
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

On the Proper Treatment of Context in NL

D.J.N. van Eijck

Information Systems (INS)

INS-R0018 September 30, 2000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301659815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report INS-R0018
ISSN 1386-3681

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

On the Proper Treatment of Context in NL

Jan van Eijck

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

The proper treatment of quanti�cation in Natural Language proposed by Richard Montague some thirty years

ago does not do proper justice to the fact that interpretation of texts both uses context and sets up new

contexts. The dynamic turn in NL semantics is the attempt to model this basic fact, but the use of dynamically

quanti�ed variables introduces an undesirable element into this attempt. By extending a variable free `incre-

mental dynamics' with a exible system of type scheme patterns and type scheme pattern matching, we arrive

at a Montague style architecture for NL semantics that provides a proper treatment both of quanti�cation and

of context use and context change.

2000 Mathematics Subject Classi�cation: 68T50, 03B65

1998 ACM Computing Classi�cation System: F.4.3, I.2.4, I.2.7

Keywords and Phrases: Montague grammar, anaphora resolution, context updating

Note: Paper presented at CLIN'99, December 10th. 1999, Utrecht.

1. Introduction

The representation of context in mathematical discourse is a subject that has received considerable
attention in attempts to formalize mathematics. The topic belongs to a sub discipline of mathematical
logic called type theory, a much richer �eld than transpires from the theory of simple types adopted
by Richard Montague in his program of formal semantics for natural language of the 1970s [22].
In exible Montague grammar [12] simple type theory was replaced by more exible typing schemes.

In a somewhat di�erent direction, there have been proposals to use Martin-L�of style type theory [21, 20]
as a basis for NL processing systems. A meta-mathematical investigation of Martin-L�of type theory
is carried out in [1].
Unfortunately, the perspectives of model-theoretic semantics and of Martin-L�of type theory are at

odds. Martin-L�of type theory is inspired by proof theory. Type theorists in the Martin-L�of tradition
replace explanations of meaning in terms of truth by an attempt to explain meaning in terms of
proofs, viewed as formal objects in their own right. Martin-L�of types are just sets of proofs. Proofs
that depend on assumptions are collected in so-called dependent types. To prove a universal statement
`every A satis�es B', assume that you have a proof that that some x is an A. If you can then always
prove on that assumption about x that x is also a B, you are done. The set of all dependent proofs
satisfying these requirements is called (�x 2 A)B[x]; this is a dependent type, and it constitutes the
meaning of the universal statement. Similarly, (�x 2 A)B[x] is a dependent type constituting the
meaning of an existential statement `some A satis�es B'.
Sundholm [28] points out how this approach accounts for the meaning of `donkey sentences' such

as (1.1).

If a man owns a donkey he beats it. (1.1)

In a Martin-L�of style account, a man who owns a donkey is a proof, more speci�cally an element of
the following set:

fx 2 MAN : (�y 2 DONKEY)OWN[x; y]g:

2

A proof in this set can be reduced to a standard form. In this form, it looks like a pair (m; b), with m
a man (or rather, a proof that something is a man), and b a member of (�y 2 DONKEY)OWN[m; y].
This b can again be reduced to a standard form. In that form, it is a pair (d; c), with d a (proof
that something is a) donkey and c a proof in OWN[m; d], i.e., a proof that the man owns the donkey.
The account is rather vague on what the most elementary proofs should look like, but that is another
matter.
Ahn and Kolb [2] and Ranta [27, 26] work out this hint in the form of a rational reconstruction of

the dynamic semantics paradigm of Discourse Representation Theory [16] and File Change Semantics
[11], in terms of the theory of dependent types.
Attempts to incorporate dynamic semantics in mainstream Montague style natural language seman-

tics were also made. These attempts preserve much more of the original model-theoretic avour of
Montague grammar. Examples can be found in [7, 23, 29, 32, 17, 18]. What these attempts at incor-
poration have in common is the representation of context as a list of variables, and the use of dynamic
quanti�cation over these variables as context update. A serious disadvantage of dynamic quanti�-
cation is that update of a reference marker ui makes the previous value of ui inaccessible: dynamic
quanti�cation over named variables brings the problem of destructive assignment in its wake.
In current dynamic versions of Montague grammar, an analysis of a man entered would introduce

a noun phrase a mani with an antecedent index i, and with a translation as in (1.2).

�P�s0�s19s2(s0[ui]s2 ^man ui ^ Puis2s1): (1.2)

Here ui is a reference marker. Reference markers in the typed logic can be considered as a special
kind of constants of type m. s0; s1; s2 are state variables; states are functions from reference markers
to entities; they have type m! e, which we abbreviate as s. s0[ui]s2 means that the two states di�er
at most in the value of ui (this is where destructive assignment takes place). P is a variable of type
m ! s ! s ! t. It maps a reference marker to a state transition. The magic appearance of the
antecedent index i (the index of the reference marker ui) is a problem with this account.
This paper shows how the destructive assignment problem can be avoided by dispensing with

reference markers in favour of argument binding by means of indexing into a stack, thus making it
possible to replace magical index introduction by computation of antecedent indices from the input
context. The redesign of the dynamic logic paradigm for handling context and context change looks as
follows. In incremental dynamics [31], a context gets represented as a stack of n objects c0; : : : ; cn�1,
with repetition of objects allowed. Context extension is achieved by adding a new object cn. Reference
resolution for pronouns is viewed as a process of linking a pronoun to a contextually given object ci.
While staying within the con�nes of model theoretic semantics of natural language, we show that it

is pro�table to adopt a sophisticated type theory to give a principled account of context composition.
Our account uses a mechanism of indexing into contexts that was developed to model context in type
theory: the so-called De Bruijn indices from lambda calculus [5]. Formalized mathematics hardly uses
pronouns, and pronoun resolution is not really an issue there. Still, the context mechanism employed in
type theory provides an excellent starting point for setting up context handling for pronoun resolution.
Consider (1.3), a sentence that needs a context for its interpretation.

Hilary forgave him. (1.3)

To interpret (1.3), we have to resolve the reference of him. Reference resolution for the pronoun him
is done with respect to a set of suitable candidate antecedents for the pronoun, and it is reasonable
to assume that such candidate sets are �nite, and that they have a certain additional structure. We
may assume, e.g., that contextually available individuals have sortal information on them, and that
the context comes with a salience ordering. To keep matters manageable, however, we will consider
contexts of the simplest possible kind. Our contexts are just �nite lists of individuals. Once we have
a formal account of how such contexts are combined, it is our hope that further enrichment with
salience orderings, sorts, and so on, will be relatively straightforward.

3

Contexts can be set up or extended by sentences. Sentence (1.4) sets up a context for later use.

Bill made a fool of himself. (1.4)

Sentence (1.4) itself can be interpreted irrespective of an anaphoric context. It sets up a context with
an individual Bill in it that is available for further reference. The reference resolution involved in
the processing of (1.3) after (1.4) can make use of the context created by the processing of the �rst
sentence.

2. The Key Issue

Let us look at context processing a bit more systematically. When processing natural language text,
a context is incrementally built up of salient items, to be used as a domain for �xing anaphoric
references, with constraints on where the referents are to be found. This context is used and extended
at the same time, for introduction of new topics of conversation makes the context grow, and pronouns
get interpreted (resolved) by linking them to the existing context.

txt txt txt him" txt txt she" txt txt txt him" txt txt txt she" txt txt a man#

txt txt txt his" txt txt every woman# txt txt txt her" txt txt a man# txt txt

txt his" txt txt another" man# txt txt txt his" txt txt a boy# txt txt txt his"

txt txt txt a man# txt txt txt himself" txt txt txt txt txt txt txt txt txt

Legend:

� ": looking for a referent from surrounding text or outside context.

� #: adding a new referent to the existing context.

� # txt txt txt : local extension of context (the context is extended, but this extension has

limited scope).

� txt txt txt " : locally extended context where antecedent may be found (the local extension

of context provides additional possible referents).

The �rst theories that tried to give a systematic and more or less formal account of context dynamics
were Discourse Representation Theory [16] and File Change Semantics [11].
Our question in this paper is: how can we set up context dynamics in the proper Montagovian style,

without running into the destructive assignment problem? We view text interpretation as a process
that adds a number of referents (say m) to an existing context: after processing the new text in a
context of size n we have a new context of size n+m. Contextual elements that were mentioned too
long ago may lose their salience (or: drop out of the context), but we will not make this a central
issue in the present paper.
Thus, the questionWhat do the indices in natural language texts like (2.1) mean? has as its answer:

they are just glosses to indicate how we suppose the anaphoric reference resolution mechanism links
pronouns to antecedents. In example (2.1), the indices link the pronoun from the second sentence to
the noun phrase introduced in the �rst.

A mani walked in. Hei smiled. (2.1)

If we represent an anaphoric context as a stack of n objects available as antecedents in future discourse,
then introducing a new topic of conversation extends the anaphoric context by putting a new object
on top of the context stack. Thus, the value of i gets determined by the input context.
In our set-up, the dynamic existential quanti�er 99 gets interpreted as the action of putting a new

object on top of the context stack. If the size of the context is known, there is no need to indicate the

4

register that gets bound by 99. If the context is c, and its size is n, then c has the form (c0; : : : ; cn�1),
and the next register | the one that gets bound by 99 | is cn.
A central idea is that the dynamic quanti�er does not name the variable that it binds, but that

dynamic quanti�cation is always quanti�cation in context. If a context is given, the interpretation of
99 is just: introduce a next topic of conversation, and add it to the context.

3. Types for Incremental Dynamics

A typed version of DRT and DPL can be built on basic types e for entities and T for state transitions.
The shift from t (truth value) to T (state transition) constitutes the dynamic turn in natural language
semantics. The state transitions can themselves be viewed as relations between states, so in a more
�ne-grained set-up, with basic types for t for truth values and s for states, state transitions are of
type s! s! t.
In this set-up, the interpretation of a man walked in is an object of type s! s! t, i.e., a relation

between states. The interpretation will relate states where some reference marker ui has a certain
value (or does not have a value) to states where ui gets a (new) value d with d satisfying the predicates
man and walked-in. A problem with this is that the account does not specify how to select ui.
Incremental dynamics avoids this problem. A typed version of incremental dynamics (henceforth:

ID) will use basic types e for entities, t for truth values, and types for contexts of arbitrary �nite
sizes. We view the natural number k in Von Neumann style as k = f0; : : : ; k � 1g, and we use [k] for
the type of a context consisting of k elements. E.g., 5 ! [5] is the type of an index function into a
context of length 5, and [5] ! [8] ! t the type of a stack transition that extends a stack of length 5
by 3 positions to a stack of length 8. We will abbreviate this type as (5; 3).
In a context of length 3, the sentence a man walked in will get interpreted as an expression of type

(3; 1): the interpretation will act on the context by extending it with one element, namely with a
referent for a man. A next sentence he smiled can then pick up this reference. In the context of length
4 produced by the previous text, the sentence he smiled will have an interpretation of type (4; 0): the
context of length 4 is not extended.
Here is the de�nition of the type system that we need for this:

N ::= 0 j 1 j 2 j � � �

Type ::= e j t j N j [N] j Type! Type

N are the natural numbers, [N] are the contexts of sizes given by the natural numbers N . Abbrevia-
tion: use (N1; N2) for

[N1]! [N1 +N2]! t:

4. Index Variables and Type Schemes

So far, so good. But how do we specify the type of a sentence a man walked in if we do not know
the size of the initial context of interpretation? To represent contexts of arbitrary size, we introduce
index variables.
Using an index variable i, we can say that the interpretation of a man walked in extends an arbitrary

context of size i by one position, so it is of type (i; 1). We call the variable i the context index. We
call types that depend on an index type schemes. (i; 3) is the type scheme of a stack transition that
extends a stack of length i by 3 positions.
To generalize over stack transitions, we introduce type schemes. A type scheme is a type with index

variables in it. Thus, (i + 1; 2) is (abbreviated notation for) a type scheme. It describes the general
form of a stack transition that increments a stack of at least size 1 by 2 positions. Here are some
further examples:

� i! [i] is the type of an index (function) into a context,

� i+ 1! [i+ 1] is the type of an index into a non-empty context,

5

� i + 1 ! (i + 1; 2) the type of an index into a stack transformer with a non-empty input that
puts 2 new items on the stack.

We use .T as an abbreviation for an index into T , leaving the type of the index to be understood from
the context of use. E.g., .(i+ 1; 2) is a function that takes an expression of type i+ 1 and produces
an extension of a non-empty context by 2 positions, i.e., an expression of type (i+ 1; 2).

5. Pattern Variables and Type Scheme Patterns

We will also want to express that an arbitrary context is extended by an indeterminate number of
elements, in order to use this for encoding the context transformations involved in the meanings of
common nouns and verb phrases. A common noun may contain an arbitrary number of inde�nite
noun phrases and proper names inside relative clauses, so we don't know in advance by how much
it will extend the context stack: man does not extend the context stack, man who owns a donkey
extends the context stack by one position, man who has a neighbour that owns a donkey extends the
context stack by two positions, and so on. The same thing holds for verb phrases: walked in does not
extend the context stack, walked in with a dog extends the context stack by one position, and so on.
To represent extension of context by an indeterminate number of elements, we introduce numerical

variables. Thus, (i+ 1; J) is the type scheme pattern of a stack transition that extends a non-empty
context by J positions. (i; J + 1) is the type scheme pattern of a stack transition that extends an
arbitrary context by J + 1 positions (i.e., at least one). A syntactic pattern

[[a CN] VP]

will be of type (i; J + 1), for we know that the inde�nite constituting the subject extends the stack
by one position, but we do not know yet what the context contributions of CN and VP will turn out
to be. So the context is extended with at least one position, hence the pattern J + 1.
We distinguish between index variables and pattern variables, and use i; j; k for index variables,

I; J;K for pattern variables. This distinction is important, for eshing out a syntactic pattern like a
CN VP will instantiate the pattern variables while the context index remains una�ected.
We call a type containing pattern variables a type pattern, and a type scheme containing pattern

variables a type scheme pattern. An example of the latter:

i+ 1 ! (i+ 1; J) is the type scheme pattern of an index into a stack transformer with a
non-empty input that puts J new items on the stack.

Replacing the pattern variables in a type (scheme) pattern instantiates the type (scheme) pattern
to a type (scheme). Examples:

� K := 3 instantiates the type pattern (3;K) to the type (3; 3).

� J := 2 instantiates the type scheme pattern i+1! (i+1; J) to the type scheme i+1! (i+1; 2).

The following sums up the distinction between pattern variables and index variables.

� Pattern variables (Pvar) are variables that stand proxy for natural numbers. Full instantiation
of a type (scheme) pattern involves replacement of all pattern variables by (names of) natural
numbers.

� Type patterns and type scheme patterns are used to express patterns of types or patterns of type
schemes. E.g., (i; J) is the pattern of all stack transitions that extend the stack by J elements.
Instantiations of (i; J) are (i; 0), (i; 1), (i; 2), and so on.

� Index variables (Ivar) are variables that may occur in the type schemes that result from fully
instantiating the pattern variables in a type scheme pattern. (i; 1) is the type scheme of a stack
transition that extends the stack by one position.

6

Here is the formal de�nition of Type Scheme Patterns:

N ::= 0 j 1 j 2 j � � �

Type ::= e j t j N j [N] j Type! Type

Num ::= N j Pvar j Num1 +Num2

Nexp ::= Num j Ivar + Num

Tsp ::= e j t

j Nexp j [Nexp]

j Tsp! Tsp

Next, we specify what it means to instantiate a type scheme pattern.

� A type (scheme) T is an instantiation of a type (scheme) pattern T 0 if there is a pattern variable
substitution � such that T = T 0�. In this case, � will map all pattern variables in T 0 to natural
numbers.

� A type scheme pattern T is more general than a scheme T 0 if there is a substitution � for the
index and pattern variables such that T 0 = T�.

� Thus, i ! (i; 2) is more general than j + 1 ! (j + 1; 2), for the substitution fi := j + 1g
transforms the former into the latter.

Our de�nition of functional application will have to involve type scheme pattern matching. If we want
to apply a function f with type scheme i! (i; J) to an argument a with type k + 1, then we get an
appropriate match by unifying i and k + 1, with result that f(a) is of type (k + 1; J).
The most general way of matching function and argument type scheme patterns is by means of

a uni�cation algorithm phrased in terms of most general uni�ers. Substitution � is an mgu (most
general uni�er) of type schemes T and T 0 if

� there is a substitution � such that T� = T 0�,

� every substitution � such that T� = T 0� is such that T� is more general than T�.

A word of caution concerning uni�cation of numerical terms is in order. We are not interested in
the term model generated from the natural numbers by the operation +, but in the natural numbers
themselves. In the term model, (1 + 4), (4 + 1) and (2 + 3) are all di�erent, while in fact all these
terms denote the same natural number.
If we work in the term model, we can unify (N +M) � (K + L), with N;M;K;L all variables, by

means of N := K;M := L, but for the natural numbers this substitution may well be wrong, for as
we know, decomposition of natural numbers into summands is not unique. It follows that uni�cation
of numerical terms will only work in special cases: we call terms that can be uni�ed unifying pairs,
pairs that cannot failing pairs. Note that in-between cases exist: the pair (N +M) � (K + L) is an
example.

6. Unification of Terms and of Type Scheme Patterns

As a preliminary for the uni�cation algorithm for numerical terms, we write numerical terms in
canonical form. If Nexp1 and Nexp2 are numerical terms, then the pair Nexp1 � Nexp2 can be
written in a canonical form as follows:

� Collect all natural numbers occurring in the left hand side term and add them up, giving n.

� Collect all natural numbers occurring in the right hand side term and add them up, giving m.

� Subtract the di�erence jn�mj from both sides of the pair.

7

� If left hand side and right hand side both consist of more than a single variable, delete all
variables that occur on both sides.

With this recipe, a pair Nexp1 � Nexp2 can always be simpli�ed to one of the following forms (the
variables vi and wj range over index and pattern variables, with each term containing at most one
index variable; if left hand side and right hand side both consist of more than a single variable then
they have no variables in common):

� n � m, with n � 0;m � 0.

� v1 + � � �+ vn � k, with n > 0; k � 0,

� k � v1 + � � �+ vn, with n > 0; k � 0,

� v1 + � � �+ vn � w1 + � � �+ wm, with (n > 0;m > 0)

� v1 + � � �+ vn � w1 + � � �+ wm + k, with (n > 0;m > 0; k > 0)

� v1 + � � �+ vn + k � w1 + � � �+ wm, with (n > 0;m > 0; k > 0)

Now de�ne Failing Pairs, as follows:

� A pair of the form n � m fails if n 6= m.

� A pair of the form v � w1 + � � �+ wm + k, with k > 0 fails if v occurs among the wj .

� A pair of the form v1 + � � �+ vn + k � w, with k > 0 fails if w occurs among the vi.

Next, de�ne Unifying pairs, with their substitutions, using � for the empty substitution (the substi-
tution that maps every term to itself).

v � w
� v � w

v � w

fv := wg
v 6� w

v � k

fv := kg
k � w

fw := kg

v � w1 + � � �+ wm

fv := w1 + � � �+ wmg
v 6� wj

v1 + � � �+ vm � w

fw := v1 + � � �+ vng
w 6� vi

v � w1 + � � �+ wm + k

fv := w1 + � � �+ wm + kg
v 6� wj

v1 + � � �+ vm + k � w

fw := v1 + � � �+ vn + kg
w 6� vi

v � w1 + � � �+ v + � � �+ wm

fw1 := 0; : : : ; wm := 0g

v1 + � � �+ w + � � �+ vn � w

fv1 := 0; : : : ; vn := 0g

Finally, here is a sketch of the uni�cation algorithm for type scheme patterns, in terms of uni�cation
of numerical expressions.

8

� e uni�es with e, with mgu �, t uni�es with t, with mgu �.

� Nexp1 uni�es with Nexp2 and gives mgu according to the rules for term uni�cation above.

� [Nexp1] uni�es with [Nexp2] if Nexp1 uni�es with Nexp2 and gives mgu according to the rules
for term uni�cation above.

� Tsp1 ! Tsp2 uni�es with Tsp3 ! Tsp4 if Tsp1 uni�es with Tsp3 to give mgu �, and Tsp2�
uni�es with Tsp4� to give mgu �, and gives mgu ��.

� No other pairs of Tsp's unify.

We list some facts about type scheme pattern uni�cation.

� The algorithm always terminates.

� The algorithm is sound, but not complete (it will fail to �nd solutions in cases of comparison of
numerical term pairs that are neither unifying nor failing).

� The algorithm will never introduce more than one index variable in a numerical expression.
(This follows from a straightforward inspection of the rules.)

To end this section, we give examples of expressions and their type scheme patterns.

Dynamic Exists Using 99 as abbreviation for the dynamic context extension quanti�er mentioned
above, and writing :: for the copula in a typing judgment, we can express the type scheme pattern of
the dynamic quanti�er as follows:

99 :: (i+ 1; J)! (i; J + 1)

Here is the explanation. 99 is a function that maps a stack transformer of type (i + 1; J), i.e., a
transformer for a context with at least one element, to a stack transformer that expects a context
with one element less, and increments this context by one element more. For example, if P is a stack
transformer of type (1; 0), then 99P will be a stack transformer of type (0; 1), for its truth content will
be the assertion that P is non-empty, and 99P will create a context containing an object satisfying
P . More generally, if P is a stack transformer of type (i + 1; 0), i.e., a test on arbitrary non-empty
contexts, then 99P will be the stack transformer that extends an arbitrary context with one element.
The truth content of 99P will now be the assertion that there is a way to extend an arbitrary context
c with a new individual to give a new context c0 that satis�es P . The output of the transition 99P will
be c0. Since c0 equals c plus one extra element, 99P extends a context of size i with one element, i.e.,
it is of type (i; 1). Still more general, �nally, is the case where P is not a test but a transition that
extends context, with a number of elements J . Note that (i+ 1; J) ! (i; J + 1) in fact speci�es the
pattern of a type scheme rather than a type scheme. For every choice of a natural number for J , we
get a particular instantiation of the pattern to a scheme, namely (i+1; 0)! (i; 1), (i+1; 1)! (i; 2),
and so on. In these type schemes for 99 there occurs just one type variable, namely i.

Dynamic Negation Using : as an abbreviation for dynamic negation we get the following typing
judgment.

: :: (i; J)! (i; 0)

: maps a stack transformer to a test (a transformer that does not increment the stack).

9

Context Composition Using ; as abbreviation for the context composition operation, we get:

(;) :: (i; J)! (i+ J;K)! (i; J +K)

; takes as its arguments two stack transformers of which the second handles the output of the �rst, and
combines these two into a new stack transformer, with increment given by the sum of the increments
of the components.
In the next section we will give the de�nitions of 99, : and ; that satisfy these judgments.

7. The Logical Language TID

In this section, we introduce the language of Typed Incremental Dynamics (TID) by means of exam-
ples.
First the language has constants of arbitrary types. Here, e.g., is the type judgment for a constant

for the property of being a man:

man :: e! t

The translation of a common noun that does not extend the stack is an index into tests on non-empty
stacks, i.e., an index into [i + 1] ! [i+ 1] ! t. The translation of the common noun `man' uses the
constant `man' to construct this expression. A variable j is an appropriate index into a stack [i+ 1]
if its type is i+ 1, i.e., if j ranges over the set of natural numbers f0; : : : ; ig. Here is the translation
for the CN man that we are looking for:

�ji+1�c[i+1]�c
0

[i+1]:(man cj ^ c = c0) :: .(i+ 1; 0)

This can be viewed as a recipe for selecting a man from a non-empty context. The application (c j),
for c :: [n], and j :: n, is written as cj . As agreed, i+ 1! (i+ 1; 0) is abbreviated as .(i+ 1; 0).
It should be noted that subscripts do double duty: in the annotation of abstracted variables �c[i+1],

the subscript [i+ 1] means that c is of type [i+ 1]. In the application cj , the subscript j means that
c is applied to j. This should not create confusion: context of use always makes clear what is meant.
For the de�nition of 99, we extend the usual logic for extensional type theory with a constant [] :: [0]

and an operation (̂) :: [i]! e! [i+1]. The constant [] denotes the empty stack, and the operation
^ denotes `extending a list by one element' or `putting a new item on top of a stack'. We write ^ with
in�x notation, so if c :: [i] and x :: e then ĉ x :: [i+ 1]. We use this to give the de�nition of 99, as
follows. 99 is an abbreviation of:

�P(i+1;J)�c[i]�c
0

[i+J+1]:9xe((P ĉ x) c0):

Note: i+ J + 1 is of the general form i+K, with i an index variable and K a numerical expression
containing no index variables.
: is an abbreviation of:

�P(i;J)�c[i]�c
0

[i]:(:9c
00

[i+J]((P c) c00) ^ c = c0):

; is an abbreviation of:

�P(i;J)�Q(i+J;K)�c[i]�c
0

[i+J+K]:9c
00

[i+J](((P c) c00) ^ ((Q c00) c0)):

We will write ; as an in�x operator with association to the left, and we will omit superuous brackets.
Note how index variables serve as a bridge between formulas and their type schemes. To talk about

the �nal position of an arbitrary non-empty stack, we refer to the stack by means of the type [i+1], and
use index i in the formula to access the �nal position of the stack. Thus, a sentence with an inde�nite
subject has the general form [[a CN] VP]. Its semantics is a context transformation that takes an
arbitrary context, say of length i, adds one element to it to produce a new context of length i + 1,

10

makes sure that that element satis�es the CN and the VP, and performs the context transformations
associated with the CN and the VP. We use index expression i in the formula to refer to that element.
The recipe for translating the inde�nite determiner becomes:

a;
�P.(i+1;N)�Q.(i+N+1;M):99 (Pi ; Qi) :: .(i+ 1; N)! .(i+N + 1;M)! (i; N +M + 1):

We need patterns (i + 1; N), : : : here because we do not know in advance how many referents will
be introduced within the CN that goes with the inde�nite determiner and how many in the predicate
that follows. Because Pi :: (i+1; N) and Qi :: (i+N +1;M), we must instantiate the type scheme
of ; to (i+1; N)! (i+N + 1;M)! (i+ 1; N +M). Thus we get that (Pi ; Qi) :: (i+1; N +M).
Since 99 :: (i+1; J)! (i; J +1) we must unify the schemes (i+1; N +M) and (i+1; J) to make

the function �t the argument. This instantiates the type of 99 to (i + 1; N +M) ! (i; N +M + 1),
and we get that 99 (Pi ; Qi) :: (i; N +M + 1).
This illustrates a general procedure of function application with uni�cation. Function application

may involve uni�cation of type schemes, as follows:

' :: T1 ! T2 :: T3
('� �) :: T2�

� mgu of T1; T3

For example, let T1 = .(i+ 1; J), T2 = .(i; J + 1), T3 = (k + 1; 0). Then

�P.(i+1;J)�c�c
09x:P iĉ x c0 :: T1 ! T2

applied to

�j�c�c0Mcj ^ c = c0 :: T3

yields, under substitution � = fi := k; J := 0g:

(�P.(k+1;0)�c�c
09x: Pkĉ x c)(�j�c�c0Mcj ^ c = c0) :: (k; 1):

Note that the substitution � = fi := k; J := 0g a�ects both the type scheme and the formula.

8. Building a Toy Fragment

In this section the Montagovian programme of building a toy fragment is taken up. To begin with,
here is how to deal with determiners, nouns and intransitive verbs.

a;
�P.(i+1;J)�Q.(i+J+1;K):99(Pi;Qi) :: .(i+ 1; J)! .(i+ J + 1;K)! (i; J +K + 1)

every;
�P.(i+1;J)�Q.(i+J+1;K)::99(Pi;:Qi) :: .(i+ 1; J)! .(i+ J + 1;K)! (i; 0)

no;
�P.(i+1;j)�Q.(i+J+1;K)::99(Pi;Qi) :: .(i+ 1; J)! .(i+ J + 1;K)! (i; 0)

man;
�j�c[i+1]�c

0

[i+1]:(man cj ^ c = c0) :: .(i+ 1; 0)

smiled;
�j�c[i+1]�c

0

[i+1]:(smile cj ^ c = c0) :: .(i+ 1; 0)

If A is a list of i elements A0; : : : ; Ai�1, and we append a new element B to the list, then in the
resulting list A0; : : : ; Ai�1; B, the element B occupies position i, so we can retrieve B from the list
by lookup at index i. This motivates the following notion of � reduction:

11

If A :: [i] and B :: e, then ((A^B) i))� B.

In abbreviated notation: (A^B)i)� B. We also allow � reduction in context, and we use)� for
one-step � reduction. Here is an example:

�x:((c[4]^x) 4))� �x:x

Or with variables:

�x:((c[i]^x) i))� �x:x

Reduction to normal form is achieved by combining beta reduction with iota reduction. Beta
reduction is de�ned in the standard way. We state here without proof that beta-iota reduction is

conuent, i.e, if E
��
!! F and B

��
!! F 0 then there is a G with F

��
!! G and F 0

��
!! G. Also, beta-iota

reduction is strongly normalizing, i.e., every reduction sequence E
��
�! F

��
�! G : : : terminates. It

follows that beta-iota reduction yields unique normal forms. As an example, look at the reduction of
the translation for `a man smiled':

a man;
(�P.(i+1;J)�Q.(i+J+1;K):99(Pi;Qi)) (�j�c[i+1]�c

0

[i+1]:(man cj ^ c = c0))

)� �Q.(i+1;K):99((�c[i+1]�c
0

[i+1]: (man ci+1 ^ c = c0));Qi)

)� �Q.(i+1;K):99(�c[i+1]�c
0

[i+K+1]: (man ci+1 ^ (((Qic)c0)))

)� �Q.(i+1;K):�c[i]�c
0

[i+K+1]: 9xe(man (ĉ x)i+1 ^ (((Q(i+1))ĉ x)c0))

)� �Q.(i+1;K):�c[i]�c
0

[i+K+1]: 9xe(man x ^ ((Qi)ĉ x)c0)

a man smiled;
(�Q.(i+1;K):�c[i]�c

0

[i+K+1]: 9xe(man x ^ (((Qi)ĉ x)c0))) (�j�c[i+1]�c
0

[i+1]:(smile cj ^ c = c0))

)�� �c[i]�c
0

[i+1]: 9xe(man x ^ smile x ^ ĉ x = c0)

Construction of an anaphora resolution engine is outside our scope, but the present framework makes
it easy to specify exactly where anaphora resolution �ts in and what it works on. For every given
anaphoric element, the framework speci�es the currently relevant context for the resolution of that
anaphoric element.
The anaphora resolution engine `res' uses a context plus some unspeci�ed amount of further infor-

mation to pick an index for that context. The slot indicates the place where extra input is needed
to perform the resolution step.

res :: [i+ 1]! ! i+ 1

Here is how to extend the toy fragment with pronouns and transitive verbs.

he;
�P.(i+1;J)�c[i+1]�c

0

[i+J+1]:(((P (res c))c)c0) :: .(i+ 1; J)! (i+ 1; J)

hek ;
�P.(i+1;J)�c[i+1]�c

0

[i+J+1]:(((Pk)c)c
0) :: .(i+ 1; J)! (i+ 1; J)

him; : : :

himk ; : : :

loves;
�P.(i+1;J)!(i+1;J)�s�c�c

0:(((P(�o�c00�c000(((love c00o) c
00

s) ^ c
00 = c000)))c)c0)

:: (.(i+ 1; J)! (i+ 1; J))! .(i+ 1; J)

12

Suppose we are in a context of size � 2. Then we can handle the example sentence `he1 loves her2',
with the pronouns resolved in context as indicated by the indices. The reduction proceeds as follows:

loves her2 ;
�P�s�c�c0:(((P(�o�c00�c000(((love c00o) c

00

s) ^ c
00 = c000)))c)c0)(�P�c�c0:(((P2)c)c0))

)� �s�c�c0:(((�P�c�c0:(((P2)c)c0))�o�c00�c000(((love c00o) c
00

s) ^ c
00 = c000)))c)c0

)� �s�c�c0:(((love c2) cs) ^ c = c0)

he1 loves her2 ;
(�P�c�c0:(((P1)c)c0))(�s�c�c0:(((love c2) cs) ^ c = c0))
)� �c�c0:(((love c2) c1) ^ c = c0)

In as similar way we get a translation of loves her, with the pronoun unresolved:

�s�c�c0:(((love c(res c)) cs) ^ c = c0:

In a system with exible typing, the type (i + 1 ! (i + 1; J)) ! (i + 1; J) for unresolved pronouns
can be lowered to [i+ 1]! i+1, for the meaning of an unresolved pronoun can now simply be given
as an invitation to pick a suitable index from a non-empty context. The meaning of an anaphorically
resolved pronoun is even simpler to specify; it can be given as an index into the appropriate context.
Using the type scheme variables to transfer information about the size of the context, we get by with
the following:

res :: [i+ 1]! ! i+ 1

he; �c:(res c) :: [i+ 1]! i+ 1

hek ; k :: i+ 1

loves;
�o�s�c�c0:(((love co)cs) ^ c = c0) :: i+ 1! i+ 1! (i+ 1; 0)

In the exible set-up, where transitive verbs have type i+1! i+1! (i+1; 0), we can treat reexives
as relation reducers:

himself;
�Pi+1!i+1!(i+1;0)�s:((Ps)s) :: (i+ 1! i+ 1! (i+ 1; 0)) ! (i+ 1! (i+ 1; 0))

loves himself; � � �
�s�c�c0:(((love cs) cs) ^ c = c0)

every man loves himself; � � �
�c�c0:(:9x(man x ^ :love x x) ^ c = c0)

Relative clauses are now dealt with as follows:

that;
�P.(i+J;K)�Q.(i;J)�j:((Q j); (P j)) :: .(i+ J;K)! .(i; J)! .(i; J +K)

loves a woman;
�jcc0:9x(woman x ^ ((love x) c0j) ^ ĉ x = c0)

that loves a woman;
�Qjcc0:9c00(Qjcc00 ^ 9x(woman x ^ ((love x) c00j) ^ c

00^x = c0))

man that loves a woman;
�jcc0:man cj ^ 9x(woman x ^ ((love x) cj) ^ ĉ x = c0)

13

Finally, here are instructions for text connectives.

; ; ; :: (i; J)! (i+ J;K)! (i; J +K)

: ; ; :: (i; J)! (i+ J;K)! (i; J +K)

if ; �P(i;J)�Q(i+J;K)::(P ;:Q) :: (i; J)! (i+ J;K)! (i; 0)

suppose;
�P(i;J)�Q(i+J;K)::(P ;:Q) :: (i; J)! (i+ J;K)! (i; 0)

then;
�P(i+J;K)!(i;0)�Q(i+J;K):(P Q) :: ((i+ J;K)! (i; 0))! (i+ J;K)! (i; 0)

(8.1) is an example of a text in the fragment:

Suppose a man owns a donkey. Then he beats it. (8.1)

The key element of the treatment of suppose is that we keep track of the size of the context extension
in its scope, by means of the pattern variable J . In (8.1), the �rst sentence is interpreted as a function
of type (i + 2;K) ! (i; 0), where i is the index for the original context. This original context is
extended by 2 elements, to wit a man and a donkey owned by that man. The second sentence is of
type (k+2; 0), for it is a test on a context containing at least two elements. Function application with
uni�cation gives (i; 0) for the type of the translation of (8.1); this is the type of a test on the original
context.

9. Related Work

For connections to Martin-L�of style type theory, and to earlier attempts at a Montagovian treatment
of dynamic semantics, see Section 1 above.
A somewhat di�erent proposal for a variable free logic for natural language is made in [25]. This

work starts out from relation algebra, and is not presented in a Montagovian framework. The issue of
incremental updating of contexts is also taken up in a proposal for a variation on predicate logic, in [6].
Van Eijck [31] gives a sound and complete calculus for ID, while [30] provides a perhaps unexpected
spin-o� of the ID perspective: elegant axiomatizations of DPL and DRT.
An early warning against the proliferation of indices in the syntax of Montague grammar can be

found in [19]. This theme is taken up again in [13, 14], where an attempt is made to account for the
meaning of expressions containing pronouns without using unbound variables. To achieve this, type
shift operations are proposed that implicitly bind the variables corresponding to the pronouns. We
propose a di�erent solution, one that does not involve type shifting for expressions with `unbound'
pronouns. In the present proposal, the translation of loves her has the same type as that of loves
Mary. The di�erence is that the translation of loves her depends on the input context in a way that
the translation of loves Mary does not. Thus, the proper treatment of pronouns is a treatment that
makes their context dependence explicit. An additional advantage of the present approach is that it
generalizes to dynamic phenomena in a straightforward way, something which cannot be said about
Jacobson's.
For a thorough study of context dependence in dynamic semantics we refer to [36]. In the spirit of

this work, Vermeulen [34] introduces referent systems to separate the `storage facility' of a variable
from the `control facility' provided by the variable name. Referent systems are employed in [9] to de�ne
a system for combining DPL style dynamics with dynamic modality [33]. Incremental dynamics can
be viewed as a proposal to dispense with variable names (referents) altogether: the variable name in
dynamic semantics is a red herring, and contexts as employed in ID are what is left of referent systems
once these names are thrown out. Since ID is eliminative by its very nature, the task of integrating
dynamic modality in ID is straightforward. Carrying this out would show that referent systems are
only needed in the rudimentary form provided for in ID.

14

The possibility to connect up with theories of anaphora resolution was already mentioned above. A
centering algorithm along the lines of [10, 15] can be plugged in to specify what happens at the open
slot in

res :: [i+ 1]! ! i+ 1:

Hints on how this could be done can be found in [3, 4].

10. Conclusions

Current reformulations of DRT within a type-theoretic framework are either given in a Martin-L�of
style type theory where the problem of �nding appropriate representations for pronominal elements is
not addressed, or they are based on dynamic logic with destructive assignment. The latter holds for
the dynamic Montague grammar of Groenendijk and Stokhof [7], for Muskens' logic of change [23, 24],
for Van Eijck's typed logic with states [29], for Saarbr�ucken style lambda DRT [17, 18], and so on.
In short, any framework that in some way takes the DPL [8] way of treating dynamic variables as its
point of departure su�ers from the same ailment: the problem of destructive assignment will at some
level spoil a correct treatment of anaphor-antecedent linking.
The introduction of referent systems [34, 35] solves the destructive assignment problem by holding

on to the variable names and �tting out the dynamic variables with additional superstructure. Incre-
mental dynamics shows how to get rid of destructive assignment by getting rid of dynamic variable
names altogether while preserving the essence of the context update mechanism.
Incremental dynamics takes context updating seriously; it is both a `better' rational reconstruction

of DRT than DPL and an improvement on DRT itself. It is a better rational reconstruction because
it does away with the arti�cial problems introduced by the DPL treatment of variables. It is an im-
provement because it makes clear that the DRT departure from the standard type-theoretic paradigm
introduced by Montague was unnecessary after all. Indeed, typed incremental dynamics has the same
advantages over dynamic Montague grammar and its ilk that ID has over DPL, and to a lesser extent
over DRT.

Acknowledgements Thanks to Johan van Benthem, Paul Dekker, Michael Kohlhase, Kees Vermeulen
and Albert Visser for their comments on a draft version of this paper, and to an anonymous referee
for urging me to clarify the connection with Martin L�of style type theory.

15

References

1. P. Aczel. Frege structures and the notions of proposition, truth and set. In J. Barwise, H.J. Keisler,
and K. Kunen, editors, The Kleene Symposium, pages 31{59. North-Holland, Amsterdam, 1980.

2. R. Ahn and H.-P. Kolb. Discourse representation meets constructive mathematics. In L. Kalman
and L. Polos, editors, Papers from the Second Symposium on Logic and Language, pages 105{124.
Akademiai Kiadoo, Budapest, 1990.

3. D. Beaver. The logic of anaphora resolution. In P. Dekker, editor, Proceedings of the Twelfth
Amsterdam Colloquium, pages 61{66, Amsterdam, 1999. ILLC.

4. D. Beaver. Centering in OT. Handout, Utrecht, September 2000.

5. N.G. de Bruijn. A survey of the project AUTOMATH. In J.R. Hindley and J.P. Seldin, editors,
To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 579{606.
Academic Press, London, 1980.

6. P. Dekker. Predicate logic with anaphora. In L. Santelmann and M. Harvey, editors, Proceedings
of the Fourth Semantics and Linguistic Theory Conference, page 17 vv, Cornell University, 1994.
DMML Publications.

7. J. Groenendijk and M. Stokhof. Dynamic Montague Grammar. In L. Kalman and L. Polos, edi-
tors, Papers from the Second Symposium on Logic and Language, pages 3{48. Akademiai Kiadoo,
Budapest, 1990.

8. J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguistics and Philosophy, 14:39{100,
1991.

9. J. Groenendijk, M. Stokhof, and F. Veltman. Coreference and modality. In S. Lappin, editor, The
Handbook of Contemporary Semantic Theory, pages 179{213. Blackwell, Oxford, 1996.

10. B. Grosz, A. Joshi, and S. Weinstein. Centering: A framework for modeling the local coherence
of discourse. Computational Linguistics, 21:203{226, 1995.

11. I. Heim. The Semantics of De�nite and Inde�nite Noun Phrases. PhD thesis, University of
Massachusetts, Amherst, 1982.

12. H. Hendriks. Studied Flexibility; Categories and Types in Syntax and Semantics. PhD thesis,
ILLC, Amsterdam, 1993.

13. P. Jacobson. Antecedent contained deletion in a variable-free semantics. In C. Barker and

16 References

D. Dowty, editors, Proceedings of the Second Conference on Semantics and Linguistic Theory,
pages 193{213. Ohio State University, 1992.

14. P. Jacobson. Towards a variable-free semantics. Linguistics and Philosophy, 22(2):117{184, April
1999.

15. M. Kameyama. Intrasentential centering: a case study. In M. Walker, A. Joshi, and E. Prince,
editors, Centering Theory in Discourse, pages 89{112. Clarendon Press, 1998.

16. H. Kamp. A theory of truth and semantic representation. In J. Groenendijk et al., editors, Formal
Methods in the Study of Language. Mathematisch Centrum, Amsterdam, 1981.

17. M. Kohlhase, S. Kuschert, and M. Pinkal. A type-theoretic semantics for �-DRT. In P. Dekker and
M. Stokhof, editors, Proceedings of the Tenth Amsterdam Colloquium, Amsterdam, 1996. ILLC.

18. S. Kuschert. Dynamic Meaning and Accommodation. PhD thesis, Universit�at des Saarlandes,
2000. Thesis defended in 1999.

19. F. Landman and I. Moerdijk. Compositionality and the analysis of anaphora. Linguistics and
Philosophy, 6:89{114, 1983.

20. P. Martin-L�of. Constructive mathematics and computer programming. In Cohen, Los, Pfei�er,
and Podewski, editors, Logic, Methodology and Philosophy of Science VI, pages 153{179. North
Holland, 1982.

21. P. Martin-L�of. Intuitionistic Type Theory. Bibliopolis, 1984.

22. R. Montague. The proper treatment of quanti�cation in ordinary English. In J. Hintikka e.a.,
editor, Approaches to Natural Language, pages 221{242. Reidel, 1973.

23. R. Muskens. A compositional discourse representation theory. In P. Dekker and M. Stokhof,
editors, Proceedings 9th Amsterdam Colloquium, pages 467{486. ILLC, Amsterdam, 1994.

24. R. Muskens. Combining Montague Semantics and Discourse Representation. Linguistics and
Philosophy, 19:143{186, 1996.

25. W.C. Purdy. A logic for natural language. Notre Dame Journal of Formal Logic, 32:409{425,
1991.

26. A. Ranta. Type-theoretical Grammar. Oxford University Press, 1994.

27. Aarne Ranta. Intuitionistic categorial grammar. Linguistics and Philosophy, 14:203{239, 1991.

28. G. Sundholm. Proof theory and meaning. In D. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic III, pages 471{506. Kluwer, Dordrecht, 1986.

29. J. van Eijck. Typed logics with states. Logic Journal of the IGPL, 5(5):623{645, 1997.

30. J. van Eijck. Axiomatising dynamic logics for anaphora. Journal of Language and Computation,
1:103{126, 1999.

31. J. van Eijck. Incremental dynamics. Journal of Logic, Language and Information, 2000.

32. J. van Eijck and H. Kamp. Representing discourse in context. In J. van Benthem and A. ter
Meulen, editors, Handbook of Logic and Language, pages 179{237. Elsevier, Amsterdam, 1997.

33. F. Veltman. Defaults in update semantics. Journal of Philosophical Logic, pages 221{261, 1996.

34. C.F.M. Vermeulen. Explorations of the Dynamic Environment. PhD thesis, OTS, Utrecht, 1994.

35. C.F.M. Vermeulen. Merging without mystery. Journal of Philosophical Logic, 24:405{450, 1995.

36. A. Visser. The design of dynamic discourse denotations. Lecture notes, Utrecht University, 1994.

