are states, a; is an action,
and I' is a set of communication sorts. These elements are called failures;
the parts ((a;, a;, a;>); and (a", r> are called a trace and a refusal,
respectively.

First, the correctness of ~2 is established as in Section 3. Then, the full
abstraction of ~2 is established by a combination of the testing method
introduced in Section 3 and the method proposed by Bergstra et al. in
[BK088] to establish the full abstraction of a failures model for a uniform
language without recursion. This method was adapted by Rutten in
[Rut89] to employ it for a language with recursion in the framework of
complete metric spaces, which suggests how to use it in the present setting.

The full abstraction of the denotational model for 2'2 is established as
follows: Given two statements s1 and s2 of 2'2 which are distinct in their
denotational meanings, the denotational meanings are distinct in the trace
parts or in the refusal parts. When the distinction is in the trace parts, we
can construct a tester by the testing method; otherwise we can construct a
tester by the method of Bergstra et al.

4.1. The Language 2'2

In addition to all constructs of Sfi, the language Iii has CSP-like com­
munications; i.e., it has inputs "(c? x)" and outputs "(c ! e)" for all channels
c, individual variables x, and value expressions e.

DEFINITION 17 (Language 2'2). The set of statements of the nonuniform
concurrent language (SE) .Pt is defined by the following BNF-syntax:

Here X ranges over RVar, the set of recursion variables; ~ ranges over
SVar, the set of place holders used for defining contexts as in Definition 4.
In addition, c ranges over Chan, the set of communication channels. Let
(s E) fii ={SE .Pt: FV(S) = 0}; for~ E SVar, let 2'~ ={SE .Pt: FV(S) ~
{ ~} }.

158 HORITA, DE BAKKER, AND RUTTEN

Then the set of guarded statements (g e) ~2 is defined by the following
BNF-syntax:

We assume that each recursion variable X is associated with an element gx
of ~2 by a set of declarations D = { (X, gx)} xeRYar-

In the sequel of this section, we fix a declaration set D =
{ <X, g x) he RYar· As for 2i, 2 f and 2 2 can be formulated as the set of
terms and the set of closed terms generated by a signature Yi, respectively.

4.2. Operational Model (!)2 for 2;

An operational model (!)2 for 2; is defined in terms of a transition rela­
tion -+ 2 • The following definition is given as a preliminary to the definition
of -+ 2 •

DEFINITION 18 (Actions). (1) The set of communication sorts, (ye) C,
is given by C = { c ! : c E Chan} u { c? : c e Chan}.

(2) The set of actions, (a E) A, is given by A= (C x V) u { t }.

(3) The set of action sorts, (A E) ASort, is given by Asort =Cu { t }.

(4) A function sort: A-+ ASort is defined as follows: For a EA,
sort(a)= y if a= (y, v) EC x V; otherwise sort(a)= t. I

The transition relation -+ 2 c;:;; (22 x L') x Ax (22 x L') is defined as follows.
For s 1,s2 e22 , er 1,a2 EL', and aeA, we write (s1 ,er 1)--=4 2 (s2 ,u2) for
((s1 , er 1), a, (s2 , u2)) E -+ 2 • For c !, c? EC and v E V, we sometimes write
c! v and c? v for (cl, v) and (c?, v), respectively.

DEFINITION 19 (Transition Relation -+ 2). The transition relation -+ 2 is
defined as the smallest relation satisfying the following rules (1) to (9):

(1) ((x :=e);s,er)~ 2 (s, er[[e](er)/x])

(2) ((c! e); s, er) (c!,[e](u)) 2 (s, er)

(3) ((c? x); s, er) ~2 (s, er[v/x]) (v E V)

(4) (si. er) ~2 (s, er') ([b](er) = tt)
(If(b, S1, S2). er> ~2 (s, 0' 1 >

FULLY ABSTRACT MODELS FOR CONCURRENCY 159

(5) <s2, u) __::.2 <s, (}"') ([b](a)=ff)
<If(b, s1i s 2), u) __::. 2 <s, u')

<s1, <J) __::. 2 <s, u')
(6) a , (aEA)

<s1 + s2 , u) - 2 <s, ())
<s2 + S1, <J) __::.2 <s, ()')

(7) <s1 , u) __::. 2 <s, u') (A)
<s2 II s1, ()) __::.2 <s II s2 , a') a e

(s2 II s1, <J) __::. 2 <s2 II s, a')

< s 1, <J) ~ 2 < s~, u), < s 2, a) ...:2!; 2 (s2, a')
(8) (ceChan,veV)

<s1 II S2, u) ~2 <s~ II s;, a')

<s2 II S1, u)~2 <s2 II s~, a')

(9) <gx,a)__::_.2<s',a')(<X)eD)
<x > a < , ') • gx , a - 2 s, u

For <s. (}") e 2i x.E, let act(s, ()) = {aE A: :J<s', u') E 2'2 x .E[(s, a)---4 2

<s', a')]}. Moreover, let sact(s, a)= sort[act(s, ())].

The transition relation is image finite in the sense of part (1) of the
following lemma:

LEMMA 16. For every s E 2 2, <J E .E, the following hold:

(1) For every ae A, the set { <s', u') e 2 2 xE: (s, a) ~2 (s', u')}
is finite.

(2) asort(s, u) is finite.

(3) For every c E Chan, the set { v e V : < c !, v) e act(s, u)} is finite.

Proof These are shown in a fashion similar to the proof of
Lemma 3. I

In terms of the transition relation -+ 2 , the operational model @2 is
defined as follows:

DEFINITION 20 (Operational Model {!}2 for 22). (1) Let M~ =
(22 -+ (.E-+ &Onc((A x .E)"'"'))), and let 'Pf: M~-+ Mf be defined as follows:
ForfEMf, se.!fi, and ue.E,

'Pf(f)(s)(u) = U {<a, ()1
) f(s')(a'): (s, a) ~2 (s', u')}

ulf(r~act(s, u), {t:}, 0).

It follows that 'Pf is a contraction from Mg' to Mf, as in Definition 6.

160 HORITA, DE BAKKER, AND RUTTEN

(2) Let the operational model @2 be the unique fixed point of If'~. By
the definition, one has @2 : .2j --> (L' --> &O nc((A x L'),,; w)), and for each s E 2'2

and O" E .E,

r'.D2 [s](a) = U {<a, a')· C02 [s'](a'): (s, CJ) ~2 (s', a')}

u If(r ef: act(s, a), { e}, 0).

4.3. Denotational Model 012 for -2';

The domain of a denotational semantic domain P 2 for 2'2 is a kind of
failures model, which was introduced in BHR84], adapted to the non­
uniform setting. Each element of the domain is a set consisting of such
elements as (((a;, a;, CJ;));, (CJ", I')), where O";, a;, and CJ" are states, a;

is an action, and r is a set of communication sorts. These elements are
called failures. Formally P 2 is defined by:

DEFINITION 21 (Denotational Semantic Domain P 2 for -2';). (1) Let
Q2 be the unique solution of Q 2 ~(.ExgJ(C)) \ti ((..ExAx.E)xid,(Q 2)).

One has Q 2 ~((.Ex Ax .E)<w ·(.Ex p(C))) u (.Ex Ax .E)w.

(2) For PEPnc(Q 2) and rE(L'xAx.E)<w, the remainder of p with
prefix r, denoted by p[r], is defined by p[r] = { q' E Q 2 : r · q' E p }.

(3) ForqEQ 2 u(.ExAx.E)+,letistate2(q)=aifq=(<CJ,a,CJ'))·q',
and let istate2(q) = a" if 3F[q = (< O""' r >)].

(4) For PE Pnc(Q 2) and O" E .E, let p(a) = {q E p: istate2 (q) = O" }.

(5) The process p E PnJQ2) is uniformly nonempty at level iff

VrE(L'xAx.E)" [p[r]#0=>VO"EL'[p[r](a)#0JJ.

Moreover, p is uniformly nonempty iff p is uniformly nonempty at every
level n E w.

(6) Let P 2 , the domain of processes for 2'2 , be given by

P 2 = {p E ~(Q2): p is uniformly nonempty }.

(7) For yEC, let y=c? if y=c!; otherwise y=c? and y=c!.
Moreover, for FE &'J(C), let f= {Y: yEr}.

We have the following lemma for P 2 , which is similar to Lemma 4
for P 1 •

LEMMA 17. The set P 2 is closed in &'Jnc(Q 2), and therefore, P 2 is a
complete metric space with the original metric of Pnc(Q 2).

FULLY ABSTRACT MODELS FOR CONCURRENCY 161

Proof This is proved in a similar fashion to the proof of Lemma 4. I
The interpretation J 2 for the signature of £2 is defined as follows:

DEFINITION 22 (Interpretation J 2 for Signature of 2 2). (1) 02 =
{ ((O', I')): (O', I') EI x t<J(C) }.

(2) For xEIVar and eEVExp, asg2(x,e):P2 ~P2 is defined as
follows: For pEP2 ,

asg2 (x, e)(p) = {((O', r, er[[e](O')/x])) ·p: O' EI}.

(3) For cEChan and eEVExp, out(c,e) :P2 ~P2 is defined as
follows: For pEP2 ,

out(c, e)(p)= {((O', (c!, [e](O')), O')) ·P: O"EL'}

u { (< O', r >) : er E .r " r £ C\ { c ! } } .

(4) For cEChan and xEIVar, inp(c,x):P2 ~P2 is defined as
follows: For p E P 2 ,

inp(c, x)(p) = { ((O', c? v, er[v/x])) ·p: O' EE A vE V}

u { (<er, r)) : er E .r " r £ C\ { c? } } .

(5) For b E BExp, if(b): P 2 x P 2 ~ P 2 is defined as follows: For
P1.P2EP2,

if(b)(p 1 , p2) = LJ [if([b](O") = tt, Pi (er), P2(0'))].
aeE

(6) For pEP2, pn((ExAxE)xQ2) is called the action part of p
and denoted by p +.

For p 1,PzEP2, p 1 + p2 is defined as in Definition 8 by

A process p E P 2 is said to be downward closed at level 0 if

Ver, V I'[((O', I')) E p => V I"[I" £I'=> ((er, I")) E p]].

It follows immediately from the definition of + that if p 1 and p2 are
downward closed, then

P1 .f. P2=P(upi u {(<O', I'))EL'X g:J(C): 3((0', I'1))Ep1;

3((0', I'2)}EPz[I'£I'1 nI'2J}.

162 HORITA, DE BAKKER, AND RUTTEN

(7) We have the unique operation TI:P2xP2-P2 satisfyi!1g the
following equation; the existence and uniqueness of such an operat10n are
obtained as in Definition 8(5). For P1,P2EP2,

where

p 1 lL p 2 = U { (a, a, a'>· (p 1 [(a, a, a'>] TI P2) : P1 [(a, a, a')]# 0 },

p 1 1> p2 = (U { ((a, r, a'>)· (p 1 [(a, c ! v, a>] TI Pi[< a, c? v, a')]) :

)
cls

p 1 [(a, c! v, a)]# 0 "p2 [(a, c? v, a')]# 0} ,

p 1 # p2 = {((a, T>): 3((a, I'1))Ep1,

3((a, I'2)) Ep 2[(C\I'i) n (C\I'2) = 0" I'£:I'1 n I'2J }.

Note that taking closure in the right-hand side of (20) is necessary, as
Example 5 shows below.

(8) .~2 = {02 , { asg2(x, e): (x, e) e IVar x VExp },

{if(b) :beBExp}, .+,TI,
{ out(c, e): c E Chan A e E VExp},

{ inp(c, x): c E Chan Ax E IVar} }.

EXAMPLE 5. Let us assume, for simplicity, that IVar = { x} and
V = { l' }. Then the set of states consists only of one state denoted by v.
Moreover assume that Chan= { C;: i E w} and c 1 # ci for i # j. Let p 1 and
p2 be defined by p 1 ={q,,:new}, p2 ={((v,c11 ?v,v), (v,0)):new},
where q,, = (v, c,,! v, v> · (v, c0 ! v, v> ... (v, c0 ! v, v) · (v, 0). Then p 1 and

n

p 2 belong to P 2 , and moreover they are image finite, which notion is to
be defined in Definition 24. Nevertheless, it is shown that the right-hand
side of (20) without taking closure is not closed as follows. This set
is :q;,:new}, where q;1 =(v,r,v)-(v,c0 !v,v) .. -(v,c0 !v,v)-(v,0).

n

This is not closed, since the infinite sequence ((v, r, v), (v, c0 ! v, v >.
< v, co! v, l1), ...) is a member of its closure but is not a member of it.

The next lemma follows immediately from Definition 22(7).

FULLY ABSTRACT MODELS FOR CONCURRENCY 163

LEMMA 18. \ipl, P2 E P2[P1 TI P2 = P2 TI P1].

In terms of the interpretation 5o, the denotational model ft', is defined
by induction on the structure of s ~ 2"2 , as in Definition 9. "

DEFINITION 23 (Denotational Model ::22 for ~). First, a contraction
ll2 from Mi= (RVar-+ P 2) to itself is defined as in Definition 9(1),
using 5 2 instead of 5 1 . Let Po= fix(17 2), and for X ER Var, let us define
X 5\ the denotational meaning for X, by: X 92 = p0 (X). Next, for each
operator F of 2"2 with arity r, and s 1 , •.. , s, E 2"2 , let 2?'2 [F(s 1, ..• , s2)] =
F"2(2?'2 [s 1], ••• , 2?'2 [sr]), where FJ2 is the interpreted operation corre­
sponding to F.

Several properties including the so-called image .finiteness for elements of
P 2 are introduced. It will be shown that the denotational meaning of each
statement in f.!'2 has these properties; this fact is used for establishing the
full abstraction of :!l!2 .

DEFINITION 24 (Image Finiteness for Elements of P 2). Let p E P 2 and
n E W.

(1) The process p is image finite at level n, written IF in~· 1(p), iff

\fr E (.Ex Ax LY"' [p[r] # 0

= \ir; E .E, \i a EA [{ r;' E.[: p[r] [(r;, a, r;' >] # 0} is finite]].

The process p is image finite, written IFin 2(p), iff \in E w[IFin~nl(p)].

(2) The process p is finite w.r.t. action sorts at level n, written
ASFin(nl(p), iff

\fr E (.Ex Ax I') <w [p[r J # 0 =>\fr; E I'[sact(p[r], r;) is finite]].

The process p is .finite w.r.t. action sorts, written ASFin(p), iff \in E

w [ASFin<n 1(p)].

(3) The process p is finite w.r.t. output values at !euel n, written
OVFin tnl(p), iff

\irE (.[x Ax..[)<'" [p[r] # 0

=\fr; E .E, \ic E Chan[{ v E V: 3r;'[p[r] [(r;, c ! v, r;') J # 0]} is finite]].

The process p is finite w.r.t. output values, written OVFin(p), iff
\in E w[OVFin (nl(p)].

164 HORITA, DE BAKKER, AND RUTTEN

(4) The process p satisfies the disjointness inaction condition at level
n, written mc<nl(p), iff

'v'r E (.Ex Ax Er [p[r] # 0
~ 'v'Cl EE, :i.~ s;; p(sact(p[r], Cl) n C)['v' I'E p(C)[(<Cl, I')) E p[r]

<:> 3R E~[I' ('\ R = 0]]]].

The process p satisfies the disjointness inaction condition, written DIC(p), iff
'v'n E w[DJC<nl(p)]. (See Example 5, for a motivation of this definition.)

(5) Properties FIRN¥'l(p), FIRT~nl(p), and FIR2 (p) are defined as
FIRN\nl(p), FIRT\nl(p), and FIR 1 (p) in Definition 10(2). Formally, these

are defined as follows:
(i) First, FIRN~n>(p) iff there exists !1/'e f<Jr(IVar) such that

the following holds: 'v're(ExAxEt, 'v'O'e((IVar\9l")-+Vt[rep[nJ<:>
Vien[n~(r(i)) f (IVar\X) = n~(r(i)) i(IVar\X)] /\ (((n6(r(i)) 19l")uO'(i),
rri(r(i)), n~(r(i)) I ff) u O'(i)));en Ep["J]. That is, for each r E (.Ex Ax E)",
if rEp["J, then, in every step r(i)= (n6(r(i)), ni(r(i)), nf(r(i))) of r (ien),
the value for xeIVar\9l" is not changed, i.e., (*) n6(r(i)) I (IVar)\El)=
n~(r(i)) / (IVar\.¥), and one may change the value n](r(i))(x) (} = 0, 2)
arbitrarily, i.e., (t) (((n6(r(i)) /El)uO'(i), ni(r(l)), (n6(r(i)) /ff)u
O'(i)));En E p[n] for arbitrary O' E (IVar\El")-+ vin. Conversely, for arbitrary
8e(IVar\ff)-+ Vt, if one has(*) and (t), then rEp[nJ.

(ii) Similarly, FIRT~">(p)<=>3!1l°Efo>r(IVar), 'v'qe(ExAxE)"·
(l'xg<J(C)), 'v'ae(IVar\X)-+V)"+ 1 [qep<=>'v'ien[n6(q(i)) l(IVar\El")=
7t~(q(i)) /(IVar\ff)] /\ (((n6(q(i)) I Er) u a(i), nf(q(i)), (n~(q(i)) IX) u
8(i)));e 11 ·(((n~(q(n)) fX)u8(n), ni(q(n))))ep].

(iii) FIR 2(p)<=>VnEcv[FIRN~">(p) /\ FIRT~"l(p)].
(6) Pt= {peP2 : IFin2(p) 11 ASFin(p) /\ OVFin(p) A DIC(p) /\

FIR2(P) }.

Remark 5. Though the condition DIC<0 >(·) might seem too com­
plicated, it is characterized in terms of a simpler condition D(·) defined as
follows: For pEP2 , (*) D(p)<=> 'v'a[3I'[(a, I') Ep] => 3R £:; sact(s, a) n C,
'v'I'[(a,I')Ep<=>I'nR=0]]. Let P' be the smallest subset of P 2 which
includes {p E P 2 : D(p)} and is closed under set-theoretical union; i.e.,
let P'={UP":P"s;;P2AUP"eP2 11Vp'eP"[D(p')]}. Then one has
P'= {peP2 : DJC<0 >(p)}. The part P'2 {peP2 : DJC< 0 l(p)} is shown as
follows (the other part is shown more straightforwardly). Let p e P 2 with
mc<0 l(p), and E'={a:3I'[(Cl,I')Ep]}. Then for each ae.E', there
exists~" such that 'v'I'[(a,I')Ep<=>3Re~"[I'nR=0]]. Fix such~"'
and for eac~RefLe.r·(~"), put p(R)={qep:lgt(q)~2}u{<a,I'):
a_el"AI'nR(a)=0}. Then, one has D(p(R)) and p=U{p(R):
REOaer·(~")}, and therefore, peP'.

FULLY ABSTRACT MODELS FOR CONCURRENCY 165

Also, as is obvious from Remark 1, the set {pEP2 : DIC(p)} is defined
as the largest subset of P 2 which is included in {pEP 2 : DJC(0 l(p)} and
closed under taking remainders, where closedness under taking remainders
for subsets of P 2 is defined as in Remark 1. It is easy to check that the
downward closedness of p E P 2 follows from that fact that DIC(p).

It turns out that the denotational meaning of each statement is a
member of Pt, which is used for establishing the full abstraction of q;2.

LEMMA 19 (1) The set Pi is closed in P 2 •

(2) VpEPi, VrE(L'xAx.E)<w [p[r]#0=p[r]EPf].
(3) The set Pi is closed under all interpreted operations of .ct'2.
(4) q;2 [.ct'2 J £ pi .
(5) V p E q;2 [.ct'2 J, V r E (.E x .E) < w [p [r J # 0 = p [r J E P t].

Proof These propositions are proved in a fashion similar to the proof
of Lemma 6. Here we prove the essential part of (3), i.e., that V p 1 , p 2 E
P 2 [DIC(pi) /\ DIC(p 1 II p2)]. Let us show by induction on nEw that the
following holds for every n E w:

Vpl' P2 E P2[DIC(n)(P1) /\ mc(n)(P2) = mc(n)(P1 TI P2H (21)

Induction Base. Let p 1,p2 EP 2 such that DIC(01(p 1) and DIC(01 (pi),
and fix CJ E .E. By the definition of DIC(01 (-), there exists fJli; £
p(sact(p;, er) n C) such that

(i=l,2).

Let &ll = { R 1 u R 2 : R 1 E fJli1 /\ R 2 E fJlt2 /\ R 1 n R 2 = 0 }. Then one has, by the
definitions of TI and#, that VI'[<CJ,I')Ep 1 TIP2~3REfJli[I'nR=0]],
which implies that DIC(01 (p 1 TI P2l·

Induction Step. For every k E w, it is immediate by the definition of TI,
that (21) with n = k + 1 follows from (21) with n = k. I

4.4. Correctness of ::22 with Respect to CJ2

The correctness of g 2 w.r.t. (!)2 is established as that of ,0Z1 w.r.t. 01, by
means of an intermediate model @2 .

4.4.1. Intermediate Mode! for .ct'2 and Semantic Equivalence

First, the intermediate model @2 , which is an alternative formulation of
!:22 , is defined in terms of the transition relation ~ 2 •

166 HORITA, DE BAKKER, AND RUTTEN

DEFINITION 25 (Intermediate Model rfl2 for 2'2). We have the unique
mapping i!\: !1'2 __. P 2 satisfying the following condition (the existence and
uniqueness of such a mapping are obtained as in Definition 11): Fors E 2'2 ,

{i\[s] = LJ { (<er, a, er'))· rfl2 [s']: <er, a, er') EI x Ax .E

/\ (s, er) ~2 <er', er')} u {((er, T)): (er, I') Eix p(C)

/\ r ~ act(s, er)/\ r n sact(s, er)= 0 }.

We have the distributivity of IT in P 2 as we had that in P 1 (cf. Lemma 8).

LEMMA 20 (Distributivity of IT in P2l· Let k, I~ 1, P1' ... ,Pk•

p;, .. ., p; E Pi:

U [pJ ITU CPJJ = U [p; IT Pil
iek je[(i,J>ekx[

Proof Omitted {see Appendix 5 of [HBR90]). I
By means of the above lemma, we will establish the equivalence between

!22 and @2 as we have established Lemma 7.

LEMMA 21 (Semantic Equivalence for 2'2). (1) Let F be an operator of
21' with arity r, and let s 1 , ... , s, E 2'2 . Then one has

&'2[F(s 1 , •.• , s,)] = F....-2(@2[s i], ... , @2 [s,]).

(2) For sE2'2 , one has @2[s] =£&2[s].

Proof (1) The proof is similar to that of Lemma 7. Here we prove the
claim for the operator II. For the other operators this is proved (more
straightforwardly) in a similar fashion. Let H 2 = (2; x !£2 --> P 2), and let
F,GEH2 be defi~ed as follows: For s 1 , s2 E2'2 , F(s1's2)=&2 [s 1 lls2],

G(s 1 ,s2)=&'2[s 1]11rfl2 [s2]. Moreover, let ff~:H2 ->H 2 be defined as
follows: For fE H 2 and s1 , s2 E 2'2 ,

§ ~(f)(s 1, s2) =ff Hfl(s1, s2) u ff ~(f)(s2 , s 1) u ff ;-U)(s 1 , s2)

u § ;-(f)(s2 , s1) u ff i (f)(s 1 , s 2), where

§r(f)(s1,s2)=U {((a,a,a'))·f(s;,s2): (s 1 ,a)~ 2 (s'1,cr')}, and

.?f(.f)(s1' s2) = U {((a, r, a')) ·f(s;, s;): :le, :Iv[(s 1 , er) ~2 (s~, a)

/\ <s2,a)~ 2 (s' 2 ,a')]},

::F: (f)(s 1, s2) = { ((er, r)) : r ~ act(s 1 , a) /\ r <t act(s 1 , er) /\ sact(s 1 , er)

n sact(s2 , a)= 0 /\ r n (sact(s 1 , er) u sact(s2 , er))= 0 }.

Then, § ~ is a contraction.

FULLY ABSTRACT MODELS FOR CONCURRENCY 167

Let s 1 , s2 E2"2 . By the definition of &2 and ---t 2 , one has F(s1>s2)=
ff~(F)(s 1 , s2); i.e., F=fix(ff). Thus, for obtaining the desired result, it suf­
fices to show that G =ff~(G). By the definition of TI, one has

u
<i,j>=<l.2),(2,1>

Thus, for showing G = ff~(G), it suffices to show that(*) (i92 [s;] u_@2 [s1])=
ff H G)(s;, s) ((i, j) = < 1, 2), (2, 1)), (t) (@2[s,] e> &2 [sJ) =ff ;;(G)(s1 , s2)

((i,j)=(l,2), (2,1)), and (t)(i91 [s 1] # &Js2])=fft(G)(s1 ,s2). The
fact (*) can be shown as (*) in the proof of Lemma 7 (1); (t) is shown as
follows:

lii2[s;] e> &2[s1]

643i!l5/l-13

= U {((a, T, a'))· (lP2[s;] [(a, c! v, a) J ~ @2[s1][a, c? v, a')]):

lD2 [s;] [< o-, c ! v, a)]# 0 A @2 [sj] [< o-, c? v, a')]# 0}

(taking closure is omitted, since ASFin(0)(@2[sk]) and

OV Fin(0l(@2[sk]) (k= 1, 2) by Lemma 16(2) and (3),

and therefore, the above set U { (<a, r, a'))··· } is closed)

= U {((a, T, a'))·(U {lD2[s;]: (s;: a) ~2 (s;, a)}

TIU {0Jsj]: (si, a) ~2 (sj, a')}}

:is;[(s;, o-) ~2 (s;, o-)] A :is; [(s1, a) ~2 (s;, a')]}

=U {c<a,r,a'))·(U {G2[s;] ~ iB2[sj]:

(s;, a) ~2 (s;, a)/\ (si, a) ~2 (sj, a')}):

A :ls)[(s1, o-) ~2 (sj, a') J}
=ff!;(G)(s;, sJ

(by Lemma 20)

168 HORITA, DE BAKKER, AND RUTTEN

For showing (H it suffices, by the definition of =IF, to show the following
for every (er, I') eEx g;J(C):

3(er, I'1 > e lD2 [s1], 3(er, I'2) E iD2[s2] [(C\I'i)

n (C\I'2) = 0 /\I'£ I'1 n I'2]

<=> r ~ act(s1, er)/\ 't' ~ act(s2, er)/\ sact(s1, er) n sact(s2, er)= 0

/\ r n (sact(s1, er) u sact(s2, er))= 0. (22)

The <=-part of (22) is obtained by putting I'1 = C\sact(s1, a),
I'2 = C\sact(s2, a). Let us show the ==>-part. Suppose the left-hand side of
(22) holds, and fix such I'1, I'2. By the definition of@2 , (**) r~act(s 1 , a).
Moreover, I'1nsact(s1,u)=0, and therefore, (tt) sact(s1,a)r;;.C\I'1.
Similarly (:U) r ~ act(s2 , er), and sact(s2, er)£ C\I'2 , i.e., (***) sact(s2, a)£
C\I'2 • By the left-hand side of (22), (tt), and (**), one has (tttl
sact(s1,a)nsact(s2 ,u)r;;.C\I'1nC\I'2 =0. By the left-hand side of (22),
I'£I'1 r;;.C\sact(s1, er}, and therefore, (ttt) I'n sact(s 1 , u) = 0. Similarly
(****) r n sact(s2 , er)= 0. By (**), (H), (ttt), (HH (****), one has the
right-hand side of (22). Thus one has (22).

(2) Similar to the proof of the part (2) of Lemma 7. I

4.4.2. Correctness of ~2 with Respect to @2

As a preliminary to the proof of the correctness, an abstraction functior

ix 2 :P2 -+(l'-+t.Jnc((AxE).,."')) is defined as follows. Like ix 1, this functior
is formulated in two ways, first as the fixed point of a higher-order map·
ping, and second as the set of histories.

DEFINITION 26 (Abstraction Function ix 2 for ..%). We have the unique
mapping ix 2 :P~-+(E-+pnc((AxE).,."')) satisfying the following (the
existence and uniqueness of such a mapping are obtained as in Definiti01
12): For every pePf, ereE,

et2(p)(er) = U { ((a, er')) ·et2(p[(u, a, er')])(er'):

3q e Q2 [((er, a, er')) · q E p]}

uif(3I'ep(C)[((er,I'))ep], {e},0).

The abstraction function is characterized in another way. First, we neec
some preliminary definitions.

FULLY ABSTRACT MODELS FOR CONCURRENCY 169

DEFINITION 27 (Histories of Elements of Q2). Let q E Q2 u (L' x Ax L') <w.

(1) The sequence q is executable, written Exec2(q), iff

3v E w u { w }, 3((O' i' ai, u;) Lev [q = ((a1, ai, u;))1e v

/\ 'v'iEv[i+1Ev~a;=a1 + 1 JJ

V 3k E W, 3((ai, a;, a;))iek> 3(uk> I') [q = ((a1, ai, a;))iek

Let E2={qEQ2u(L'xAxL')< 00 :Exec2{q)}. For aEL', let E2(a)=
{ q E E 2 \ { e} : istate2 (q) =a}.

(2) Let q be executable. The history of q, denoted by hist2(q), is
defined by

if q=((a;, a;, u;));ev•

if q= ((u;, a;, a;) Lek· ((ak, I')).

The next lemma is shown in a fashion similar to Lemma 9.

LEMMA 22 (Another Formulation of the Abstraction Function cx 2). (1)
For p E Pt, a EL', one has cx 2(p)(a) = {hist2(q) : q E p n E 2(u) }.

(2) 'rfk~ l, 'v'p 1 ,. • .,PkEPt, 'v'a[a2(U1e/C [p;])(u)= U1e/C [cx2(PJ(a)]].

By means of this lemma, we have the correctness of Pfi2•

LEMMA 23 (Correctness of Pfi2). (1) cx2 ° ?92 = (!)2·

(2) CX2°.@2=(!)2·

Proof (1) By showing that cx 2 o @2 is the fixed point of 'l'~ defined in
Definition 20.

(2) Immediate from (1) and Lemma 21(2). I

4.5. Full Abstraction of ~2 with Respect to @2

As for 2'1 , we present the following lemma to establish the full abstrac­
tion of .@2 ;

LEMMA 24 (Uniform Distinction Lemma for .292). Let .9l E (Pr(IVar)\
{0}).

170 HORITA, DE BAKKER, AND RUTTEN

(1) For every re(E.¥xAx.E.¥)<"',

'v'p1,P2EPHP1[r] #0 AP2[r] =0

=>'v'ae.E.¥, 3Te.2';[a2(P1 TI .@2[T])(a)\a2(P2 TI .@2[T])(O'):i=0]].

(23)

Vp1,p2ePt[qep1\P2

=>'v'ae.E.¥, 3Te£;[a2(p1 TI .@2[T])(a)\a2(P2 TI .@2[T])(<J):i=0]J.

(24)

The proof of this lemma is given later. First, note that the full abstrac­
tion of .@2 follows immediately from Lemma 24, in the same way as
Theorem 1 follows from Lemma 12.

THEOREM 2 (Full Abstraction of .@2). Let V be infinite. Then, for every
s1,s2e.2';, one has

We present the following lemma as a preliminary to the proof of Lemma
24. For its proof we assume that V is infinite.

LEMMA 25 (Testing Lemma for 9'2). Let &te(tJr(IVar)\{0}), pePf,
(a',a,a")e(.E.¥xAx.E.¥), a0 e.E.¥. Then there are two finite sequences
r1 , r 2 e (.E .i'" x Ax E.¥) <w such that the following hold:

(1) r1 ·(a', a, 0' 11
) ·r2EE2(ao).

(2) For every tester T' e 9'2 , there exists another tester Te 9'2 such
that the following hold:

(i) .@2[T] [r1 · r2] = .@2[T'],

(ii) \tq' eQ 2[r 1 ·(a', a, a") ·r2 ·q' ep TI .@2 [T] =>p[(<J', a, 0" 11)] #
0 A q' e p[(rr', a, 0'11

)] TI .@2[T']].

Proof The proof is formulated by supposing that fl£ is reduced to one
variable: fl£ = {x }, as Lemma 13. However, the lemma still holds when fr
is composed of more than one variable, as Lemma 13. For v e V, let O'(v)
be defined as in Lemma 13. The proof is given by distinguishing two cases
according to whether a 0(x) = a'(x).

FULLY ABSTRACT MODELS FOR CONCURRENCY 171

Case 1. When a 0(x)=a'(x), we can easily construct two sequences r 1 ,

r2 satisfying (1), (2) of Lemma 25 as follows: r 1 = e and r 2 =(CJ", r, a(v 1)),

where v1 is chosen such that

(i) V 1 =!= a"(x), (ii) V1 ~ {veV: (CJ', a, Cl")· (Cl", r, a(v)) Ep[2J}.

(25)

Note that the right-hand side of (25)(ii) is finite by Definition 24, and
therefore, there is v1 satisfying (25). It is shown that (1) and (2) of Lemma
25 hold in a similar fashion to the corresponding part in the proof of
Lemma 13.

Case 2. When CJ 0 (x)=/=CJ'(x), we can construct two sequences r 1 , r2 ,

satisfying (1) and (2) of Lemma 25 as follows: r 1 =<CJ0 ,r,CJ'), r2 =
<a", r, a(vi)), where v1 is chosen such that

(ii) v1 =!= a'(x), (26) {

(i) v 1 ~{vEV: (CJ0 ,r,CJ 11)·(CJ1,a,rJ11)·«r",r,cr(v))Ep[3J},

(iii) v1 =!= a"(x),

(iv) v1 ~ {veV: <rJ', a, rJ 11) ·<CJ", r, cr(v))Ep[2J}.

Note that the right-hand sides of (26)(i) and (iv) are finite by Definition
24, and therefore, there is v1 satisfying (26). In this case also, it is
shown that (1) and (2) of Lemma 25 hold in a similar fashion to the
corresponding part in the proof of Lemma 13. I

The following proposition follows immediately from Lemma 25 as
Corollary 1 followed from Lemma 13; this corollary is to play a central
role in the proof of Lemma 24.

COROLLARY 2. Let g[E(,f.Jr(IVar)\{0}), pEPf, (a',a,rJ")e(I:Y'x
AxI:J"), and CJ0Eix. Then, there are p1,p2 E(AxL':Y')<w such that for
every T' E 2 2 there exists TE 2; such that, putting CJ 1 = last(p 1 ·a"· Pz), the
following hold:

(I) For every p' E Pi', one has

Vp' E (Ax I).;w [p'[<a', a, a")]=!= 0

/\ p'ea2(p'[<CJ', a,a")] TI S&2[T'])(ai)

= p 1 ·a"· P2 · p' E ctz(p' TI S&2[T])(rJolJ. (27)

172 HORITA, DE BAKKER, AND RUTTEN

(2) For p' = p, one has the converse of (28). That is,

Vp'E(AxE).,'° [p 1 ·er" ·P2 ·p'Ea2(P TI !02[T])(ao)

=> p[(<T', a, a")] i= 0 /\ p' E a2(p[<er', a, er")] TI £02 [T'])(a i)]. (28)

Proof of Lemma 24. Let El"E(t.Jr(IVar)\{0}).

Part (1). The first part is proved by means of Corollary 2, as Lemma

12(1) was proved by means of Corollary 1, by induction on the length of

rE(L'xxAxEgr)<'°.

Part (2). We will prove that (24) holds for every q E (.Ex x Ax .E:!E) <w ·

(.Ex x p (C)), by induction on the length of q. The proof is similar to the

proof of the corresponding part of Lemma 12 except for the induction base,

which is established by means of the method of [BK088] with some adap­

tation to the present setting; the induction step can be established using the

testing method (Corollary 2).

Induction Base. Let lgt(q)=l and q=(<a',I'')). Suppose qEp 1 and

qt/=p 2 , and let <TEE.'<. We will construct a tester T such that ((r, cr'))E

a2 (P1 TI £02[1l)(cr)\a 2(p2 TI £02 [T])(er). Since P2 satisfies the disjointness

inaction condition, there exists ~2 such that (*) ~2 s;: gJ (sact(p 2 , a) n C)

and (t) V I'E p(C)[((er', I')) EP2 <=> :JR E ~2 [I' n R = 0]]. Fix such an

~2 , and let (t) I'"=sact(p2 , cr)nI". By (t) and the fact that qt/=p2 , one

has VR'E~2[I"nR'i=0]. The set sact(p 2 ,cr) is finite since ASFin(P2),

which implies that I'" is finite. Let I'"= { y 1, ... , y n }. Since fll: is finite and

nonempty, we can put Er= { x 1, ... , x,} as in the proof of Lemma 12. Let us

set T=:(x 1 :=er'(x1)); ... ; (x,:=a'(x,)); T', and T'=O+<ft(f;")+ ··· +

~(Yn), where ~(y) = (c! v); 0 if y = c! with v E V arbitrary, and <ft(y) = (c? x);

0 if y = c? with x E IVar arbitrary. With this tester T, we will show that

((r,er'1), ... , (r,er~))Ea2(P 1 TI £02[T])(cr)\a2(p 2 TI £02[T])(a), where a;=
cr[(cr'(xi), ... , cr'(x;))/(x1, ... , x;)] (i Er+ 1).

First, let us show that (< r, <T;), ... , (r, er~)) E a2(p 2 TI £02 [T])(cr). Under

the assumption that q E p 1 , one has (**) (< cr', I")) E p 1. Moreover, by the
definition of T', one has that (tt) ((cr', C\I'"))E£02[T']. Moreover,

(C\I") n (C\(C\I'")) = (C\I") n I'"

= (C\I") n sact(p2 , cr) n I" (by (t)) = 0.

By this (**), (tt), and the definitions of TI and *, one has that

((<T~,r,cr;), ... ,(a~-1,r,<T~),(er',0))Ep 1 TI!02 [T], i.e., (HJ: (<r,O"'i),
... , (r, er~))Ea2(P 1 II !02[T])(cr).

Nex.! let us show, by contradiction, that ((r,a'i), ... ,(r,er~))t/=
a2(P2 II !02[T])(~). Assume, to the contrary, that (***) (< r, er'1), ... ,
(r, er~))Ea2(P2 II !02[T])(cr). Then, by the definition of a 2 , one has that

FULLY ABSTRACT MODELS FOR CONCURRENCY 173

((~~, r, a~), .. ., <a~ -1' r, a~), (a', 0)) Ep2 TI 9 2 [T]. Hence, ((u', 0)) E

P2 II ~z[T][(<_a~, r, aj),. . ., <u~_ 1 , r, er~))] =p2 TI 9 2 [T']. By this and the

definitions of II and#, there exist I'1, I'2 Ep(C) such that

(i) (<er', I'1)) E f2,

(ii) (<er',I'2))E92[T'],

(iii) (C\I'i) n (C\I'2) = 0.

(29)

Moreover, there exists R' E !Jll2 such that I'1 n R' = 0. Fix such R'. Then

(tttl C\I'1~R'. By the fact that ((er',I"))~p2 , one has that (Ut)
I" n R' #- 0. By (29)(ii), one has that I'2 n I'"= 0, i.e., C\I'2 2 I'", and
therefore (****) C\I'2 2 I'". Thus

(C\I'i) n C\I'2 2 R' n I'" (by (ttt) and (****))

=R'n(sact(p2 ,er)nI") (by(t))

= R' n I" (since R' s; sact(p2 , er) by (*)) #- 0 (by CHtl J.

This contradicts (29)(iii). Hence (***) is false, and therefore, one has that
((r, er~),. . ., < r, a~))~ rx 2(p 2 TI 9 2 [T])(er). By this and (tt), one has that
(<r, er~), .. ., <r, er~)) Erx 2(p 1 TI 9 2[T])(er)\rx2(p 2 TI 9 2 [T])(a).

Induction Step. By means of Corollary 2, the induction step is
established, in a similar fashion to the induction step of the proof of
Lemma 12(1).

4.6. Comparison of 9 2 and Roscoe's Model for Occam

Roscoe, in [Ros84], constructed a denotational model for a large subset
of occam. The language in [Ros84] is similar to Sf2 in many respects.
However there are several differences between the two: One major dif­
ference is that, unlike individual variables in 2;, variables in occam (except
read-only ones) are not shared by two or more parallel processes, and
therefore, intermediate states of one process cannot directly affect another
process. Thus, in [Ros84], a denotational model Cef! can be constructed (for
the language) without taking account of intermediate states: The model <€
is constructed as a hybrid of the failures model for CSP (proposed in
[BHR84] and improved in [BR84]), and the conventional model for
sequential languages which defines the meaning of a program as a relation
between initial and final states. We expect that a model for Sf2 can be con­
structed along the lines of Cef!, and will be more abstract than 9 2 in nature.
However, it will not be compositional w.r.t. II, since processes of Sf2 have
shared variables.

174 HORITA, DE BAKKER, AND RUTTEN

5. CONCLUDING REMARKS

We conclude this paper with some remarks about possible extensions of
the reported results and related works. There are two directions for such
extensions. One is to investigate fully abstract models for other languages,
e.g., a nonuniform concurrent language with process creation and (a form
of) local variables as the language 2 3 in [BR91]. The other is to investigate
fully abstract denotational models for the same language 2 1 (or 2 2) w.r. t.
other operational models, which might be more abstract than the one
treated in this paper.

For instance, it might be possible to construct a fully abstract denota­
tional model for an operational model @' for l.fi which is defined by
slightly modifying @ in Sectin 3.6.3 as follows: For every statement s and
state a, @'[s](a)={a'::Js'[(s,a)(--*i)* (s',a') A 1:J(s11,a")[(s',a')
--*i (s", a")JJ} vif(3((sn, an)lnew [(s0 , ao)= (s, a) A lfnEm[(sn, an)
--* 1 (sn+t•Cin+i)J], {J_},0). It was shown in [AP86] that there is no
fully abstract denotational model w.r.t. !!$' if the language has countable
nondeterminism. However, it is still to be investigated whether there is a
fully abstract denotational model w.r.t. !!$', since the language 2 1 does not
have counable nondeterminism. It seems that ~1 is not fully abstract w.r.t.
!!$'; at least, we cannot establish the full abstraction w.r.t. !!$' as we have
done w.r.t. IP1, since there are s 1, s2 E21 such that ~1 [s 1]#~1 [s 2], but
VTE 2 1[86''[s1 II T] = f4'[s 2 II T]]. This is easily verified by putting s1 = 0
and s2 =(x :=x); 0.

For 2 2 , a language for communicating concurrent systems, there are
several possible operational models besides IP2 , defined in Section 4. There
are several dimensions for classifying operational model for such a
language; such a classification and comparative study of these models were
presented in [Gla90]. One of those dimensions is the dichotomy of linear
time versus branching time: a model is called a linear time model, if it iden­
tifies processes differing only in the branching structure of their execution
paths; otherwise it is called a branching time model. Another dimension is
the dichotomy of weak versus strong: a model is called weak, if it identifies
processes differing only in their internal or silent actions (denoted by r in
this paper); otherwise it is called strong. Also, there are two kinds of
languages, i.e., uniform languages and nonuniform languages. By combina­
tion of these criteria, one has eight types of operational models, and for
each of them, one has the problem of constructing a fully abstract
denotational model, or of characterizing somehow the fully abstract
compositional model. The results on these problems obtained so far are
summarized in Table 1.

As described in the introduction, fully abstract model for uniform
languages w.r.t. strong operational models of the linear time variety were

FULLY ABSTRACT MODELS FOR CONCURRENCY 175

TABLE I
Results on Fully Abstract Models for Communicating Processes

Linear Time Strong Uniform [BK088]: Characterization of a fully abstract
compositional model.* 1

[Rut89]: Construction of a fully abstract
denotational model.*"

Nonuniform This paper: Construction of a fully abstract
denotational model w.r.t. an operational model
with states. *3

'?:With respect to an operational model
without states. *4

Weak Uniform [Hor91]: Characterization of fully abstract
models for a CCS-like language.* 5

Non uniform 0•6

Branching Time Strong Uniform [Mil80, Mil85, Mil89]: Characterization of a
fully abstract compositional model for CCS. *7

[GV88]: Characterization of fully abstract
compositional models in general.* 8

[Rut90]: Construction of fully abstract
denotational models. *9

Nonuniform ?
Weak Uniform [Mil80, Mil85, Mil89]: Characterization of a

fully abstract compositional model. · JO

Non uniform ?

investigated in [BK088] and [Rut89] (cf .. *l, •2 in Table 1). The opera­
tional model (()2 for a nonuniform language introduced in Section 4 is a
strong model of the linear time variety. Also, it involves information about
states. A fully abstract denotational model w.r.t. this is presented in this
paper (cf. •3 in Table 1).

We can define a more abstract operational model (!)i for 2 2 by ignoring
states as follows: For every statement s and state a, @{[s](a) =

U { (a) · ((; i[s'] (a') : < s, a) ~ 2 < s', a">} u if(r rt act(s, a), { c;}, 0). It is to
be investigated whether [i;2 is fully abstract w.r.t. @i (cf *4 in Table 1). It
seems more difficult to construct fully abstract denotational models w.r.t.
weak operational models. A weak operational model @i* for 5!'2 is defined
by means of (!}j as follows: For every statements and state a, 0f*[s](a) =

{p\r :pE(!ii[s](a)}, where p\r is the result of ignoring r's in pE
(Cu { r}) «w. In [Hor91], fully abstract models for CCS-like languages
were constructed w.r.t. weak linear semantics with divergence, in the
uniform setting (cf. *5 in Table 1); it remains for future research to con­
struct such models in the nonuniform setting (cf. *6 in Table l). A related
discussion is found in the last section of [BK088].

176 HORITA, DE BAKKER, AND RUTTEN

In [Mil80, Mil85, Mil89], Milner showed that a strong operational
model for CCS of the branching time variety is compositional (cf. * 7 in
Table 1). Moreover, it was shown in [GV88] that branching time and
strong operational models are in general compositional under certain
conditions (cf. *8 in Table 1). Denotational models equivalent to those
operational models were presented in [Rut90]; the denotational models
are fully abstract w.r.t. the operational models by definition (cf. *9 in
Table 1).

In [Mil80], [Mil85], and [Mil89], Milner characterized a fully
abstract compositional model for CCS w.r.t. observation equivalence ~
(cf. * 10 in Table 1). This relation ~ is a weak operational equivalence
relation of the branching time variety. Milner characterized observation
congruence ~c. which is the coarsest congruence relation included in ~,
as follows: For every two statements s 1 and s 2 , s1 ~c s2 iff
\laEAct[;\<;,J>=<l. 2 >.o.i> [\ls'[s;--".-.s' = :ls"[s1 (~)*--".-. (~)*s" /\
s' ~ s"]]]], where Act is the set of all actions including r (cf. [Mil89,
Definition 7.2]). While this model is not denotational in the sense
explained in the introduction, it seems worthwhile to investigate whether
such a characterization is possible in the linear time setting.

The full abstraction problem can be treated in another framework, i.e.,
in the setting of complete partial ordered sets or complete lattices. For a
treatment of the full abstraction problem for a concurrent language in this
setting see [HP79]. In [Hen88], which is based on [DH83, Hen83, Hen
85], Henessy showed in detail the full abstraction of a denotational model
consisting of acceptance trees equipped with a complete partial order, w.r. t.
testing equivalence.

For a survey of the full abstraction problem for sequential languages, see
[BCL85]. In [St86], the general question concerning the existence of fully
abstract models was treated in an algebraic context.

ACKNOWLEDGMENTS

We thank the Amsterdam Concurrency Group, including Frank de Boer, Arie de Bruin,
Jean-Marie Jacquet, Peter Knijnenberg, Joost Kok, Erik de Vink, and Jeroen Warmerdam for
helpful discussions.

RECE!VED August 6, 1990; FINAL MANUSCRIPT RECEIVED July 15, 1992

[AP86]

REFERENCES

APT, K., AND PLOTKIN, G. (1986), Countable nondeterminism and random
assignment, J. Assoc. Comput. Mach. 33, 724-767.

[ABKR89]

[AR89]

[Bak91]

[BM88]

[BR91]

[BZ82]

[BK088]

[BCL85]

[BHR84]

[BR84]

[DH83]

[Dug66]
[Eng77]
[Gla90]

[GV88]

[Hen83]

[Hen85]
[Hen88]

[HP79]

[Hor91]

FULLY ABSTRACT MODELS FOR CONCURRENCY 177

AMERICA, P., DE BAKKER, J. W., KOK, J. N., AND RUTTEN, J. J.M. M. (1989),

Denotational semantics of a parallel object-oriented language, Inform. and
Comput. 83, 152-205.

AMERICA, P., AND RUTTEN, J. J.M. M. (1989), Solving reflexive domain in a
category of complete metric spaces, J. Comput. System Sci. 39. 343-375.

DE BAKKER, J. W. (1991), Comparative semantics for flow of control in logic
programming without logic, Inform. and Comput. 94, 123-179.

DE BAKKER, J. W., AND MEYER, J.-J. CH. (1988). Metric semantics for
concurrency, BIT 28, 504-529.

DE BAKKER, J. W., AND RUTTEN, J. J. M. M. (1991), Concurrency semantics

based on metric domain equations, in "Topology and Category Theory in

Computer Science" (G. M. Reed, A. W. Roscoe, R. F. Wachter, Eds.).
pp. 113-151, Oxford Univ. Press, London.

DE BAKKER, J. W., AND ZUCKER, J. I. (1982). Processes and the denotational
semantics of concurrency, Inform. and Control 54, 70-120.

BERGSTRA, J. A., KLOP, J. W., AND 0LDEROG, E.-R. (1988), Readies and failures
in the algebra of communicating processes, SIAM J. Comput. 17, No. 6,
1134-1177.

BERRY, G., CURIEN, P. L., AND LEVY, J. (1985), Full abstraction for sequential
languages: The state of the art, in "Algebraic Methods in Semantics" (M. Nivat

and J. C. Reynolds, Eds.). pp. 90-132, Cambridge Univ. Press, London/
New York.
BROOKES, S. D., HOARE, C. A. R., AND ROSCOE, A. W. (1984), A theory of

communicating sequential processes, J. Assoc. Comput. Mach. 31, 560-599.

BROOKES, S. D., AND ROSCOE, A. w. (1984), An improved failures model for

communicating processes, in "Lecture Notes in Computer Science," Vol. 197,

pp. 281-305, Springer-Verlag, Berlin/New York.
DE NICOLA, R., AND HENNESSY M. (1983), Testing equivalence and processes,
Theoret. Comput. Sci. 34, 83-133.
DUGUNDJI, J. (1966), "Topology," Allyn & Bacon, Boston.
ENGELKING, R. (1977). "General Topology," Polish Scientific Publishers.

VAN GLABBEEK, R. J. (1990), '"Comparative Concurrency Semantics and Refine­

ment of Actions," Ph.D. Thesis, Free University of Amsterdam.
GROOTE, J. F., AND VAANDRAGER, F. (1988), "Structured Operational Semantics

and Bisimulation as a Congruence," Technical Report CS-R8845, Centre for

Mathematics and Computer Science, Amsterdam, to appear in Inform. and

Comput.; extended abstract in "Proceedings 16th ICALP, Stresa," pp. 423-438,

Lecture Notes in Computer Science, Vol. 372, Springer-Verlag, Berlin/

New York.
HENNESSY, M. (1983), Synchronous and asynchronous experiments on processes,

Inform. and Control 59, 36-83.
HENNESSY, M. (1985), Acceptance trees, f. Assoc. Comput. Mach. 32, 896--928.

HENNESSY, M. (1988), "Algebraic Theory of Processes," MIT Press, Cambridge,

MA.
HENNESSY, M., AND PLOTKIN, G. D. (1979), Full abstraction for a simple parallel
programming language, in "Proceedings, 8th MFCS" (J. Becvar, Ed.).

pp. 108-120, Lecture Notes in Computer Science. Vol. 74, Springer-Verlag,

Berlin/New York.
HORITA, E. (1991), Fully abstract models for communicating processes with
respect to weak linear semantics with divergence, JEICE Trans. Inform. Systems

E75-D, No. 1, 64-77.

178

[HBR90]

[KR90]

[Mil73]

[Mil77]

[Mil80]

[Mi185]

[Mil89]

[Mu85]

[Niv79]

[Plo81]

[Ros84]

[Rut89]

[Rut90]

[St86]

HORITA, DE BAKKER, AND RUTTEN

HORITA, E., DE BAKKER, J. w., AND RUTTEN, J. J. M. M. (1990), "Fully Abstract
Denotational Models for Nonuniform Concurrent Languages," CWI Report
CS-R9027, Amsterdam.
KOK, J. N., AND RUTTEN, J. J. M. M. (1990), Contraction in comparing
concurrency semantics, in Theoret. Comput. Sci. 76, 179-222.
MILNER, R. (1973), Processes: A mathematical model of computing agents, in
"Proceedings of Logic Colloquium 73" (H. E. Rose and J. C. Shepherdson, Eds.),
pp. 157-173, North-Holland, Amsterdam.
MILNER, R. (1977), Fully abstract models of typed lambda-calculi, Theoret.

Comput. Sci. 4, 1-22.
MILNER, R. (1980), "A Calculus of Communicating Systems," Lecture Notes in
Computer Science, Vol. 92, Springer-Verlag, Berlin/New York.
MILNER, R. (1985), Lectures on a calculus for communicating systems, in "Semi­
nar on Concurrency" (S. D. Brookes, A. W. Roscoe, and G. Winskel, Eds.),
pp. 197-220, Lecture Notes in Computer Science, Vol. 197, Springer-Verlag,
Berlin/New York.
MILNER, R. (1989), "Communication and Concurrency," Prentice-Hall Inter­
national, Englewood Cliffs, NJ.
MULMULEY, K., (1985), "Full Abstraction and Semantic Equivalence," Ph.D.
Thesis, Report CMU-CS-85-148, Computer Science Department, Carnegie
Mellon University, Pittsburgh.
NIVAT, M. (1979), Infinite words, infinite trees, infinite computations, in "Foun­
dations of Computer Science III, Part 2" (J. W. de Bakker and J. van Leeuwen,
Eds.), Mathematical Centre Transactions, Vol. 109, Centre for Mathematics and
Computer Science.
PLOTKIN, G. D. (1981), "A structured Approach to Operational Semantics,"
Report DAIMI FN-19, Computer Science Department, Aarhus University.
RoscoE, A. W., (1984), Denotational semantics for Occam, in "Seminar on
Concurrency" (S. D. Brookes, A. W. Roscoe, and G. Winskel, Eds.), pp. 306-329,
Lecture Notes in Computer Science, Vol. 197, Springer-Verlag, Berlin/New York.
RUTTEN, J. J. M. M. (1989), Correctness and full abstraction of metric semantics
for concurrency, in "Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency" (J. W. de Bakker, W. P. de Roever, G. Rozenberg,
Eds.), pp. 628-658, Lecture Notes in Computer Science, Vol. 354, Springer­
Verlag, Berlin/New York.
RUTTEN J. J. M. M. (1990), Deriving denotational models for bisimulation from
structured operational semantics, in "Programming Concepts and Methods,
Proceedings of the IFIP Working Group 2.2/2.3 Working Conference" (M. Broy
and C. B. Jones, Eds.), pp. 148-170, North-Holland, Amsterdam.
STOUGHTON, A. (1986), Fully Abstract Models of Programming Languages,"
Ph.D. Thesis, Report CST-40-86, Department of Computer Science, University of
Edinburgh.

Printed in Belgium
Uitgever: Academic Press, Inc.
Verantwourdelijke uitgever voor Belgit:
Hubert Vun Mae/e
Altt'nastrat.J.I 20. B-8310 Sint-Kruis

