
8 6 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 7 / $ 2 5 . 0 0 © 2 0 0 7 I E E E

“Queen Minnie,” from folding parts. They
have a blueprint and all the necessary compo-
nents. So, according to Mickey, “All you do is
put it together.” But that proves easier said
than done. Some parts behave in unexpected
ways, and others simply won’t fit together. In
the end, when the ship is launched, everything
begins to collapse, and once out at sea, it sep-
arates into its parts again.

The experience of Mickey, Donald, and
Goofy resembles that of many developers who
build software using open source components.
OSS projects cover a wide range of topics but
often use incompatible technologies. Further-
more, even though the topics might address all
developers’ needs, new features and other mod-
ifications primarily address project contributors’
interests and wishes.1 The contributors’ needs
and experience will also drive the choice of de-
velopment environment and platform.2 If you
want to use OSS widely, you and your team
must master several programming languages, in-
terfaces, or network protocols. In other words,

even though you get OSS components for free,
integrating them usually requires significant
time and effort.3 This is especially problematic
in early development phases when it’s often un-
clear whether a system is feasible or acceptable
to potential users, and you want to rapidly pro-
totype many alternatives quickly and with min-
imal effort.4

We’ve developed the Adaptable Multi-Interface
Communicator infrastructure to support rapid
prototyping from OSS components. AMICO is
based on existing middleware platforms for
component integration, but it focuses on prag-
matic aspects of OSS integration—often absent
from existing integration platforms. AMICO sat-
isfies requirements based on our experiences in
solving practical problems in several projects.

Middleware infrastructure
requirements

Introducing a flexible middleware infra-
structure can facilitate component integration
and significantly speed up application deploy-

focus 2
Open Source Software: All
You Do Is Put It Together

A
s of 1 August 2007, SourceForge.net hosted more than 150,000
registered open source software projects, and many more projects
are available on other sites. With so many OSS choices, it might
seem that building a new application is only a matter of finding

the appropriate projects and putting them together. In fact, this idea inspired
our subtitle, borrowed from a famous 1938 Walt Disney cartoon. In “Boat
Builders,” Mickey Mouse, Donald Duck, and Goofy try to construct a ship,

software composition

Željko Obrenović, CWI Amsterdam

Dragan Gašević, Athabasca University

An infrastructure
for rapid
prototyping
with open
source software
components focuses
on pragmatic
aspects of OSS
integration.
Two examples
demonstrate the
infrastructure’s
use in complex
scenarios.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301659821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ment.5 However, existing integration middle-
ware often poses problems for OSS compo-
nents. Although T.R. Madanmohan and Rahul
De’ argued that OSS gives organizations new
options for component-based development sim-
ilar to commercial off-the-shelf software,1 using
existing COTS middleware systems to support
OSS component integration is very difficult.
OSS components use such diverse technologies,
protocols, and implementation platforms that
wrapping the code in COTS-compliant pack-
ages is practically impossible.5 (The “Ambient
Intelligence in Interactive TV” sidebar illus-
trates this diversity in relation to the AMICO ex-
amples we describe later.)

Loosely coupled integration seems more ap-
propriate for OSS components because it ad-
dresses this heterogeneity and enforces fewer
restrictions on the integration. Many applica-
tion areas have developed infrastructures for
loosely coupled component integration. These
infrastructures usually provide a shared data
store with notification services. For example,
the Elvin system6 is a well-known pure notifi-
cation service (without data storage), applied
successfully to many collaborative applications.
The Lotus PlaceHolder system7 is another noti-
fication service, which additionally incorpo-
rates a persistent data store that applications
can use to manage shared data. Any client
changes to this data generate notifications to
other interested clients.

Several data repositories have models simi-
lar to these notification services. For example,
tuplespace systems such as Linda,8 the Stan-
ford EventHeap,9 and JavaSpaces10 let appli-
cations store untyped tuples of named data el-
ements in the model. However, most of these
systems focus on collaborative applications or
context-aware computing and don’t easily
adapt to other domains.

Infrastructures for service-oriented and re-
lated computing applications take a similar
approach. For example, the Service-Oriented
Device Architecture models devices as services
and embeds them on an enterprise service
bus.11 In this way, SODA makes device access
and control available to a wide range of enter-
prise applications. Service-oriented architec-
tures are, however, based on unified interfaces
and relatively complex integration standards.

Most existing integration middleware sup-
ports only a limited number of programming
interfaces, while OSS components use a di-

verse set of programming languages and com-
munication protocols.

Our experience shows that rapid applica-
tion development with a broader set of OSS
components requires a middleware integration
infrastructure that offers the following:

S e p t e m b e r / O c t o b e r 2 0 0 7 I E E E S O F T W A R E 8 7

As part of the Information Technology for European Advancement
(ITEA) Passepartout project (www.passepartout-project.org), we’ve been
exploring novel user interfaces in the interactive TV domain. One project
goal was to explore available components for building ambient-intelligence
solutions and to develop recommendations for their use. Because predicting
how users might accept a particular solution was difficult, we had to rapidly
prototype many systems and evaluate them to see how well they supported
the project’s vision.

The OSS community has developed many components that support novel
interaction modalities. Computer vision alone includes hundreds of freely
available pieces of software (see www.cs.cmu.edu/~cil/v-source.html).
We’ve used several of these components, such as the Open Computer Vision
Library (http://opencvlibrary.sourceforge.net), a collection of algorithms and
sample code for computer-vision problems. The HandVu project (www.
movesinstitute.org/~kolsch/HandVu/HandVu.html) supports a vision-based
hand-gesture interface. There are also several open source speech-recognition
platforms, such as CMU Sphinx-4 (http://cmusphinx.sourceforge.net/
sphinx4), as well as many text-to-speech platforms—for example, FreeTTS
Text-to-Speech Synthesizer (http://freetts.sourceforge.net) and NeXTeNS
Text-to-Speech Synthesizer for Dutch (http://nextens.uvt.nl).

Among the many open source AI-based interface solutions, Sesame
(www.openrdf.org) is a Resource Description Framework database, sup-
porting RDF Schema inferencing and querying. KAON (http://kaon.
semanticweb.org) is an infrastructure for managing Web Ontology Lan-
guage-Description Logics, Semantic Web Rule Language, and F-Logic
ontologies. ConceptNet (http://web.media.mit.edu/~hugo/conceptnet)
is a common-sense knowledge base and natural-language-processing
toolkit that supports many practical, real-world, textual-reasoning tasks.

We also used many open source interactive multimedia components.
VLC (www.videolan.org) is a highly portable multimedia player for various
audio and video formats. Ambulant Player (www.cwi.nl/projects/Ambulant)
is a media player that supports the Synchronized Multimedia Interchange
Language. VeeJay (http://veejay.dyne.org) is a visual instrument and
video sampler that lets users play and mix the video in real time.

These components use various programming languages, such as
Java, C++, and Python. Many of the projects offer interfaces that can
make their integration easier. For example, ConceptNet, LifeNet, and
the Ambulant Player run XML-RPC servers, enabling other servers to ac-
cess their functionality without linking their code. Multimedia tools, such
as VeeJay, offer the Open Sound Control interface. NeXTeNS and Hand-
Vu offer TCP interfaces. You can control the VLC player through a built-
in HTTP or Telnet server. Other components don’t provide explicit service
interfaces, so you must use them as libraries to compile and link with
your applications.

Ambient Intelligence in Interactive TV

■ Support multiple integration interfaces
and enable integration of new ones. Com-
ponents from open source projects use di-
verse integration interfaces, none of which
is predominant. Adapting components to
one common interface is never an easy
task, and it’s sometimes impossible.

■ Enable flexible integration. Existing compo-
nent integration systems often require devel-
opers to agree on many rules, such as nam-
ing conventions. Infrastructures that require
such agreements restrict component reuse.

■ Bridge data and temporal gaps. Low-level
components, such as sensors, and higher
level components, such as Web services,
work with significantly different data struc-
tures and temporal constraints. For exam-
ple, face-detector sensors can send dozens
of UDP packets per second with simple
data structures about detected events, while
Web services use the more complex HTTP
transport and XML-encoded data, incur-
ring delays that sometimes measure in sec-
onds. To integrate such components, the in-
frastructure must be able to abstract and
map different data types supporting tempo-
ral functions, such as frequency filtering.

■ Support fault tolerance. Many OSS compo-
nents are still under development and often
unstable. The infrastructure must therefore
ensure that components that crash won’t
cause other components to crash.

■ Use open standards. Standardization is a
significant driving force for progress be-
cause it codifies best practices, enables
and encourages reuse, and facilitates inter-
working between complementary tools.

■ Reduce the initial effort to develop a sim-
ple component. In other words, make sim-
ple things simple. Most COTS middleware
infrastructures are powerful, but the ini-
tial effort to develop a simple component
can be high.

The AMICO infrastructure
AMICO is a generic infrastructure that meets

these requirements so that developers can rap-
idly prototype and experiment with OSS com-
ponents. It’s available as an open source proj-
ect at http://amico.sourceforge.net, where
you’ll also find many examples.

Basic concepts
AMICO OSS is based on a publish-subscribe

infrastructure for integrating loosely coupled
services. In such infrastructures, a publisher up-
dates a shared data repository. The publisher
might or might not know or care whether any
subscribers are listening for updates. The
loosely coupled approach can be highly adapt-
able when using simple data structures, because
new applications can use existing data in the
model and add their own without breaking the
infrastructure. Components communicate by
exchanging events through a shared data repos-
itory consisting of named slots called variables.
Components can update the variables and reg-
ister for notifications about variable changes.
Modules can also derive new variables by pro-
cessing existing ones.

Figure 1 shows a UML class diagram of ba-
sic concepts of our integration infrastructure.
Its core is the shared data repository called the
communicator. Communication adapters up-
date basic variables and register templates. The
communicator registers each template with
variables that trigger its evaluation and with a
string that can replace parts with variable val-
ues. For example, a template string “SELECT
<%=fields%> FROM <%=table%>” will re-
turn an SQL query that replaces <%=fields%>
and <%=table%> with actual values of vari-
ables named fields and table. Each adapter
receives a notification with populated tem-
plates (that is, templates whose variables are
replaced with actual values). This notification
will cause some adapter-specific action—for
example, invoking the procedure whose pa-
rameter is the SQL SELECT statement.

Integration support for multiple interfaces
Up to this point, the infrastructure’s core

resembles regular notification services. A first
key difference derives from our requirement to
support multiple integration interfaces. The
AMICO infrastructure provides a unified view
of different communication interfaces, imple-
menting a common space for interconnecting
them. As figure 2 shows, we’ve supported sev-
eral widely used communication protocols,
such as XML-RPC, Open Sound Control
(OSC), URL, and SOAP, as well as many ap-
plication-specific adapters (see figure 2a). The
infrastructure is extensible, so developers can
add new communication interfaces. Figure 2b
and 2c show Java code fragments for updating
infrastructure variables by using XML-RPC
and OSC interfaces, respectively. Figure 2d

8 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

The AMICO
infrastructure

provides
a unified view

of different
communication

interfaces.

and 2e show fragments of the adapter’s con-
figuration files for mapping variable updates
to XML-RPC method calls and OSC mes-
sages, respectively.

One main reason AMICO supports multiple
interfaces is that many developers are familiar
with only one interface standard and, some-
times, haven’t even heard of others. In these
cases, it was easier to extend AMICO with a
new integration interface than to adapt the
components to one common interface.

Flexible component integration
AMICO enables flexible system configuration

through the derivation of new named slots, or
variables. New variables are derived using a set
of transformations, defined in XSLT, a stan-
dardized, commonly used transformation
script language.12 Figure 3 presents an example
XSLT fragment transformation that derives the
variable distance-rank from the variable
distance.

An important goal of our transformation
framework is to enable variable transforma-
tions in several steps. For example, in sensing-
based systems, you can start from low-level
sensor data and transform it into intermediate
variables. Other transformations can then use
these intermediate variables to derive applica-
tion-specific variables. Using intermediate
variables can also simplify integration of new
sensing modules: you can reuse transforma-
tions from intermediate to application-specific

variables and add only transformations of ap-
plication-specific variables to intermediate
variables. Although components can use the
same variables, we propose deriving variables
in several layers in accordance with the ideas
of model-driven transformations.13

The infrastructure also lets you dynamically
load and unload transformation scripts. In this
way, you can reconfigure the infrastructure on
the fly, which lets you support, for example, in-
teraction with a newly registered device or a
user’s interaction modality preferences.

Bridging semantic and temporal gaps
The transformations also provide the

means for bridging the different abstraction
levels found in different data structures.
Transformations can abstract low-level data
so that an application doesn’t receive all low-
level events. For example, it might receive no-
tification only when a user enters a certain
area in a camera’s visual field or exceeds a mo-
tion-detection threshold.

Transformations can also solve the prob-
lem of different component temporal con-
straints. Transformations can use time stamps
to derive new slots that are updated with
lower frequency, allowing higher level mod-
ules to ignore other updates. This can simplify
modules because they don’t have to change to
meet other modules’ synthetic and temporal
constraints. It also makes module reuse easier.

Because AMICO can work with significantly

S e p t e m b e r / O c t o b e r 2 0 0 7 I E E E S O F T W A R E 8 9

Variable Communicator

receives

Communication
adapter

Adapter
action

Populated template

Condition

Template

Template-action
mapping

generates

derived from

trig
gered by

Application
module

uses

register
Derivation

script

Derived
variable

Basic
variable

0..*

1..*

1..*1..*

1..*

1..*

1..*

1

*
update

*

Figure 1. A class
diagram of AMICO

integration
infrastructure
concepts.

9 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

(a)

(b)

(d)

(e)

(c)

import java.util.Vector;
import org.apache.xmlrpc.*;

....
 XmlRpcClient xmlrpc = new XmlRpcClient("http://localhost:4310/RPC2");
 Vector params = new Vector ();
 params.addElement("distance");
 params.addElement("1.5");
 xmlrpc.execute("updateVariable", params);
....

import java.net.*;
import java.io.*;
import java.nio.channels.*;
import de.sciss.net.*;

....
 OSCTransmitter trns = new OSCTransmitter();
 InetSocketAddress scsynthAddress = new InetSocketAddress("127.0.0.1", 57110);
 trns.send(new OSCMessage("/update", new Object[] { "distance", "1.5" }),
 scsynthAddress);
....

<method-call server="http://localhost:4320/RPC2"
 method="guess_mood" trigger-variables="text">
 <parameter param-type="template"
 value="<%=text%>"/>
 <result update-variable="text-mood"/>
 </method-call>

 <message osc-host="localhost" osc-port="9999"
 message="/effect_key/enable"
 trigger-variables="lives-enable-effect">
 <parameter param-type="variable"
 osc-type="int32" value="lives-enable-effect"/>
 </message>

Ambulant Player

ConceptNet

VLAN player
BabelFish translation

PySMS
Alexa services

Google services

Media repositories

Rule bases

User profiles

OpenCV face detection

Speech recognition

HandVu

Subtitles reader

Screen capturer

RSS reader

Move.Me Pillow
VeeJay

MLIF server

URL

AMICO

infrastructure
core

UDP

TCP

Soap

Application
specific

Open Sound
Control (OSC)

XML-RPC

Text-to-speech
• FreeTTS (for English)
• NeXTeNS (for Dutch)

SMS messenger
Email messenger

Content charger

Content charger applet

Scripting applet
(RealPlayer, WM
player, VRML player ...)

Sesame RDF

Aglets

Jess
KAON

SQL ODBC

WordNet

Figure 2. Example AMICO interfaces and code fragments. (a) The infrastructure supports a wide range of
communication interfaces (orange) and many application-specific adapters (green). Java code fragments show how
to update variables using (b) XML-RPC and (c) OSC interfaces as well as adapter configuration files for mapping
variables updates to (d) XML-RPC method calls and (e) OSC messages.

different data and temporal constraints, we
were also able to use it as a simple integrator
for existing Web services. For example, we in-
tegrated Google and Yahoo search services
with other (lower level) components.

Other requirements
AMICO’s loosely coupled approach is inher-

ently fault tolerant. Components run as inde-
pendent processes. So, if one component
crashes, it doesn’t affect other components,
even though the functionality of the system as
a whole is usually affected.

The basic AMICO technologies include
XML, Java, and Internet protocols, all using
open standards. Using open standards also en-
ables reuse of existing solutions, such as
XML/XSLT editors.

The infrastructure requires neither signifi-
cant changes to existing OSS components nor
specialized and complex tools to tailor new
applications. AMICO provides a declarative
XML platform abstraction, configuring all
communication interfaces and transforma-
tions in XML/XSLT files. This enables system
configuration with ordinary text editors and
without compilation. We’ve also created tools
to help both developers and end users. For ex-
ample, AMICO:CALC is an OpenOffice Calc
extension that lets users rapidly configure and
connect components through a spreadsheet.

Two example implementations
With the AMICO infrastructure, we’ve inte-

grated dozens of OSS components and rapidly
prototyped many interactive solutions. Two rel-
atively complex examples illustrate the use of
diverse components through diverse interfaces.

Figure 4a shows an application configura-
tion that uses camera-based face detection to
control the playback of multimedia player
components. This example also uses an RFID
reader, the Sesame RDF server, a multilingual
server (MLIF) developed by one of our part-
ners, several text-to-speech (TTS) engines, as
well as several multimedia players. The RFID
reader is a hardware component, but the AM-
ICO framework lets us treat it as an RS-232 (se-
rial) interface component. We developed a
simple adapter to map the RS-232 communi-
cation protocol to TCP. This lets the RFID
reader update a variable through detected user
IDs. The application then uses these IDs to de-
rive a query for the Sesame RDF repository,

which contains user profiles. The Sesame
adapter updates a new variable with an XML-
encoded user profile. Using a built-in XML
processor, the application then extracts more
atomic values from user profiles, such as user
language or age. The language profile deter-
mines appropriate messages and TTS engines.

The face detector determines how many
people are in front of the screen and their dis-
tances from it. The application uses these pa-
rameters to control the playback of multime-
dia players and to send messages to the user. If
no one is in front of the screen, the playback
stops. It starts up again and continues if the
face detector senses at least one person. If a
person is too close to the screen, then play-
back stops again, and the application speaks
to the user through a TTS engine. The MLIF
prepares the message in the user’s language.
The application runs several TTS engines si-
multaneously. Each engine is registered for dif-
ferent application-specific variables derived
from the language-specific message. Each
time, the application derives just one of these
variables, triggering just the TTS engine that
can support the user’s language. If no TTS en-
gine exists for a specific user language, the ap-
plication defaults to the English engine.

Figure 4b illustrates the integration of more
complex devices. Institute V2_ from Rotter-
dam is developing a biometric pillow with em-

S e p t e m b e r / O c t o b e r 2 0 0 7 I E E E S O F T W A R E 9 1

(a)

<variables>

 <variable name="distance">

 1.5

 </variable>

</variables>

(b)

<xsl:template match="/variables/variable[@name='distance']">

 <variable name='distance-rank'>

 <xsl:if test="current() >= 1">ok</xsl:if>

 <xsl:if test="current() < 1">too-close</xsl:if>

 </variable>

</xsl:template>

(c)

<variables>

 <variable name="distance">

 1.5

 </variable>

 <variable name="distance-rank">

 ok

 </variable>

</variables>

Figure 3. An example
XSLT fragment:
(a) basic variable
distance, (b) variable
transformation to
distance-rank, and
(c) derived and basic
variables.

9 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Sesame RDF
AMICO

infrastructure
core

UDP

TCP

Application
specific

XML-RPC

MLIF server

TTS engines
RFID server

Face detection

user ID

face coordinates

“You are too close”

User profiles
(ID, language, age ...)

Ambulant Player

(a)

Sesame RDF
AMICO

infrastructure
core

UDP

TCP

Application
specific

XML-RPC

MLIF server

TTS engines

Ambient light

Scripting applet
Browser

“I am a lonely pillow”

User profiles
(ID, language, age...)

VLC player

Ambulant Player

(b)

URL
Open Sound

Control (OSC)

Pillow server

RealPlayer
plug-in

Figure 4. Two example configurations of the AMICO infrastructure: (a) camera-based face detection used to control
the playback of the multimedia players and (b) integration of more complex devices.

bedded sensors for pressure, galvanic skin re-
sponse, movement patterns, and presence. We
integrated this system with the AMICO infra-
structure through the OSC interface. The sys-
tem also uses this interface for communication
between the pillow’s hardware and driver soft-
ware. In this scenario, we configured the sys-
tem so that pressure on different pillow areas
generates discrete actions. The system then
maps these actions to multimedia player com-
mands that control sound intensity and play-
back and send a message to the user. We
reused the components from the first example
by adding a mapping from one variable—a
variable that the pillow updates through the
OSC interface—to other variables.

All the components used in these examples
are relatively simple and unaware of other
components. They update the infrastructure
variables through the interfaces that are easiest
to implement. For each scenario, we’ve pro-
vided different configurations with variable
transformations. For example, figure 5 illus-
trates variable transformations from our first
example. The face detector updates its applica-
tion-specific variable by sending coordinates of
detected faces over a UDP interface. The infra-
structure then runs transformations that derive
intermediate variables: one describing the
number of detected faces and, for each face, a
variable containing its coordinates. The num-
ber of faces directly correlates to platform-in-
dependent variables representing the number
of people in the room. The face coordinates fa-
cilitate derivation of the average face height,
which roughly correlates to the distance of
people from the camera. The system can then
use the derived distance variable to change the
variables used to control content presentation,
such as volume intensity or font size.

Although we could directly obtain play-
back controls from a sensor variable, deriving
variables in several layers is more flexible. For
example, we could have derived the playback
control from a speech recognizer that updates
the same variable. In this way, we could con-
trol the player through speech or motion, but
we wouldn’t have to reconfigure the system
because all the sensing modules update the
same variables. They just use different trans-
formations. Depending on the media player
used, the system can transform playback con-
trol variables into XML-RPC function calls
(Ambulant Player), HTTP GET requests (VLC

player), OSC messages (VeeJay), or TCP mes-
sages (Scripting applet).

Discussion
Our work raises two questions: one regard-

ing its implications for OSS developers who

S e p t e m b e r / O c t o b e r 2 0 0 7 I E E E S O F T W A R E 9 3

Update face-detection-value (<x>,<y>,<width,<height>;)+

Face-detection sensor variable

Face # 1 coordinates

Average height of faces

Average distance of people

Font sizeSound volume

play | pause | stop set_volume<value> set_font_size<value>

Face # n coordinatesNumber of faces

Number of people

Playback controls
(play for one or more.

Stop for 0 faces)

. . .

Figure 5. Derivation of variables in a camera-based multimedia
playback control. The face detector updates its application-specific
variable by sending the coordinates of faces it detects. The
infrastructure then runs transformations that derive several other
intermediate variables.

wish to make their software easier to use with
other applications and the other regarding ob-
served performance issues.

Simplifying OSS component integration
When OSS components offer their function-

ality through open communication interfaces,
integration with AMICO is straightforward: you
just edit configuration files. When the compo-
nents don’t do so, you must implement
adapters to turn the component into a simple
standalone service. To make rapid prototyping
easier, we encourage OSS developers to include
such standalone service-oriented examples
with their distributions. Building, installing,
and running standalone programs is usually
straightforward, even for users who aren’t fa-
miliar with the technology that a component
uses—that is, even if you don’t know Python
or Java, it’s still relatively easy to install Python
or Java interpreters and to build and run
Python or Java applications). When you in-
clude service-oriented examples with your dis-
tributions, applications written in other lan-
guages can use your components, even without
middleware infrastructures such as AMICO. For
example, you can expose a component’s func-
tions with the Python OSC server library,
which other components can access through
Java or C++ OSC client libraries.

Adapting OSS components to standalone
services doesn’t require changing the basic
component functionality. You need only add
code that offers the functionality through any
of the supported open communication inter-
faces, such as those shown in figure 2. As a
starting point for these adaptations, we’ve of-
ten used examples and demo programs that
come with OSS distributions. For instance,
OpenCV comes with several demo programs,
illustrating many of the library’s possible uses.
We’ve adapted several of these demo pro-
grams by adding a simple part to connect the
component with AMICO. For example, in the
face-detection example, an original demo pro-
gram detected the faces and wrote the coordi-
nates on the console. We modified this pro-
gram into a simple “push” server that, instead
of writing data to the console, sent the de-
tected coordinates as UDP packages to AMICO

using a C socket library. For components that
require bidirectional and more complex com-
munication, we usually use TCP-based inter-
faces, such as XML-RPC.

AMICO performance issues
The communication interfaces and medi-

ated interaction reduce system performance
compared with more tightly coupled compo-
nents. The exact performance overhead de-
pends on the component network distribution,
the AMICO transformation complexity, the in-
tegration interfaces, and the OSS component
memory and processor overhead. AMICO

comes with several tools that can help devel-
opers measure delay and identify performance
bottlenecks. For the example applications de-
scribed earlier, performance has been satisfac-
tory, introducing processing overhead of less
than 50 microseconds.

Although this delay is acceptable for most
interactive applications, AMICO isn’t suitable
for real-time applications. It makes no guar-
antees regarding the data transmission speed.
Extending its current best-effort model to sup-
port performance requirements of real-time
applications is a subject of our future work.

The communication interface a developer
uses can significantly influence performance.
For example, our partners often use XML-RPC
because, in many programming languages, it re-
quires adding just a few lines of code. Although
much more functional, this interface is signifi-
cantly slower than the UDP-based interfaces
that are often used in real-time applications and
games. However, adding such a low-level inter-
face to your application can require significant
programming effort if the component ex-
changes complex data structures.

W e’re working on connecting AMICO

with other environments, such as
Web browsers and end-user pro-

gramming tools, to further support rapid ap-
plication development. We also plan to use
this platform in education, where students can
compose complex interactive environments
without extensive programming. This project
uses an extension of AMICO that supports com-
ponent integration on the basis of a distrib-
uted logic programming paradigm.14

We hope our decision to make the AMICO

infrastructure an open source project will lead
to more applications and encourage further
discussions about efficient ways to exploit
OSS’s huge reusability potential. We encour-
age OSS developers to make their software
easier to integrate by adopting our approach

9 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Including
standalone
examples
with your

distributions
makes rapid
prototyping

easier.

or something similar. AMICO can cover many
developer needs for rapid prototyping and
component testing. Moreover, as an open
source project, you can adapt it and extend it
further. Feel welcome to contribute.

Acknowledgments
The European ITEA Passepartout project and K-

Space network of excellence partially funded this re-
search. We thank Bran Selic, Anton Eliëns, and the
anonymous reviewers who provided useful feedback
on the work described here and whose comments sig-
nificantly improved this article.

References
1. T.R. Madanmohan and R. De’, “Open Source Reuse in

Commercial Firms,” IEEE Software, vol. 21, no. 6,
2004, pp. 62–69.

2. M.J. Karels, “Commercializing Open Source Software,”
ACM Queue, vol. 1, no. 5, July/Aug. 2003, pp. 46�55.

3. M.A. Cusumano, “Reflections on Free and Open Soft-
ware,” Comm. ACM, vol. 47, no. 10, 2004, pp. 25–27.

4. Nigel Davies et al., “Rapid Prototyping for Ubiquitous
Computing,” IEEE Pervasive Computing, vol. 4, no. 4,
2005, pp. 15–17.

5. A. Liu and I. Gorton, “Accelerating COTS Middleware
Acquisition: The i-Mate Process,” IEEE Software, vol.
20, no. 2, 2003, pp. 72–79.

6. G. Fitzpatrick et al., “Augmenting the Workaday World
with Elvin,” Proc. 6th European Conf. Computer Sup-
ported Cooperative Work, Kluwer Academic Publishers,
1999, pp. 431–450.

7. A.K. Dey et al., “The Conference Assistant: Combining
Context-Awareness with Wearable Computing,” Proc.
3rd IEEE Int’l Symp. Wearable Computers, IEEE CS
Press, 1999, pp. 21�28.

8. D. Gelernter, “Generative Communication in Linda,”
ACM Trans. Programming Languages and Systems
(TOPLAS), vol. 7 no. 1, Jan. 1985, pp. 80–112.

9. B. Johanson, A. Fox, and T. Winograd, “The Interactive
Workspaces Project: Experiences with Ubiquitous Com-
puting Rooms,” IEEE Pervasive Computing, vol. 1, no.
2, Apr. 2002, pp. 67–74.

10. Ken Arnold et al., Jini Specification, Addison-Wesley,
1999.

11. S. de Deugd et al., “SODA: Service Oriented Device Ar-
chitecture,” IEEE Pervasive Computing, vol. 5, no. 3,
July–Sept. 2006, pp. 94–96, c3.

12. J. Jovanović and D. Gašević, “XML/XSLT-Based
Knowledge Sharing,” Expert Systems with
Applications, vol. 29, no. 3, 2005, pp. 535–553.

13. Z. Obrenovic, D. Starcevic, and B. Selic, “A Model-Dri-
ven Approach to Content Repurposing,” IEEE Multi-
media, vol. 11, no. 1, 2004, pp. 62–71.

14. A. Eliëns, DLP: A Language for Distributed Logic Pro-
gramming: Design, Semantics, and Implementation,
John Wiley & Sons, 1992.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

S e p t e m b e r / O c t o b e r 2 0 0 7 I E E E S O F T W A R E 9 5

About the Authors

Željko Obrenović is a senior researcher at the Centre for Mathematics and Computer
Sciences (CWI) in Amsterdam. His research interests include human-computer interaction, soft-
ware engineering, the Semantic Web, and service-oriented architectures. He received his PhD
in computer science from the University of Belgrade. Contact him at Kruislaan 413, 1090 SJ
Amsterdam, The Netherlands; zeljko.obrenovic@cwi.nl.

Dragan Gašević is an assistant professor in the School of Computing and Information
Systems at Athabasca University. His research interests include the Semantic Web, model-driven
software engineering, knowledge management, service-oriented architectures, and learning
technologies. He received his PhD in computer science from the University of Belgrade. He’s a
member of the IEEE Computer Society and ACM. Contact him at SCIS, Athabasca Univ., 1 Uni-
versity Dr., Athabasca, AB T9S 3A3, Canada; dgasevic@acm.org.

Mid Atlantic (product/recruitment)
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0164
Email: db.ieeemedia@ieee.org

New England (product)
Jody Estabrook
Phone: +1 978 244 0192
Fax: +1 978 244 0103
Email: je.ieeemedia@ieee.org

New England (recruitment)
John Restchack
Phone: +1 212 419 7578
Fax: +1 212 419 7589
Email: j.restchack@ieee.org

Connecticut (product)
Stan Greenfield
Phone: +1 203 938 2418
Fax: +1 203 938 3211
Email: greenco@optonline.net

Southwest (product)
Steve Loerch
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email: steve@didierandbroderick.com

Northwest (product)
Peter D. Scott
Phone: +1 415 421-7950
Fax: +1 415 398-4156
Email: peterd@pscottassoc.com

Southern CA (product)
Marshall Rubin
Phone: +1 818 888 2407
Fax: +1 818 888 4907
Email: mr.ieeemedia@ieee.org

Northwest/Southern CA
(recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Midwest (product)
Dave Jones
Phone: +1 708 442 5633
Fax: +1 708 442 7620
Email: dj.ieeemedia@ieee.org
Will Hamilton
Phone: +1 269 381 2156
Fax: +1 269 381 2556
Email: wh.ieeemedia@ieee.org
Joe DiNardo
Phone: +1 440 248 2456
Fax: +1 440 248 2594
Email: jd.ieeemedia@ieee.org

Southeast (recruitment)
Thomas M. Flynn
Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: flynntom@mindspring.com

Midwest/Southwest (recruitment)
Darcy Giovingo
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@ieee.org

Southeast (product)
Bill Holland
Phone: +1 770 435 6549
Fax: +1 770 435 0243
Email: hollandwfh@yahoo.com

Japan (recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Europe (product)
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email:
impress@impressmedia.com

A D V E R T I S E R I N D E X
S E P T E M B E R / O C T O B E R 2 0 0 7

Advertising PersonnelAdvertiser Page Number

Marian Anderson
Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
manderson@computer.org

Sandy Brown
IEEE Computer Society,
Business Development Mgr
Phone: +1 714 821 8380
Fax: +1 714 821 4010
sb.ieeemedia@ieee.org

Advertising Sales Representatives

Classified Advertising 25

East Carolina University 14

EclipseWorld 2007 Cover 3

ESRI 20

ICSQ 2007 1

Seapine Software, Inc. Cover 4

Software Test & Performance Conference 2007 4

Starwest 2007 Cover 2

