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ABSTRACT. In this paper, we present a systematic way of deriving (1) languages of (gener-
alised) regular expressions, and (2) sound and complete axiomatizations thereof, for a wide
variety of systems. This generalizes both the results of Kleene (on regular languages and de-
terministic finite automata) and Milner (on regular behaviours and finite labelled transition
systems), and includes many other systems such as Mealy and Moore machines.

1. INTRODUCTION

In a previous paper [9], we presented a language to describe the behaviour of Mealy ma-
chines and a sound and complete axiomatization thereof. The defined language and ax-
iomatization can be seen as the analogue of classical regular expressions [21] and Kleene
algebra [22], for deterministic finite automata (DFA), or the process algebra and axiomati-
zation for labelled transition systems (LTS) [28].
We now extend the previous approach and devise a framework wherein languages and
axiomatizations can be uniformly derived for a large class of systems, including DFA, LTS
and Mealy machines, which we will model as coalgebras.
Coalgebras provide a general framework for the study of dynamical systems such as DFA’s,
Mealy machines and LTS’s. For a functor G: Set→ Set, a G-coalgebra or G-system is a pair
(S, g), consisting of a set S of states and a function g : S → G(S) defining the “transitions”
of the states. We call the functor G the type of the system. For instance, DFA’s can be
modelled as coalgebras of the functor G(S) = 2×SA, Mealy machines are obtained by taking
G(S) = (B×S)A and image-finite LTS’s are coalgebras for the functor G(S) = (Pω(S))

A, where
Pω is finite powerset.
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Under mild conditions, functors G have a final coalgebra (unique up to isomorphism) into
which every G-coalgebra can be mapped via a unique so-called G-homomorphism. The final
coalgebra can be viewed as the universe of all possible G-behaviours: the unique homomor-
phism into the final coalgebra maps every state of a coalgebra to a canonical representative
of its behaviour. This provides a general notion of behavioural equivalence: two states
are equivalent if and only if they are mapped to the same element of the final coalgebra.
Instantiating the notion of final coalgebra for the aforementioned examples, the result is
as expected: for DFA’s the final coalgebra is the set 2A∗ of all languages over A; for Mealy
machines it is the set of causal functions f : Aω → Bω; and for LTS’s it is the set of finitely
branching trees with arcs labelled by a ∈ A modulo bisimilarity. The notion of equivalence
also specializes to the familiar notions: for DFA’s, two states are equivalent when they ac-
cept the same language; for Mealy machines, if they realize (or compute) the same causal
function; and for LTS’s if they are bisimilar.
It is the main aim of this paper to show how the type of a system, given by the functor
G, is not only enough to determine a notion of behaviour and behavioural equivalence,
but also allows for a uniform derivation of both a set of expressions describing behaviour
and a corresponding axiomatization. The theory of universal coalgebra [31] provides a
standard equivalence and a universal domain of behaviours, uniquely based on the functor
G. The main contributions of this paper are (1) the definition of a set of expressions ExpG

describing G-behaviours, (2) the proof of the correspondence between behaviours described
by ExpG and locally finite G-coalgebras (this is the analogue of Kleene’s theorem), and (3)
a corresponding sound and complete axiomatization, with respect to bisimulation, of ExpG

(this is the analogue of Kleene algebra). All these results are solely based on the type of the
system, given by the functor G.
In a nutshell, we combine the work of Kleene with coalgebra, considering the class of non-
deterministic functors. Hence, the title of the paper: non-deterministic Kleene coalgebras.

Organization of the paper. In Section 2 we introduce the class of non-deterministic func-
tors and coalgebras. In Section 3 we associate with each non-deterministic functor G a
generalized language ExpG of regular expressions and we present an analogue of Kleene’s
theorem, which makes precise the connection between ExpG and G-coalgebras. A sound and
complete axiomatization of ExpG is presented in Section 4. Section 5 contains two more ex-
amples of application of the framework and Section 6 shows a language and axiomatization
for the class of polynomial and finitary coalgebras. Section 7 presents concluding remarks,
directions for future work and discusses related work. This paper is an extended version
of [11, 10]: it includes all the proofs, more examples and explanations, new material about
polynomial and finitary functors and an extended discussion section.

2. PRELIMINARIES

We give the basic definitions on non-deterministic functors and coalgebras and introduce
the notion of bisimulation.

First we fix notation on sets and operations on them. Let Set be the category of sets and
functions. Sets are denoted by capital letters X , Y, . . . and functions by lower case f , g, . . ..
We write ; for the empty set and the collection of all finite subsets of a set X is defined as
Pω(X ) = {Y ⊆ X | Y finite}. The collection of functions from a set X to a set Y is denoted
by Y X . We write idX for the identity function on set X . Given functions f : X → Y and
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g : Y → Z we write their composition as g ◦ f . The product of two sets X , Y is written as

X ×Y , with projection functions X X × Y
π1 π2

Y .The set 1 is a singleton set typically
written as 1 = {∗} and it can be regarded as the empty product. We define X 3+ Y as the set

X ⊎ Y ⊎{⊥,⊤}, where ⊎ is the disjoint union of sets, with injections X
κ1

X ⊎ Y Y
κ2 .

Note that the set X 3+ Y is different from the classical coproduct of X and Y (which we shall
denote by X+Y ), because of the two extra elements⊥ and⊤. These extra elements will later
be used to represent, respectively, underspecification and inconsistency in the specification
of some systems. The intuition behind the need of these extra elements will become clear
when we present our language of expressions and concrete examples, in Section 3.3.1, of
systems whose type involves 3+. Note that X 3+ X 6∼= 2× X ∼= X + X .
For each of the operations defined above on sets, there are analogous ones on functions.
Let f : X → Y , f1 : X → Y and f2 : Z →W . We define the following operations:

f1× f2 : X × Z → Y ×W f1 3+ f2 : X 3+ Z → Y 3+W

( f1× f2)(〈x , z〉) = 〈 f1(x), f2(z)〉 ( f1 3+ f2)(c) = c, c ∈ {⊥,⊤}
( f1 3+ f2)(κi(x)) = κi( fi(x)), i ∈ {1,2}

f A : X A→ Y A Pω( f ): Pω(X )→ Pω(Y )

f A(g) = f ◦ g Pω( f )(S) = { f (x) | x ∈ S}
Note that here we are using the same symbols that we defined above for the operations on
sets. It will always be clear from the context which operation is being used.
In our definition of non-deterministic functors we will use constant sets equipped with an
information order. In particular, we will use join-semilattices. A (bounded) join-semilattice
is a set B equipped with a binary operation ∨B and a constant ⊥B ∈ B, such that ∨B is
commutative, associative and idempotent. The element ⊥B is neutral with respect to ∨B. As
usual, ∨B gives rise to a partial ordering ≤B on the elements of B:

b1 ≤B b2⇔ b1 ∨B b2 = b2

Every set S can be mapped into a join-semilattice by taking B to be the set of all finite
subsets of S with union as join.

Non-deterministic functors. Non-deterministic functors are functors G: Set → Set, built
inductively from the identity and constants, using ×, 3+, (−)A and Pω.

2.1. DEFINITION. The class NDF of non-deterministic functors on Set is inductively defined
by putting:

NDF ∋ G::= Id | B | G 3+ G | G×G | GA | PωG

where B is a finite (non-empty) join-semilattice and A is a finite set. ♣
Since we only consider finite exponents A = {a1, . . . , an}, the functor (−)A is not really
needed, since it is subsumed by a product with n components. However, to simplify the
presentation, we decided to include it.
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We now show the explicit definition of the functors above on a set X and on a morphism
f : X → Y (note that G( f ): G(X )→ G(Y )).

Id(X ) = X B(X ) = B (G1 3+ G2)(X ) = G1(X )3+ G2(X )

Id( f ) = f B( f ) = idB (G1 3+ G2)( f ) = G1( f )3+ G2( f )

(GA)(X ) = G(X )A (PωG)(X ) = Pω(G(X )) (G1×G2)(X ) = G1(X )×G2(X )

(GA)( f ) = G( f )A (PωG)( f ) = Pω(G( f )) (G1×G2)( f ) = G1( f )×G2( f )

Typical examples of non-deterministic functors include M= (B× Id)A, D= 2× IdA, Q= (1 3+

Id)A and N = 2× (PωId)A, where 2= {0,1} is a two-element join semilattice with 0 as bottom
element (1∨ 0= 1) and 1= {∗} is a one element join-semilattice. These functors represent,
respectively, the type of Mealy, deterministic, partial deterministic and non-deterministic
automata. In this paper, we will use the last three as running examples. In [9], we have
studied in detail regular expressions for Mealy automata. Similarly to what happened there,
we impose a join-semilattice structure on the constant functor. The product, exponentiation
and powerset functors preserve the join-semilattice structure and thus do not need to be
changed. This is not the case for the classical coproduct and thus we use 3+ instead, which
also guarantees that the join semilattice structure is preserved.
Next, we give the definition of the ingredient relation, which relates a non-deterministic
functor G with its ingredients, i.e. the functors used in its inductive construction. We shall
use this relation later for typing our expressions.

2.2. DEFINITION. Let Ã⊆ NDF × NDF be the least reflexive and transitive relation on non-
deterministic functors such that

G1 ⊳G1×G2, G2 Ã G1×G2, G1 Ã G1 3+ G2, G2 Ã G1 3+ G2, GÃ GA, GÃ PωG

♣
Here and throughout this document we use F Ã G as a shorthand for 〈F,G〉 ∈Ã. If F Ã G,
then F is said to be an ingredient of G. For example, 2, Id, IdA and D itself are all the
ingredients of the deterministic automata functor D= 2× IdA.

Non-deterministic coalgebras. A non-deterministic coalgebra is a pair (S, f : S → G(S)),
where S is a set of states and G is a non-deterministic functor. The functor G, together with
the function f , determines the transition structure (or dynamics) of the G-coalgebra [31].
Mealy, deterministic, partial deterministic and non-deterministic automata are, respectively,
coalgebras for the functors M= (B× Id)A, D= 2× IdA, Q= (1+ Id)A and N = 2× (PωId)A.
A G-homomorphism from a G-coalgebra (S, f ) to a G-coalgebra (T, g) is a function h: S→ T

preserving the transition structure, i.e. such that g ◦ h= G(h) ◦ f .

2.3. DEFINITION. A G-coalgebra (Ω,ω) is said to be final if for any G-coalgebra (S, f ) there
exists a unique G-homomorphism behS : S→ Ω. ♣
For every non-deterministic functor G there exists a final G-coalgebra (ΩG,ωG) [31]. For
instance, as we already mentioned in the introduction, the final coalgebra for the functor
D is the set of languages 2A∗ over A, together with a transition function d : 2A∗ → 2× (2A∗)A

defined as d(φ) = 〈φ(ε),λaλw.φ(aw)〉. Here ε denotes the empty sequence and aw denotes
the word resulting from prefixing w with the letter a. The notion of finality will play a key
role later in providing a semantics to expressions.
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Given a G-coalgebra (S, f ) and a subset V of S with inclusion map i : V → S we say that V is
a subcoalgebra of S if there exists g : V → G(V ) such that i is a homomorphism. Given s ∈ S,
〈s〉= (T, t), denotes the smallest subcoalgebra generated by s, with T given by

T =
⋂

{V | V is a subcoalgebra of S and s ∈ V }
If the functor F preserves arbitrary intersections, then the subcoalgebra 〈s〉 exists. This will
be the case for every functor considered in this paper. Moreover, all the functors considered
in this paper preserve monos and thus the transition structure t is unique [31, Proposition
6.1].
We will write Coalg(G) for the category of G-coalgebras together with coalgebra homomor-
phisms. We also write CoalgLF(G) for the category of G-coalgebras that are locally finite.
Objects are G-coalgebras (S, f ) such that for each state s ∈ S the generated subcoalgebra 〈s〉
is finite. Maps are the usual homomorphisms of coalgebras.
Let (S, f ) and (T, g) be two G-coalgebras. We call a relation R⊆ S× T a bisimulation [18] iff

〈s, t〉 ∈ R⇒ 〈 f (s), g(t)〉 ∈ G(R)

where G(R) is defined as

G(R) = {〈G(π1)(x),G(π2)(x)〉 | x ∈ G(R)}
We write s ∼G t whenever there exists a bisimulation relation containing (s, t) and we call
∼G the bisimilarity relation. We shall drop the subscript G whenever the functor G is clear
from the context. For all non-deterministic G-coalgebras (S, f ) and (T, g) and s ∈ S, t ∈ T , it
holds that s ∼ t ⇐⇒ behS(s) = behT (t) (the left to right implication always holds, whereas
the right to left implication only holds for certain classes of functors, which include the ones
we consider in this paper [31, 35]).

3. A LANGUAGE OF EXPRESSIONS FOR NON-DETERMINISTIC COALGEBRAS

In this section, we generalize the classical notion of regular expressions to non-deterministic
coalgebras. We start by introducing an untyped language of expressions and then we single
out the well-typed ones via an appropriate typing system, thereby associating expressions
to non-deterministic functors.

3.1. DEFINITION (Expressions). Let A be a finite set, B a finite join-semilattice and X a set
of fixed point variables. The set Exp of all expressions is given by the following grammar,
where a ∈ A, b ∈ B and x ∈ X :

ǫ ::= ; | x | ǫ⊕ ǫ | µx .γ | b | l〈ǫ〉 | r〈ǫ〉 | l[ǫ] | r[ǫ] | a(ǫ) | {ǫ}
where γ is a guarded expression given by:

γ ::= ; | γ⊕ γ | µx .γ | b | l〈ǫ〉 | r〈ǫ〉 | l[ǫ] | r[ǫ] | a(ǫ) | {ǫ}
The only difference between the BNF of γ and ǫ is the occurrence of x . ♣
In the expression µx .γ, µ is a binder for all the free occurrences of x in γ. Variables that are
not bound are free. A closed expression is an expression without free occurrences of fixed
point variables x . We denote the set of closed expressions by Expc.
Intuitively, expressions denote elements of the final coalgebra. The expressions ;, ǫ1⊕ǫ2 and
µx .ǫ will play a similar role to, respectively, the empty language, the union of languages and
the Kleene star in classical regular expressions for deterministic automata. The expressions
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l〈ǫ〉 and r〈ǫ〉 refer to the left and right hand-side of products. Similarly, l[ǫ] and r[ǫ]
refer to the left and right hand-side of sums. The expressions a(ǫ) and {ǫ} denote function
application and a singleton set, respectively. We shall soon illustrate, by means of examples,
the role of these expressions. Here, it is already visible that our approach (to define a
language) for the powerset functor differs from classical modal logic where � and ◊ are
used. This is a choice, justified by the fact that our goal is to have a “process algebra”
like language instead of a modal logic one. It also explains why we only consider finite
powerset: every finite set can be written as the finite union of its singletons.
Our language does not have any operator denoting intersection or complement (it only
includes the sum operator ⊕). This is a natural restriction, very much in the spirit of
Kleene’s regular expressions for deterministic finite automata. We will prove that this simple
language is expressive enough to denote exactly all locally finite coalgebras.
Next, we present a typing assignment system for associating expressions to non-determinis-
tic functors. This will allow us to associate with each functor G the expressions ǫ ∈ Expc that
are valid specifications of G-coalgebras. The typing proceeds following the structure of the
expressions and the ingredients of the functors.

3.2. DEFINITION (Type system). We now define a typing relation ⊢⊆ Exp × NDF × NDF

that will associate an expression ǫ with two non-deterministic functors F and G, which are
related by the ingredient relation (F is an ingredient of G). We shall write ⊢ ǫ : F Ã G for
〈ǫ,F,G〉 ∈ ⊢. The rules that define ⊢ are the following:

⊢ ;: F Ã G ⊢ b : BÃ G ⊢ x : GÃ G

⊢ ǫ : GÃ G

⊢ µx .ǫ : GÃ G

⊢ ǫ1 : F Ã G ⊢ ǫ2 : F Ã G

⊢ ǫ1 ⊕ ǫ2 : F Ã G

⊢ ǫ : GÃ G

⊢ ǫ : IdÃ G

⊢ ǫ : F Ã G

⊢ {ǫ}: PωF Ã G

⊢ ǫ : F Ã G

⊢ a(ǫ): FA Ã G

⊢ ǫ : F1 Ã G

⊢ l〈ǫ〉: F1 ×F2 Ã G

⊢ ǫ : F2 Ã G

⊢ r〈ǫ〉: F1 ×F2 Ã G

⊢ ǫ : F1 Ã G

⊢ l[ǫ]: F1 3+F2 Ã G

⊢ ǫ : F2 Ã G

⊢ r[ǫ]: F1 3+F2 Ã G

♣
Intuitively, ⊢ ǫ : F Ã G (for a closed expression ǫ) means that ǫ denotes an element of F(ΩG),
where ΩG is the final coalgebra of G. As expected, there is a rule for each expression con-
struct. The extra rule involving IdÃ G reflects the isomorphism between the final coalgebra
ΩG and G(ΩG) (Lambek’s lemma, cf. [31]). Only fixed points at the outermost level of the
functor are allowed. This does not mean however that we disallow nested fixed points.
For instance, µx . a(x ⊕ µy. a(y)) would be a well-typed expression for the functor D of
deterministic automata, as it will become clear below, when we will present more exam-
ples of well-typed and non-well-typed expressions. The presented type system is decidable
(expressions are of finite length and the system is inductive on the structure of ǫ ∈ Exp).
We can now formally define the set of G-expressions: well-typed expressions associated with
a non-deterministic functor G.

3.3. DEFINITION (G-expressions). Let G be a non-deterministic functor and F an ingredient
of G. We define ExpFÃG by:

ExpFÃG= {ǫ ∈ Expc | ⊢ ǫ : F Ã G} .
We define the set ExpG of well-typed G-expressions by ExpGÃG. ♣
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Let us instantiate the definition of G-expressions to the functors of deterministic automata
D= 2× IdA.

3.4. EXAMPLE (Deterministic expressions). Let A be a finite set of input actions and let X be
a set of (recursion or) fixed point variables. The set ExpD of deterministic expressions is given
by the set of closed and guarded (each variable occurs in the scope of a(−)) expressions
generated by the following BNF grammar. For a ∈ A and x ∈ X :

ExpD ∋ ǫ ::= ; | ǫ⊕ ǫ | µx .ǫ | x | l〈ǫ1〉 | r〈ǫ2〉
ǫ1 ::= ; | 0 | 1 | ǫ1⊕ ǫ1
ǫ2 ::= ; | a(ǫ) | ǫ2⊕ ǫ2

♠
Examples of well-typed expressions for the functor D = 2 × IdA (with 2 = {0,1} a two-
element join-semilattice with 0 as bottom element; recall that the ingredients of D are 2,
IdA and D itself) include r〈a(;)〉, l〈1〉⊕r〈a(l〈0〉)〉 and µx .r〈a(x)〉⊕l〈1〉. The expressions l[1],
l〈1〉 ⊕ 1 and µx .1 are examples of non well-typed expressions for D, because the functor D

does not involve 3+, the subexpressions in the sum have different type, and recursion is not
at the outermost level (1 has type 2ÃD), respectively.
It is easy to see that the closed (and guarded) expressions generated by the grammar pre-
sented above are exactly the elements of ExpD. The most interesting case to check is the
expression r〈a(ǫ)〉. Note that a(ǫ) has type IdA Ã D as long as ǫ has type Id Ã D. And the
crucial remark here is that, by definition of ⊢, ExpIdÃG= ExpG. Therefore, ǫ has type Id ÃD

if it is of type DÃD, or more precisely, if ǫ ∈ ExpD, which explains why the grammar above
is correct.
At this point, we should remark that the syntax of our expressions differs from the classical
regular expressions in the use of µ and action prefixing a(ǫ) instead of star and full con-
catenation. We shall prove later that these two syntactically different formalisms are equally
expressive (Theorems 3.12 and 3.14), but, to increase the intuition behind our expressions,
let us now present the syntactic translation from classical regular expressions to ExpD (this
translation is inspired by [28]) and back.

3.5. DEFINITION. The set of regular expressions is given by the following syntax

RE ∋ r::= 0 | 1 | a | r + r | r · r | r∗

where a ∈ A and · denotes sequential composition. We define the following translations
between regular expressions and deterministic expressions:

(−)† : RE→ ExpD (−)‡ : ExpD→ RE

(0)† = ; (;)‡ = 0
(1)† = l〈1〉 (l〈;〉)‡ = (l〈0〉)‡ = (r〈;〉)‡ = 0
(a)† = r〈a(l〈1〉)〉 (l〈1〉)‡ = 1
(r1+ r2)

† = (r1)
†⊕ (r2)

† (l〈ǫ1⊕ ǫ′1〉)‡ = (l〈ǫ1〉)‡+ (l〈ǫ′1〉)‡
(r1 · r2)

† = (r1)
†[(r2)

†/l〈1〉] (r〈a(ǫ)〉)‡ = a · (ǫ)‡
(r∗)† = µx .(r)†[x/l〈1〉]⊕ l〈1〉 (r〈ǫ2⊕ ǫ′2〉)‡ = (r〈ǫ2〉)‡+ (r〈ǫ′2〉)‡

(ǫ1⊕ ǫ2)‡ = (ǫ1)
‡+ (ǫ2)

‡

(µx .ǫ)‡ = sol(eqs(µx .ǫ))

The function eqs translates µx .ǫ into a system of equations in the following way. Let
µx1.ǫ1, . . . ,µxn.ǫn be all the fixed point subexpressions of µx .ǫ, with x1 = x and ǫ1 = ǫ.
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We define n equations x i = (ǫi)
†, where ǫi is obtained from ǫi by replacing each subex-

pression µx i .ǫi by x i, for all i = 1, . . . n. The solution of the system, sol(eqs(µx .ǫ)), is then
computed in the usual way (the solution of an equation of shape x = r x + t is r∗ t).
In [32], regular expressions were given a coalgebraic structure, using Brzozowski deriva-
tives [13]. Later in this paper, we will provide a coalgebra structure to ExpD, after which
the soundness of the above translations can be stated and proved: r ∼ r† and ǫ ∼ ǫ‡, where
∼ will coincide with language equivalence. ♣
Thus, the regular expression aa∗ is translated to r〈a(µx .r〈a(x)〉 ⊕ l〈1〉)〉, whereas the ex-
pression µx .r〈a(r〈a(x)〉)〉 ⊕ l〈1〉 is transformed into (aa)∗.
We present next the syntax for the expressions in ExpQ and in ExpN (recall that Q= (13+ Id)A

and N = 2× (PωId)A).

3.6. EXAMPLE (Partial expressions). Let A be a finite set of input actions and X be a set of
(recursion or) fixed point variables. The set ExpQ of partial expressions is given by the set
of closed and guarded expressions generated by the following BNF grammar. For a ∈ A and
x ∈ X :

ExpQ ∋ ǫ ::= ; | ǫ⊕ ǫ | µx .ǫ | x | a(ǫ1)
ǫ1 ::= ; | ǫ1⊕ ǫ1 | l[ǫ2] | r[ǫ]
ǫ2 ::= ; | ǫ2⊕ ǫ2 | ∗

Intuitively, the expressions a(l[∗]) and a(r[ǫ]) specify, respectively, a state which has no de-
fined transition for input a and a state with an outgoing transition to another one specified
by ǫ. ♠
3.7. EXAMPLE (Non-deterministic expressions). Let A be a finite set of input actions and X

be a set of (recursion or) fixed point variables. The set ExpN of non-deterministic expres-
sions is given by the set of closed and guarded expressions generated by the following BNF
grammar. For a ∈ A and x ∈ X :

ExpN ∋ ǫ ::= ; | x | r〈ǫ2〉 | l〈ǫ1〉 | ǫ⊕ ǫ | µx .ǫ
ǫ1 ::= ; | ǫ1⊕ ǫ1 | 1 | 0
ǫ2 ::= ; | ǫ2⊕ ǫ2 | a(ǫ′)
ǫ′ ::= ; | ǫ′⊕ ǫ′ | {ǫ}

Intuitively, the expression r〈a({ǫ1} ⊕ {ǫ2})〉 specifies a state which has two outgoing transi-
tions labelled with the input letter a, one to a state specified by ǫ1 and another to a state
specified by ǫ2. ♠
We have now defined a language of expressions which gives us an algebraic description
of systems. We should also remark at this point that in the examples we strictly follow
the type system to derive the syntax of the expressions. However, it is obvious that many
simplifications can be made in order to obtain a more polished language. In particular, after
the axiomatization we will be able to decrease the number of levels in the above grammars,
since will we have axioms of the shape a(ǫ)⊕ a(ǫ′)≡ a(ǫ⊕ ǫ′). In Section 5, we will sketch
two examples where we apply some simplification to the syntax.
The goal is now to present a generalization of Kleene’s theorem for non-deterministic coal-
gebras (Theorems 3.12 and 3.14). Recall that, for regular languages, the theorem states
that a language is regular if and only if it is recognized by a finite automaton. In order to
achieve our goal we will first show that the set ExpG of G-expressions carries a G-coalgebra
structure.
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3.1. Expressions are coalgebras. In this section, we show that the set of G-expressions for
a given non-deterministic functor G has a coalgebraic structure δG: ExpG→ G(ExpG) . More
precisely, we are going to define a function

δFÃG : ExpFÃG→ F(ExpG)

for every ingredient F of G, and then set δG = δGÃG. Our definition of the function δFÃG

will make use of the following.

3.8. DEFINITION. For every G ∈ NDF and for every F with F Ã G:
(i) we define a constant EmptyFÃG ∈ F(ExpG) by induction on the syntactic structure of

F:
EmptyIdÃG = ;
EmptyBÃG = ⊥B

EmptyF1×F2ÃG = 〈EmptyF1ÃG, EmptyF2ÃG〉

EmptyF13+F2ÃG = ⊥
EmptyFAÃG = λa.EmptyFÃG

EmptyPωFÃG = ;
(ii) we define a function PlusFÃG: F(ExpG) × F(ExpG) → F(ExpG) by induction on the

syntactic structure of F:

PlusIdÃG(ǫ1,ǫ2) = ǫ1⊕ ǫ2
PlusBÃG(b1, b2) = b1 ∨B b2
PlusF1×F2ÃG(〈ǫ1,ǫ2〉, 〈ǫ3,ǫ4〉) = 〈PlusF1ÃG(ǫ1,ǫ3), PlusF2ÃG(ǫ2,ǫ4)〉
PlusF13+F2ÃG(κi(ǫ1),κi(ǫ2)) = κi(PlusFiÃG(ǫ1,ǫ2)), i ∈ {1,2}
PlusF13+F2ÃG(κi(ǫ1),κ j(ǫ2)) = ⊤ i, j ∈ {1,2} and i 6= j

PlusF13+F2ÃG(x ,⊤) = PlusF13+F2ÃG(⊤, x) = ⊤
PlusF13+F2ÃG(x ,⊥) = PlusF13+F2ÃG(⊥, x) = x

PlusFAÃG( f , g) = λa. PlusFÃG( f (a), g(a))

PlusPωFÃG(s1, s2) = s1 ∪ s2

Intuitively, one can think of the constant EmptyFÃG and the function PlusFÃG as liftings of ;
and ⊕ to the level of F(ExpG). ♣
We need two more things to define δFÃG. First, we define an order ¹ on the types of
expressions. For F1, F2 and G non-deterministic functors such that F1 Ã G and F2 Ã G, we
define

(F1 Ã G)¹ (F2 Ã G)⇔ F1 Ã F2

The order ¹ is a partial order (structure inherited from Ã). Note also that (F1 Ã G) = (F2 Ã

G)⇔ F1 = F2. Second, we define a measure N(ǫ) based on the maximum number of nested
unguarded occurrences of µ-expressions in ǫ and unguarded occurrences of ⊕. We say that
a subexpression µx .ǫ1 of ǫ occurs unguarded if it is not in the scope of one of the operators
l〈−〉, r〈−〉, l[−], r[−], a(−) or {−}.
3.9. DEFINITION. For every ǫ ∈ ExpFÃG, we define N(ǫ) as follows:

N(;) = N(b) = N(a(ǫ)) = N(l〈ǫ〉) = N(r〈ǫ〉) = N(l[ǫ]) = N(r[ǫ]) = N({ǫ}) = 0

N(ǫ1⊕ ǫ2) = 1+max{N(ǫ1), N(ǫ2)}
N(µx .ǫ) = 1+ N(ǫ)

♣
The measure N induces a partial order on the set of expressions: ǫ1≪ ǫ2⇔ N(ǫ1)≤ N(ǫ2),
where ≤ is just the ordinary inequality of natural numbers.
Now we have all we need to define δFÃG: ExpFÃG→ F(ExpG).
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3.10. DEFINITION. For every ingredient F of a non-deterministic functor G and an expres-
sion ǫ ∈ ExpFÃG, we define δFÃG(ǫ) as follows:

δFÃG(;) = EmptyFÃG

δFÃG(ǫ1⊕ ǫ2) = PlusFÃG(δFÃG(ǫ1),δFÃG(ǫ2))
δGÃG(µx .ǫ) = δGÃG(ǫ[µx .ǫ/x])
δIdÃG(ǫ) = ǫ for G 6= Id
δBÃG(b) = b

δF1×F2ÃG(l〈ǫ〉) = 〈δF1ÃG(ǫ), EmptyF2ÃG〉
δF1×F2ÃG(r〈ǫ〉) = 〈EmptyF1ÃG,δF2ÃG(ǫ)〉
δF13+F2ÃG(l[ǫ]) = κ1(δF1ÃG(ǫ))

δF13+F2ÃG(r[ǫ]) = κ2(δF2ÃG(ǫ))

δFAÃG(a(ǫ)) = λa′.

½

δFÃG(ǫ) a = a′

EmptyFÃG otherwise
δPωFÃG({ǫ}) = {δFÃG(ǫ) }

Here, ǫ[µx .ǫ/x] denotes syntactic substitution, replacing every free occurrence of x in ǫ by
µx .ǫ. ♣
In order to see that the definition of δFÃG is well-formed, we have to observe that δFÃG can
be seen as a function having two arguments: the type F Ã G and the expression ǫ. Now,
we use induction on the cartesian product of types and expressions with orders ¹ and ≪,
respectively. More precisely, given two pairs 〈F1 Ã G,ǫ1〉 and 〈F2 Ã G,ǫ2〉 we have an order

〈F1 Ã G,ǫ1〉 ≤ 〈F2 Ã G,ǫ2〉 ⇔ (i) (F1 Ã G)¹ (F2 Ã G)

or (ii) (F1 Ã G) = (F2 Ã G) and ǫ1≪ ǫ2
(3.1)

Now observe that in the definition above it is always true that 〈F′ Ã G,ǫ′〉 ≤ 〈F Ã G,ǫ〉,
for all occurrences of δF′ÃG(ǫ

′) occurring in the right hand side of the equation defining
δFÃG(ǫ). In all cases, but the ones that ǫ is a fixed point or a sum expression, the inequality
comes from point (i) above. For the case of the sum, note that 〈F Ã G,ǫ1〉 ≤ 〈F Ã G,ǫ1⊕ ǫ2〉
and 〈F Ã G,ǫ2〉 ≤ 〈F Ã G,ǫ1⊕ǫ2〉 by point (ii), since N(ǫ1)<N(ǫ1⊕ǫ2) and N(ǫ2)<N(ǫ1⊕ǫ2).
Similarly, in the case of µx .ǫ we have that N(ǫ) = N(ǫ[µx .ǫ/x]), which can easily be proved
by (standard) induction on the syntactic structure of ǫ, since ǫ is guarded (in x), and this
guarantees that N(ǫ[µx .ǫ/x])< N(µx .ǫ). Hence, 〈G Ã G,ǫ〉 ≤ 〈G Ã G,µx .ǫ〉. Also note that
clause 4 of the above definition overlaps with clauses 1 and 2 (by taking F = Id). However,
they give the same result and thus the function δFÃG is well-defined.

3.11. DEFINITION. We can now define, for each non-deterministic functor G, a G-coalgebra

δG: ExpG→ G(ExpG)

by putting δG= δGÃG. ♣
The function δG can be thought of as the generalization of the well-known notion of Br-
zozowski derivative [13] for regular expressions and, moreover, it provides an operational
semantics for expressions, as we shall see in Section 3.2.
The observation that the set of expressions has a coalgebra structure will be crucial for the
proof of the generalized Kleene theorem, as will be shown in the next two sections.
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3.2. Expressions are expressive. Having a G-coalgebra structure on ExpG has two advan-
tages. First, it provides us, by finality, directly with a natural semantics because of the
existence of a (unique) homomorphism beh: ExpG→ ΩG, that assigns to every expression ǫ
an element beh(ǫ) of the final coalgebra ΩG.
The second advantage of the coalgebra structure on ExpG is that it lets us use the notion of
G-bisimulation to relate G-coalgebras (S, g) and expressions ǫ ∈ ExpG. If one can construct
a bisimulation relation between an expression ǫ and a state s of a given coalgebra, then the
behaviour represented by ǫ is equal to the behaviour of the state s. This is the analogue of
computing the language L(r) represented by a given regular expression r and the language
L(s) accepted by a state s of a finite state automaton and checking whether L(r) = L(s).
The following theorem states that every state in a locally finite G-coalgebra can be rep-
resented by an expression in our language. This generalizes half of Kleene’s theorem for
deterministic automata: if a language is accepted by a finite automaton then it is regular
(i.e. it can be denoted by a regular expression). The generalization of the other half of the
theorem (if a language is regular then it is accepted by a finite automaton) will be presented
in Section 3.3. It is worth to remark that in the usual definition of deterministic automaton
the initial state of the automaton is included and, thus, in the original Kleene’s theorem,
it was enough to consider finite automata. In the coalgebraic approach, the initial state is
not explicitly modelled and thus we need to consider locally-finite coalgebras: coalgebras
where each state will generate a finite subcoalgebra.

3.12. THEOREM. Let G be a non-deterministic functor and let (S, g) be a locally-finite G-
coalgebra. Then, for any s ∈ S, there exists an expression 〈〈 s 〉〉 ∈ ExpG such that s ∼ 〈〈 s 〉〉.
Proof. Let s ∈ S and let 〈s〉= {s1, . . . , sn} with s1 = s. We construct, for every state si ∈ 〈s〉, an
expression 〈〈 si 〉〉 such that si ∼ 〈〈 si 〉〉 .
If G= Id, we set, for every i, 〈〈 si 〉〉= ;. It is easy to see that {〈si,;〉 | si ∈ 〈s〉} is a bisimulation
and, thus, we have that s ∼ 〈〈 s 〉〉.
For G 6= Id, we proceed in the following way. Let, for every i, Ai = µx i .γ

G

g(si)
where, for F Ã G

and c ∈ F〈s〉, the expression γFc ∈ ExpFÃG is defined by induction on the structure of F:

γId
si
= x i γB

b
= b γ

F1×F2

〈c,c′〉 = l〈γF1
c 〉 ⊕ r〈γF2

c′
〉 γFA

f
=
⊕

a∈A

a(γF
f (a)
)

γ
F13+F2

κ1(c)
= l[γ

F1
c ] γ

F13+F2

κ2(c)
= r[γ

F2
c ] γ

F13+F2
⊥ = ; γ

F13+F2
⊤ = l[;]⊕ r[;]

γ
PωF

C =







⊕

c∈C

{γFc } C 6= ;

; otherwise

Note that here the choice of l[;]⊕ r[;] to represent inconsistency is arbitrary but canonical,
in the sense that any other expression involving sum of l[ǫ1] and r[ǫ2] will be bisimilar.
Formally, the definition of γ above is parametrized by a function from {s1, . . . , sn} to a fixed
set of variables {x1, . . . , xn}. It should also be noted that

⊕

i∈I

ǫi stands for ǫ1⊕ (ǫ2⊕ (ǫ3+ . . .))

(this is a choice, since later we will axiomatize ⊕ to be commutative and associative).
Now, let A0

i
= Ai, define Ak+1

i
= Ak

i
{Ak

k+1/xk+1} and then set 〈〈 si 〉〉 = An
i
. Here, A{A′/x}

denotes syntactic replacement (that is, substitution without renaming of bound variables
in A which are also free variables in A′). The definition of 〈〈 si 〉〉 does not depend in the
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chosen order of {s1, . . . , sn}: the expressions obtained are just different modulo renaming of
variables.
Observe that the term

An
i = (µx i .γ

G

g(si)
){A0

1/x1} . . . {An−1
n /xn}

is a closed term because, for every j = 1, . . . , n, the term A
j−1
j

contains at most n− j free
variables in the set {x j+1, . . . , xn}.
It remains to prove that si ∼ 〈〈 si 〉〉. We show that R= {〈si , 〈〈 si 〉〉〉 | si ∈ 〈s〉} is a bisimulation.
For that, we first define, for F Ã G and c ∈ F〈s〉, ξF

c = γ
F
c {A0

1/x1} . . . {An−1
n /xn} and the

relation
RFÃG= {〈c,δFÃG(ξ

F
c )〉 | c ∈ F〈s〉}.

Then, we prove that 1 RFÃG= F(R) and 2 〈g(si),δG(〈〈 si 〉〉)〉 ∈ RGÃG.

1 By induction on the structure of F.
F = Id Note that RIdÃG = {〈si,ξ

Id
si
〉 | si ∈ 〈s〉} which is equal to Id(R) = R provided

that ξId
si
= 〈〈 si 〉〉. The latter is indeed the case:

ξId
si
= γId

si
{A0

1/x1} . . . {An−1
n /xn} (def. ξId

si
)

= x i{A0
1/x1} . . . {An−1

n /xn} (def. γId
si

)

= Ai−1
i
{Ai

i+1/x i+1} . . . {An−1
n /xn} ({Ai−1

i
/x i})

= A0
i
{A0

1/x1} . . . {An−1
n /xn} (def. Ai−1

i
)

= 〈〈 si 〉〉 (def. 〈〈 si 〉〉)
F = B Note that, for b ∈ B, ξB

b
= γB

b
{A0

1/x1} . . . {An−1
n /xn}= b. Thus, we have that

RBÃG= {〈si ,ξ
B
si
〉 | si ∈ B〈s〉}= {〈b, b〉 | b ∈ B} = B(R).

F = F1×F2

〈〈u, v〉, 〈e, f 〉〉 ∈ F1×F2(R)

⇐⇒ 〈u, e〉 ∈ F1(R) and 〈v, f 〉 ∈ F2(R) (def. F1×F2)

⇐⇒ 〈u, e〉 ∈ RF1ÃG and 〈v, f 〉 ∈ RF2ÃG (ind. hyp.)

⇐⇒ 〈u, e〉= 〈c,δF1ÃG(ξ
F1
c )〉 and 〈v, f 〉= 〈c′,δF2ÃG(ξ

F2

c′
)〉 (def. RFiÃG)

⇐⇒ 〈u, v〉 = 〈c, c′〉 and 〈e, f 〉= δF1×F2ÃG(l(ξ
F1
c )⊕ r(ξ

F2

c′
)) (def. δFÃG)

⇐⇒ 〈u, v〉 = 〈c, c′〉 and 〈e, f 〉= δF1×F2ÃG(ξ
F1×F2

〈c,c′〉 ) (def. ξF)

⇐⇒ 〈〈u, v〉, 〈e, f 〉〉 ∈ RF1×F2ÃG

F = F1 3+F2 , F = FA
1 and F = PωF1 : similar to F1×F2.

2 We want to prove that 〈g(si),δG(〈〈 si 〉〉)〉 ∈ RGÃG. For that, we must show that g(si) ∈
G〈s〉 and δG(〈〈 si 〉〉) = δG(ξ

G

g(si)
). The former follows by definition of 〈s〉, whereas for



NON-DETERMINISTIC KLEENE COALGEBRAS 13

the latter we observe that:
δG(〈〈 si 〉〉)

= δG((µx i .γ
G

g(si)
){A0

1/x1} . . . {An−1
n
/xn}) (def. of 〈〈 si 〉〉)

= δG(µx i .γ
G

g(si)
{A0

1/x1} . . . {Ai−2
i−1/x i−1}{Ai

i+1/x i+1} . . . {An−1
n
/xn})

= δG(γ
G

g(si)
{A0

1/x1} . . . {Ai−2
i−1/x i−1}{Ai

i+1/x i+1} . . . {An−1
n
/xn}[An

i
/x i]) (def. of δG)

= δG(γ
G

g(si)
{A0

1/x1} . . . {Ai−2
i−1/x i−1}{Ai

i+1/x i+1} . . . {An−1
n
/xn}{An

i
/x i}) ([An

i
/x i] = {An

i
/x i})

= δG(γ
G

g(si)
{A0

1/x1} . . . {Ai−2
i−1/x i−1}{An

i
/x i}{Ai

i+1/x i+1} . . . {An−1
n
/xn})

= δG(ξ
G

g(si)
)

Here, note that [An
i
/x i] = {An

i
/x i}, because An

i
has no free variables. The last two

steps follow, respectively, because x i is not free in Ai
i+1, . . . ,An−1

n and:

{An
i /x i}{Ai

i+1/x i+1} . . . {An−1
n /xn}

= {Ai−1
i {A

i
i+1/x i+1} . . . {An−1

n /xn}/x i}{Ai
i+1/x i+1} . . . {An−1

n /xn}

= {Ai−1
i /x i}{Ai

i+1/x i+1} . . . {An−1
n /xn} (3.2)

Equation (3.2) uses the syntactic identity

A{B{C/y}/x}{C/y} = A{B/x}{C/y}, y not free in C (3.3)

Let us illustrate the construction appearing in the proof of Theorem 3.12 by some examples.
These examples will illustrate the similarity with the proof of Kleene’s Theorem presented
in most textbooks, where a regular expression denoting the language recognized by a state
of a deterministic automaton is built using a system of equations.
Consider the following deterministic automaton over a two letter alphabet A= {a, b}, whose
transition function g is depicted by the following picture ( s represents that the state s is
final):

s1
a

b

s2

a,b

Now define A1 = µx1.γD
g(s1)

and A2 = µx2.γD
g(s2)

where

γD
g(s1)
= l〈0〉 ⊕ r〈b(x1)⊕ a(x2)〉 γD

g(s2)
= l〈1〉 ⊕ r〈a(x2)⊕ b(x2)〉

Now we have A2
1 = A1{A1

2/x2} and A2
2 = A2{A0

1/x1}. Thus, 〈〈 s2 〉〉 = A2 and, since A1
2 = A2,

〈〈 s1 〉〉 is the expression

µx1. l〈0〉 ⊕ r〈b(x1)⊕ a(µx2. l〈1〉 ⊕ r〈a(x2)⊕ b(x2)〉)〉
By construction we have s1 ∼ 〈〈 s1 〉〉 and s2 ∼ 〈〈 s2 〉〉.
For another example, take the following partial automaton, also over a two letter alphabet
A= {a, b}:

q1
a q2

b
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In the graphical representation of a partial automaton (S, p) we omit transitions for which
p(s)(a) = κ1(∗). In this case, this happens in q1 for the input letter b and in q2 for a.
We will have the equations

A1 = A0
1 = A1

1 = µx1.b(l[∗])⊕ a(r[x2])

A2 = A0
2 = A1

2 = µx2.a(l[∗])⊕ b(r[x2])

Thus:
〈〈 s1 〉〉= A2

1 = µx1. b(l[∗])⊕ a(r[µx2. a(l[∗])⊕ b(r[x2])])

〈〈 s2 〉〉= µx2.a(l[∗])⊕ b(r[x2])

Again we have s1 ∼ 〈〈 s1 〉〉 and s2 ∼ 〈〈 s2 〉〉.
As a last example, let us consider the following non-deterministic automaton, over a one
letter alphabet A= {a}:

s1

a

a

a s2

a

a

s3

a

a

We start with the equations:

A1 = µx1.l〈0〉 ⊕ r〈a({x1} ⊕ {x2} ⊕ {x3})〉
A2 = µx2.l〈0〉 ⊕ r〈a({x2} ⊕ {x3})〉
A3 = µx3.l〈1〉 ⊕ r〈a({x1} ⊕ {x3})〉

Then we have the following iterations:

A1
1 = A1

A2
1 = A1{A1

2/x2}= µx1.l〈0〉 ⊕ r〈a({x1} ⊕ {A2} ⊕ {x3})〉
A3

1 = A1{A1
2/x2}{A2

3/x3}= µx1.l〈0〉 ⊕ r〈a({x1} ⊕ {(A2{A2
3/x3})} ⊕ {A2

3})〉

A1
2 = A2{A1/x1}= A2

A2
2 = A2{A1/x1}= A2

A3
2 = A2{A1/x1}{A2

3/x3}= µx2.l〈0〉 ⊕ r〈a({x2} ⊕ {A2
3})〉

A1
3 = A3{A1/x1}= µx3.l〈1〉 ⊕ r〈a({A1} ⊕ {x3})〉

A2
3 = A3{A1/x1}{A1

2/x2}= µx3.l〈1〉 ⊕ r〈a({(A1{A1
2/x2})} ⊕ {x3})〉

A3
3 = A2

3

This yields the following expressions:

〈〈 s1 〉〉= µx1.l〈0〉 ⊕ r〈a({x1} ⊕ {〈〈 s2 〉〉} ⊕ {〈〈 s3 〉〉})〉
〈〈 s2 〉〉= µx2.l〈0〉 ⊕ r〈a({x2} ⊕ {〈〈 s3 〉〉})〉
〈〈 s3 〉〉= µx3.l〈1〉 ⊕ r〈a({µx1.l〈0〉 ⊕ r〈a({x1} ⊕ {µx2.l〈0〉 ⊕ r〈a({x2} ⊕ {x3})〉} ⊕ {x3})〉} ⊕ {x3})〉
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3.3. Finite systems for expressions. We now prove the converse of Theorem 3.12, that is,
we show how to construct a finite G-coalgebra (S, g) from an arbitrary expression ǫ ∈ ExpG,
such that there exists a state s ∈ S with ǫ ∼G s.
The immediate way of obtaining a coalgebra from an expression ǫ ∈ ExpG is to compute
the subcoalgebra 〈ǫ〉, since we have provided the set ExpG with a coalgebra structure
δG: ExpG → G(ExpG). However, the subcoalgebra generated by an expression ǫ ∈ ExpG

by repeatedly applying δG is, in general, infinite. Take for instance the deterministic expres-
sion ǫ1 = µx . r〈a(x ⊕ µy. r〈a(y)〉)〉 (for simplicity, we consider A = {a} and below we will
write, in the second component of δD, an expression ǫ instead of the function mapping a

to ǫ) and observe that:

δD(ǫ1) = 〈0,ǫ1⊕µy. r〈a(y)〉〉
δD(ǫ1⊕µy. r〈a(y)〉) = 〈0,ǫ1⊕µy. r〈a(y)〉 ⊕µy. r〈a(y)〉〉
δD(ǫ1⊕µy. r〈a(y)〉 ⊕µy. r〈a(y)〉) = 〈0,ǫ1⊕µy. r〈a(y)〉 ⊕µy. r〈a(y)〉 ⊕µy. r〈a(y)〉〉

...

As one would expect, all the new states are equivalent and will be identified by beh (the
morphism into the final coalgebra). However, the function δD does not make any state
identification and thus yields an infinite coalgebra.
This phenomena occurs also in classical regular expressions. It was shown in [13] that nor-
malizing the expressions using the axioms for associativity, commutativity and idempotency
was enough to guarantee finiteness1. We will show in this section that this also holds in our
setting.
Consider the following axioms (only the first three are essential, but we include the fourth
to obtain smaller coalgebras):

(Associativity) ǫ1⊕ (ǫ2⊕ ǫ3)≡ (ǫ1⊕ ǫ2)⊕ ǫ3
(Commutativity) ǫ1⊕ ǫ2 ≡ ǫ2⊕ ǫ1
(Idempotency) ǫ⊕ ǫ ≡ ǫ
(Empty) ;⊕ ǫ ≡ ǫ

We define the relation ≡ACIE⊆ ExpFÃG× ExpFÃG, written infix, as the least equivalence re-
lation containing the four identities above. The relation ≡ACIE gives rise to the (surjective)
equivalence map [ǫ]ACIE = {ǫ′ | ǫ ≡ACIE ǫ

′}. The following diagram shows the maps defined
so far:

ExpFÃG

δFÃG

[−]ACIE ExpFÃG/≡ACIE

F(ExpG)
F([−]ACIE)

F(ExpG/≡ACIE
)

1Actually, to guarantee finiteness, similar to classical regular expressions, it is enough to eliminate double
occurrences of expressions ǫ at the outermost level of an expression · · · ⊕ ǫ ⊕ · · · ⊕ ǫ ⊕ · · · (and to do this one
needs the ACI axioms). Note that this is weaker than taking expressions modulo the ACI axioms: for instance,
the expressions ǫ1 ⊕ ǫ2 and ǫ2 ⊕ ǫ1, for ǫ1 6= ǫ2, would not be identified in the process above.
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In order to complete the diagram, we next prove that ≡ACIE is contained in the kernel of
F([−]ACIE) ◦δFÃG

2. This will guarantee the existence of a function

δFÃG: ExpFÃG/≡ACIE
→ F(ExpG/≡ACIE

)

which, when F = G, provides ExpG/≡ with a coalgebraic structure

δG: ExpG/≡ACIE
→ G(ExpG/≡ACIE

)

(as before we write δG for δGÃG) and which makes [−]ACIE a homomorphism of coalgebras.

3.13. LEMMA. Let G and F be non-deterministic functors, with F Ã G. For all ǫ1,ǫ2 ∈ ExpFÃG,

ǫ1 ≡ACIE ǫ2⇒ (F([−]ACIE))(δFÃG(ǫ1)) = (F([−]ACIE))(δFÃG(ǫ2))

Proof. In order to improve readability, in this proof we will use [−] to denote [−]ACIE.
It is enough to prove that for all x1, x2, x3 ∈ F(ExpG):

1 F([−])(PlusFÃG(PlusFÃG(x1, x2), x3)) = F([−])(PlusFÃG(x1, PlusFÃG(x2, x3)))

2 F([−])(PlusFÃG(x1, x2)) = F([−])(PlusFÃG(x2, x1))

3 F([−])(PlusFÃG(x1, x1)) = F([−])(x1)

4 F([−])(PlusFÃG(EmptyFÃG, x1)) = F([−])(x1)

By induction on the structure of F. We illustrate a few cases, the omitted ones are proved
in a similar way.
F = Id x1, x2, x3 ∈ ExpG

1 [PlusIdÃG(PlusIdÃG(x1, x2), x3)]

= [(x1⊕ x2)⊕ x3] (def. Plus)
= [x1⊕ (x2⊕ x3)] (Associativity)
= [PlusIdÃG(x1, PlusIdÃG(x2, x3))] (def. Plus)

4 [PlusIdÃG(EmptyIdÃG, x1)]

= [;⊕ x1] (def. Plus and Empty)
= [x1] (Empty)

F = F1×F2 x1 = 〈u1, v1〉, x2 = 〈u2, v2〉 ∈ (F1×F2)(ExpG)

2 (F1×F2)([−])(PlusF1×F2ÃG(〈u1, v1〉, 〈u2, v2〉))
= 〈F1([−])(PlusF1ÃG(u1,u2)),F2([−])(PlusF2ÃG(v1, v2))〉 (def. Plus)
= 〈F1([−])(PlusF1ÃG(u2,u1)),F2([−])(PlusF2ÃG(v2, v1))〉 (ind. hyp.)
= (F1×F2)([−])(PlusF1×F2ÃG(〈u2, v2〉, 〈u1, v1〉)) (def. Plus)

3 (F1×F2)([−])(PlusF1×F2ÃG(〈u1, v1〉, 〈u1, v1〉))
= 〈F1([−])(PlusF1ÃG(u1,u1)),F2([−])(PlusF2ÃG(v1, v1))〉 (def. Plus)
= 〈F1([−])(u1),F2([−])(v1)〉 (ind. hyp.)
= (F1×F2)([−])(〈u1, v1〉)

2This is equivalent to prove that ExpFÃG/≡ACIE
, together with [−]ACIE, is the coequalizer of the projection

morphisms from ≡ACIE to ExpFÃG .
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F = PωF1 x1, x2, x3 ∈ PωF1(ExpG)

1 PωF1([−])(PlusPωF1ÃG(x1, PlusPωF1ÃG(x2, x3)))

= PωF1([−])(x1 ∪ (x2 ∪ x3)) (def. Plus)
= PωF1([−])((x1 ∪ x2)∪ x3)

= PωF1([−])(PlusPωF1ÃG(PlusPωF1ÃG(x1, x2), x3)) (def. Plus)

In the last but one step, we use the fact that, for any set X , (Pω(X ),∪,;) is a join-semilattice
(hence, x1 ∪ (x2 ∪ x3) = (x1 ∪ x2) ∪ x3). Due to this fact, in the case F = PωF1, in this
particular proof, the induction hypothesis will not be used.

Thus, we have a well-defined function

δFÃG: ExpFÃG/≡ACIE
→ F(ExpG/≡ACIE

)

such that δFÃG([ǫ]ACIE) = (F[−]ACIE)(δFÃG(ǫ)).
We are now ready to state and prove the second half of Kleene’s theorem.

3.14. THEOREM. Let G be a non-deterministic functor. For every ǫ ∈ ExpG, there exists ∆G(ǫ) =
(S, g) such that S is finite and there exists s ∈ S with ǫ ∼ s.

Proof. For every ǫ ∈ ExpG, we set ∆G(ǫ) = 〈[ǫ]ACIE〉 (recall that 〈s〉 denotes the smallest
subcoalgebra generated by s). First note that, by Lemma 3.13, the map [−]ACIE is a ho-
momorphism and thus ǫ ∼ [ǫ]ACIE. We prove, for every ǫ ∈ ExpG, that the subcoalgebra
〈[ǫ]ACIE〉 = (V,δG) has a finite state space V (here, δG actually stands for the restriction of
δG to V ). Again, in order to improve readability, in this proof we will use [−] to denote
[−]ACIE.
More precisely, we prove, for all ǫ ∈ ExpFÃG, the following inclusion

V ⊆ V = {[ǫ1⊕ . . .⊕ ǫk] | ǫ1, . . . ,ǫk ∈ cl(ǫ) all distinct,ǫ1, . . . ,ǫk ∈ ExpG} (3.4)

Here, if k = 0 we take the sum above to be ; and cl(ǫ) denotes the smallest set containing
all subformulas of ǫ and the unfoldings of µ (sub)formulas, that is, the smallest subset
satisfying:

cl(;) = {;}
cl(ǫ1⊕ ǫ2) = {ǫ1⊕ ǫ2} ∪ cl(ǫ1)∪ cl(ǫ2)
cl(µx .ǫ1) = {µx .ǫ1} ∪ cl(ǫ1[µx .ǫ1/x])
cl(l〈ǫ1〉) = {l〈ǫ1〉} ∪ cl(ǫ1)
cl(r〈ǫ1〉) = {r〈ǫ1〉} ∪ cl(ǫ1)
cl(l[ǫ1]) = {l[ǫ1]} ∪ cl(ǫ1)
cl(r[ǫ1]) = {r[ǫ1]} ∪ cl(ǫ1)
cl(a(ǫ1)) = {a(ǫ1)} ∪ cl(ǫ1)
cl({ǫ1}) = {{ǫ1}} ∪ cl(ǫ1)

Note that the set cl(ǫ) is finite (since ǫ is guarded the number of unfoldings is finite) and
has the property ǫ ∈ cl(ǫ).
We prove the inclusion in equation (3.4) in the following way. First, we observe that [ǫ] ∈ V ,
because ǫ ∈ cl(ǫ). Then, we prove that (V ,δG) (again, δG actually stands for the restriction
of δG to V ) is a subcoalgebra of (ExpG,δG). Thus, V ⊆ V , since V , the state space of 〈[ǫ]〉 is
equal to the intersection of all subcoalgebras of (ExpG,δG) containing [ǫ].
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To prove that (V ,δG) is a subcoalgebra we prove that, for ǫ1, . . . ,ǫk ∈ ExpFÃG,

ǫ1, . . . ,ǫk ∈ cl(ǫ) all distinct⇒ δFÃG([ǫ1⊕ . . .⊕ ǫk]) ∈ F(V ) (3.5)

The intended result then follows by taking F = G.
We first prove two auxiliary results, by induction on the structure of F:

1 (F[−])(EmptyFÃG) ∈ F(V )

2 (F[−])(PlusFÃG(u, v)) ∈ F(V )⇔ (F[−])(u) ∈ F(V ) and (F[−])(v) ∈ F(V )

for u, v ∈ F(ExpG).

F = Id

1 (F[−])(EmptyFÃG) = [;] ∈ V

2 (F[−])(PlusFÃG(u, v)) = [u⊕ v] ∈ V⇔ [u] ∈ V and [v] ∈ V u, v ∈ ExpG

The right to left implication follows because, using the (Associativity), (Commutativity) and
(Idempotency) axioms, we can rewrite u⊕ v as ǫ1⊕ . . .⊕ ǫk, with all ǫ1, . . . ,ǫk ∈ cl(ǫ) distinct.

F = B

1 (B[−])(EmptyBÃG) =⊥B ∈ B(V )

2 (B[−])(PlusBÃG(u, v)) = u∨B v ∈ B(V )⇔ u ∈ B(V ) and v ∈ B(V ) u, v ∈ B(ExpG) = B

F = F1×F2

1 (F1×F2[−])(EmptyF1×F2ÃG)

= 〈(F1[−])(EmptyF1ÃG), (F2[−])(EmptyF2ÃG)〉 ∈ F1×F2(V )

2 (F1×F2[−])(PlusF1×F2ÃG(〈u1,u2〉, 〈v1, v2〉)) =
〈(F1[−])(PlusF1ÃG(u1, v1)), (F2[−])(PlusF2ÃG(u2, v2))〉 ∈ F1×F2(V )
(IH)
⇔ u1, v1 ∈ F1(V ) and u2, v2 ∈ F2(V )

⇔〈u, v〉 ∈ F1×F2(V ), u= 〈u1,u2〉, v = 〈v1, v2〉 ∈ F1×F2(ExpG)

F = F1 3+F2 and F = FA
1 : similar to F1×F2.

F = PωF1

1 (PωF[−])(EmptyPωFÃG) = ; ∈ PωF(V )

2 (PωF[−])(PlusPωFÃG(u, v)) = ((PωF[−])(u)∪ (PωF[−])(v)) ∈ PωF(V )

⇔ (PωF[−](u)) ∈ PωF(V ) and (PωF[−](v)) ∈ PωF(V )

Using 2 , we can now simplify our proof goal (equation (3.5)) as follows:

δFÃG([ǫ1⊕ . . .⊕ ǫk]) ∈ F(V )⇔ (F[−])(δFÃG(ǫi)) ∈ F(V ), ǫi ∈ cl(ǫ), i = 1, . . . , k

Now, using induction on the product of types of expressions and expressions (using the
order defined in equation (3.1)), 1 and 2 , we prove that (F[−])(δFÃG(ǫi)) ∈ F(V ), for
any ǫi ∈ cl(ǫ).
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(F[−])(δFÃG(;)) = (F[−])(EmptyFÃG) ∈ F(V ) (by 1 )

(F[−])(δFÃG(ǫ1⊕ ǫ2)) = (F[−])(PlusFÃG(δFÃG(ǫ1),δFÃG(ǫ2)) ∈ F(V ) (IH and 2 )

(G[−])(δGÃG(µx .ǫ)) = (G[−])(δGÃG(ǫ[µx .ǫ/x])) ∈ G(V ) (IH)

(Id[−])(δIdÃG(ǫi)) = [ǫi] ∈ Id(V ) for G 6= Id (ǫi ∈ cl(ǫ))

(B[−])δBÃG(b) = b ∈ B(V ) (B(V ) = B)

(F1×F2[−])(δF1×F2ÃG(l〈ǫ〉))
= 〈(F1[−])(δF1ÃG(ǫ)), (F2[−])(EmptyF2ÃG)〉 ∈ F1×F2(V ) (IH and 1 )

(F1×F2[−])(δF1×F2ÃG(r〈ǫ〉))
= 〈(F1[−])(EmptyF1ÃG), (F2[−])(δF2ÃG(ǫ))〉 ∈ F1×F2(V ) (IH and 1 )

(F1 3+F2[−])(δF13+F2ÃG(l[ǫ])) = κ1((F1[−])(δF1ÃG(ǫ))) ∈ F1 3+F2(V ) (IH)

(F1 3+F2[−])(δF13+F2ÃG(r[ǫ])) = κ2((F2[−])(δF2ÃG(ǫ))) ∈ F1 3+F2(V ) (IH)

(FA[−])(δFAÃG(a(ǫ))) =

�

λa′.

½

(F[−])(δFÃG(ǫ)) a = a′

EmptyFÃG otherwise

�

∈ FA(V ) (IH and 1 )

(PωF[−])(δPωFÃG({ǫ})) = { (F[−])(δFÃG(ǫ)) } ∈ PωF(V ) (IH)

3.3.1. Examples. In this subsection we will illustrate the construction described in the proof
of Theorem 3.14: given an expression ǫ ∈ ExpG we construct a G-coalgebra (S, g) such that
there is s ∈ S with s ∼ ǫ. For simplicity, we will consider deterministic and partial automata
expressions over A= {a, b}.
Let us start by showing the synthesised automata for the most simple deterministic expres-
sions – ;, l〈0〉 and l〈1〉.

;

a,b

l〈0〉 a,b ;

a,b

l〈1〉 a,b ;

a,b

The first two automata recognize the empty language ; and the last the language {ε} con-
taining only the empty word.
An important remark is that the automata generated are not minimal (for instance, the
automata for l〈0〉 and ; are bisimilar). Our goal has been to generate a finite automaton
from an expression. From this the minimal automaton can always be obtained by identifying
bisimilar states.
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The following automaton, generated from the expression r〈a(l〈1〉)〉, recognizes the lan-
guage {a},

r〈a(l〈1〉)〉 a

b

l〈1〉

a,b

;

a,b

For an example of an expression containing fixed points, consider ǫ = µx . r〈a(l〈0〉 ⊕ l〈1〉 ⊕
x)〉. One can easily compute the synthesised automaton:

µx . r〈a(l〈0〉 ⊕ l〈1〉 ⊕ x)〉 a

b

l〈0〉 ⊕ l〈1〉 ⊕ ǫ
a

b ;

a,b

and observe that it recognizes the language aa∗. Here, the role of the join-semilattice
structure is also visible: l〈0〉 ⊕ l〈1〉 ⊕ ǫ specifies that this state is supposed to be non-final
(l〈0〉) and final (l〈1〉). The conflict of these two specifications is solved, when they are
combined with ⊕, using the join-semilattice structure: because 1 ∨ 0 = 1 the state is set to
be final.
As a last example of deterministic expressions consider ǫ1 = µx . r〈a(x ⊕µy.r〈a(y)〉)〉. Apply-
ing δD to ǫ1 one gets the following (partial) automaton:

µx . r〈a(x ⊕µy. r〈a(y)〉)〉 a

b

ǫ1⊕µy. r〈a(y)〉 ;

Calculating δD(ǫ1⊕µy. r〈a(y)〉) yields

δD(ǫ1⊕µy. r〈a(y)〉) = 〈0, t〉
where t(a) = ǫ1⊕µy. r〈a(y)〉 ⊕µy. r〈a(y)〉〉

t(b) = ;
Now, note that the expression ǫ1⊕µy. r〈a(y)〉⊕µy. r〈a(y)〉 is in the same equivalence class
as ǫ1 ⊕ µy. r〈a(y)〉, which is a state that already exists. As we saw in the beginning of
Section 3.1, by only applying δD, without ACI, one would always generate syntactically
different states which instead of the automaton computed now:

µx . r〈a(x ⊕µy. r〈a(y)〉)〉 a

b

ǫ1⊕µy. r〈a(y)〉

a

b ;

a,b
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would yield the following infinite automaton (with ǫ2 = µy. r〈a(y)〉):

µx . r〈a(x ⊕µy. r〈a(y)〉)〉 a

b

ǫ1⊕ ǫ2 a

b

ǫ1⊕ ǫ2⊕ ǫ2 a

b

. . .

;

a,b

Let us next see a few examples of synthesis for partial automata expressions, where we
will illustrate the role of ⊥ and ⊤. In the graphical representation of a partial automa-
ton (S, p), we will omit transitions for inputs a with g(s)(a) = κ1(∗) and we will draw

s
a

g(s)(a) whenever g(s)(a) ∈ {⊥,⊤}. Note however that ⊥ 6∈ S and ⊤ 6∈ S and thus

will have no defined transitions.
As before, let us first present the corresponding automata for simple expressions – ;, a(l[∗]),
a(;) and a(l[∗])⊕ b(l[∗]).

; a,b
⊥ a(l[∗]) b ⊥ a(;) a

b

; a,b
⊥ a(l[∗])⊕ b(l[∗])

Note how ⊥ is used to encode underspecification, working as a kind of deadlock state. In
the first three expressions the behaviour for one or both of the inputs is missing, whereas in
the last expression the specification is complete.
The element ⊤ is used to deal with inconsistent specifications. For instance, consider the
expression a(l[∗]) ⊕ b(l[∗]) ⊕ a(r[a(l[∗]) ⊕ b(l[∗])]). All inputs are specified, but note
that at the outermost level input a appears in two different sub-expressions – a(l[∗]) and
a(r[a(l[∗]) ⊕ b(l[∗])]) – specifying at the same time that input a leads to successful ter-
mination and that it leads to a state where a(l[∗])⊕ b(l[∗]) holds, which is contradictory,
giving rise to the following automaton.

a(l[∗])⊕ b(l[∗])⊕ a(r[a(l[∗])⊕ b(l[∗])]) a ⊤

4. A SOUND AND COMPLETE AXIOMATIZATION

In the previous section, we have shown how to derive from the type of a system, given by
a functor G, a language ExpG that allows for specification of G-behaviours. Analogously to
Kleene’s theorem, we have proved the correspondence between the behaviours denoted by
ExpG and locally finite G-coalgebras. In this section, we will show how to provide ExpG with
a sound and complete axiomatization. Again, the functor G will serve as a main guide for
the definition. The defined axiomatization is closely related to Kleene algebra (the set of
expressions has a join semilattice structure) and to the axiomatization provided by Milner
for CCS (uniqueness of fixed points will be required). When instantiating the definition
below to concrete functors one will recover known axiomatizations, such as the one for
CCS mentioned above or the one for labelled transition systems (with explicit termination)
presented in [1]. The latter will be discussed in detail in Section 5.
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We now introduce an equational system for expressions of type F Ã G. We define the
relation ≡⊆ ExpFÃG×ExpFÃG, written infix, as the least equivalence relation containing the
following identities:

(1) (ExpFÃG,⊕,;) is a join-semilattice.

ǫ⊕ ǫ ≡ ǫ (Idempotency)

ǫ1⊕ ǫ2 ≡ ǫ2⊕ ǫ1 (Commutativity)

ǫ1⊕ (ǫ2⊕ ǫ3)≡ (ǫ1⊕ ǫ2)⊕ ǫ3 (Associativity)

;⊕ ǫ ≡ ǫ (Empty)

(2) µ is the unique fixed point.

γ[µx .γ/x] ≡ µx .γ (FP)

γ[ǫ/x]≡ ǫ⇒ µx .γ≡ ǫ (Unique)

(3) The join-semilattice structure propagates through the expressions.

; ≡ ⊥B (B−;) b1⊕ b2 ≡ b1 ∨B b2 (B−⊕)
l〈;〉 ≡ ; (×−;− L) l〈ǫ1⊕ ǫ2〉 ≡ l〈ǫ1〉 ⊕ l〈ǫ2〉 (×−⊕− L)

r〈;〉 ≡ ; (×−;− R) r〈ǫ1⊕ ǫ2〉 ≡ r〈ǫ1〉 ⊕ r〈ǫ2〉 (×−⊕− R)

a(;)≡ ; (−A−;) a(ǫ1⊕ ǫ2)≡ a(ǫ1)⊕ a(ǫ2) (−A−⊕)
l[ǫ1⊕ ǫ2]≡ l[ǫ1]⊕ l[ǫ2] (+−⊕− L)

r[ǫ1⊕ ǫ2]≡ r[ǫ1]⊕ r[ǫ2] (+−⊕− R)

l[ǫ1]⊕ r[ǫ2]≡ l[;]⊕ r[;] (+−⊕−⊤)
(4) ≡ is a congruence.

ǫ1 ≡ ǫ2⇒ ǫ[ǫ1/x]≡ ǫ[ǫ2/x] if x is free in ǫ (Cong)

(5) α-equivalence

µx .γ≡ µy.γ[y/x] if y is not free in γ (α− equiv)

It is important to remark that in the third group of rules there does not exist any rule
applicable to expressions of type PωF.

4.1. EXAMPLE. Consider the non-deterministic automata over the alphabet A= {a}:

s1

a

s2

a

s3
a

Applying 〈〈−〉〉 (as defined in the proof of Theorem 3.12) one can easily compute the ex-
pressions corresponding to s1 and s2:

ǫ1 = 〈〈 s1 〉〉= µx1.l〈0〉 ⊕ r〈a({x1})〉
ǫ2 = 〈〈 s2 〉〉= µy1.l〈0〉 ⊕ r〈a({µy2.l〈0〉 ⊕ r〈a({µy1.l〈0〉 ⊕ r〈a({y2})〉})〉})〉
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We now prove that ǫ2 ≡ ǫ1. In the following calculations let ǫ = µx1.r〈a({x1})〉.
ǫ2 ≡ ǫ1

⇔ r〈a({µy2.r〈a({r〈a({y2})〉})〉})〉 ≡ ǫ ((B−;), (×−;− L), (FP) and (Empty))
⇔ µy2.r〈a({r〈a({y2})〉})〉 ≡ ǫ ((FP) on ǫ and (Cong) twice)
⇐ r〈a({r〈a({ǫ})〉})〉 ≡ ǫ (uniqueness of fixed points)
⇔ r〈a({ǫ})〉 ≡ ǫ (fixed point axiom)
⇔ ǫ ≡ ǫ (fixed point axiom)

Note that the (Cong) rule was used in almost every step.
For another example, consider the non-deterministic automaton over the alphabet A =

{a, b}:
s1

a,b
s2 s3

a,b

b s4

Using the definition of 〈〈−〉〉 one can compute the following expressions for s1, s2, s3 and s4:

ǫ1 = 〈〈 s1 〉〉= µx1.l〈0〉 ⊕ r〈a({ǫ2})⊕ b({ǫ2})〉
ǫ2 = 〈〈 s2 〉〉= µx2.l〈0〉 ⊕ ;
ǫ3 = 〈〈 s3 〉〉= µx3.l〈0〉 ⊕ r〈a({ǫ2})⊕ b({ǫ2} ⊕ {ǫ4})〉
ǫ4 = 〈〈 s4 〉〉= µx4.l〈0〉 ⊕ ;

For ǫ2 we calculate:
ǫ2 ≡ l〈0〉 ⊕ ; (FP)
≡ l〈;〉 (Empty) and (B−;)
≡ ; (×−;− L)

Similarly, one has that ǫ4 ≡ ;. Now, we prove ǫ1 ≡ ǫ3:

ǫ1 ≡ ǫ3
⇔ l〈0〉 ⊕ r〈a({ǫ2})⊕ b({ǫ2})〉 ≡ l〈0〉 ⊕ r〈a({ǫ2})⊕ b({ǫ2} ⊕ {ǫ4})〉 (FP)
⇔ l〈0〉 ⊕ r〈a({;})⊕ b({;})〉 ≡ l〈0〉 ⊕ r〈a({;})⊕ b({;} ⊕ {;})〉 (ǫ2 ≡ ; ≡ ǫ4)
⇔ l〈0〉 ⊕ r〈a({;})⊕ b({;})〉 ≡ l〈0〉 ⊕ r〈a({;})⊕ b({;})〉 (Idempotency)

♠
The equivalence relation ≡ gives rise to the (surjective) equivalence map

[−]: ExpFÃG→ ExpFÃG/≡

defined by [ǫ] = {ǫ′ | ǫ ≡ ǫ′}. The following diagram summarizes the maps we have defined
so far:

ExpFÃG

δFÃG

[−]
ExpFÃG/≡

F(ExpFÃG)
F([−])

F(ExpG/≡)

In order to complete the diagram, we next prove that≡ is contained in the kernel of F([−])◦
δFÃG. This will guarantee the existence of a well-defined function

∂FÃG: ExpFÃG/≡→ F(ExpG/≡)

which, when F = G, provides ExpG/≡ with a coalgebraic structure ∂G: ExpG/≡→ G(ExpG/≡)
(as before, we write ∂G to abbreviate ∂GÃG) and which makes [−] a homomorphism of
coalgebras.



24 SILVA ET AL.

4.2. LEMMA. Let G and F be non-deterministic functors, with F Ã G. For all ǫ1,ǫ2 ∈ ExpFÃG

with ǫ1 ≡ ǫ2,
F([−]) ◦δFÃG(ǫ1) = F([−]) ◦δFÃG(ǫ2)

Proof. By induction on the length of derivations of ≡.
First, let us consider derivations of length 1. We need to prove the result for all the axioms
in items 1. and 3. plus the axioms FP and (α− equiv).
For the axioms in 1. the result follows by Lemma 3.13. The axiom FP follows trivially be-
cause of the definition of δG, since δG(µx .γ) = δG(γ[µx .γ/x]) and thus G([−])◦δG(µx .γ) =
G([−]) ◦δG(γ[µx .γ/x]).
For the axiom (α− equiv) we use the (Cong) rule, which is proved below:

G([−]) ◦δG(µx .γ)
= G([−]) ◦δG(γ[µx .γ/x]) (def. of δG)
= G([−]) ◦δG(γ[µy.γ[y/x]/x]) (by (Cong))
= G([−]) ◦δG(γ[y/x][µy.γ[y/x]/y]) (A[B[y/x]/x] = A[y/x][B[y/x]/y], y not free in γ)
= G([−]) ◦δG(µy.γ[y/x])) (def. of G([−]) ◦δG)

Let us now show the proof for some of the axioms in 3.. The omitted cases are similar. We
show for each axiom ǫ1 ≡ ǫ2 that δFÃG(ǫ1) = δFÃG(ǫ2).

⊥B ≡ ; b1⊕ b2 ≡ b1 ∨B b2

δBÃG(⊥B) =⊥B = δBÃG(;) δBÃG(b1 ∨B b2) = b1 ∨B b2 = δBÃG(b1⊕ b2)

l(;)≡ ;

δF1×F2ÃG(l(;)) = 〈EmptyF1ÃG, EmptyF2ÃG〉= δF1×F2ÃG(;)

l(ǫ1⊕ ǫ2)≡ l(ǫ1)⊕ l(ǫ2)

δF1×F2ÃG(l(ǫ1⊕ ǫ2))
= 〈δF1ÃG(ǫ1⊕ ǫ2), EmptyF2ÃG〉)
= 〈PlusF1ÃG(δF1ÃG(ǫ1),δF1ÃG(ǫ2)), PlusF2ÃG(EmptyF2ÃG, EmptyF2ÃG)〉)
= PlusF1×F2

(〈δF1ÃG(ǫ1), EmptyF2ÃG〉, 〈δF1ÃG(ǫ2), EmptyF2ÃG〉
= δF1×F2ÃG(l(ǫ1)⊕ l(ǫ2)))

l[ǫ1⊕ ǫ2]≡ l[ǫ1]⊕ l[ǫ2] l[ǫ1]⊕ r[ǫ2]≡ l[;]⊕ r[;]

δF13+F2ÃG(l[ǫ1⊕ ǫ2])
= κ1(δF1ÃG(ǫ1⊕ ǫ2))
= PlusF13+F2

(κ1(δF1ÃG(ǫ1)),κ1(δF1ÃG(ǫ2))

= δF13+F2ÃG(l[ǫ1]⊕ l[ǫ2])

δF13+F2ÃG(l[ǫ1]⊕ r[ǫ2])

= PlusF13+F2
(κ1(δF1ÃG(ǫ1)),κ2(δF2ÃG(ǫ2)))

= ⊤
= PlusF13+F2

(κ1(δF1ÃG(;)),κ2(δF2ÃG(;)))
= δF13+F2ÃG(l[;]⊕ r[;])
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Note that if we would have the axioms l[;] ≡ ; and r[;] ≡ ; in the axiomatizatiation
presented above, this theorem would not hold.

δF13+F2ÃG(l[;]) = κ1([⊥]) 6=⊥= δF13+F2ÃG(;)
δF13+F2ÃG(r[;]) = κ2([⊥]) 6=⊥ = δF13+F2ÃG(;)

Derivations with length k>1 can be obtained by two rules: (Unique) or (Cong). For the first
(which uses the second), suppose that we have derived µx .γ ≡ ǫ and that we have already
proved γ[ǫ/x]≡ ǫ. Then, we have:

G([−]) ◦δG(µx .γ) = G([−]) ◦δG(γ[µx .γ/x]) (def. δG)
= G([−]) ◦δG(γ[ǫ/x]) (by (Cong))
= G([−]) ◦δG(ǫ) (induction hypothesis)

For (Cong), suppose that we have derived ǫ[ǫ1/x] ≡ ǫ[ǫ2/x2] and that we have already
derived ǫ1 ≡ ǫ2, which gives us, as induction hypothesis, the equality

(F[−])(δFÃG(ǫ1)) = (F[−])(δFÃG(ǫ2)) (4.1)

This equation is precisely what we need to prove the case ǫ = x (and thus ǫ1,ǫ2:GÃ G):

(G[−])(δG(x[ǫ1/x]) = (G[−])(δG(ǫ1))
= (G[−])(δG(ǫ2)) (4.1)
= (G[−])(δG(x[ǫ2/x]))

For the cases ǫ 6= x , we prove that δFÃG(ǫ[ǫ1/x]) = δFÃG(ǫ[ǫ2/x]), by induction on the
product of types of expressions and expressions (using the order defined in equation (3.1)).
We show a few cases, the omitted ones are similar.

δGÃG((µy.ǫ)[ǫ1/x]) = δGÃG(ǫ[ǫ1/x][µy.ǫ/y]))
(IH)
= δGÃG(ǫ[ǫ2/x][µy.ǫ/y])) = δGÃG((µy.ǫ)[ǫ2/x])

δF1×F2ÃG(l〈ǫ〉[ǫ1/x]) = 〈δF1ÃG(ǫ[ǫ1/x]), EmptyF2ÃG〉
(IH)
= 〈δF1ÃG(ǫ[ǫ2/x]), EmptyF2ÃG〉= δF1×F2ÃG(l〈ǫ〉[ǫ2/x])

δF13+F2ÃG(l[ǫ][ǫ1/x]) = κ1(δF1ÃG(ǫ[ǫ1/x]))
(IH)
= κ1(δF1ÃG(ǫ[ǫ2/x])) = δF13+F2ÃG(l[ǫ][ǫ2/x])

Thus, we have now a well-defined function ∂FÃG: ExpFÃG/≡→ F(ExpG/≡), which makes the
diagram above commute, that is ∂FÃG([ǫ]) = (F[−])◦δFÃG(ǫ). This provides the set ExpG/≡
with a coalgebraic structure ∂G: ExpG/≡ → G(ExpG/≡) which makes [−] a homomorphism
between the coalgebras (ExpG,δG) and (ExpG/≡,∂G).

4.1. Soundness and Completeness. We now show that the axiomatization introduced in
the previous section is sound and complete.
Soundness is a direct consequence of the fact that the equivalence map [−] is a coalgebra
homomorphism.

4.3. THEOREM (Soundness). Let G be a non-deterministic functor. For all ǫ1,ǫ2 ∈ ExpG,

ǫ1 ≡ ǫ2⇒ ǫ1 ∼ ǫ2
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Proof. Let G be a non-deterministic functor, let ǫ1,ǫ2 ∈ ExpG and suppose that ǫ1 ≡ ǫ2. Then,
[ǫ1] = [ǫ2] and, thus

behExpG/≡([ǫ1]) = behExpG/≡([ǫ2])

where behS denotes, for any G-coalgebra (S, g), the unique map into the final coalgebra.
The uniqueness of the map into the final coalgebra and the fact that [−] is a coalgebra
homomorphism implies that behExpG/≡ ◦ [−] = behExpG

which then yields

behExpG
(ǫ1) = behExpG

(ǫ2)

Since in the final coalgebra only the bisimilar elements are identified, ǫ1 ∼ ǫ2 follows.

For completeness a bit more of work is required. Let us explain upfront the key steps of the
proof. The goal is to prove that ǫ1 ∼ ǫ2⇒ ǫ1 ≡ ǫ2. First, note that we have

ǫ1 ∼ ǫ2⇔ behExpG
(ǫ1) = behExpG

(ǫ2)⇔ behExpG/≡([ǫ1]) = behExpG/≡([ǫ2]) (4.2)

We then prove that behExpG/≡ is injective, which is a sufficient condition to guarantee that
ǫ1 ≡ ǫ2 (since it implies, together with (4.2), that [ǫ1] = [ǫ2]).
We proceed as follows. First, we factorize the map behExpG/≡ into an epimorphism followed
by a monomorphism [31, Theorem 7.1] as shown in the following diagram (where I =

behExpG/≡(ExpG/≡)):

ExpG/≡

behExpG/≡

e

∂G

I
m

ωG

ΩG

ωG

G(ExpG/≡) G(I) G(ΩG)

Then, we prove that (1) (ExpG/≡,∂G) is a locally finite coalgebra (Lemma 4.4) and (2) both
coalgebras (ExpG/≡,∂G) and (I ,ωG) are final in the category of locally finite G-coalgebras
(Lemmas 4.7 and 4.8, respectively). Since final coalgebras are unique up to isomorphism,
it follows that e : ExpG/≡→ I is in fact an isomorphism and therefore behExpG/≡ is injective,
which will give us completeness.
In the case of the deterministic automata functor D= 2× IdA, the set I will be precisely the
set of regular languages, the class of languages that can be denoted by regular expressions.
This means that final locally finite coalgebras generalize regular languages (in the same
way that final coalgebras generalize the set of all languages).
We now proceed with presenting and proving the extra lemmas needed in order to prove
completeness. We start by showing that the coalgebra (ExpG/≡,∂G) is locally finite (note
that this implies that (I ,ωG) is also locally finite) and that ∂G is an isomorphism.

4.4. LEMMA. The coalgebra (ExpG/≡,∂G) is a locally finite coalgebra. Moreover, ∂G is an
isomorphism.

Proof. Local finiteness is a direct consequence of the generalized Kleene’s theorem (Theo-
rem 3.14). In the proof of Theorem 3.14 we showed that, given ǫ ∈ ExpG, the subcoalgebra
〈[ǫ]ACIE〉 is finite. Thus, the subcoalgebra 〈[ǫ]〉 is also finite (since ExpG/≡ is a quotient of
ExpG/≡AC I E

).
To see that ∂G is an isomorphism, first define, for every F Ã G,

∂ −1
FÃG
(c) = [γFc ] (4.3)
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where γFc is defined, for F 6= Id, as γFc in the proof of Theorem 3.12, and for F = Id as
γId
[ǫ] = ǫ. Then, we prove that ∂ −1

FÃG
has indeed the properties 1 ∂ −1

FÃG
◦∂FÃG= idExpFÃG/≡ and

2 ∂FÃG ◦ ∂ −1
FÃG

= idF(ExpFÃG/≡). Instantiating F = G one derives that δG is an isomorphism.

It is enough to prove for 1 that γF∂FÃG([ǫ])
≡ ǫ and for 2 that ∂FÃG([γ

F

c ]) = c. We illustrate
a few cases. The omitted ones are similar.

1 By induction on the product of types of expressions and expressions (using the order
defined in equation (3.1)).

γId
∂IdÃG([ǫ])

= ǫ

γ
F1×F2

∂F1×F2ÃG([r〈ǫ〉])
= l〈γF1

∂F1ÃG(;)
〉 ⊕ r〈γF2

∂F2ÃG(ǫ)
〉
(IH)
≡ l〈;〉 ⊕ r〈ǫ〉 ≡ r〈ǫ〉

γG
∂G([µx .ǫ]) = γ

G

∂G([ǫ[µx .ǫ/x]])

(IH)
≡ ǫ[µx .ǫ/x] ≡ µx .ǫ

Note that the cases ǫ = ; and ǫ = ǫ1 ⊕ ǫ2 require an extra proof (by induction on F). More
precisely, one needs to prove that

a γF
F[−](EmptyFÃG)

≡ ; and b γF
F[−](PlusFÃG(x1,x2))

≡ γF

F[−](x1)
⊕ γF

F[−](x2)

It is an easy proof by induction. We illustrate here only the cases F = Id, F = B and
F = F1×F2.

a γId
[;] = ;

γB
[⊥B]
=⊥B ≡ ;

γ
F1×F2

〈F1[−](EmptyF1ÃG),F2[−](EmptyF2ÃG)〉
= l〈γF1

F1[−](EmptyF1ÃG)
〉 ⊕ r〈γF2

F2[−](EmptyF2ÃG)
〉

(IH)
≡ l〈;〉 ⊕ r〈;〉 ≡ ;

b γId
[x1⊕x2]

= x1⊕ x2 = γ
Id
[x1]
⊕ γId

[x2]

γB
[x1∨B x2]

= x1 ∨B x2 ≡ x1⊕ x2 = γB
[x1]
⊕ γB

[x2]

γ
F1×F2

F1×F2[−](PlusF1×F2ÃG(〈u1,v1〉,〈u2,v2〉))
= γ

F1×F2

〈PlusF1
(u1,v1),PlusF2

(u2,v2)〉

= l〈γF1

PlusF1
(u1,v1)
〉 ⊕ r〈γF2

PlusF2
(u2,v2)
〉

(IH)
≡ l〈γF1

u1
⊕ γF1

v1
〉 ⊕ r〈γF2

u2
⊕ γF2

v2
〉

≡ (l〈γF1
u1
〉 ⊕ r〈γF2

u2
〉)⊕ (l〈γF1

v1
〉 ⊕ r〈γF2

v2
〉)

= γ
F1×F2

〈u1,u2〉
⊕ γF1×F2

〈v1,v2〉
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2 By induction on the structure of F.

∂F13+F2ÃG([γ
F13+F2
c ]) =















∂F13+F2ÃG([l[γ
F1

c′
]]) = κ1(∂F1ÃG([γ

F1

c′
])) c = κ1(c

′)

∂F13+F2ÃG([r[γ
F2

c′
]]) = κ2(∂F2ÃG([γ

F2

c′
])) c = κ2(c

′)

∂F13+F2ÃG([;]) =⊥ c = ⊥
∂F13+F2ÃG([l[;]⊕ r[;]]) =⊤ c = ⊤

(IH)
= c

∂PωFÃG([γ
PωF

C ]) =

¨

∂PωFÃG([;]) = ; C = ;
∂PωFÃG([
⊕

c∈C γ
F1
c ]) = {∂FÃG([γ

F1
c ]) | c ∈ C} otherwise

(IH)
= C

We now prove the analogue of the following useful and intuitive equality on regular expres-
sions. Given a deterministic automaton 〈o, t〉: S → 2× SA and a state s ∈ S, the associated
regular expression rs can be written as

rs = o(s) +
∑

a∈A

a · rt(s)(a) (4.4)

using the axioms of Kleene algebra [13, Theorem 4.4].

4.5. LEMMA. Let (S, g) be a locally finite G-coalgebra, with G 6= Id, and let s ∈ S, with 〈s〉 =
{s1, . . . , sn} (where s1 = s). Then:

〈〈 si 〉〉 ≡ γG

g(si)
{〈〈 s1 〉〉/x1} . . . {〈〈 sn 〉〉/xn} (4.5)

Proof. Let Ak
i
, where i and k range from 1 to n, be the terms defined as in the proof of

Theorem 3.12. Recall that 〈〈 si 〉〉= An
i
. We calculate:

〈〈 si 〉〉
= An

i

= (µx i .γ
G

g(si)
){A0

1/x1} . . . {An−1
n /xn}

= µx i .(γ
G

g(si)
{A0

1/x1} . . . {Ai−2
i−1/x i−2}{Ai

i+1/x i+1} . . . {An−1
n /xn})

≡ γG

g(si)
{A0

1/x1} . . . {Ai−2
i−1/x i−2}{Ai

i+1/x i+1} . . . {An−1
n /xn}{An

i
/x i} (fixed point axiom3)

= γG
g(si)
{A0

1/x1} . . . {An−1
n /xn} (by 3.2)

= γG
g(si)
{A0

1{A1
2/x2} . . . {An−1

n /xn}/x1} . . . {An−1
n /xn} (by 3.3)

= γG
g(si)
{An

1/x1}{A1
2/x2} . . . {An−1

n /xn} (def. An
1)

... (last 2 steps for A1
2, . . . ,An−2

n−1)

= γG
g(si)
{An

1/x1}{An
2/x2} . . . {An

n/xn} (An
n−1 = An

n)

3Note that the fixed point axiom can be formulated using syntactic replacement rather than substitution –
γ{µx .γ/x} ≡ µx .γ – since µx .γ is a closed term.
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Instantiating (4.5) for 〈o, t〉: S → 2 × SA, one can easily spot the similarity with equa-
tion (4.4) above:

〈〈 s 〉〉 ≡ l〈o(s)〉 ⊕ r
D
⊕

a∈A

a
�

〈〈 t(s)(a) 〉〉
�

E

Next, we prove that there exists a coalgebra homomorphism between any locally finite G-
coalgebra (S, g) and (ExpG/≡,∂G).

4.6. LEMMA. Let (S, g) be a locally finite G-coalgebra. There exists a coalgebra homomorphism
⌈−⌉: S→ ExpG/≡.

Proof. We define ⌈−⌉ = [−] ◦ 〈〈−〉〉, where 〈〈−〉〉 is as in the proof of Theorem 3.12, asso-
ciating to a state s of a locally finite coalgebra an expression 〈〈 s 〉〉 with s ∼ 〈〈 s 〉〉. To prove
that ⌈−⌉ is a homomorphism we need to verify that (G⌈−⌉) ◦ g = ∂G ◦ ⌈−⌉.
If G= Id, then (G⌈−⌉) ◦ g(si) = [;] = ∂G(⌈ si ⌉). For G 6= Id we calculate, using Lemma 4.5:

∂G(⌈ si ⌉) = ∂G([γGg(si)
[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]])

and we then prove the more general equality, for F Ã G and c ∈ F〈s〉:
∂FÃG([γ

F
c [〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]]) = F⌈−⌉(c) (4.6)

The intended equality then follows by taking F = G and c = g(si). Let us prove the equation
(4.6) by induction on F.

F = Id c = s j ∈ 〈s〉
∂IdÃG([γ

Id
s j
[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]]) = [〈〈 s j 〉〉] = ⌈ s j ⌉

F = B c = b ∈ B

∂BÃG([γ
B
b[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]]) = [b] = B⌈−⌉(b)

F = F1×F2 c = 〈c1, c2〉 ∈ (F1×F2)〈s〉

∂F1×F2ÃG([γ
F1×F2

〈c1,c2〉
[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]])

= ∂F1×F2ÃG([l(γ
F1
c1
)⊕ r(γF2

c2
)[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]])

= 〈∂F1ÃG([γ
F1
c1
[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]]),∂F2ÃG([γ

F2
c2
[〈〈 s1 〉〉/x1] . . . [〈〈 sn 〉〉/xn]])〉

(IH)
= 〈F1⌈−⌉(c1),F2⌈−⌉(c2)〉
= (F1×F2⌈−⌉)(c)

F = F1 3+F2 , F = FA
1 and F = PωF1 : similar to F1×F2.
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We can now prove that the coalgebras (ExpG/≡,∂G) and (I ,ωG) are both final in the category
of locally finite G-coalgebras.

4.7. LEMMA. The coalgebra (I ,ωG) is final in the category Coalg(G)LF.

Proof. We want to show that for any locally finite G-coalgebra (S, g), there exists a unique ho-
momorphism (S, g)→ (I ,ωG). The existence is guaranteed by Lemma 4.6, where ⌈−⌉: S→
ExpG/≡ is defined. Post-composing this homomorphism with e (defined above) we get a
coalgebra homomorphism e◦⌈−⌉: S→ I . If there is another homomorphism f : S→ I , then
by post-composition with the inclusion m: I ,→ Ω we get two homomorphisms (m ◦ f and
m ◦ e ◦ ⌈−⌉) into the final G-coalgebra. Thus, f and e ◦ ⌈−⌉ must be equal.

4.8. LEMMA. The coalgebra (ExpG/≡,∂G) is final in the category Coalg(G)LF.

Proof. We want to show that for any locally finite G-coalgebra (S, g), there exists a unique
homomorphism (S, g) → (ExpG/≡,∂G). We only need to prove uniqueness, since the exis-
tence is guaranteed by Lemma 4.6, where ⌈−⌉: S→ ExpG/≡ is defined.
Suppose we have another homomorphism f : S → ExpG/≡. Then, we shall prove that f =

⌈−⌉. Let, for any s ∈ S, fs denote any representative of f (s) (that is, f (s) = [ fs]). First,
observe that because f is a homomorphism the following holds for every s ∈ S:

f (s) = (∂ −1
G
◦G( f ) ◦ g)(s)⇔ fs ≡ γG

g(s)
[ fs1
/x1] . . . [ fsn

/xn] (4.7)

where 〈s〉 = {s1, . . . , sn}, with s1 = s (recall that ∂ −1
G

was defined in (4.3) and note that

γG
(G( f )◦g)(s) = γ

G

g(s)
[ fsi
/x i]).

We now prove that fsi
≡ 〈〈 si 〉〉 (which is equivalent to f (si) = ⌈ si ⌉), for all i = 1, . . . n. For

simplicity we will here prove the case n = 3. The general case is identical but notationally
heavier. First, we prove that fs1

≡ A1[ fs2
/x2][ fs3

/x3].

fs1
≡ γG

g(s1)
[ fs1
/x1][ fs2

/x2][ fs3
/x3] (by (4.7))

⇔ fs1
≡ γG

g(s1)
[ fs2
/x2][ fs3

/x3][ fs1
/x1] (all f (si) are closed)

⇒ fs1
≡ µx1.γG

g(s1)
[ fs2
/x2][ fs3

/x3] (by uniqueness of fixed points)

⇔ fs1
≡ A1[ fs2

/x2][ fs3
/x3] (def. of A1)

Now, using what we have computed for fs1
we prove that fs2

≡ A1
2[ fs3

/x3].

fs2
≡ γG

g(s2)
[ fs1
/x1][ fs2

/x2][ fs3
/x3] (by (4.7))

⇔ fs2
≡ γG

g(s2)
[A1/x1][ fs2

/x2][ fs3
/x3] (expressions for fs1

and (3.3))

⇔ fs2
≡ γG

g(s2)
[A1/x1][ fs3

/x3][ fs2
/x2] (all f (si) are closed)

⇒ fs2
≡ µx2.γG

g(s2)
[A1/x1][ fs3

/x3] (by uniqueness of fixed points)

⇔ fs2
≡ A1

2[ fs3
/x3] (def. of A1

2)

At this point we substitute fs2
in the expression for fs1

by A1
2[ fs3

/x3] which yields:

fs1
≡ A1[A

1
2[ fs3

/x3]/x2][ fs3
/x3]≡ A1[A

1
2/x2][ fs3

/x3]
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Finally, we prove that fs3
≡ A2

3:

fs3
≡ γG

g(s3)
[ fs1
/x1][ fs2

/x2][ fs3
/x3] (by (4.7))

⇔ fs3
≡ γG

g(s3)
[A1/x1][A

1
2/x2][ fs3

/x3] (expr. for f (si) and (3.3))

⇒ fs3
≡ µx3.γG

g(s3)
[A1/x1][A

1
2/x2] (by uniqueness of fixed points)

⇔ fs3
≡ A2

3 (def. of A2
3)

Thus, we have fs1
≡ A1[A

1
2/x2][A

2
3/x3], fs2

≡ A1
2[A

2
3/x3] and fs3

≡ A2
3. Note that A1

2[A
2
3/x3]≡

A1
2{A2

3/x3} since x2 is not free in A2
3. Similarly, since x1 is not free in A1

2 and A2
3, we have that

A1[A
1
2/x2][A

2
3/x3]≡ A1{A1

2/x2}{A2
3/x3}. Thus f (si) = ⌈ si ⌉, for all i = 1,2,3.

As a consequence of Lemma 4.8, we have that if G1 and G2 are isomorphic functors then
ExpG1

/≡ and ExpG2
/≡ are also isomorphic (for instance, this would be true for G1(X ) =

B× (X × A) and G2(X ) = A× (B× X )). At this point, because final objects are unique up-to
isomorphism, we know that e : ExpG/≡ → I is an isomorphism and hence we can conclude
that the map behExpG/≡ is injective, since it factorizes into an isomorphism followed by a
mono. This fact is the last thing we need to prove completeness.

4.9. THEOREM (Completeness). Let G be a non-deterministic functor. For all ǫ1,ǫ2 ∈ ExpG,

ǫ1 ∼ ǫ2⇒ ǫ1 ≡ ǫ2
Proof. Let G be a non-deterministic functor, let ǫ1,ǫ2 ∈ ExpG and suppose that ǫ1 ∼ ǫ2.
Because only bisimilar elements are identified in the final coalgebra we know that it must
be the case that behExpG

(ǫ1) = behExpG
(ǫ2) and thus, since the equivalence class map [−]

is a homomorphism, behExpG/≡([ǫ1]) = behExpG/≡([ǫ2]). Now, because behExpG/≡ is injective
we have that [ǫ1] = [ǫ2]. Hence, ǫ1 ≡ ǫ2.

5. TWO MORE EXAMPLES

In this section we apply our framework to two other examples: labelled transition systems
(with explicit termination) and automata on guarded strings. These two automata models
are directly connected to, respectively, basic process algebra and Kleene algebra with tests.
To improve readability we will present the corresponding languages using a more user-
friendly syntax than the canonically derived one.

Labelled transition systems. Labelled transition systems (with explicit termination) are
coalgebras for the functor 1+ (PωId)A. As we will show below, instantiating our framework
for this functor produces a language that is equivalent to the closed and guarded expressions
generated by the following grammar, where a ∈ A and x ∈ X (X is a set of fixed point
variables):

P ::= 0 | P + P | a.P | δ | p | µx .P | x
together with the equations (omitting the congruence and α-equivalence rules)
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P1+ P2 ≡ P2+ P1 P1+ (P2+ P3)≡ (P1+ P2) + P3

P + P ≡ P P + 0≡ P

P +δ ≡ P (⋆)
p
+δ ≡p+ P (⋆) (⋆) if P 6≡ 0 and P 6≡ p

P[µx .P/x]≡ µx .P P[Q/x]≡Q⇒ (µx .P)≡Q

Note that, as expected, there is no law that allows us to prove a.(P + Q) ≡ a.P + a.Q.
Moreover, observe that this syntax and axiomatization is very similar to the one presented
in [1]. In the syntax above, δ represents deadlock,

p
successful termination and 0 the

totally undefined process.
We will now show how the beautified syntax above was derived from the canonically de-
rived syntax for the expressions ǫ ∈ Exp1+(PωId)A, which is given by the set of closed and
guarded expressions defined by the following BNF:

ǫ::= ; | ǫ⊕ ǫ | x | µx .ǫ | l[ǫ1] | r[ǫ2]
ǫ1::= ; | ǫ1⊕ ǫ1 | ∗
ǫ1::= ; | ǫ2⊕ ǫ2 | a(ǫ′)
ǫ′::= ; | ǫ′⊕ ǫ′ | {ǫ}

We define two maps between this grammar and the grammar presented above. Let us start
to show how to translate P ’s into ǫ’s, by defining a map (−)† by induction on the structure
of P:

(0)† = ;
(P1+ P2)

† = (P1)
†⊕ (P2)

†

(µx .P)† = µx .P†

x† = x

(a.P)† = r[a({P†})]
(
p
)† = l[∗]

(δ)† = r[;]

And now the converse translation:
(;)‡ = 0

(ǫ1⊕ ǫ2)‡ = (ǫ1)
‡+ (ǫ2)

‡

(µx .ǫ)‡ = µx .ǫ‡

x‡ = x

(l[;])‡ =
p

(l[ǫ1⊕ ǫ′1])‡ = (l[ǫ1])
‡+ (l[ǫ′1])

‡

(l[∗])‡ =
p

(r[;])‡ = δ

(r[ǫ2⊕ ǫ′2])‡ = (r[ǫ2])
‡+ (r[ǫ′2])

‡

(r[a(;)])‡ = δ

(r[a(ǫ′1⊕ ǫ′2)])‡ = (r[a(ǫ′1)])
‡+ (r[a(ǫ′2)])

‡

(r[a({ǫ})])‡ = a.ǫ‡

One can now prove that if P1 ≡ P2 (using the equations above) then (P1)
† ≡ (P2)

† (using the
automatically derived equations for the functor) and also that ǫ1 ≡ ǫ2 implies (ǫ1)

‡ ≡ (ǫ2)‡.

Automata on guarded strings. It has recently been shown [23] that automata on guarded
strings (acceptors of the join irreducible elements of the free Kleene algebra with tests on
generators Σ, T) are coalgebras for the functor B × IdAt×Σ, where At is the set of atoms,
i.e. minimal nonzero elements of the free Boolean algebra B generated by T and Σ is a set
of actions. Applying our framework to this functor yields a language that is equivalent to
the closed and guarded expressions generated by the following grammar, where b ∈ B and
a ∈ Σ:

P ::= 0 | 〈b〉 | P + P | b→ a.P | µx .P | x
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accompanied by the equations (omitting the congruence and α-equivalence rules)

P1+ P2 ≡ P2+ P1 P1+ (P2+ P3)≡ (P1+ P2) + P3

P + P ≡ P P + 0≡ P

〈b1〉+ 〈b2〉 ≡ 〈b1 ∨B b2〉 0≡ 〈⊥B〉
(b→ a.0)≡ 0 (⊥B→ a.P)≡ 0

(b→ a.P2) + (b→ a.P2)≡ b→ a.(P1+ P2) (b1→ a.P) + (b2→ a.P)≡ (b1 ∨B b2)→ a.P

P[µx .P/x]≡ µx .P P[Q/x]≡Q⇒ (µx .P)≡Q

We will not present a full comparison of this syntax to the one of Kleene algebra with
tests [23] (and propositional Hoare triples). The differences between our syntax and that
of KAT are similar to the ones between regular expressions and the language ExpD for the
functor representing deterministic automata (see Definition 3.5). Similarly to the LTS ex-
ample one can define maps between the beautified syntax and the automatically generated
one and prove its correctness.

6. POLYNOMIAL AND FINITARY COALGEBRAS

The functors we considered above allowed us to modularly derive languages and axioma-
tizations for a large class of coalgebras. If we consider the subset of NDF without the Pω
functor, the class of coalgebras for these functors almost coincides with polynomial coalge-
bras (that is, coalgebras for a polynomial functor). The only difference comes from the use
of join-semilattices for constant functors and 3+ instead of the ordinary coproduct, which
played an important role in order for us to be able to have underspecification and over-
specification. We will now show how to derive expressions and axiomatizations directly for
polynomial coalgebras, where no underspecification or overspecification is allowed.
Before we show the formal definition, let us provide some intuition. The main changes4,
compared to the previous sections, would be to not have ; and⊕ and consider an expression
〈−,−〉 for the product instead of the two expressions l〈−〉 and r〈−〉 which we considered
and an expression 〈a1(−), a2(−), . . . , an(−)〉 for the exponential (with A = {a1, . . . an}). As
an example, take the functor D(X ) = 2 × X A of deterministic automata. The expressions
corresponding to this functor would then be the set of closed and guarded expressions
given by the following BNF:

ǫ::= x | µx .ǫ | 〈0, 〈a1(ǫ), a2(ǫ), . . . , an(ǫ)〉〉 | 〈1, 〈a1(ǫ), a2(ǫ), . . . , an(ǫ)〉〉
This syntax can be perceived as an explicit and complete description of the automaton. This
means that underspecification is inexistent and the compactness of regular expressions is
lost. As an example of the verbosity present in this new language, take A = {a, b, c} and
consider the language that accepts words with only a’s and has at last one a (described by
aa∗ in Kleene’s regular expressions). In the language ExpD it would be written as µx .a(l〈1〉⊕
x). Using the approach described above it would be encoded as the expression

µx .〈0, 〈a(〈1, 〈a(x), b(empty), c(empty)〉〉), b(empty), c(empty)〉〉
where empty = µy.〈0, 〈a(y), b(y), c(y)〉 is the expression denoting the empty language.
The approach we presented before, by allowing underspecification, provides a more user-
friendly syntax and stays close to the know syntaxes for deterministic automata and LTSs.

4This syntax was suggested to us by B. Klin, during CONCUR’09.
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In what follows we will formally present a language for polynomial coalgebras. We start by
introducing the definition of polynomial functor, which we take from [2].

6.1. DEFINITION (Polynomial Functor). Sums of the cartesian power functors are called
polynomial functors:

PΣ(X ) =
∐

σ∈Σ
X ar(σ)

Here,
∐

stands for ordinary coproduct and the indexing set Σ is a signature, that is a
possibly infinite collection of symbols σ, each of which is equipped with a finite cardinal
ar(σ), called the arity of σ. ♣
6.2. DEFINITION (Expressions and axioms for polynomial functors). Let PΣ be a polynomial
functor. The set ExpPΣ

of expressions for PΣ is given by the closed and guarded expressions
generated by the following BNF, where σ ∈ Σ and x ∈ V , for V a set of fixed point variables:

ǫi::= x | µx .ǫ | σ(ǫ1, . . . ,ǫar(σ))

accompanied by the equations:

γ[µx .γ/x] ≡ µx .γ (FP)

γ[ǫ/x] ≡ ǫ⇒ µx .γ≡ ǫ (Unique)

ǫ1 ≡ ǫ2⇒ ǫ[ǫ1/x]≡ ǫ[ǫ2/x], if x is free in ǫ (Cong)

µx .γ≡ µy.γ[y/x], if y is not free in γ (α− equiv)

♣
Providing the set ExpPΣ

with a coalgebraic structure is now achieved using induction on the
number of unguarded nested fixed points:

δ : ExpPΣ
→
∐

σ∈Σ
(ExpPΣ

)ar(σ)

δ(µx .ǫ) = δ(ǫ[µx .ǫ/x])
δ(σ(ǫ1, . . . ,ǫar(σ))) = κσ(〈ǫ1, . . . ,ǫar(σ)〉)

We are now ready to state and prove Kleene’s theorem.

6.3. THEOREM (Kleene’s theorem for polynomial functors). Let PΣ be a polynomial functor.

(1) For every locally finite coalgebra (S, g : S → PΣ(S)) and for every s ∈ S there exists an
expression ǫ ∈ ExpPΣ

such that ǫ ∼ s.

(2) For every expression ǫ ∈ ExpPΣ
there is a finite coalgebra (S, g : S → PΣ(S)) with s ∈ S

such that s ∼ ǫ.
Proof. Point 1. amounts to solve a system of equations. Let 〈s〉 = {s1, . . . , sn}. We associate
with each si ∈ 〈s〉 an expression 〈〈 si 〉〉 = An

i
, where An

i
is defined inductively as in the proof

of 3.12, with Ak+1
i
= Ak

i
{Ak

k+1/xk+1} and A0
i
= Ai given by

Ai = µxsi
.σ(xs′1

, . . . , xs′
ar(σ)
), g(si) = κσ(s

′
1, . . . , s′

ar(σ)
)

It remains to prove that si ∼ ǫi, for all si ∈ 〈s〉. We observe that

R= {〈si , 〈〈 si 〉〉〉 | si ∈ 〈s〉}
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is a bisimulation, since for g(si) = κσ(s
′
1, . . . , s′

ar(σ)
), we have

δ(〈〈 si 〉〉)
= δ((µx i.σ(xs′1

, . . . , xs′
ar(σ)
)){A0

1/x1} . . . {An−1
n /xn}) (def. of ǫi)

= δ(µx i .σ(xs′1
, . . . , xs′

ar(σ)
){A0

1/x1} . . . {Ai−2
i−1/x i−1}{Ai

i+1/x i+1} . . . {An−1
n /xn})

= δ(σ(xs′1
, . . . , xs′

ar(σ)
){A0

1/x1} . . . {Ai−2
i−1/x i−1}{Ai

i+1/x i+1} . . . {An−1
n /xn}[An

i
/x i]) (def. of δ)

= δ(σ(xs′1
, . . . , xs′

ar(σ)
){A0

1/x1} . . . {Ai−2
i−1/x i−1}{Ai

i+1/x i+1} . . . {An−1
n /xn}{An

i
/x i})

= δ(σ(xs′1
, . . . , xs′

ar(σ)
){A0

1/x1} . . . {Ai−2
i−1/x i−1}{An

i
/x i}{Ai

i+1/x i+1} . . . {An−1
n /xn})

= κσ(〈〈 s′1 〉〉, . . . , 〈〈 s′
ar(σ)
〉〉)

or point 2, we observe that the subcoalgebra 〈ǫ〉, for any ǫ ∈ ExpPΣ
is finite, since the

set cl(ǫ) containing all sub-formulas and unfoldings of fixed points of ǫ, which is finite,
is a subcoalgebra of (ExpPΣ

,δ). The fact that in this point, contrary to what happened in
Theorem 3.14, we do not need to quotient the set of expressions is a direct consequence of
the absence of underspecification or, more concretely, of the expressions ; and ⊕.

The proof of soundness and completeness would follow a similar strategy as in the previous
section and we will omit it here.
In order to be able to compare the language introduced in this section with the language
obtained in our previous approach, we have to define an infinitary version of the operator
3+ and extend the framework accordingly. We start by defining the aforementioned operator
on sets: 3+i∈I X i =

�∐

i∈I X i

�

∪{⊥,⊤} and the corresponding functor, for which we shall use
the same symbol, is defined pointwise in the same way as for 3+. Note that 3+ is a special
case of this operator (resp. functor) for I a two element set. In fact, for simplicity, we shall
only consider this operator for index sets I with two or more elements.
There is a natural injection between polynomial functors and the class of non-deterministic
functors extended with 3+: every polynomial functor PΣ(X ) is mapped to

PΣ(X ) =3+σ∈Σ X ar(σ)

Now, we slightly alter the definition of expressions. Instead of the expressions l[−] and
r[−] we had before for 3+ we now add an expression i[−] for each i ∈ I and the expected
typing rule:

⊢ ǫ : F j Ã G j ∈ I

⊢ j[ǫ]: 3+i∈IFi Ã G

All the other elements in our story are adjusted in the expected way. We show what happens
in the axiomatization. For 3+ we had the rules

l[ǫ1⊕ ǫ2]≡ l[ǫ1]⊕ l[ǫ2] r[ǫ1⊕ ǫ2]≡ r[ǫ1]⊕ r[ǫ2] l[ǫ1]⊕ r[ǫ2]≡ l[;]⊕ r[;]
which are now replaced by

i[ǫ1]⊕ i[ǫ2]≡ i[ǫ1⊕ ǫ2] i[ǫ1]⊕ j[ǫ2]≡ k[;]⊕ l[;], i 6= j, k 6= l

It is now natural to ask what is the relation between the sets of expressions ExpPΣ(X )
and

ExpPΣ(X )
. The set ExpPΣ(X )

is isomorphic to the subset of ExpPΣ(X )
containing only fully

specified expressions, that is expressions ǫ for which the subcoalgebra 〈ǫ〉 does not contain
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any state for which δPΣ(X )
evaluates to ⊥ and ⊤. This condition is purely semantical and we

were not able to find a purely syntactic restriction that would capture it.
We now repeat the exercise above for finitary functors. A finitary functor F is a functor that
is a quotient of a polynomial functor, i.e. there exists a natural transformation η: PΣ → F,
whose components ηX : PΣ(X )→ F(X ) are epimorphisms. We define ExpF = ExpPΣ

.

6.4. THEOREM (Kleene’s theorem for finitary functors). Let F be a finitary functor.

(1) Let (S, f ) be a locally-finite F-coalgebra. Then, for any s ∈ S, there exists an expression
〈〈 s 〉〉 ∈ ExpF such that s ∼ 〈〈 s 〉〉.

(2) Let ǫ ∈ ExpF. Then, there exists a finite F-coalgebra (S, f ) with s ∈ S such that s ∼ ǫ.
Proof. Let F be a finitary functor (quotient of a polynomial functor PΣ).
1 Let (S, f ) be a locally finite F-coalgebra and let s ∈ S. We denote by T = {s1, . . . , sn}

the state space of the subcoalgebra 〈s〉 (with s1 = s). We then have that there exists an f ♯

making the following diagram commute:

T

f ♯

id
T

f

S

f

PΣ(T ) ηS
F(T ) F(S)

We then build 〈〈 s 〉〉 w.r.t f ♯ just as in Theorem 3.12 (note that (S, f ♯) is finite) and the result
follows because 〈〈 s 〉〉 ∼F s⇐ 〈〈 s 〉〉 ∼PΣ

s (consequence of naturality).
2 Let ǫ ∈ ExpF. By Theorem 3.14, there exists a finite PΣ-coalgebra (S, f ) with s ∈ S such

that s ∼PΣ
ǫ. Thus, we take (S,ηS ◦ f ) and we have a finite F-coalgebra with s ∈ S such that

ǫ ∼F s.

For the axiomatization a bit more ingenuity is required. One needs to derive which extra
axioms are induced by the epimorphism and then prove that they are sound and complete.
For instance, the finite powerset functor (which we included in the syntax of non-deterministic
functors) is the classical example of a finitary functor. It is the quotient of the polynomial
functor PΣ(X ) = 1+ X + X 2 + . . . (this represents lists of length n) by identifying lists that
contain precisely the same elements (that is, eliminating repeated elements and abstracting
from the ordering).
The syntax for ExpPΣ

is the set of closed and guarded expressions given by the following
BNF:

ǫ::= x | µx .ǫ | i(ǫ1, . . . ,ǫi), i ∈ N
together with the axioms for the fixed point, (α− equiv) and (Cong).
Taking into account the restriction mentioned we would have to include the extra axioms:

i(ǫ1, . . . ,ǫi)≡ i(ǫ′1, . . . ,ǫ′i) if {ǫ1, . . .ǫi}= {ǫ′1, . . .ǫ′i}
i(ǫ1,ǫ2, . . . ,ǫi)≡ (i− 1)(ǫ1,ǫ3, . . . ,ǫi) if ǫ1 ≡ ǫ2

In this case, one can see that this set of axioms is sound and complete, by simply proving,
for PΣ(X ) = 1 + X + X 2 + . . ., ExpPΣ

/≡ ∼= ExpPω
/≡ (since we already had a language and

sound and complete axiomatization for the Pω functor). The restricted syntax and axioms
needs to be derived for each concrete finitary functor. Finding a uniform way of defining
such restricted syntax/axioms and also uniformly proving soundness and completeness is a
challenging problem and it is left as future work.
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7. DISCUSSION

We presented a systematic way of deriving, from the type of a system, a language of (gener-
alized) regular expressions and a sound and complete axiomatization thereof. We showed
the analogue of Kleene’s theorem, proving the correspondence of the behaviours captured
by the expressions and the systems under consideration. The whole approach was illus-
trated with five examples: deterministic finite automata, partial deterministic automata,
non-deterministic automata, labelled transition systems and automata on guarded strings.
Moreover, all the results presented in [9] for Mealy machines can be recovered as a partic-
ular instance of the present framework.
Iterative theories have been introduced by Elgot [15] as a model of computation and they
formalize potentially infinite computations as solutions of recursive equations. The main
example of an iterative theory is the theory of regular trees, that is trees which have on
finitely many distinct subtrees. Adámek, Milius and Velebil have presented Elgot’s work
from a coalgebraic perspective [3, 4], simplified some of his original proofs, and generalized
the notion of free iterative theory to any finitary endofunctor of every locally presentable
category. The language modulo the axioms we will associate with each functor is closely
related to the work above: it is an initial iterative algebra. This also shows the connection
of our work with the work by Bloom and Ésik on iterative algebras/theories [5]. It would
be interesting to investigate the connections with iterative algebras further.
In [20], a bialgebraic review of deterministic automata and regular expressions was pre-
sented. One of the main results of [20] was a description of the free algebra and Brzozowski
coalgebra structure on regular expressions as a bialgebra with respect to a GSOS law. We
expect that this extends to our framework, but fully working this out is left as future work.
In this paper we studied coalgebras for Set functors. It is an important and challenging
question to extend our results to other categories. Following our work, S. Milius [27] has
showed how to derive a language and sound and complete axiomatization for the functor
R× Id in the category of vector spaces and linear maps. It would also be interesting to study
functors over metric spaces [36, 12].
In his seminal paper [21], S. Kleene introduced an algebraic description of regular lan-
guages: regular expressions. This was the precursor of many papers, including this one.
Salomaa [33] presented a sound and complete axiomatization for proving the equivalence
of regular expressions. This was later refined by Kozen in [22]: he showed that Salomaa’s
axiomatization is non-algebraic, in the sense that it is unsound under substitution of alpha-
bet symbols by arbitrary regular expressions, and presented an algebraic axiomatization.
In [28], Milner introduced a set of expressions for finite LTS’s and proved an analogue of
Kleene’s theorem: each expression denotes the behaviour of a finite LTS and, conversely,
the behaviour of a finite LTS can be specified by an expression. He also provided an axioma-
tization for his expressions, with the property that two expressions are provably equivalent
if and only if they are bisimilar.
Our approach is inspired by the work of Kleene, Kozen and Milner. For that reason, we
have ; and ⊕ in the syntax of our expressions, which allow to have underspecification and
overspecification. These features had to be reflected in the type of the coalgebras we are
able to deal with: the class of functors considered include join-semilattices as constant
functors and 3+ instead of the ordinary coproduct, which has allowed us to remain in the
category Set. The fact that underspecification and overspecification can be captured by a
semilattice structure, plus the fact that the axiomatization provides the set of expressions
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with a join semilattice structure, hint (as one of the reviewers pointed out) that the whole
framework could have been studied directly in the category of join-semilattices. This is
indeed true, but, for simplicity, we decided to remain in the category Set. It is not clear how
much could be gained by directly working on join semi-lattices.
The connection between regular expressions and coalgebras was first explored in [32].
There deterministic automata, the set of formal languages and regular expressions are all
presented as coalgebras of the functor 2× IdA (where A is the alphabet, and 2 is the two
element set). It is then shown that the standard semantics of language acceptance of au-
tomata and the assignment of languages to regular expressions both arise as the unique
homomorphism into the final coalgebra of formal languages. The coalgebra structure on
the set of regular expressions is determined by their so-called Brzozowski derivatives [13].
In the present paper, the set of expressions for the functor D(S) = 2× SA differs from the
classical definition in that we do not have Kleene star and full concatenation (sequential
composition) but, instead, the least fixed point operator and action prefixing. Modulo that
difference, the definition of a coalgebra structure on the set of expressions in both [32]
and the present paper is essentially the same. All in all, one can therefore say that stan-
dard regular expressions and their treatment in [32] can be viewed as a special instance
of the present approach. This is also the case for the generalization of the results in [32]
to automata on guarded strings [23]. Finally, the present paper extends the results in our
FoSSaCS’08 paper [9], where a sound and complete specification language and a synthe-
sis algorithm for Mealy machines is given. Mealy machines are coalgebras of the functor
(B× Id)A, where A is a finite input alphabet and B is a finite semilattice for the output al-
phabet. Part of the material of the present paper is based on two conference papers: our
FoSSaCS’09 paper [11] and our LICS’09 paper [10].
In the last few years, several proposals of specification languages for coalgebras appeared
[29, 30, 19, 17, 14, 7, 8, 34, 24]. Our approach is similar in spirit to that of [17, 30, 19, 34]
in that we use the ingredients of a functor for typing expressions, and differs from [30, 19]
because we do not need an explicit "next-state" operator, as we can deduce it from the
type information. The modal operators associated to a functor in [30, 19, 34] can easily
be related with the expressions considered in our language. As an example, consider the
expression 〈π2〉[κ1]〈α〉⊥, written in the syntax of [30], which belongs to the language
associated with the functor 2× (Id+ 1) (the modal operator 〈α〉 is next operator associated
with the identity functor). In our language, this would be represented by r〈l[;]〉.
Apart from [24], the languages mentioned above do not include fixed point operators. Our
language of regular expressions can be seen as an extension of the coalgebraic logic of [7]
with fixed point operators, as well as the multi-sorted logics of [34], and it is similar to a
fragment of the logic presented in [24]. However, our goal is rather different: we want (1)
a finitary language that characterizes exactly all locally finite coalgebras; (2) a Kleene like
theorem for the language or, in other words, a map (and not a relation) from expressions
to coalgebras and vice-versa; (3) a modular axiomatization, sound and complete with re-
spect to observational equivalence. From the perspective of modal logic, the second half of
Kleene’s theorem, where we show how to construct a coalgebra from an expression, is the
same as constructing a canonical model. In [34], the models presented for the multi-sorted
logics are multi-sorted coalgebras, whereas here we remain in the world of coalgebras in the
category Set, constructing, from an expression in ExpG, for a given functor G, a G-coalgebra.
In conclusion, we mention a recent generalization of the present approach: all the results
presented in this paper can be extended in order to accommodate systems with quantities,
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such as probability or costs [6]. The main technical challenge is that quantitative systems
have an inherently non-idempotent behaviour and thus the proof of Kleene’s theorem and
the axiomatization require extra care. This extension allows for the derivation of specifica-
tion languages and axiomatizations for a wide variety of systems, which include weighted
automata, simple probabilistic systems (also known as Markov chains) and systems with
mixed probability and non-determinism (such as Segala systems). For instance, we have
derived a language and an axiomatization for the so-called stratified systems. The language
is equivalent to the one presented in [16], but no axiomatization was known.
The derivation of the syntax and axioms associated with each non-deterministic functor has
been implemented in the coinductive prover CIRC [26]. This allows for automatic reasoning
about the equivalence of expressions specifying systems.
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