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ABSTRACT
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1 Motivation

There is a trend in combinatorial analysis started by several schools around 1980, where much
emphasis is placed on the relations between combinatorial structure and the algebraic structure
of generating functions. Over the years, this has led to several formalizations (addressing the
foundational question: what is a combinatorial structure? How do we “specify” it? What is
the relation of such specifications to counting?) being introduced by Goulden-Jackson [GJ83],
Flajolet-Sedgewick [FS93, FS01], Joyal [BLL98], Stanley [Sta97, Sta99], and several others. Here
we add one more formal system to the list, called the method of coinductive counting. From
the enumerative point of view, it makes it possible to derive existing counting results in a new
perspective. We first illustrate the method of coinductive counting by means of an example, and
then summarize motivation and contents of the paper.

The following counting problem is taken from [GKP94, p.291]. Male bees are called drones
and female bees are called queens. Drones are born out of a queen and have no father; a queen
is born out of a father drone and a mother queen. The first few levels of the pedigree of a drone
(drawn upside-down) look as follows:
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We see that each drone has one mother, one grandmother, two great-grandmothers, three great-
great-grandmothers, and so on. What is, for any k ≥ 0, the number sk of female ancestors at level
k? The key idea of coinductive counting is to use the very tree that enumerates all the (female)
ancestors of a drone, as the basis for a representation of the infinite stream σ = (s0, s1, s2, . . .)
containing all the answers. To this end, the tree is turned into a automaton, in which the arrows
indicate transitions and in which all the queen states are output states:
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(Formally, we shall be dealing with weighted automata over a one letter alphabet and with weights
in the reals.) The stream behaviour of such automata will be defined coinductively, and can be
expressed in terms of transition sequences. In the present automaton, the number sk is encoded
as the number of paths of length k leading from the initial (topmost) drone state to an output
queen state, since there are as many such sequences as there are queens at level k. Thus we have
translated the original counting problem into a question about streams and their representation by
automata, thereby entering the coinductive world of stream calculus [Rut01]. A crucial ingredient
of stream calculus is the notion of stream bisimulation, with the help of which the above automaton
can be simplified by identifying all equivalent states as follows. Every drone state is bisimulation
equivalent to the state q0 and every queen state is equivalent to the state q1 of the following two
state automaton:

q0
�� q1�� 		
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Intuitively, any queen state and the state q1 have the same transition behaviour: both can take
two transitions to states that are again, respectively, equivalent. Similarly for drone states and
q0, which have only one transition. As a consequence, (the state q0 of) this new automaton is an
equivalent representation of our stream of answers σ: sk corresponds again to the number of paths
of length k leading from q0 to the (in this case only) output state q1. A classical and convenient way
to capture infinite sequences by means of one single expression, is the use of generating functions
or, more generally, formal power series. In stream calculus, such a ‘closed expression’ for the
infinite stream σ of answers represented by the state q0 can be easily defined coinductively (see
Section 2 for the formal computation), yielding

σ =
X

1 − X − X2

As with generating functions, this stream expression encodes the numbers sk for all k ≥ 0 (which
turn out to be the Fibonacci numbers). In the present paper, we leave aside the computation of
an explicit formula for sk, and consider the above fraction, which is formulated in terms of stream
constants and operators, as a satisfactory answer to our question.

Summarizing the above, we distinguish three phases in the procedure of coinductive counting:

1. Enumeration of the objects to be counted in an infinite, tree-shaped weighted automaton.

2. Identification of equivalent states using bisimulation.

3. Expression of the resulting stream of counts in terms of stream constants and operators.

As we shall see shortly, the entire approach is essentially quantitative: both transitions and output
states will generally be labelled with weights (here: real numbers), which are taken into account
by the notion of stream bisimulation (and bisimulation-up-to).

Although from the enumerative point of view, no new results are contained in the present
paper, we feel that the method of coinductive counting has a number of contributions to make:

- Coinductive counting proves to be a very general and flexible method, by which many totally
different structures can be counted in a uniform and simple way. This is to be contrasted
with the use of many different methodologies in the discipline of enumerative combinatorics,
such as context-free languages, tournament trees, symbolic counting, the transfer-matrix
method, and many more. Moreover, coinductive counting leads in a number of cases to new
representations of existing solutions.

- The heart of the method consists of the reduction of infinite weighted automata to much
better structured (and often finite) ones, using bisimulation relations to make the necessary
identification of states. Therewith, the method provides yet another illustration of the
fundamental nature of bisimulation in mathematics, a notion originally stemming from the
world of modal logic and the semantics of parallel programming languages.

- The method contains a number of elements that seem to be new to the theory of weighted
automata. Notably, infinite weighted automata, which are usually not given much attention,
play a crucial role. Furthermore, extensive use is made of the notion of stream derivative,
based on a generalisation of Brzozowski’s notion of input derivative, both to go from weighted
automata to streams, and vice versa. Finally, the method of coinductive counting yields a
number of rather beautifully structured infinite weighted automata for many sequences of
so-called special numbers.

Overview of the paper : Sections 2 through 4 summarize that part of stream calculus that is
needed for the present paper. Then some first basic exercises in coinductive counting are treated
in Sections 5 through 7, dealing with compositions of natural numbers, surjections, and counting
with probabilities, respectively. The counting problem of Section 8 deals with well-bracketed
words, and causes the need to develop some further theory. In Section 9, certain well-structured
infinite weighted automata are studied, which have a stream behaviour that is expressible by
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means of (generalisations of) continued fractions. The results of Section 9 are next used in Section
10, on well-bracketed words, in Section 11, on permutations, and in Section 12, on set partitions.
The paper will be concluded with a discussion of related (and future) work.

2 Basic facts from stream calculus

We present the basic facts of a coinductive calculus of streams, by repeating parts of earlier work
on formal power series and streams ([Rut00a] and [Rut01]). Since the concepts of bisimulation
and coinduction may be new to some readers, a number of examples will be treated as well.

The set of all streams is defined by IRω = {σ | σ : {0, 1, 2, . . .} → IR }. Individual streams will
be denoted by σ = (σ(0), σ(1), σ(2), . . .) = (s0, s1, s2, . . .). We shall call σ(0) = s0 the initial value
of σ. The derivative of a stream σ is defined by σ′ = (s1, s2, s3, . . .).

In order to conclude that two streams σ and τ are equal, it is both necessary and sufficient to
prove σ(n) = τ (n), for all n ≥ 0. Sometimes this can be proved by a straightforward induction on
the natural number n (prove σ(0) = τ (0) and show that σ(n) = τ (n) implies σ(n+1) = τ (n+1)).
More often than not, however, a succinct description or formula for σ(n) and τ (n) will not exist,
so that, consequently, induction simply cannot be applied.

Instead, we shall take a coalgebraic perspective on IRω, and use almost exclusively the proof
principle of coinduction, which is formulated in terms of the following notion from the world of
universal coalgebra [JR97, Rut00b]. A stream bisimulation, or bisimulation for short, is a relation
R ⊆ IRω × IRω such that, for all σ and τ in IRω: if σ R τ then σ(0) = τ (0) and σ′ R τ ′. (We shall
use both σ R τ and 〈σ, τ 〉 ∈ R as equivalent notations.) The union of all bisimulation relations is
called bisimilarity , and is denoted by ∼.

Theorem 2.1 [Coinduction] For all streams σ and τ in IRω, if σ ∼ τ then σ = τ .

Proof: Consider two streams σ and τ and let R ⊆ IRω × IRω be a bisimulation on IRω containing
the pair 〈σ, τ 〉. Because R is a bisimulation, it follows by induction on n that 〈σ(n), τ (n)〉 ∈ R, for
all n ≥ 0. Here σ(n) (and likewise τ (n)) denotes the n-th derivative of σ defined by σ(0) = σ and
σ(n+1) = (σ(n))′. This implies, again because R is a bisimulation, that σ(n)(0) = τ (n)(0), for all
n ≥ 0. Because σ(n)(0) = σ(n) and τ (n)(0) = τ (n), this proves σ = τ . �

(Note that the converse trivially holds, since {〈σ, σ〉 | σ ∈ IRω} is a bisimulation relation on IRω.)
Theorem 2.1 gives rise to the following, surprisingly powerful proof principle, called coinduction:
in order to prove the equality of two streams σ and τ , it is sufficient to establish the existence of
a bisimulation relation R ⊆ IRω × IRω with 〈σ, τ 〉 ∈ R. We shall see some examples of coinductive
proofs in this paper (a first one follows in a moment), but [Rut01] contains many more (and in
much more detail).

Coinductive definitions are phrased in terms of derivatives and initial values, and are called
behavioural differential equations . For any r ∈ IR we denote the constant stream (r, 0, 0, 0, . . .) by
r again. The context will always make clear whether the real number or the stream r is intended.
Another constant stream is X = (0, 1, 0, 0, 0, . . .), which plays the role of a formal variable. Note
that r′ = 0 and that X ′ = 1. We shall use the following operators on streams, all of which are
defined by means of a behavioural differential equation:

behavioural differential equation initial value name
(σ + τ )′ = σ′ + τ ′ (σ + τ )(0) = σ(0) + τ (0) sum
(σ × τ )′ = (σ′ × τ ) + (σ(0) × τ ′) (σ × τ )(0) = σ(0) × τ (0) (convolution) product
(σ−1)′ = −σ(0)−1 × (σ′ × σ−1) (σ−1)(0) = σ(0)−1 inverse (σ(0) �= 0)
(σ ⊗ τ )′ = (σ′ ⊗ τ ) + (σ ⊗ τ ′) (σ ⊗ τ )(0) = σ(0) × τ (0) shuffle product
(σ−1)′ = −σ′ ⊗ (σ−1 ⊗ σ−1) σ−1(0) = σ(0)−1 shuffle inverse (σ(0) �= 0)

Whenever writing σ−1 or σ−1, we shall silently assume that σ(0) �= 0. Note that in the definition
of (σ × τ )′, σ(0) should be read as the stream (σ(0), 0, 0, 0, . . .); and similarly, in the definition of
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(σ−1)′, σ(0)−1 should be read as the stream (σ(0)−1, 0, 0, 0, . . .). As usual, we shall write

σ0 ≡ 1, σn+1 ≡ σ × σn, σ−n ≡ (σ−1)n,
σ

τ
≡ σ × τ−1

for all n ≥ 0. Moreover, the following conventions will be used:

σ0 ≡ 1, σn+1 ≡ σ ⊗ σn, σ−n ≡ (σ−1)n

The unique existence of a solution to the above equations is ultimately due to the fact that the
combination of the operations of initial value and stream derivative:

〈−(0), (−)′〉 : IRω → IR × IRω, σ �→ 〈σ(0), σ′〉
constitutes a final coalgebra structure on the set of streams. Formally, the existence of a unique
solution follows from [Rut01, Thm 19.1], which deals with a rather large family of systems of
behavioural differential equations, generalising the one above. In fact, all of the systems of be-
havioural differential equations that we shall encounter in this paper, can by shown to have a
unique solution by an application of the same theorem.

The format of the above definitions is rather non-standard, and the reader is invited to consult
[Rut01] for a comparison between these definitions and the (equivalent) traditional ones such as,
for n ≥ 0,

(σ ⊗ τ )(n) =
n∑

k=0

(
n
k

)
× σ(n − k) × τ (k) (1)

for the shuffle product. The bottom line is that definitions by behavioural differential equations
are formulated in terms of initial values and derivatives, which enable us to give proofs by coin-
duction, since these amount to the construction of bisimulation relations, which themselves are
characterized in terms of initial values and derivatives.

We shall freely use various basic properties of the stream operators of sum, product, inverse,
shuffle, and so on, such as σ×τ = τ ×σ and (σ−1)−1 = σ. Note that the derivatives of convolution
product and its inverse are different from what we are used to in classical analysis. At the same
time, the derivatives of shuffle product and inverse are given by the familiar formulae. Even if
we do not always refer to it explicitly, [Rut01] is the source for all identities on streams and their
operators that are not proved in the present paper.

Although the proof of the coinduction proof principle (Theorem 2.1 above) uses induction,
the construction of a bisimulation for a pair 〈σ, τ 〉 is in general not by any use of induction.
(Often, we even have no clue as to how the n-th element of the streams involved looks like.)
Instead, bisimulation relations are constructed by simply closing the set {〈σ, τ 〉} under the taking
of derivatives (while checking that initial values agree). The point of the use of bisimulation
relations R is that instead of trying to prove (only) σ = τ , we prove the stronger statement:
α = β, for all pairs 〈α, β〉 ∈ R. Here are a few examples:

• The identity (1, 1, 1, . . .) = 1
1−X follows by coinduction from the fact that

{ 〈(1, 1, 1, . . .),
1

1 − X
〉 }

is a bisimulation on IRω. To show that this singleton set is a bisimulation, one proves

(
1

1 − X
)′ =

1
1 − X

using the behavioural differential equations above. Similarly, in order to prove

(1,−1, 1,−1, . . .) =
1

1 + X
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it suffices to show that

{ 〈(1,−1, 1,−1, . . .),
1

1 + X
〉, 〈(−1, 1,−1, 1, . . .),

−1
1 + X

〉 }

is a bisimulation on IRω, which follows from ( 1
1+X )′ = −1

1+X .

• In order to appreciate the strength of coinduction in the next example, the reader is invited
first to prove the following identity without coinduction, possibly using formula (1) above:

1
1 − X

⊗ 1
1 + X

= 1

(Recall that 1 = (1, 0, 0, 0, . . .).) A proof by coinduction follows from the fact that

{ 〈 1
1 − X

⊗ 1
1 + X

, 1〉, 〈0, 0〉 }

is a bisimulation, which is immediate consequence of the basic properties of the operators
involved, notably

(
1

1 − X
⊗ 1

1 + X
)′ = (

1
1 − X

⊗ 1
1 + X

) + (
1

1 − X
⊗ −1

1 + X
)

= (
1

1 − X
⊗ 1

1 + X
) − (

1
1 − X

⊗ 1
1 + X

)

= 0

• For a function f : IR → IR that is analytical in 0, the stream T (f) of Taylor coefficients of
f(x) can be defined, coinductively, by the following behavioural differential equation over
IRω (cf. [PE98]):

behavioural differential equation initial value name
T (f)′ = T (df/dx) T (f)(0) = f(0) Taylor series

(Here df/dx denotes the analytical derivative of the function f(x).) One can readily check
that this defines T (f) to be the stream (f(0), df/dx(0), d2f/dx2(0), . . .). We have the fol-
lowing identity:

T (sin(x)) =
X

1 + X2

A proof by coinduction simply consists of the observation that the relation

{〈T (sin(x)),
X

1 + X2
〉, 〈T (cos(x)),

1
1 + X2

〉,

〈T (−sin(x)),
−X

1 + X2
〉, 〈T (−cos(x)),

−1
1 + X2

〉}

is a bisimulation relation on IRω. This observation can be readily proved, using the facts
that

(
X

1 + X2
)′ =

1
1 + X2

, (
1

1 + X2
)′ =

−X

1 + X2

which are immediate consequences of the defining behavioural differential equations for con-
volution product and inverse.
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As was mentioned above, for large classes of behavioural differential equations the existence of
a unique solution is an immediate consequence of the fact that IRω is a final coalgebra. This
insight does not necessarily provide us with much information on how that solution looks like.
Fortunately, one can compute for many, relatively simple, behavioural differential equations, an
explicit so-called closed form for the solution, that is, an expression that is build from (the above)
stream constants and operators. The main tool for obtaining such a closed form is the following
simple but useful ‘Fundamental Theorem’ [Rut01]: for all streams σ ∈ IRω,

σ = σ(0) + (X × σ′) (2)

The theorem expresses how σ can be obtained from its initial value σ(0) and its derivative σ′.
(Note that multiplication with X can be considered as a type of stream integration.) In order
to illustrate the use of this theorem, we consider a stream σ that is defined by the following
behavioural differential equation: σ(0) = 1 and σ′ = 2 × σ. Clearly, this defines σ as the stream
(20, 21, 22, . . .). Using (2), we can also compute a more succinct expression, since σ = σ(0)+ (X ×
σ′) = 1 + (X × 2 × σ) implies (1 − (2 × X)) × σ = 1, whence

σ =
1

1 − (2 × X)

For any stream σ and n ≥ 0, the number σ(n) can be obtained by repeatedly computing
derivatives, according to the following identity

σ(n) = σ(n)(0)

Writing, as usual, sn for σ(n), one can easily prove the following Taylor-like expansion for any
stream σ:

σ = s0 + (s1 × X) + (s2 × X2) + · · ·
but note the absence of the factorial coefficients. (Here we use an operation of infinite sum, which
can be defined by generalising the definition of binary sum above.) For the example above, this
yields

σ =
1

1 − (2 × X)
= 20 + (21 × X) + (22 × X2) + · · ·
= (20, 21, 22, . . .)

It is worthwhile to note that in stream calculus, all of these equalities are formal identities. This
is to be contrasted to the use of, for instance, generating functions, which are used to represent
or encode streams.

There is the following mild generalisation of the notion of bisimulation, which often makes it
easier to give coinductive proofs. A bisimulation-up-to is a relation R ⊆ IRω×IRω such that, for all
σ, τ ∈ IRω: if σ R τ then σ(0) = τ (0) and there exist n ≥ 0 and streams α0, . . . , αn and β0, . . . , βn,
such that σ′ = α0 + · · ·+αn and τ ′ = β0 + · · ·+βn and, for all 0 ≤ i ≤ n: either αi = βi or αi Rβi.
The notion of bisimulation-up-to is used in the following strengthening of the coinduction proof
principle, called coinduction-up-to: if σRτ and R is a bisimulation-up-to then σ = τ . For a simple
but typical example, consider streams σ, τ and ρ such that σ(0) = τ (0) = ρ(0) = 1, σ′ = 2 × σ,
and τ ′ = ρ′ = τ + ρ. Then {〈σ, τ 〉, 〈σ, ρ〉} is a bisimulation-up-to (note that σ′ = 2 × σ = σ + σ),
and σ = τ follows by coinduction-up-to.

We shall also encounter the following notion. A stream is called rational if it can be defined
using constant streams (r and X), sum, convolution product and convolution inverse. A typical
example is (1 + X)/(3 − X + 7X2). Rational streams are closed under applications of the shuffle
product, but they are not closed under shuffle inverse. A typical example of a non-rational stream
is (1 − X)−1 = (0!, 1!, 2!, . . .).
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3 Streams and weighted automata

A stream can often be conveniently represented by means of a weighted automaton Q = (Q, 〈o, t〉)
consisting of a (generally infinite) set Q of states, together with an output function o : Q → IR,
and a transition function t : Q → (Q →f IR) (the latter set contains functions φ : Q → IR of finite
support , that is, such that {q ∈ Q | φ(q) �= 0} is finite). The output function o assigns to each
state q in Q a real number o(q) in IR. The transition function t assigns to a state q in Q a function
t(q) : Q →f IR, which specifies for any state q′ in Q a real number t(q)(q′) in IR. This number
can be thought of as the weight or multiplicity with which the transition from q to q′ occurs. The
following notation will be used: q r−→ q′ denotes t(q)(q′) = r and q

r
denotes o(q) = r. Moreover,

for t(q)(q′) = 1 we shall often simply write q −→ q′, and we write q when o(q) = 1, in which case
q is called an output state. In pictures, we usually include only non-zero output values and only
arrows with a non-zero label.

The stream behaviour S(q) ∈ IRω of a state q in a weighted automaton (Q, 〈o, t〉), can be
defined in two equivalent ways. First, there is the following formula, for any k ≥ 0:

S(q)(k) =
∑

{l1 × · · · × lk × l | ∃q0, . . . , qk : q = q0
l1−→ · · · lk−→ qk and o(qk) = l} (3)

This formula computes the k-th element S(q)(k) of the stream S(q) as a weighted count of the
number of paths (transition sequences) of length k that start in the state q (and end in a state with
a non-zero output). It is precisely this aspect of counting paths that makes weighted automata
very suitable for the representation of counting problems in general.

At the same time, formula (3) does not yield any compact representations for S(q) and is
thereby not very suited for actual reasoning. And that is where we shall benefit from the coinduc-
tive calculus of streams, sketched above. More specifically, consider again a state q in a weighted
automaton (Q, 〈o, t〉), and let {q1, . . . , qn} be the set of all states q′ for which t(q)(q′) �= 0. Then
the stream behaviour S(q) ∈ IRω of the state q can also be defined by the following behavioural
differential equation (or rather, system of behavioural differential equations , one for each state q):

differential equation initial value
S(q)′ = t(q)(q1) × S(q1) + · · · + t(q)(qn) × S(qn) S(q)(0) = o(q)

(As before, the unique existence of a solution for this system of equations is an immediate conse-
quence of [Rut01, Thm 19.1].) It follows from the ‘Fundamental Theorem’ (2) in Section 2 that
this system of behavioural differential equations is equivalent to the following system of equations:

S(q) = o(q) + (t(q)(q1) × X × S(q1)) + · · · + (t(q)(qn) × X × S(qn))

If the automaton (that is, the state space Q) is finite, this is a finite system of equations, which
can be solved in the familiar algebraic way, yielding rational streams as solution.

It is not very difficult to prove the equivalence of the definition of S(q) by formula (3), on the
one hand, and the definition of S(q) by means of behavioural differential equations, on the other.
See [Rut01, Prop. 13.1] for a formal proof.

As an example of the stream behaviour of a weighted automaton, consider the automaton
defined by the following picture

q0
�� q1�� 		

which occurred in the counting example of Section 1. The stream S(q0) represented by the state
q0 can be computed in two ways. According to formula (3), one finds S(q0)(k) by simply counting
(since all weights are 1) the number of paths of length k from q0 to q1 (which is the only state
with a non-zero output), yielding S(q0) = (0, 1, 1, 2, 3, 5, 8, . . .). By the second definition, one has
S(q0) = X × S(q1), and S(q1) = 1 + (X × S(q0)) + (X × S(q1)), yielding S(q0) = X/1− X − X2.
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4 An aside: splitting derivatives

We have explained now most of what is needed for the formulation and solution of combinatorial
counting problems in a coinductive manner. There still is yet another point we would like to make
before turning to the actual subject of this paper. Technically speaking, it will not play a role in
what follows, but it does provide a further explanation of the close relationship between streams
and weighted automata, and of the fundamental importance of the notion of stream derivative.

In Section 3, we have explained how to go from automata to streams. The converse is also
possible, by a procedure that we have called ‘splitting of derivatives’, and which we shall explain
next by means of a small example. Consider the stream X/1 − X − X2 that was obtained as the
behaviour of the state q0 of the automaton at the end of Section 3. Computing its (repeated)
derivatives, we find (X/1−X −X2)′ = 1/1−X −X2, and (1/1−X −X2)′ = (1/1−X −X2) +
(X/1−X −X2). We can now take the expressions 1/1−X −X2 and X/1−X −X2 as the states
of the following automaton, where the transitions are determined by the derivatives:

X
1−X−X2



 1
1−X−X2��

��

So we use the fact that the derivative of 1/1−X −X2 consists of a sum, to define two transitions,
to each of the summands. The fact that (1/1 − X − X2)(0) = 1 determines 1/1 − X − X2 to be
an output state. Using the coinductive definition of the stream behaviour of weighted automata
of the previous section, we find that the behaviour of the state X/1 − X − X2 in the obtained
automaton is exactly the stream X/1 − X − X2 (and similarly for 1/1 − X − X2).

Of course, there are in general many different ways of splitting a derivative, yielding different
but equivalent weighted automata as representations of the same stream. For certain classes of
streams, however, this procedure can be described and used in a systematic way (cf. [Rut99,
Rut00a]). An example is the class of rational streams, for which the splitting of derivatives gives
rise to (minimal) finite weighted automata representations.

Interestingly, splitting derivatives can also be applied to streams that are not rational, and
often gives rise to infinite but very well structured weighted automata representations. This latter
point is illustrated by the following example, repeated here from the afore mentioned references.
Consider the stream τ defined by the following behavioural differential equation:

differential equation initial value
τ ′ = 1 + (τ ⊗ τ ) τ (0) = 0

It is actually the stream of the so-called tangent numbers, which are the Taylor coefficients of
the tangent function tan(x). Recall that τn was defined as the shuffle product of τ with itself, n
times. Using a little bit of basic stream calculus, the derivative of τn in stream can be computed
as follows:

(τn)′ = n × (τ ′ ⊗ τn−1)
= n × (1 + (τ ⊗ τ )) ⊗ τn−1 [using the differential equation for τ ]
= (n × τn−1) + (n × τn+1)

This gives rise to the following automaton, in which every state τn has two n-labelled transitions,
by splitting its derivative into its two summands τn−1 and τn+1 (the transition from τ0 = 1 to τ1

has been included for symmetry only):

τ0
0


τ1

1


1

�� τ2

2


2

�� τ3

3


3

�� · · ·
4

��

(The only output state is τ0 = 1, since it has initial value 1.) This infinite but pretty automaton
representation for the stream of the tangent numbers was constructed by computing and splitting
stream derivatives (using the defining behavioural differential equation for τ above). We shall
encounter the same automaton later again, as the outcome of one of our coinductive counting
exercises.
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5 Compositions of natural numbers

A composition of a natural number k ≥ 0 is a sequence of natural numbers n1 · · ·nl such that
k = n1 + · · · + nl. What is, for any k ≥ 0, the number sk of compositions of k? Or, equivalently,
what is the stream of all counts σ = (s0, s1, s2, . . .)? The problem will be solved coinductively by
going through the three phases mentioned in the introduction.

Enumeration: The following automaton enumerates all compositions for all natural numbers
(here and in what follows, pictures show only the first few levels of what is understood to be an
infinite automaton):

ε
��
1

������
����

���

�����
���

���

2

�����
��� ��


11

���� ����
���

��

3
���� ���

� 21
���� ���

� 12
���� ���

� 111
����� ����

�

4 31 22 211 13 121 112 1111

The automaton of this picture can be formally described by defining a state set Q = {w | w ∈ IN∗};
an output function o : Q → IR given by o(ε) = 0 and o(w) = 1 for all w �= ε; and a transition
function t : Q → (Q →f IR), defined by t(v)(w) = 1 iff either w = v · 1 or (v = u · k and
w = u · (k + 1), for some u ∈ Q and k ∈ IN), and by t(v)(w) = 0 otherwise. (Here u · k denotes
the concatenation of the word u and the one letter word k.) In what follows, however, we shall
present automata usually by their pictures, becoming more formal only when strictly necessary.

Let k ≥ 0 be any natural number. There is a one-to-one correspondence between paths of
length k starting in the (topmost) initial state ε, on the one hand, and compositions of the natural
number k (all of which are situated at the k-th level of the automaton), on the other. As a
consequence, the total number sk of all compositions of k is equal to the total number of paths
of length k starting in the initial state ε. Therefore, it follows from formula (3) of Section 2 that
the stream behaviour S(ε) of the initial state ε equals the stream σ = (s0, s1, s2, . . .) of answers
we are after: S(ε) = σ.

Identification: Next we identify as many states as possible by defining a bisimulation-up-to
between (the streams represented by) our infinite weighted automaton, repeated below on the left,
and the tiny 2 state automaton on the right:

ε0

��
11

������
����

��

�����
����

��

21

�����
�� ���

� 111

���� ����
���

�

31

���� ��	
	 211

���� ���
� 121

���� ���
� 1111

���� ����
�

41 311 221 2111 131 1211 1121 11111

q0
1   q1

2

		

The superscripts that we have added to the states of our automaton on the left, indicate to which
state in the automaton on the right they are related. More explicitly and precisely, the above
picture suggests the definition of a relation R ⊆ IRω × IRω as follows:

R = {〈S(ε), S(q0)〉} ∪ {〈S(w), S(q1)〉 | w ∈ IN∗, w �= ε}
relating the streams represented by (that is, the stream behaviour of) the states in the automaton
on the left, with the streams represented by the states q0 and q1 on the right. In order to
show that R is a bisimulation-up-to, first note that the initial values of all related pairs match:
S(ε)(0) = 0 = S(q0)(0) and, for all words v ∈ IN∗ with v �= ε, S(v)(0) = 1 = S(q1)(0). Next
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we check derivatives: S(ε)′ = S(1), which is related to S(q1) = S(q0)′; and for all words v ∈ IN∗

and natural numbers n, we have S(v · n)′ = S(v · (n + 1)) + S(v · n · 1), each component of which
is related to S(q1), thus matching S(q1)′ = 2 × S(q1) = S(q1) + S(q1). This proves that R is a
bisimulation-up-to. Now it follows by coinduction-up-to that S(ε) = S(q0).

Expression: We can now easily compute a closed expression for σ = S(q0) by solving the
system of equations, consisting of S(q0) = X × S(q1) and S(q1) = 1 + (2 × X × S(q1)), yielding

σ = S(q0) =
X

1 − 2X

(The latter stream can be readily proved to be equal to the stream (0, 20, 21, 22, . . .), whence
sk = 2k−1, but as we already announced in the introduction, in this paper we shall not deal with
the analysis of finding closed formulae for the individual numbers sk.)

It is worthwhile emphasizing the quantitative aspect of the notion of bisimulation (up-to): the
fact that any state of the original weighted automaton labelled by a non-empty word w can take
two transitions to similar such states, is reflected by a 2-labelled transition from q1 to itself.

6 Surjections

What is, for any natural number k ≥ 0, the number sk of surjections from the set {1, . . . , k} onto
the set {1, 2, 3} (defining s0 to be 0)? Below we shall see how the answer can be generalized to
surjections onto the set {1, . . . , n}, for a fixed but arbitrary n ≥ 1.

Enumeration: Let us denote a function f : {1, . . . , k} → {1, 2, 3} by means of the word
f(1) · · · f(k). The following automaton enumerates at each level k all such functions:

ε

		������
������

������
���

�� !!     
      

      
    

1
�����

���
�� ""!!

!!!
! 2

�����
���

�� ""!!
!!!

! 3
�����

���
�� ""!!

!!!
!

11 12
��"""

""
�� ����

���
13 21 22

�����
��

�� ����
���

23 31 32 33

######
####

####

�����
��

��
121 122 123

����
��

�� ��$
$$

$ 221 222 223
�����

��
�� ��$

$$$
$ 331 332 333

�����
��

�� ��$
$$$

$

1231 1232 1233 2231 2232 2233 3331 3332 3333

Note that all states labelled by a word representing a surjection (that is, containing at least one 1,
one 2, and one 3), have been defined as output states. Also note that we have not only restricted
the picture to the first five levels of the automaton, but that moreover not all transitions have
been included, for lack of space. As before, it follows from (3) that the initial state ε represents
the stream σ = (s0, s1, s2, . . .) of answers we are interested in.

Identification: The automaton can be simplified by identifying all states (labelled by words)
that have the same number of different symbols, as indicated by the superscripts below:

ε0

		������
������

������
�����

��
!!     

      
      

      

11

����
��
�

�� ""%%
%%%

% 21

��&&&
&&&

�� ""%%
%%%

% 31

��&&&
&&&

�� ""%%
%%%

%

111 122

�����
��

�� ""!!
!!!

132 212 221

�����
��

�� ""!!
!!!

232 312 322 331

##''''
''''

''''
'

�����
��

��
1212 1222 1233

�����
��

�� ""��
���

2212 2221 2232

�����
��

�� ""��
��

� 3312 3322 3331

�����
��

�� ""��
��

�

12313 12323 12333 22313 22322 22332 33312 33322 33331
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More precisely, (the streams represented by) the i-superscripted states above can be related with
(the stream represented by) the state qi in the automaton below,

q0
3

  q1
2

  

1

��
q2

1
  

2

��
q3

3

$$

by means of a relation R ⊆ IRω × IRω that is defined as follows:

R = {〈S(w), S(qi)〉 | w ∈ {1, 2, 3}∗, i ∈ {0, 1, 2, 3} : �(w) = i}
where, for this occasion, �(w) denotes the number of different symbols contained in w. It is
straightforward to check that R is a bisimulation-up-to, from which S(ε) = S(q0) follows by
coinduction-up-to.

Expression: The stream behaviour of our 4-state automaton is determined by the following
system of equations:

S(q0) = 3 × X × S(q1)
S(q1) = (1 × X × S(q1)) + (2 × X × S(q2))
S(q2) = (2 × X × S(q2)) + (1 × X × S(q3))
S(q3) = 1 + (3 × X × S(q3))

Solving this system of equations, one finds:

σ = S(q0) =
3!X3

(1 − X)(1 − 2X)(1 − 3X)

The above can be easily generalised. Let n ≥ 1 be arbitrary but fixed, and let tk, for any
k ≥ 0, be the number of all surjections from the set {1, . . . , k} onto the set {1, . . . , n}. Then the
stream of counts τ = (t0, t1, t2, · · ·) is given by

τ =
n!Xn

(1 − X)(1 − 2X) · · · (1 − nX)

= (
1

1 − X
− 1)n

where the latter equality can be proved using some basic stream calculus.

7 Counting with probabilities

Consider a not necessarily fair coin with probability p of producing a head and probability q = 1−p
of producing a tail. What is, for any k ≥ 0, the probability sk of getting, by flipping the coin k
times, a sequence of heads and tails (of length k) without the occurrence of two consecutive heads
but for the two very last outcomes, which are required to be heads? We hope the reader is by now
already sufficiently experienced with coinductive counting, to be able to supply the details that
have been left out in the succinct presentation of the solution below.

Enumeration: Here is a weighted automaton describing all possible scenarios:

εp

%%(((((
(((((

((( q

&&))))
)))))

)))))

hp
''"""
" q

((*
** tp

))+++
+ q

����
���

���
�

hh htp
�����

q
((,

,,
thp

��---
q
��.

..
ttp

))---
- q

���
���

hthp
''+++ q��

htt
p ��

q

��.
..

thh thtp

))--
- q��

tth
p ��

q

��.
..

ttt
p ��

q

��*
**

hthh htht htth httt thth thtt tthh ttht ttth tttt
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All states that are (labelled with a sequence) ending in two heads are output states, and have no
further transitions. The stream σ = (s0, s1, s2, . . .) of all counts is represented by the initial state
ε, that is, σ = S(ε).

Identification: States can be identified according to the number of final heads:

ε0
p

%%(((((
(((((

((((( q

&&////
/////

/////
//

h1
p
�����
� q

���
��

t0p
��"""
" q

��000
0000

000

hh2
ht0p

��11
1 q

���
��

th1
p
''+++

q

**22
22 tt0p

''333
3 q

��44
44

hth1
p
��""" q��

htt0
p ��

q

**22
22

thh2
tht0p

''333
3 q��

tth1

p ��
q

**22
22 ttt0

p ��
q

����
��

hthh2
htht0 htth1 httt0 thth1 thtt0 tthh2

ttht0 ttth1 tttt0

yielding the following automaton:

q0

p


q
��

q1
p   

q

�� q2

More precisely, one can prove by coinduction-up-to that S(ε) = S(q0).
Expression: The stream behaviour of S(q0) can be easily computed:

σ = S(q0) =
p2X2

1 − qX − pqX2

8 Well-bracketed words

So far the identification phase of our coinductive counting exercises, has always resulted in a finite
automaton yielding a rational stream. Here is an example for which the stream of counts is no
longer rational (but algebraic). Consider a two letter alphabet {(, )} consisting of a left and a
right bracket. What is, for any k ≥ 0, the number sk of well-bracketed words over this alphabet,
of length k?

Enumeration: The output states at level k of the following automaton correspond precisely to
all such words:

ε

��
(

++555
555

555

����
���

���
���

�

()

��

((

��11
11
1

���
��

��

()(

��11
11

��

(()

��11
11

��

(((

��11
11

��
()() ()(( (()) (()( ((() ((((

so the stream σ = (s0, s1, s2, . . .) of all counts is represented by the initial state: σ = S(ε).
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Identification: We identify states according to the number of left brackets they contain without
a matching right bracket:

ε0

��
(1

++666
666

666

�����
���

���
���

�

()0

��

((2

))+++
++

**4
44

44

()(1

))+++
+

��

(()1

))+++
+

��

(((3

))+++
++

��
()()0 ()((2 (())0 (()(2 ((()2 ((((4

This yields the following well-structured, but still infinite automaton:

q0

1
 q1

1


1

�� q2

1
&&

1

�� · · ·
1

��

As before, one can prove S(ε) = S(q0) by coinduction-up-to.
Expression: The stream behaviour of the above automaton is given by the following infinite

system of equations: S(q0) = 1 + (X × S(q1)) and

S(qi) = (X × S(qi−1)) + (X × S(qi+1)) i ≥ 1

but it is not immediately obvious how this infinite system of equations can be solved. Rather
than trying to solve it, we shall in Section 9 develop some more general results directly on infinite
automata of the type above. The discussion of the solution of the present problem is therefore
postponed until Section 10.

9 Streams and continued fractions

In this section, we study the stream behaviour of infinite weighted automata of the following type:

q0r0

u0 &&

l0

,,
q1r1

u1 &&

l1

,,

d1

-- q2r2

u2


l2

,,

d2

-- · · ·
d3

--

All of the labels and output values are arbitrary real numbers. The labels li and ui, for i ≥ 0,
and di, for i ≥ 1, could be pronounced as level , up, and down. The stream behaviour of this
automaton will be expressed by means of a (generalised) continued fraction, but before we deal
with it in its full generality, we first treat two special cases that are particularly relevant for many
of the counting problems to come.

The first case concerns the situation that all output values ri are 0 but for the output value r0

of the first state q0, which (may be arbitrary but for convenience) has been chosen to be 1:

q0

u0


l0

$$
q1

u1


l1

��

d1

�� q2

u2
&&

l2

��

d2

�� · · ·
d3

��
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Theorem 9.1 The stream behaviour S(q0) of the state q0 in the automaton above is given by the
following continued fraction:

S(q0) =
1

1 − (l0 × X) − (u0 × X) × (d1 × X)

1 − (l1 × X) − (u1 × X) × (d2 × X)

1 − (l2 × X) − (u2 × X) × (d3 × X)
. . .

(4)

Proof: Let us first make sense of the continued fraction, which is denoted by what seems to be
an infinite expression. Formally, it can be defined as follows. Let the streams σ0, σ1, . . . be the
unique solutions of the following system of behavioural differential equations:

differential equation initial value
σ′

i = (li × σi) + (ui × σi+1 × di × X × σi) σi(0) = 1

By the ‘Fundamental Theorem’ (2), it follows that

σi =
1

1 − (li × X) − (ui × X) × σi+1 × (di+1 × X)

for all i ≥ 0. The infinite continued fraction in the theorem can now simply be read as a suggestive
notation for σ0. Next we show that S(q0) = σ0. Consider the following relation on streams:

R = {〈r × S(qi), r × τi〉 | r ∈ IR, i ≥ 0}

where the streams τi are defined by

τi = σi × (di × X) × σi−1 × (di−1 × X) × · · · × σ1 × (d1 × X) × σ0

Because R is a bisimulation relation on IRω, S(q0) = σ0 follows by coinduction. �

For the second special case of the automaton presented at the beginning of this section, we assume
that di = 0 for all i ≥ 1, that is, there are no downward transitions. In contrast to the automaton
of Theorem 4, however, all states may have again a non-trivial output value ri ∈ IR:

q0r0

u0   

l0

,,
q1r1

u1   

l1

,,
q2r2

u2   

l2

,,
· · ·

Theorem 9.2 The stream behaviour S(q0) of the state q0 is given by the following ‘upward’ con-
tinued fraction:

S(q0) =
r0 + (u0 × X) ×

r1 + (u1 × X) ×
r2 + (u2 × X) ×

...
1 − (l3 × X)

1 − (l2 × X)
1 − (l1 × X)

1 − (l0 × X)
(5)

The proof is omitted. It can be given along the same lines as the proof of Theorem 4.
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Finally, we return to the automaton at the beginning of this section, which is the most general
of all:

q0r0

u0 &&

l0

,,
q1r1

u1 &&

l1

,,

d1

-- q2r2

u2


l2

,,

d2

-- · · ·
d3

--

Theorem 9.3 The stream behaviour S(q0) of the state q0 is given by the following crazy expres-
sion, which consists of (nested) continued fractions growing both upward and downward:

S(q0) =
r0 + (u0 × X) × r1 + (u1 × X) × (· · ·)

1 − (l1 × X) − (u1 × X) × (· · ·) × (d2 × X)

1 − (l0 × X) − (u0 × X) × r1 + (u1 × X) × (· · ·)
1 − (l1 × X) − (u1 × X) × (· · ·) × (d2 × X)

× (d1 × X)

Also this theorem can be proved in the same manner as the previous two theorems.

10 More on well-bracketed words

We return to the problem of Section 8, and compute a closed expression for the stream σ =
(s0, s1, s2, . . .) of numbers sk of well-bracketed words of length k (over the alphabet {(, )}). In
addition, we shall also look at a variation of this problem, by counting well-bracketed words
consisting of k pairs of matching brackets.

At the end of Section 8, the following automaton representation for the stream σ of counts was
found:

q0

1
 q1

1


1

�� q2

1
&&

1

�� · · ·
1

��

An application of Theorem 9.1 yields the following continued fraction for σ = S(q0):

σ = S(q0) =
1

1 − X2

1 − X2

. . .

Because of the regular structure of this fraction, it is possible to come up with a more succinct
expression for σ. It is easy to see that

σ =
1

1 − (X × σ × X)

(cf. the proof of Theorem 9.1). This implies that σ is a solution of the following quadratic equation:

(X2 × σ2) − σ + 1 = 0

In order to solve it, we need a square root operator on streams. As usual in stream calculus, its
definition can be given by means of a behavioural differential equation. Let

√
σ, for all streams σ

with σ(0) > 0, be defined as the unique stream satisfying the following differential equation:

behavioural differential equation initial value
(
√

σ)′ = σ′√
σ(0)+

√
σ

√
σ(0) =

√
σ(0)
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(Here
√

σ(0) is the square root of the real number σ(0).) With this operator, quadratic equations
like the one above can be solved in much the same way we are used to in analysis (see [Rut01] for
details). This yields as the final outcome for our stream of counts of well-bracketed words:

σ =
2

1 +
√

1 − 4X2

(which equals the stream (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, . . .) having the Catalan numbers at the even
positions).

Sometimes there are various ways to enumerate the structures to be counted, by means of
different automata, and often this leads to new ways of expressing the stream of counts. As an
example, we tackle the counting problem of well-bracketed words again, in a slightly different form:
What is, for any k ≥ 0, the number sk of well-bracketed words consisting of k matching pairs of
an opening and a closing bracket?

Enumeration: Here is one way of enumerating all such words:

ε

������
����

����
�

&&))))
)))))

)))))
)))))

))

()

��111
11

��

(·)

..777
777

777
77

))--
--
-

�� ���
��

��

()() ()(·)
��11
11

�� ��.
...

.

����
���

���
� (())

�� ���
��

�
((·)) (()·) ((·)·)

))888
88

�� **4
444

4

�����
����

���

()(()) ()((·)) ()(()·) ()((·)·) (())() (())(·) ((())·) (((·))·) ((()·)·) (((·)·)·)

Any (state labelled with a) word w without dots is considered an output state (thus underlined),
and has two children; and any word with one or more dots has four children, which arise by
replacing the left-most dot in four different ways. Here is a kind of grammar for the ‘growth’ of
our automaton, describing for any state what its children look like:

w

����
��

��9
99

99

w() w(·)

w1 · w2

##'''''
''''

''''

��&&&
&&&

�� //::
:::

::

w1()w2 w1(·)w2 w1() · w2 w1(·) · w2

where w and w1 do not contain any dots.
Identification: States can next be identified according to the number of dots they contain:

ε0

������
����

����
��

&&////
/////

/////
/////

///

()0

))888
88

��

(·)1

��;;;;
;;;

;;;
;;

))++
++
+

�� **2
22

22

()()0 ()(·)1

))888
88

�� ��4
44

44

�����
���

���
� (())0

�� ���
���

�
((·))1 (()·)1 ((·)·)2

''33
33
3

�� **�
��

��

�����
����

����

()(())0 ()((·))1 ()(()·)1 ()((·)·)2 (())()0 (())(·)1 ((())·)1 (((·))·)2 ((()·)·)2 (((·)·)·)3

yielding the following automaton:

q0

1


1

$$
q1

1


2

��

1

�� q2

1
&&

2

��

1

�� · · ·
1

��
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Expression: We find the following expressions for the stream of answers S(q0):

S(q0) =
1

1 − X − X2

1 − 2X − X2

1 − 2X − X2

. . .

=
2

1 +
√

1 − 4X
=

1

1 − X

1 − X

1 − X

. . .

(= (1, 1, 2, 5, 14, . . .), the Catalan numbers). The first equality follows from formula (4). The
second and third equalities can be obtained similarly to our first problem on well-bracketed words,
at the beginning of the present section.

11 Permutations

A permutation (bijection) p : {1, . . . , k} → {1, . . . , k} can be represented by the corresponding
sequence of images p = (p(1) · · · p(k)). Another very common and equivalent representation, which
is the one that we shall be using, describes a permutation by the (unique) sequence of cycles of
which the permutation is composed. For instance, the permutation p = (532461), with p(1) = 5,
p(2) = 3, p(3) = 2, p(4) = 4, p(5) = 6, and p(6) = 1, can also be represented by the following
sequence: p = (156)(23)(4). Here a cycle c = (x1 · · ·xk) denotes a permutation of {x1, . . . , xk}
defined by: c(xi) = xi+1, for all 1 ≤ i ≤ k − 1, and c(xk) = x1. We start with a trivial question,
for any k ≥ 0: what is the number sk of permutations of the set {1, . . . , k} (defining s0 = 1)? The
following automaton enumerates all permutations by listing all possible sequences of cycles:
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Any state at level k represents a permutation of the set {1, . . . k} and is therefore an output state.
It can make a transition to a state at the next level, either by adding the number k + 1 to one of
the existing cycles or by adding the new cycle (k+1). There are (for all states at level k) precisely
k transitions of the first, and one transition of the second type, k + 1 transitions in total. This
explains the structure of the automaton above, and at the same time indicates that all states of
every single level can be identified, yielding the following automaton:

q0
1   q1

2   q2
3   · · ·

Applying formula (5), with lk = 0 and uk = k + 1 for all k ≥ 0, we obtain

S(q0) = 1 + 1!X + 2!X2 + 3!X3 + · · ·
for the stream (s0, s1, s2, . . .) of counts we are after. In other words, there are k! different permu-
tations of the set {1, . . . , k}, which comes as no surprise.

We have chosen to represent permutations by sequences of cycles in the automaton above,
because it can be easily adapted to deal with various related counting problems. A first and
straightforward variation is to keep track of the total number of cycles in each permutation. This
we can do by fixing any real number (variable) u, which we use as a label for all transitions that
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represent the addition of a new cycle (recall that all other transitions have label 1, which is as
usual omitted):
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Identifying again all states of the same level gives the following equivalent automaton:

q0
u   q1

u+1   q2
u+2   · · ·

to which, as before, formula (5) an be applied, now yielding

S(q0) = 1 + u × X + u(u + 1) × X2 + u(u + 1)(u + 2) × X3 + · · ·
= (1 − X)−u

where the latter equality can be proved using some elementary stream calculus. (Note that this
formula generalises the solution of our previous counting, which is obtained by taking u = 1.)
The above stream can be considered as having u as a parameter. It encodes all numbers sk,n,
for k, n ≥ 0, counting all permutations of {1, . . . , k} consisting of n cycles. These numbers are
known as the Stirling numbers of the first kind, and can be computed from the stream above as
the (Taylor) coefficients of the powers un × Xk. (One can also treat both X and u as formal
variables; this would bring us to multivariate stream calculus, which is omitted here.)

Next we present yet another way of counting permutations while keeping track of the number of
cycles, yielding another representation of the Stirling numbers of the first kind. More specifically,
permutations can, alternatively, be enumerated as follows:
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The general pattern in which this tree-like weighted automaton is grown, is as follows. In any state
(node) at level n− 1, all of the numbers {1, . . . , n− 1} occur, possibly together with a number of
dots. All states without dots are output states, representing completed permutations. States with
dots represent permutations that have not yet been completed, and the dots indicate the places
where further growth is possible. More specifically, for each dot, there are four successor states:
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−n− − · n · − − · n− −n · −
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in which the dot has been replaced by n, ·n·, ·n, and n·, respectively. In addition, any state at
level n − 1 has two more successors, corresponding to the opening of a new cycle:

−
u ��

u

��.
...

..

−(n) −(n·)
As before, the transitions in which a new cycle is opened, are labelled by u (instead of 1).

Similarly to the second counting problem about well-bracketed words in Section 10, states can
be identified according to the number of dots they contain, as is indicated by the superscripts
below:
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Identification of all equivalent states yields the following well-structured automaton:
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to which formula (4) can be applied, resulting in the following continued fraction:

S(q0) =
1

1 − uX − 1uX2

1 − (u + 2)X − 2(u + 1)X2

1 − (u + 4)X − 3(u + 2)X2

. . .
= (1 − X)−u

The second equality is obtained by combining our first and our second way of counting permuta-
tions and cycles. Thus we have obtained two different expressions for the Stirling numbers of the
first kind. Forgetting about the number of cycles again, that is, taking u = 1, we obtain
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q1
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�� q2
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�� q3

4
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3
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which leads to the following equalities:

S(q0) =
1

1 − X − 12X2

1 − 3X − 22X2

1 − 5X − 32X2

. . .
= (1 − X)−1

= (0!, 1!, 2!, 3!, . . .)
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What is, moving to a next question, for any k ≥ 0 the number sk of permutations p of {1, . . . , k}
such that p ◦ p = 1 (the so-called involutions)? For this we return to the first automaton of this
section, from which we now remove all states but the ones consisting of 1- and 2-cycles only:
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States can be identified according to the number of 1-cycles, which can still become 2-cycles, they
contain, as indicated by the superscripts below:
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yielding the following automaton
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Applying formula (9.3) yields an expression for S(q0), but not a very pretty one (which is therefore
omitted).

For the special case of permutations consisting of 2-cycles only, the same enumeration as for
the involutions can be used, the only difference being that states that contain 1-cycles are no
longer output states:
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The corresponding reduced automaton now looks like
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with, according to formula (4), a pleasant expression for the stream of answers:

S(q0) =
1

1 − 1 · X2

1 − 2 · X2

1 − 3 · X2

. . .
Yet another question: what is, for any k ≥ 0, the number sk of permutations p : {1, . . . , k} →
{1, . . . , k} such that |p(i)−i| ≤ 1, for all 1 ≤ i ≤ k? These are precisely all permutations consisting
of 1-cycles, and of 2-cycles (xy) with y = x + 1. The following automaton, which happens to be a
further pruning of the last tree-like automaton above, lists them all:
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(Note that now all states are output states again.) All states ending with a 1-cycle and all states
ending with a 2-cycle can be identified, respectively, leading to the following automaton and
corresponding expression for the stream of answers:

q0
�� q1�� 		 S(q0) =

1
1 − X − X2

For the last example of this section, we return to the representation of permutations mentioned
at the beginning of this section. That is, a permutation (bijection) p : {1, . . . , k} → {1, . . . , k} will
be represented below by the corresponding sequence of images p = (p(1) · · · p(k)). Referring to this
representation, a permutation is called alternating whenever either p(0)> p(1)< p(2)> · · · p(n) or
p(0)<p(1)>p(2)< · · ·p(n). What is, we ask ourselves (because we already know that the question
will have a pretty answer), for any odd natural number k ≥ 0, the total number sk of alternating
permutations of the set {1, . . . , k} (putting sk = 0 for all even k)? Here is an enumeration of all
such odd alternating permutations:
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The general pattern according to which this tree is grown is as follows. As before, dots indicate
places where further growth is possible. And any dot at level n has two children:
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23



in which the dot has been replaced by n + 1 or by n + 1 with dots on both sides. Also as before,
states can be identified according to the number of dots they contain:

(·)1

�����
��
��
�

��
(1)0 (·1·)2

�����
���

��

�� ""%%
%%%

%%%

???
????

????
????

???

(21·)1

''"""
"""

"

��

(·2 · 1·)3

�� ""%%
%%%

%%%

???
????

????
????

??

&&////
/////

/////
/////

/////
/// (·12)1 (·2 · 1·)3

(213)0 (21 · 3·)1 (32 · 1·)2 (·3 · 2 · 1·)4 (·231·)2 · · ·

After identification of all equivalent states, the following automaton is obtained:
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Note that in this automaton, the stream of answers is represented by q1 and not by q0. Using (a
minor variation of) formula (4), we get

S(q1) =
X

1 − 1 · 2 · X2

1 − 2 · 3 · X2

1 − 3 · 4 · X2

. . .

= Taylor(tan(x))

where the latter equality follows from the fact that the reduced automaton above is precisely the
same as the automaton that we found at the end of Section 4 by splitting the derivatives of the
stream τ of the Taylor coefficients of the function tan(x).

12 Set partitions

Our last series of counting problems deals with set partitions, counted in various ways.
What is, for any k ≥ 0, the number sk of ways in which the set {1, . . . , k} can be partitioned

into subsets (the so-called Bell numbers)? The following automaton enumerates at level k all such
partitions:
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States can be identified according to the number of subsets used in the corresponding partition,

24



as indicated by the superscripts below:
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Identifying as usual all equivalent states gives the following reduced automaton:
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1   q1
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q3
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$$
· · ·

And by formula (5), the following expression is obtained for our stream of answers:

S(q0) = 1 +
X

1 − X
+

X2

(1 − X)(1 − 2X)
+

X3

(1 − X)(1 − 2X)(1 − 3X)
+ · · ·

It is easy to keep track explicitly of the number of subsets used in any partition, by labelling
all transitions in which a new subset is added to the partition by a fixed real number (variable) u:
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Identification can be done as before, yielding the following reduced automaton
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u   q1
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q3
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· · ·

and corresponding expression for the stream of answers:

S(q0) = 1 +
uX

1 − X
+

u2X2

(1 − X)(1 − 2X)
+

u3X3

(1 − X)(1 − 2X)(1 − 3X)
+ · · ·

This stream encodes, for all k, n ≥ 0, all numbers sk,n of partitioning the set {1, . . . , k} into n
subsets. These numbers are called the Stirling numbers of the second kind. Note that by taking
u = 1, the previous case is found back.

We have seen various examples where a different way of enumeration, using a different rep-
resentation of the structures to be counted, leads to a different but equivalent expression for the
solution of the counting problem. This phenomenon is here further illustrated by the following,
alternative solution for the problem of counting set partitions. For any k ≥ 0, the following au-
tomaton contains at level k all partitions of the set {1, . . . , k} as output states; in addition, each
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level contains various intermediate states containing dots that indicate possibilities for further
growth:
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The general pattern is as follows: For any dot occurring in a node at level n − 1, there are two
children, obtained by replacing the dot by either n or by n and a dot (allowing still further growth):
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In addition, any node at level n − 1 has two more children, obtained by opening a new subset
containing n, again with or without the presence of a dot:
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As in all the previous examples of representations involving dots, states can be identified according
to the number of dots they contain:
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yielding the following reduced automaton
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and, by an application of formula (4), the following corresponding expression for the stream of
answers:

S(q0) =
1

1 − X − X2

1 − 2X − 2X2

1 − 3X − 3X2

. . .

= 1 +
X

1 − X
+

X2

(1 − X)(1 − 2X)
+

X3

(1 − X)(1 − 2X)(1 − 3X)
+ · · ·
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where the latter equality is obtained by identifying the first and the second solution of this problem.
Again, it is possible to keep track of the number of subsets used in each partition. Omitting the
enumerating automaton, we only present the resulting reduced automaton:
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and the corresponding expression for the stream of answers:

S(q0) =
1

1 − (u × X) − uX2

1 − ((u + 1) × X)) − 2uX2

1 − ((u + 2) × X)) − 3uX2

. . .

13 Special numbers

The theorem below summarizes the representations by means of a reduced weighted automaton,
of the various sequences of so-called special numbers that we have encountered in the preceding
sections. It clearly shows that these representations have a great structural similarity.

Theorem 13.1 In the table in Figure 1, the stream of numbers mentioned on the right is repre-
sented by the state q0 of the automaton on the left, except for the stream of the tangent numbers,
which is represented by the state q1.

14 Discussion

For each and every single counting problem that we have dealt with in this paper, there exist
in the literature far more detailed and complete treatments (see the references mentioned in the
introduction). The contribution of the method of coinductive counting lies in the fact that it solves
all these different counting problems, in the very same way: (1) The structures to be counted are
always enumerated by infinite tree-shaped weighted automata. (2) These automata are reduced
by means of bisimulations. (3) From the resulting reduced automata, an expression for the stream
of answers is derived by means of elementary stream calculus. Traditionally, the situation with
respect to these points is as follows: (1) Many different mathematical structures are used as
representations of combinatorical objects, including weighted graphs, sets of walks, various kinds
of trees, formal languages (regular and context-free), automata, (transfer-) matrices, and so on.
(2) We know of no systematic way, in the sense of being based on one specific notion, of reducing
such representations to smaller or better structured ones. (3) Stream calculus [Rut00a, Rut01]
can be viewed as a formalisation and generalisation of the use of both generating functions and
formal power series (cf. [Rut01] for a detailed comparison).

Technically, the novelty of the coinductive counting method is based on (i) the systematic use
of infinite weighted automata, which have received in the literature on automata theory sofar no
attention; (ii) the use of the quantitative notion of stream bisimulation; and (iii) the consequent
use of a coinductive calculus of streams in the search for a closed expression for the outcome.

The presently proposed method of coinductive counting is far more restricted in scope than
the references mentioned in the introduction. Notably, no (classical) analytical methods are being
used here. Such methods might be used, though, at the point where our methods stops: many of
the obtained stream expressions are suited for further analytical treatment. The use of continued
fractions has been inspired by [Fla80]; see also [GJ83, Chapter 5.2]. The formal treatment of such
continued fractions seems somewhat easier in the present setting of coinductive stream calculus.
Also, some of the combinatorial interpretations of the various fractions discussed here, seem to be
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automaton represents
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simpler and more uniform. A basic reference on weighted automata is [BR88]. Most of the Sections
2 through 4 can be fairly straightforwardly generalised from streams to so-called multivariate
streams or, more generally, to formal power series in many non-commutative variables and with
coefficients in an arbitrary semiring. (One of the obvious things to be done is replacing inverse
and shuffle inverse by star and shuffle star.) Much of this has been worked out in [Rut99, Rut00a].

We mention very briefly a few points for further research. (i) The strength of the presented
method of counting through enumeration and minimization is its generality and its simplicity.
Its weakness is the sometimes more and sometimes less ad-hoc character of the way the counted
structures are enumerated. This raises the question whether there exists a more systematic way
of enumeration, possibly in terms of some kind of grammars for tree-growing. Such grammars will
no doubt be closely related to an alternative approach to counting, which is based on structural
properties expressed as a kind of domain equation (such as T = 1+T ×X×T for binary trees), as
present in for instance [FS93] and also [BLL98]. Also the work of the Florence school of Pinzani
and others [BLPP99] is related to this point. (ii) The issue of minimization of weighted automata
has of course only been touched upon. In the presented examples, there usually was an obvious
minimized candidate, but a more systematic and algorithmic analysis would be welcome. (iii) We
have dealt with the univariate case (in X) only. It is worthwhile to develop also the multivariate
case in some detail. (iv) In one case (Section 8), we have distinguished between rational and
algebraic streams. Notably in the work of Flajolet, such as [FS01], much more has already been
said about the classification of streams (there rather: generating functions) in analytical terms.
Looking at the various weighted automata that we have encountered sofar, we distinguish at least
three types: Finite automata correspond to rational streams. Infinite automata that are ‘regular’
in the sense of having only finitely many states that locally have a different transition behaviour;
these correspond to algebraic streams (see the examples on well-bracketed words). And infinite
automata that are not regular in the afore-mentioned sense, but might still be considered regular
according to some other criterion (for instance, involving nicely increasing sequences of labels, such
as in most of our examples). The latter type of automata and the streams they represent seem to
deserve further study. (v) In some of the counting exercises not reported on here, the use of what
we would like to call ‘heavy-weighted automata’ turned out to be extremely practical. What we
have in mind are automata that have transitions labelled by complete stream expressions (such
as X3 or X + X2) rather than by real numbers (and X) only.
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