
Nonwellfounded Sets

and

Programming Language Semantics

J.J.M.M. Rutten

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

ABSTRACT: For a large class of transition systems that are defined by specifications In the
SOS style, it is shown how these induce a compositional semantics. The main difference
with earlier work on this subject is the use of a nonstandard set theory that is based on
Aczel's anti-foundation-axiom. Solving recursive domain equations in this theory leads to
solutions that contain nonwelllounded elements. These are particularly useful for justifying
recursive definitions, both of semantic operators and semantic models. The use of
nonwellfounded sets further allows for the construction of compositional models for a
larger class of transition systems than in the setting of complete metric spaces, which was
used before.

7980 Mathematics Subject Classification: 68810, 68C01.
1986 Computing Reviews Categories: 0.3.1, F.3.2, F.3.3.
Key words and phrases: Structured operational semantics, labelled transition system, tran­
sition system specification, bisimulation, interpretation, compositionality, nonwellfounded
sets, anti-foundation-axiom.
Note: This work was partially carried out in the context of ESPRIT Basic Research Action
3020 (Integration).

CONTENTS

I. Introduction

2. N onwcllfounded sets

3. Models for bisimulation
4. Transition system specifications and compositionality

5. A simple language with unguarded recursion

6. Another example: 'atomized' statements

7. Discussion

8. References

194

I. INTRODUCilON

As a starting point for the semantics of programming languages we take the notion of labelled tran.sitio11 system

(LTS) in the SOS style of Plotkin ([PlSID. A LTS is a triple <S, .A,-+> of a set S of states, a set A of transition

labels, and a transition relation-+ c;;s XA XS. Every L 1'S induces a (strong) bisimu/ation equivalence on: the set of

states. (See [Pa8 l].) In this paper, it is shown how to derive from certain transition system specifications, used for

defining L TS's, a denotational semantics that characterizes bisimulation in the sense that it assigns the same mean­

ing to bisimilar states. The main difi'erence with our previous work on this subject ([Ru90D is the use of so-called

nonwel{founded sets as a semantic universe. This leads to two considerable improvements: first, the semantic

descriptions are more transparent (e.g., in that their well-definedness is simpler to verify); secondly, the class of

L TS's that can be supplied with a denotational semantics is in an essential way more general.

The basic idea is the definition of a semantics '!lll. that assigns to each state its unfolding under the transition

r~tion. These unfoldings are represented as elements of a class P of commutative, tree-like structures called

processes, satisfying

P::: ~(AXP)

An immediate con~uence of the definition of~ and the representation of unfoldings of states as elements of P,

is the fact that whenever two states are bisimilar, they are assigned by '!lll. to the same element in P. In other

words, for every state seS the process '!)Jt[s] can be seen as a canonical representation of the bisimulation

equivalence class of s.
As opposed to [Ru90], where the above equation was solved in a category of complete metric spaces (following

[BZ82] and [AR89]), P is here fonnally defined in a non-standard set theory. It is based on the usual set-theoretic

axioms but for the axiom of foundation, which is replaced by a strong version of its negation, the anti-fowulatio11-

axiom (AFA). Thus we work in the fascinating theory of nonwellfounded sets as presented by Aczel ([Ac88D. In

section 2, a brief summary of bis theory is given. (Foi a more extensive overview see [BE87].) Aczel formulates

AFA in a very intuitive fashion, by viewing sets as graphs and the equality of sets as their being bisimilar (in a

sense closely related to the original notion of Park). The existence of nonwellfounded sets, like the set a satisfying

a== (a}, is an immediate consequence of AFA. The semantic universe P mentioned above will contain such

nonwellfounded sets. A simple example is the process p = {<a, 0 >, <b, p > }, which represents an infinite binary

tree at every node of which there is a choice between doing a and terminating, or doing b and continuing wiU1

againp.

An advantage of solving the above equation for Pin the presence of AFA is the possibility of taking arbitrary

subsets of A XP, rather than metrically closed (or compact) ones only, which is necessary if one wants to define a

metric on P. This allows for a description of LTS's that are not necessarily finitely branching or image finite.

Moreover P is really equal to ~A XP), whereas in the metric and most other approaches, they are only iso­

morphic.

Another advantage of working in a set theory where AF A holds is constituted by the solution lemma, a direct

consequence of AFA. It states the existence of a unique solution for a large class of recursive equations. Both for

195

defining the semantic models and the semantics operators, the solution lemma is a very useful tool

After the introduction of~ (in section 3), we consider in section 4 L TS's that are defined by means of transition

system specifications (TSS). A TSS is a set of (axioms and) rules for defining transitions. These rules follow the

syntactic structure of the states s eS, which now are assumed to be terms over some (single-sorted) signature I:
S = T(I). Then the attention is focussed on TSS's of which the rules satisfy certain syntactic restrictions. The

notion of syntactic formats of TSS's was recently studied in [GY88] (see also [BIM88D. There a special format for

TSS's is introduced and it is shown that the bisimulation relation induced by such a TSS is a congruence with

respect to the operators in I. In this paper, a restricted version of this format, called SOS, is treated, which is still

sufficiently general to be of relevance for a large number of languages (see the examples in sections 5 and 6). It is

shown that every TSS in SOS format induces a SC<mantic interpretation for all operators in the signature I. These

are next used to establish the fact that ~ is compositional.

This constitutes another improvement on our previous work. There the compositionality of ~ is proved by

introducing a second model, which is defined compositionally using the semantic operators derived from the TSS,

and which next is shown to be equal to ".JR. Here the same result is obtained more directly.

The constructions above are illustrated by two small toy languages, which both are characterized by the fact that

they contain a language construct that we were not able to model satisfactorily before. The first language is CCS­

like ([Mi80D but without synchronization; this has been left out for convenience sake, though it causes no addi­

tional problems to have it included. Its interest lies in the fact that it allows unguarded recursion. Secondly, this

language is extended in two ways: the atomic actions are interpreted as transformations on some abstract set of

states; further, a unary operator atom is added. For any statement s, the behaviour of atom (s) is like an atomic

action: it yields in one step a state transformation that is obtained by composing the successive steps of s. This

construct was first introduced in [BaK.o90], where it plays a crucial role in the semantic description of Concurrent

Prolog. Here it is given a semantics that is both simpler and more abstract than in [BaK.o90].

Acknowledgements: Discussions with Rob van Glabbeek and the Amsterdam Concurrency Group have been of

help in understanding AFA and its applications.

2. NONWELLFOUNDBD SETS

We shall work in the .universe of nonwellfounded sets as presented by Peter Aczel in (Ac88]. (Note, however, that

those sets were already conceived long before; see [Ac88] for an historic account) For an overview of his theory

we refer to the excellent summary in [BE87].

At the basis of Aczel's work lies the conception of sets as (pointed) graphs. Every set A gives rise to a graph by

taking as nodes the transitive closure of A and as (directed) edges all pairs x andy withyex. Conversely, every

graph is associated with a unique set.

It is this latter observation that Aczel turns into an axiom, the so-called anti-foundation-axiom (AFA). More for­

mally it says: every graph has a unique decoration. Here a decoration for a graph is a function D that assigns to

every node of the graph a set such that for each node x

D(x) = {D(v):yisachildofx}

An immediate consequence of AFA is the existence of nonwellfounded sets: consider the one node graph with one

edge leading from this node to itself. Since this graph has, by AFA, a decoration, there exists a set a with a={a}

(which is moreover unique). The set-theoretic framework Aczel works in, is determined by the usual axioms of

Zermelo-Fraenkel (ZFC), of which the axiom of foundation is omitted (yielding ZFC-), and to which AFA is

added. The resulting collection of axioms is denoted by ZFc- I AFA. (In [Ac88], the (relative) consistency of

ZFC- I AFA is shown.)

We shall make use of two .principles that are a direct consequence of AFA: the solution lemma and the principle

of strong extensionality.

196

The solution lemma asserts the existence of a unique solution for a class of systems of (recursive) equations. It is
formulated as follows. Consider a set X of variables x. (Formally these variables are called atoms or Urelemente.) A

system of equations is a collection

{x = a,:}ux

where, for every x, the set a" may contain any of the variables occurring at the lefthand side of any of the equa­

tions. (A simple example of a system of equations is {x={x}}.) A solution for such a system is a collection 7T of

sets { 7T(x)} x ex such that, for every x,

(Here we use the rather informal notation a,.[7T(x 1), ••• , 'lT(xn)l to denote the set that is obtained from a .. by substi­

tuting in a" every variable x1 by 7T(x1).) Now we can formulate the following theorem.

THEOREM 2.1 (Solution Lemma): Every system of equations has a unique solution.

In order to formulate the principle of strong extensionality, we first have to introduce the notion of £-bi.simulation.

(Actually it is plainly called bi.simulation in Aczel's book. The (prefix is used to distinguish it from the usual notion

of bisimulation, to be defined in the next section.)

DEFINITION 2.2 ((-bisimulation): A binary relation R on sets is called an £-bisimulation if it is symmetric and, for

all sets a and b with 'aRb,

'1xea3yeb [xRy)

Two sets a and b are called (-bi.similar (notation a=:b) if there exists an (-bisimulation relation R with aRb.

Now the principle of strong cxtensionality says that whenever two sets are £-bisimilar, they are equal.

THEOREM 2.3 (Strong cxtensionality): For all sets a and b,

a3 ~a=b

The principle of strong cxtensionality gives us a way of dealing with equality of nonwellfounded sets; e.g., it can

be used to prove a = b for a= (a} and b = { b}. (Note that the usual axiom of extensionality does not help here.)

Finally, we mention a theorem stating the existence of fixed-points for a class of recursive domain equations.

Again first a de!ini tion.

DEFINITION 2.4: A class operator~ assigns to each class X a class ~X. A class operator is set-continuous if, for each

class X.

~X = U (~x: x is a subset of X}

Aczel shows that r:very set-continuous class operator bas a smallest and a largest fixed-poinL In many cases, the

smallest contains all wellfounded elements that are present in the latter, which moreover may contain

nonwellfounded sets. We shall use only largest fixed-points, which are characterized in the following theorem.

197

THEOREM 2.5 (Largest fixed-point): Let~ be a set-continuous class operator. Let

J"' = U{x:xisasubsetof~.x}

Then J"' is the largest fixed-point of <1>.

Now we can solve recursive domain equations in the usual way by associating with such an equation a class

operator. The fixed-points of this operator will satisfy the domain equation.

3. MODELS FOR BISIMULATION

As a starting point for our semantic considerations, we take the notion of labelled transiti011 system (L TS) in the

style of Plotkin's structured operational semantics (SOS). For every LTS '!r a semantics '!Jl4r will be defined that

assigns to every state of '5" its tree-like unfolding under the transition rdation of ~ This semantics is charactedzed

by the fact that for every states its value under~ is a minimal canonical representative for the (strong) bisimula­

tion equivalence class of s.

First the notion of labelled transition system is introduced.

DEFINITION 3.1 (LTS): A labelled transition system is a triple '!l"=(S,A,-..) consisting of a set of states S, a set of

labels A, and a transition relation -..i;;;;s XA XS. We shall write s~s' for (s,a,s')e

DEFINITION 32 (Bisimulation): Let '!r=(S,A,~) be a LTS. A relation R i;;;;sxs is called a (strong) bisimulation if it

is symmetric and, for all s,t eS and a eA,

(sRt /\ s~s') ~ 3t'eS [t~t' /\ s'Rt']

Two states are bisimilar in '!r, notation s<at, if there exists a bisimulation relation R with sRt. (Note that bisimilar­

i ty is an equivalence relation on states.)

Next we introduce for every LTS '!i=(S,A,_,,.) a semantics '!lit,-, which maps t:Nery state seS onto its tree-like

unfolding under the transition relation ~- It has as a co-domain the set P of processes, which is defined as follows.

DEFINITION 3.3 (P): Let p be the largest class satisfying

P = ~(AXP)

(Here the set A is the set of labels of '!i.) Fonnally, P is obtained as the largest fixed-point of the class operator ~

that assigns to every class X the class '?P(A XX). It is straightforward to show that ~ is set-continuous. (Ilte

interpretation of ~(A XX) is of importance, however; it should be the class of all subsets of A XX. This distinction

between sets and classes also explains why there is no problem of cardinality.)

The following notion will be useful in many cases where equality of processes has to be established.

DBPINmoN 3.4 (Process-bisimulation): A binary relation R r;P XP is called aprocess-bisimulation if it is symmetric

and, for all processes p and q with pRq,

V<a,p'> ep 3<a,q'> eq [p'Rq']

Two processes p and q are called process-bisimilar (notation p=pq) is there exists a process-bisimulation relation R

withpRq.

198

The following theorem is a direct consequence of the principle of strong extensionality.

THEOREM 3.5: For all p, q EP

PROOF: We show, for all p, qEP,

p=:pq ~p=q

From this and the principle of strong extensionality the theorem follows. Let p=:.pq. Then there exists a process­

bisimulation R with pRq. We define

with

S2 ={({a}, {a}): a EA}

S3 = ((a,a):aEA}

S 4 = {({a,p}, {a,q}): pRq}

Ss = {(<a,p>. <a,q>): pRq}

It is not very difficult to show that Sis an (-bisimulation. (Note that <x,y> is shorthand for {{x}, (x,y)).)

Thus p=:q. (End of proof.)

For every L TS 5" a model ~:S-+P is defined as follows.

DEFINITION 3.6 (~):Let 5"=(S,A,-+) be a LTS. We define a model ~:s p by

~]4[s] = {<a,~[s')>: s~s')

We can justify this recursive definition by an application of the Solution Lemma: consider the system of equa­

tions

(x, = {<a,x,.>: s~s'}},.s

assuming the presence of a set of variables (x, }ses· Let.,, be a unique solution for this system. Then we can define

The fact that 7r(x,) is in P is a direct consequence of the fact that P is the largest class satisfying the equation used

for its definition.

This model is of interest because it assigns the same meaning to states that are bisimilar. This we prove next.

(See also [GR89]; in [Ab87] a similar result is given that additionally takes into account divergence, which we do

not consider here.)

THEOREM 3.7: Let ttc;SXS denote the bisimilarity relation induced by the labelled transition system '3"==(S,A,-+).
Then

199

'ts,teS [stit ~'!>IL;-[s] = '!l!L;-[t]]

PROOF: Let s,t eS.

<==:

Suppose '!l!L;-[s]='!llt.1[t]. We define a relation =~sxs by

From the definition of '!l1L;- it is straightforward that = is a bisimulation relation on S.

-=
Considers and t with stit. According to Theorem 3.5, it is sufficient to show that '!>ILJ[s] and '!l!L;-[t) are process­

bisimilar. Let

R = {('!l!L;-[u], '!l!L;-[v]): utiv}

It is not difficult to show that R is a process-bisimulation. (End of proof.)

4. TRANSITION SYSTEM SPECIFICATIONS AND COMPOSITIONALITY

In this section, we shall consider L TS's of a special format, namely, in which the set of states consists of the set

of closed terms generated by a single sorted signature. The notion of transitio11 system specification (TSS) will be

introduced: a TSS is a set of axioms and rules for defining transitions; every TSS induces a L TS. Then it will be

shown that every TSS '!i\, that has a special format induces semantic interpretations for- all syntactic operators in the

signature !.. Finally, these semantic operators will be used to prove that '!l1L;- is compositional, where ~ is the L TI;>

induced by the TSS 'ii\,

A signature !.= (F,r) consists of a set f eF of fwiction names and a rank function r: F~N indicating for each

function symbol its arity. Function symbols of arity 0 we call constants. Sometimes /e!. is written for /eF.

Further we introduce a set of variables x,y e Var. The set of terms s,t,ueT(!., Var) built from!. and Var is defined

as usual; using the so-called BNF syntax, it can be given by

Terms containing no variables arc called closed. The set of closed terms is denoted by T(!.). Let X1> ... ,xk E Var

be distinct variables. For a term t we write t(.t,. ..• ,x.J or tx to indicate that the set of variables occurring in t is

contained in the set {x 1, ••• , xk}. Whenever it is clear from the context what the free variables occurring in t arc,

these subscripts arc omitted.

We have the usual syntactic substitution: We write 'ex,. x,)(ui. . .. , uk), or lx(u) for the term obtained by

replacing every occurrence of x1 in t by u1, for J ..;;.; ..;;.k.

DEFINITION 4.1 (Interpretations): We define the set (/e) JntPr of interpretations for '2.=(F,r) as the collection of

all functions

with I(/)eP'if>~p for every /eF. (Read P foe po~P.) An interpretation I induces for every term'"''" ,) in

T(!., Var) a function t~: pk-p that is inductively given by

(I) (x1)i(p 1> • • • ·Pk) ::::: P;

(2) I (tit . ..• t,(fi)~(p h ..• •Pk) =

l(f)((t1)~(p1> ... ·Pk), ... ,(1,([))i(pi. · · · ,pk))

200

(J{e also write f1 for l(f).)

Below we shall see how L TS's of a certain type induce an interpretation for I.

Any LTS that has the set T(I) as slates can be specified with the help of rules (and axioms).

DEFINITION 4.2 (TSS): A transition system specification (TSS) '!R, for I is a (possibly infinite) set of rules R of the

form

{t;~t/: l..;;jE;;n}

t~t'

where n;;.O, t;, t/, t, t'eT~,Var), and a" aeA. The elements {11.~t;': J,.;;;i.,.n} are called the premises and

t4t' is called the conclusion of this rule. If n =O then a rule is called an axiom.

DEFINITION 4.3 (Transitions): An expression of the form t~t', with t,t'eT(I), is called a transitioTL Let '!R, be a

TSS. A proof tree PT for a transition i[I from 'ill, is defined in the usual way: it is a finite tree with root o/ such that

the transition labelling a father node follows from the transitions labelling its sons by an application of (an instan­

tiation of) a rule R e'!il Notation: '!R, f-pri/J. We write ~ f-o/ to express that there exists a proof tree PT with

'!R, f-nl/i· A transition may have many proof trees.

Every TSS leads naturally lo the definition of a L TS.

DEFINITION 4.4 (Induced~: Every TSS ~for I induces a LTS '!J"=(T(I), A,->) by taking ->!:;;T(!)XA XT(I)

as

t ~ t' <=9 <!R,f--14 t'

We fix for the remainder of this section a signature I,..,, given by

I,.., = I U RecVar

Here I is arbitrary and (X e) Ree V ar is a set of recursion variables (which are constants in the signature I,""). The

interpretation of recursion variables will be dependent on so-called declarations. The set of declarations is given by

(de) Deel = RecVar->T~m:)

In the remainder of this section, deDecl is a fixed declaration for the recursion variables in I""' = I U RecVar.

Next we consider TSS's for the signature I,..., with a special format, the so-called SOS format. Then it is shown

how a TSS in SOS format induces an interpretation for Inc·

DEFINITION 4.5 (SOS format): A TSS 'iR, = ~ U ~ for I,,. is in SOS format if~'" is a TSS for RecVar given

by, for every XeRecVar,

and if ~ is a TSS for I, of which all rules are of the form

{u1~v;: l.,.i.;;n}

201

with

f,geI,

n~o.

a;, a eA, (A is the set of labels)

X;, V; E Var, all distinct,

As mentioned in the introduction, this format specializes the more general format introduced in [GVS8J. For

some more discussion and a comparison with other formats (like GSOS in [BIM88]), see se9tion 7.

Every TSS in SOS format gives rise to an interpretation for all operators in ~ (\; ~,..,).

DEFINITION 4.6 (/(<;!,)): Let '!JI, be a TSS for~"" (== IURecVar) in SOS format. An interpretation /('!JI,) for I is

defined as follows. Let/e~ and pi. ... •Pr(fleP. Let p==pi. •.. •Pr(fl and q=qi. ... ,q.. Then

j1CWi(p) =
{<a, g1<!!.>(y{C!!.l(p,q), ...• y~W(p,q))>: 3R e<;L'Vi e{I, ... ,n} [<a1, q;>euf<Wi(p,q)]}

where

satisfies the conditions of Definition 4.5.

(Note that u{<<J.>(p,q) is Pk if u1=xk> and qk if u;=vk. Similarly fory{<~(p.q).)

Again the existence of this recursively defined interpretation can be established with the help of the solution

lemma. Intuitively, /C'KI is obtained by semantically interpreting those rules in '!JI, that have f for their conclusion;

the satisfaction of the premises is mirrored by the presence of a pair starting with a1 in the with u; corresponding

process u{<~(p,q).

The above interpretation can be used to prove that for a L TS '5' induced by a TSS '!JI, in SOS format, the function

~ is compositional.

THEOREM 4.7 (Compositionality of '!)JL): Let '!JI, be a TSS i11 SOS format and let~ be induced by~ For all operators

f e'I. and terms t i. ... , t,(f),

PROOF: Define

and show that R is a process-bisimulation. (End of proof.)

202

Since it is immediate that for all X eRec V ar,

~[X] = ~[d(X)]

the model '!JR, can be characterized as being what is usually called denotational: let the set of environments (ye) Env

be given by

EllV = RecVar-+P

Define <iil: T(l:)-+Env-+P by, for all operatorsfe"I:., terms t 1, ••• , t,rn and XeRecVar,

6Dlj(t i. ... , t,(/"j)](y) ::;: j1C!ll.l(6D[t 1](y), ... , <iil[lr(f)](y))

6D[X](y) = y(X)

Let Ya be defined by, for all XeRecVar,

Then we have the following theorem.

THEOREM 4.8 (~ is denotational): For all s e T(l:),

~[s) = 6D[s](Ya)

5. A SIMPLE LANGUAGE WITH UNGUARDED RECURSION

As an example we consider a signature !:.,.., ::;: <F, r > that is defined as follows. Let the set F of function

symbols be given by

F = Act U {;, II, + } u RecVar

where (Xe) RecVar is the set of recursion variables and (ae)Act is an abstract set of basic actions. The rank

function r of 1:,..0 is defined by

r(a) = 0, for every aeAct

r(X) ::;: 0, for every XeRecVar

r(;) = r(ll) = r(+) = 2

The set T("I:.,cc) of closed terms over 2:,... is called a language. In BNF notation it can be defined as the language

(s, t E) e given by

s::::;: a I s;t I slit I s +t I x

The interpretation of the operators ;, II and +, for sequential, parallel and non-deterministic composition, respec­
tively, is as usual.

Next we define a LTS '5" = <T(l:,..,), A, -+>. The set (ae) A of labels is given by

A =Act U Act

The elements of Act (= {a: aeAct}) are used to indicate termination (see the rules for sequential and parallel

composition below).

The transition relation -+ of ~is induced by the following TSS '!R. The axiom for the basic actions is

203

where ~ is a special element of Act denoting tennination. Further rules in '!JI, are

X1~Y1
x,;x2...!7x2

xi!lx 2 ~x2
X2llX1~X2

X1~Y1
x,;x2...!7Y1;X2

xillx2~Y1llx2
X2llX1~X2l[J'1

Finally, the rule for the recursion variables is

~
were d is some fixed declaration.

x,+x2~y 1
x2+x1~Y1

Next we will apply the definitions and theorem of the previous sections. Definition 3.6 yields a model

~: T('2.,...)-+P given by

':')JL.J[s] = {<a, ':')Il[s'] >: s ~s'}

Moreover, '!JI, is in SOS format. Thus it induces an interpretation 1(6.R.) for~ according to Definition 4.6. We have

for the interpretations of the function symbols the following equalities.

a/(<Jl.) = {<a, 0>}

p;1C<J.:i q = {<a,q>: <a,p'>ep} u (<a,p';1C<Jt> q>: <a,p'>ep}

pi11<<Jtl q = {<a,q>: <0,p'>ep} U {<a,p'll1<!11.l q>: <a,p'>ep} u

{<a,p>: <li,q'>eq} U {<a,pll1C<Jtl q'>: <a,q'>eq)

p+l('!t) q = pUq

X1C'!tl = (d(X))1<!11:1

For~ the following equalities hold, according to Theorem 4.7:

~[a]= {<ii, 0>}

~[s;t) = ':')IL;J[s] /<'!tl ~[I]

~[slit) = ~[s] 11/(<Jl.J ~[I]

':')}Lj[.r+t] = ':')JL.J[sj +I('Jt) ':')IL;J[t)

~[X] = ':')IL;J[d(X))

Next we mention a characterization of~ as a hereditary union. Let -'>J be the smallest transition relation satis­

fying all the axioms and rules in the defini lion of above except the rule for recursion. Thus -+ f <;;;;,-+ but not the

other way around. Next the notion of repeated "body replacement" is introduced.

DEFINITION 5.1: For all n ;;;.o and statements s ef. the statement sn is inductively defined by

s 0 = s

204

assuming that the set of recursion variables occurring in s• is { X i. ... , Xk}. (The term

s"[d(X1)/ Xi. . .• ,d(Xk)I Xk] is obtained by replacing ins• every occurrence of X1 by d(X1).)

Now ~ can be characterized as follows.

THEOREM 5.2: '!>J4[s] = U • {<a, ~[s'] >: s• ~is'}

Interestingly, it is not necessary to restrict recursion to the case where all statements d(X) are guarded in X, as is

done usually. In [Ru90], only guarded recursion is treated because the unguarded case does not fit into the metric

framework used there. In [BeK.187], unguarded equations are considered for which solutions are found via an

interesting but complicated combinatorial technique.

6. ANOTHER EXAMPLE: 'ATOMIZED' STATEMENTS

As a second example, we extend the signature ~.... = <F, r > of the previous section with a unary operator

atom, thus yielding

F =Act U {;,II,+ ,atom} U RecVar

Again, (Xe) RecVar is the set of recursion variables and (ae) Act is an abstract set of atomic actions. In BNF

notation, the set T(l:, ..) of closed terms over~, .. be defined as the language (s e) e given by

s::= al s;tl slltl s+tj atom(s)IX

Atomic actions are now interpreted as state transformations: let States be some set of abstract states. We assume

the presence of an interpretation function

(]: Act-+ (States-+part States)

that assigns to every atomic action a a partial function [a) from states to states.

The interpretation of the operators;, II and +, is as before.. For a statements, the statement atom(s) behaves

like an 'atomized' version of s: for every finite sequence of state transformations in the behaviour of s, it yields in

one step (like an atomic action) a state transformation that is the composition of this sequence..

Again a LTS '!J'" = <T(~,..), A,-+> is defined. The set (ae) A oflabelsis now given by

A = SPair U SPair

where (we) SPair =States XStates and Siair = (i: 'ITESPair}. The latter are again used to indicate termination.

The transition relation -+ of ~ is induced by the following TSS 'Bl.. The axiom for atomic actions is

where 'IT=(u,(aJ(a)), with aeSlates such that [a)(a) is defined. The rules for ;, II, + and X are as before. For

atom we have

where

As before '!II. is in SOS formaL Thus it induces an interpretation !('!II.) for l: according to Definition 4.6. For the

205

interpretation of aEAct and atom, we have the following equalities:

a1 C!J:J = {<(a, [a)(a)), 0 >: aeStates, a defined}

atom 1C'A.l<.p) = {<i,q>:'IT1 ···i0 ·qisapathinp}

where

The language construct atom was first introduced in [BaKo90], where it is used in the semantics of guarded

clauses of Concurrent Prolog, a parallel logic programming language. The semantic description of atom given there

is quite involved. This is mainly caused by the necessity, imposed by the metric framework which is used, to keep

track of all internal intermediate steps that atom(s) can make. In the present model, this is not needed. As a

consequence, it is more transparent and, more importantly, more abstract: in the above model, two different state­

ments sands' can have a different semantics whereas the semantics of atom (s) and atom (s') is the same.

7. DISCUSSION

The central result of this paper is the construction of an interpretation for a signature L from a TSS for ~ that is

in SOS format (Definition 4.6). Due to the use of nonwellfounded sets, this construction is more general than the

one given in [Ru90]: first, it can handle TSS's that need not be finitely branching. Secondly, the SOS format is

more general than the GSOS format that was used in [Ru90): in the premises of a rule in SOS format, a so-called

look-ahead, like { u 1-+v i. v 1-+v 2 }, is allowed. This type of premises is excluded by the GSOS format It is exactly

this difference that is illustrated by the example in section 6.

There is also a respect in which the SOS format is less general than the GSOS format: at the right-hand side of

the conclusion of a rule in GSOS format arbitrary terms are allowed, whereas in the SOS format only terms with

one function symbol may occur.

At present, we are working on a generalization of the present approach, which overcomes this problem ({Ru92]).

Moreover, it is applicable to the so-called tyft format introduced in [GVSS], which is more general than both the

SOS and the GSOS format in that it allows arbitrary terms both at the left-hand sides of the premises and at tl1e

right-hand side of the conclusion of the rules.

8. REFERENCES

(Ab87] S. ABRAMSKY, Domain theory and the logic of observable properties, PhD thesis, University of Lo.ndon,

October 1987.

[Ac88]

[AR89]

[BE87]

(BaKo90)

[BeKI87]

[BIM88]

[BZ82)

P. AcZEt, Non-wellfowided sets, CSLI Lecture Notes No. 14, 1988.

P. AMERICA, J.J.M.M. RUTTEN, Solving refte.'Cive domain equations in a category of complete metric

spaces, Journal of Computer and System Sciences, Vol. 39, No. 3, 1989, pp. 343-375.

J. BARWlSE, J. ETCHEMENDY, The liar, an esstry on truJh and circularity, Oxford University Press,

1987.

J.W. DE BAKKER, J.N. KOK, Comparative metric semantics for Concurrent Prolog, Theoretical Com­

puter Science 75, 1990, pp. 15-43.

1.A. BERGSTRA, J.W. KLOP, A convergence theorem in process algebra, Technical Report CS-R8733,

Centre for Mathematics and Computer Science, Amsterdam, 1987.

B. BLOOM, S. lSTRAit, A.R. MEYER, Bisimulation can't be traced: preliminary report, in: Proceedings of

tile Fifteenth POPL, San Diego, California, 1988, pp. 229-239.

J.W. DE BAKKER, J.I. ZUCKER, Processes and the denotational semantics of concurrency, Information

and Control 54, 1982, pp. 70-120.

[GR89)

[GV88]

[MiSO)

[Pa81]

[Pl81]

[Ru90)

[Ru92]

206

RJ. VAN GLABBEBK, JJ.M.M. RUTI'l!N, The processes of De Bakker and Zucker represent bisimulation

equivalence classes, in: J.W. de Bakker, 25 jaar semantiek, Centre for Mathematics and Computer Sci­

ence, Amsterdam, 1989.

J.F. GROOTE, F. VAANDRAGER, Structured operational semantics and bisimulation as a congruence,

Technical Report CS-R8845, Centre for Mathematics and Computer Science, Amsterdam, 1988. (T'o

appear in Information and Computation. Extended abstract in: Proceedings 16Ut ICALP, Stresa,

Lecture Notes in Computer Science 372, Springer-Verlag, 1989, pp. 423-438.)

R. MILNER, A calculus of communicating systems, Lecture Notes in Computer Science 92, Springer­

V erlag, 1980.

D.M.R. PARK, Concurrency and automata on in.finite sequences, in: Proceedings 5th GI conference,

Lecture Notes in Computer Science 104, Springer-Verlag. 1981, pp. 15-32.

G.D. PLOTKIN, A structural approach to operational semantics, Report DAIMI FN-19, Comp. Sci.

Dept., Aarhus Univ. 1981.

JJ.M.M. RUTl1!N, Deriving denotational models for bi.rimu/ation from structured operational semantics,

in: (M. Broy and C.B. Jones, eds.) Proceedings IFIP TC2 Working Conference on Programming

Concepts and Methods, Israel, 1990, pp. 155-177.

JJ.M.M. RU'ITEN, Processes as terms: Nonwellfounded models for bisimulation, Technical Report,

CW!, Amsterdam, in preparation.

