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Abstract

(a) Limits of Cauchy sequences in a (possibly non-symmetric) metric space are shown to be
weighted colimits (a notion introduced by Borceux and Kelly, 1975). As a consequence, further
insights from enriched category theory are applicable to the theory of metric spaces, thus continuing
Lawvere's (1973) approach. Many of the recently proposed de�nitions of generalized limit turn
out to be theorems from enriched category theory.

(b) The dual of the space of metrical predicates (`fuzzy subsets') of a metric space is shown to
contain the collection F of formal balls (Weihrauch and Schreiber, 1981; Edalat and Heckmann,
1996) as a quasi-metric subspace. Formal balls are related to ordinary closed balls by means of
the Isbell conjugation. For an ordinary metric space X , the subspace of minimal elements of F is
isometric to X by the co-Yoneda embedding.
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1 Motivation

(a) A Cauchy sequence in a metric space X is determined by the following data:

1. a function f : f0; 1; 2; : : :g ! X ;

2. a Cauchy condition: 8� > 0 9N � 08n � m � N; X(f(m); f(n)) � �.

(Here X(f(m); f(n)) denotes the distance from f(m) to f(n).) The Cauchy condition is easily
seen to be equivalent to the following:

2'. there exists a function g : f0; 1; 2; : : :g ! [0;1] such that

(a) 8n � 0; g(n) � g(n+ 1);

(b) inf g(n) = 0;

(c) 8n � 08k � 0; X(f(n); f(n+ k)) � g(n).

Let us call such a function g a Cauchy witness for the sequence f . (There are several such
witnesses; a canonical choice would be the function g de�ned by

g(n) = sup
k�l�n

X(f(l); f(k)):)

A Cauchy witness gives for any natural number n the extent to which the sequence (f(n + k))k
`is Cauchy'. This functional description of the Cauchy condition gives rise to a useful alternative
for the traditional de�nition of limit of a Cauchy sequence, which is repeated �rst: for x 2 X ,

3: x = lim f(n) () 8� > 0 9N � 08n � N; X(f(n); x) � �:

Alternatively, the following de�nition is formulated in terms of f and a Cauchy witness g for f :

3'. x = lim
!g
f(n) () 8y 2 X; X(x; y) = sup

n�0
fX(f(n); y) �� g(n)g;

where ��: [0;1]� [0;1]! [0;1] is truncated subtraction on the extended reals. As it turns out,
the two de�nitions are equivalent:

Theorem 1.1 Let f be a Cauchy sequence in a metric space X, and g a Cauchy witness for f .
For all x in X,

x = lim f(n) () x = lim
!g
f(n):

(Note that as a consequence, de�nition 3' is independent of the choice of the witness g.)

Proof:

(: It follows from

0 = X(x; x) = sup
n�0

fX(f(n); x) �� g(n)g

that X(f(n); x) � g(n), for all n � 0. Let � > 0. Because inf g(n) = 0 there is a natural
number N such that g(N) � �. For all n � N ,

X(f(n); x)

� g(n)

� g(N) [g is decreasing]

� �:

Thus x = lim f(n).
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): Let � > 0 and let y 2 X . For n � 0 and k � 0,

X(f(n); y)

� X(f(n); f(n+ k)) +X(f(n+ k); x) +X(x; y) [triangle inequality]

� g(n) + �+X(x; y);

for k big enough. Since � was arbitrary, this implies

X(f(n); y) � g(n) +X(x; y);

for all n � 0, which is equivalent to

sup
n�0

fX(f(n); y) �� g(n)g � X(x; y):

Conversely,

X(x; y)

� X(x; f(n)) +X(f(n); y)

= X(f(n); x) +X(f(n); y) [symmetry]

� X(f(n); x) + (X(f(n); y) �� g(n)) + g(n)

� �=2 + (X(f(n); y) �� g(n)) + �=2 [for n big enough]

� �+ sup
n�0

fX(f(n); y) �� g(n)g:

Since � was arbitrary, this implies

X(x; y) � sup
n�0

fX(f(n); y) �� g(n)g:

2

Although this equivalence holds only for symmetric metric spaces, the alternative de�nition of
limit (3') makes perfect sense for non-symmetric, so-called generalized metric spaces X as well.
For instance, any partially ordered set can be represented as a generalized metric space (via
P (p; q) = 0, if p � q, and = 1, otherwise); then 3' amounts to the de�nition of least upper bound.

De�nition 3' is an instance of the enriched-categorical notion of weighted colimit (or indexed
colimit) [BK75], and makes it possible to continue Lawvere's approach to the theory of metric
spaces [Law73], by applying further insights from enriched category theory, in particular various
results on weighted colimits (and their dual, weighted limits) [Kel82, Bor94]. As a consequence,
many of the recently proposed de�nitions of generalized metric limit turn out to be theorems in
enriched category theory. Furthermore, many other types of `limits', such as the least upper bound
of a directed subset or the limit of a Cauchy net, are expressible as weighted (co)limits as well.

The connection between limits of Cauchy sequences and weighted colimits is briey mentioned
at the end of [Rut96]. Here it is worked out in further detail. The role of weights as modulus of
convergence is also mentioned in [Wag95b].

(b) An interesting example of a non-trivial generalized metric space is the space of metrical
predicates (or `fuzzy subsets'), which is given, for any generalized metric space X by

X̂ = [0;1]
Xop

;

the set of all non-expansive functions from Xop to [0;1]. (Here the (non-symmetric) distance
on [0;1] is again ��, i.e., truncated subtraction; and Xop is as X but with distance Xop(x; y) =
X(y; x).) The importance of the space X̂ for the study of metric spaces|strongly emphasized
by Lawvere [Law73]|is established �rst and foremost by the existence of the metric Yoneda
embedding :

ŷ : X ! X̂; x 7! x̂ = �z 2 X:X(z; x);

which is isometric by the (metric) Yoneda lemma. As a consequence, X̂ has many pleasant
properties:
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� comparing the elements of X̂ with `real' subsets of X gives rise to elementary de�nitions of
the Hausdor� distance and the metric �-ball topology [Law73, Law86];

� the metric Cauchy completion of X can be de�ned as a subspace of X̂ [BBR96];

� X̂ gives rise to the de�nition of a generalized Scott topology [BBR96];

� generalized lower and upper powerdomains can be de�ned as subspaces of X̂ and its dual
�X = ([0;1]

X
)op [BBR96].

Here we want to give another illustration of the beauty of X̂ and �X: Certain elements in X̂
correspond to closed balls [Law86]. As we shall see, certain elements in �X correspond to what
have been called `formal balls' [WS81]. Formal balls and closed balls will be related by the Isbell
conjugation between X̂ and �X. Formal balls, supplied with a partial order, have recently been
used [EH96] as an approximative structure for symmetric metric spaces (cf. Lawson's [Law95]).
Here we shall generalize some of the results of that paper. The collection of formal balls will
be considered as a generalized metric space F , inheriting the distance from �X; the underlying
ordering turns out to be the one of [WS81]. For symmetric spaces X , the subspace of minimal
elements of F (with respect to this underlying ordering) is isometric to X via the co-Yoneda
embedding. Furthermore, Fop is (forward-)complete if and only if X is complete, and !-algebraic
if and only if X is separable.

2 Preliminaries

A generalized metric space (gms for short) is a set X together with a distance function

X(�;�) : X �X ! [0;1]

which satis�es, for all x, y, and z in X ,

(a) X(x; x) = 0, and

(b) X(x; z) � X(x; y) +X(y; z),

the so-called triangle inequality. Here + is the usual addition on the extended positive real numbers
(with r +1 =1+ r =1, for any r 2 [0;1]). If X moreover satis�es

(c) if X(x; y) = 0 and X(y; x) = 0 then x = y,

then X is called a quasi metric space. If X satis�es (a), (b), and

(d) X(x; y) = X(y; x),

then it is called a symmetric metric space. Clearly, according to these de�nitions, any ordinary
metric space is a symmetric quasi metric space.

If two elements x and x0 in a gmsX have distance 0 in both directions: X(x; x0) = 0 = X(x0; x),
then x and x0 are called isomorphic, denoted by x �= x0. In a quasi metric space, any two isomorphic
elements are equal.

Examples 2.1 Examples of generalized metric spaces are:

1. The set A1 of �nite and in�nite words over some given set A with distance function, for v
and w in A1,

A1(v; w) =

�
0 if v is a pre�x of w
2�n otherwise,

where n is the length of the longest common pre�x of v and w.
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2. Any preorder hP;�i (satisfying for all p, q, and r in P , p � p, and if p � q and q � r then
p � r) can be viewed as a generalized metric space, by de�ning

P (p; q) =

�
0 if p � q
1 if p 6� q.

By a slight abuse of language, any gms stemming from a preorder in this way will itself be
called a preorder. If P is a partial order: p � q and q � p implies p = q, then the induced
gms is a quasi metric space.

3. The set [0;1] with distance, for r and s in [0;1],

[0;1](r; s) = s �� r;

where

s �� r =

�
s� r if s � r
0 if s < r.

(Note that [0;1] is a quasi metric space.)

The distance on the space [0;1] given above makes it, in categorical terms, a complete and
cocomplete symmetric monoidal closed category. More speci�cally, [0;1] is a category with as
objects the non-negative real numbers and an arrow from r to s if and only r � s. It is trivially
complete and cocomplete (products are given by supremum and coproducts by in�mum). It carries
a symmetric monoidal structure given by (the tensor product) +, with 0 as neutral element. And
this structure is closed in the sense that for any t in [0;1], the function (functor) t + � is left
adjoint to the (cotensor) functor [0;1](t;�) (de�ned above), because for all r and s in [0;1]:

t+ s � r () s � r �� t:

Generalized metric spaces can be viewed as categories enriched in [0;1], or [0;1]-categories for
short. By taking this view, we follow Lawvere's [Law73] conception of metric spaces as V-categories
[EK66, Kel82]. The main advantage of this approach is that many results from enriched category
theory can be applied to metric spaces.

We just saw that any preorder induces a generalized metric space. There is also the reverse
construction: any generalized metric space X induces a preordered space hX;�Xi where the
so-called underlying ordering �X is de�ned by

x �X y () X(x; y) = 0:

Note that if X is a quasi metric space then a partial ordering is obtained.
Applying this de�nition to A1, we obtain the usual pre�x ordering. The ordering underlying

[0;1] is the reverse of the usual ordering:

r �[0;1] s () r � s:

A mapping f : X ! Y between generalized metric spaces X and Y is non-expansive if for all
x and x0 in X ,

Y (f(x); f(x0)) � X(x; x0):

A non-expansive map f is isometric if this inequality is always an equality. Two spaces X and Y
are called isometric (isomorphic) if there exists an isometric bijection between them. The exponent
of X and Y is de�ned by

Y X = ff : X ! Y j f is non-expansive g;
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with distance, for f and g in Y X ,

Y X(f; g) = sup
x2X

fY (f(x); g(x))g:

Note that the underlying ordering is pointwise:

f �Y X g () f(x) �Y g(x); for all x 2 X:

The product X � Y consists of the Cartesian product of the sets X and Y with distance

(X � Y )(hx; yi; hx0; y0i) = maxfX(x; x0); Y (y; y0)g:

The tensor product X 
 Y of X and Y consists again of the same carrier, but now with distance

(X 
 Y )(hx; yi; hx0; y0i) = X(x; x0) + Y (y; y0):

The opposite Xop of a gms X is the set X with distance

Xop(x; x0) = X(x0; x):

The distance function X(�;�) is a non-expansive mapping

X(�;�) : Xop 
X ! [0;1]:

The following properties will be often used. For all r, s, and t in [0;1],

[0;1](r + s; t) = [0;1](r; [0;1](s; t));

[0;1](t; s �� r) = [0;1](r; [0;1](t; s)):

For a gms X , f 2 [0;1]
X
, and r 2 [0;1], let

r + f = �x 2 X: r + f(x);

f �� r = �x 2 X: f(x) �� r:

The following equalities hold:

[0;1]
X
(r + f; g) = [0;1](r; [0;1]

X
(f; g));

[0;1]
X
(g; f �� r) = [0;1](r; [0;1]

X
(g; f)):

A proof may use the following elementary facts: For any subset S � [0;1],

[0;1](r; supS) = sup
s2S

[0;1](r; s);

[0;1](inf S; r) = sup
s2S

[0;1](s; r):

Let the space of so-called `fuzzy subsets' and its dual be de�ned by

X̂ = [0;1]
Xop

; �X = ([0;1]
X
)op:

Note that both X̂ and �X are quasi metric spaces, because [0;1] is. The following functions are
of great importance for the theory of generalized metric spaces: The Yoneda embedding :

ŷ : X ! X̂; x 7! ŷ(x) = �z 2 X:X(z; x);

and the co-Yoneda embedding :

�y : X ! �X; x 7! �y(x) = �z 2 X:X(x; z):

We shall often use the following shorthand:

x̂ = ŷ(x) and �x = �y(x):

Both the Yoneda embedding and its dual are isometric as a consequence of the following lemma.
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Lemma 2.2 Let X be a generalized metric space.

1. The Yoneda lemma: for all x 2 X and � 2 X̂, X̂(x̂; �) = �(x):

2. The co-Yoneda lemma: for all x 2 X and  2 �X, �X( ; �x) =  (x): 2

A pair of non-expansive functions f : X ! Y and g : Y ! X between generalized metric
spaces is adjoint (and f is left adjoint to g, denoted by f a g) if for all x 2 X and y 2 Y ,

f(x) �Y y () x �X g(y):

(Equivalently [Rut96], for all x 2 X and y 2 Y , Y (f(x); y) = X(x; g(y)).)

3 Weighted limits and weighted colimits

The enriched categorical de�nitions of weighted limit and colimit [BK75] are given for the special
case of [0;1]-categories, that is, generalized metric spaces. Most de�nitions and facts of the present
section are instances of general enriched-categorical versions of them, see [Kel82] or [Bor94]. For
all facts, elementary proofs can be given as well, some of which have been included here. In the
next section, we shall show that limits of Cauchy sequences are weighted (co)limits.

Let D and X be generalized metric spaces, and let

f : D ! X; g : D ! [0;1]

be non-expansive functions. An element x in X is a limit of f weighted by g:

x = lim
 g

f () 8y 2 X; X(y; x) = [0;1]
D
(g; X(y; f));

where X(y; f) : D ! [0;1] maps d in D to X(y; f(d)). Dually, let

f : D ! X; g : Dop ! [0;1]

be non-expansive functions. An element x in X is a colimit of f weighted by g:

x = lim
!g

f () 8y 2 X; X(x; y) = [0;1]
Dop

(g; X(f; y));

where X(f; y) : Dop ! [0;1] maps d in D to X(f(d); y). If for a space X all weighted limits exist
(for arbitrary D, f , and g) then X is called [0;1]-complete. And if all weighted colimits exist
then X is called [0;1]-cocomplete.

The notion of weighted limit is dual to that of weighted colimit in that weighted limits in
X correspond to weighted colimits in Xop (and vice versa), which can be seen as follows: For
non-expansive f : D ! X and g : D ! [0;1], and x in X ,

x = lim
 g

f

() 8y 2 X; X(y; x) = [0;1]
D
(g; X(y; f))

() 8y 2 Xop; Xop(x; y) = [0;1]
D
(g; Xop(f; y)): (1)

Now observe that f : D ! X is also a non-expansive function f : Dop ! Xop, and that g :
D ! [0;1] is a non-expansive function g : (Dop)op ! [0;1], since (Dop)op = D. Thus formula 1
expresses that x is the colimit of f : Dop ! Xop weighted by g : (Dop)op ! [0;1].

If x and x0 are both limits of f weighted by g, then X(x; x0) = 0 and X(x0; x) = 0, i.e., x �= x0.
Thus weighted limits, and similarly weighted colimits are unique up to isomorphism and, hence,
unique in quasi metric spaces. For that reason it will be often convenient to consider quasi rather
than generalized metric spaces.

Weighted limits and colimits in [0;1] can be easily described.

Theorem 3.1 Let D be a gms.
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1. For non-expansive f : D ! [0;1] and g : D ! [0;1]:

lim
 g

f = [0;1]D(g; f):

2. For non-expansive f : D ! [0;1] and g : Dop ! [0;1]:

lim
!g

f = inf
d2D

ff(d) + g(d)g:

Proof: For all y 2 [0;1],

[0;1]
D
(g; [0;1](y; f))

= sup
d2D

[0;1](g(d); [0;1](y; f(d)))

= sup
d2D

[0;1](y; [0;1](g(d); f(d)))

= [0;1](y; sup
d2D

[0;1](g(d); f(d)))

= [0;1](y; [0;1]D(g; f));

which proves 1. Similarly, 2 follows from

[0;1]
Dop

(g; [0;1](f; y))

= sup
d2D

[0;1](g(d); [0;1](f(d); y))

= sup
d2D

[0;1](f(d) + g(d); y)

= [0;1]( inf
d2D

ff(d) + g(d)g; y):

2

As a consequence, all weighted limits and colimits in [0;1] exist:

Corollary 3.2 The space [0;1] is [0;1]-complete and [0;1]-cocomplete. 2

A further consequence is the following theorem, which is a special instance of [Bor94, Proposition
6.6.17].

Theorem 3.3 For a generalized metric space X, the space [0;1]
X

is [0;1]-complete and [0;1]-
cocomplete. 2

A function h : X ! Y between generalized metric spaces is [0;1]-continuous if it preserves
weighted limits: i.e., for every gms D, f : D ! X and g : D ! [0;1],

h (lim
 g

f) �= lim
 g

h � f:

Dually, h : X ! Y is [0;1]-co-continuous if it preserves weighted colimits.
For instance, for any y 2 X , the (non-expansive) mappings X(y;�) : X ! [0;1] and X(�; y) :

Xop ! [0;1] are weighted continuous [Bor94, Proposition 6.6.11]. (Thus the latter transforms
weighted colimits in X into weighted limits in [0;1].) This is an immediate consequence of the
following.

Theorem 3.4 Let X be a generalized metric space and x 2 X.

1. For every gms D, f : D ! X and g : D ! [0;1],

x = lim
 g

f () 8y 2 X; X(y; x) = lim
 g

X(y; f):

9



2. Dually, for every gms D, f : D ! X and g : Dop ! [0;1],

x = lim
!g

f () 8y 2 X; X(x; y) = lim
 g

X(f; y):

Proof: We prove 1, the proof of 2 is similar. Because

x = lim
 g

f

() 8y 2 X; X(y; x) = [0;1]
D
(g; X(y; f))

() 8y 2 X 8r 2 [0;1];

[0;1](r; X(y; x)) = [0;1](r; [0;1]
D
(g; X(y; f)) )

and

8y 2 X; X(y; x) = lim
 g

X(y; f)

() 8y 2 X 8r 2 [0;1];

[0;1](r; X(y; x)) = [0;1]
D
(g; [0;1](r; X(y; f)) );

the equivalence follows from

[0;1](r; [0;1]
D
(g; X(y; f)) )

= [0;1]
D
(r + g; X(y; f))

= [0;1]
D
(g; [0;1](r; X(y; f)) ):

2

4 Limits of Cauchy sequences

We look at the special case of limits and colimits of Cauchy sequences weighted by Cauchy witness
functions. As it turns out, we recover the de�nitions of backward-limit and forward-limit in
generalized metric spaces, as introduced in [Smy91], and studied in [Wag95a, Rut96, BBR96].

Let N denote the set of natural numbers:

N = f0; 1; 2; : : :g;

with the discrete metric. Let X be a generalized metric space. A sequence f : N ! X is forward-
Cauchy in X if there exists a forward-Cauchy witness for f ; that is, a function g : N ! [0;1]
satisfying,

1. 8n � 0; g(n) � g(n+ 1);

2. inf g(n) = 0;

3. 8n � 08k � 0; X(f(n); f(n+ k)) � g(n).

Dually, a sequence f is backward-Cauchy in X if it is forward-Cauchy in Xop, that is, if there
exists a backward-Cauchy witness g : N ! [0;1], satisfying,

1. 8n � 0; g(n) � g(n+ 1);

2. inf g(n) = 0;

3. 8n � 08k � 0; X(f(n+ k); f(n)) � g(n).
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A sequence is bi-Cauchy if it is both forward-Cauchy and backward-Cauchy.
These de�nitions are equivalent to the more traditional formulations:

Proposition 4.1 Let f : N ! X be a sequence in a gms X.

1. The sequence f is forward-Cauchy if and only if

8� > 0 9N � 08n � m � N; X(f(m); f(n)) � �:

2. The sequence f is backward-Cauchy if and only if

8� > 0 9N � 08n � m � N; X(f(n); f(m)) � �:
2

For symmetric metric spaces, forward- and backward-Cauchy means Cauchy in the usual sense.
For partial orders, a forward-Cauchy sequence is an eventually increasing chain, and a backward-
Cauchy sequence is an eventually decreasing chain.

Weighted colimits of forward-Cauchy sequences and weighted limits of backward-Cauchy se-
quences are of particular importance. We introduce the following terminology: A colimit x of a
forward-Cauchy sequence f : N ! X weighted by a forward-Cauchy witness g : N ! X for f :

x = lim
!g

f;

is called a forward-limit of f . (Note that N = N op.) In that case, we shall also say that f is
forward-convergent to x. Dually, a limit x of a backward-Cauchy sequence f : N ! X weighted
by a backward-Cauchy witness g : N ! X for f :

x = lim
 g

f;

is called a backward-limit of f .
The de�nitions of forward- and backward limits do not depend on the speci�c choice of the

witness g. This is an immediate consequence of the following lemma.

Lemma 4.2 Consider f : N ! [0;1].

1. If f is forward-Cauchy in [0;1] and g : N ! [0;1] is a forward-Cauchy witness for f then

lim
!g

f = lim sup
n�0

f(n) (= inf
n�0

sup
i�n

f(i)):

2. If f is backward-Cauchy in [0;1] and g : N ! [0;1] is a backward-Cauchy witness for f
then

lim
 g

f = lim inf
n�0

f(n) (= sup
n�0

inf
i�n

f(i)):

Proof: We prove only 1, the proof of 2 is similar. By Theorem 3.1(2), it is su�cient to show

inf
n�0

ff(n) + g(n)g = inf
n�0

sup
i�n

f(i):

Because f(n+k) �� f(n) � g(n), for all n � 0, k � 0, which is equivalent to f(n+k) � f(n)+g(n),
it follows that

sup
i�n

f(i) � f(n) + g(n);

11



which implies

inf
n�0

sup
i�n

f(i) � inf
n�0

ff(n) + g(n)g:

Conversely, because

f(n) + g(n) � (sup
i�n

f(i)) + g(n);

we have

inf
n�0

ff(n) + g(n)g

� inf
n�0

f(sup
i�n

f(i)) + g(n)g

� inf
n�0

sup
i�n

f(i) + inf
n�0

g(n)

[because both (sup
i�n f(i))n and (g(n))n are decreasing]

= inf
n�0

sup
i�n

f(i) [infn�0 g(n) = 0]:

2

Corollary 4.3 Let f : N ! X be a sequence in a generalized metric space X and x 2 X.

1. If g : N ! [0;1] and g0 : N ! [0;1] are forward-Cauchy witnesses for f , then

x = lim
!g

f () x = lim
!g0

f:

2. Similarly for backward-Cauchy sequences and backward-limits.

Proof: We only prove the �rst part, the second being dual:

x = lim
!g

f

() 8y 2 X; X(x; y) = lim
 g

X(f; y) [Theorem 3.4]

() 8y 2 X; X(x; y) = lim inf
n�0

X(f(n); y) [Lemma 4.2]

() 8y 2 X; X(x; y) = lim
 g0

X(f; y) [Lemma 4.2]

() x = lim
!g0

f [Theorem 3.4]:

2

The following notation is now justi�ed: for a forward-Cauchy sequence f : N ! X and x 2 X ,

x = lim
!
f

() x is a forward-limit of f

() x = lim
!g

f; for every forward-Cauchy witness g for f [Corollary 4.3]:

And, dually, for a backward-Cauchy sequence f : N ! X and x 2 X ,

x = lim
 
f

() x is a backward-limit of f

() x = lim
 g

f; for every backward-Cauchy witness g for f [Corollary 4.3]:

It follows from the above (and Theorem 3.4) that forward- and backward limits can be character-
ized in the following `weightless' way.
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Theorem 4.4 For a forward-Cauchy sequence f : N ! X and x 2 X,

x = lim
!
f () 8y 2 X; X(x; y) = lim

 
X(f; y):

Dually, for a backward-Cauchy sequence f : N ! X and x 2 X,

x = lim
 
f () 8y 2 X; X(y; x) = lim

 
X(y; f):

2

The above characterization of forward-limit and backward-limit has been taken as a de�nition in
some recent papers on the reconciliation of the domain theories of partial orders and metric spaces
[Smy91, Wag95a, Rut96, BBR96]. For symmetric metric spaces, the notions of forward-limit and
backward-limit are equivalent, and coincide with the standard de�nition of metric limit (Theorem
1.1). We have seen that for partial orders, a forward-Cauchy sequence is an eventually increasing
chain; a forward-limit is a least upper bound of the chain. Backward-limits correspond to greatest
lower bounds of (eventually) decreasing chains. (Cf. [BBR96].)

A space X is forward-complete if every forward-Cauchy sequence in X has a forward-limit in
X . Dually, X is backward-complete whenever Xop is forward-complete. For instance, [0;1] is
both [0;1]-complete and [0;1]-cocomplete (Corollary 3.2). In particular, it is forward-complete
and backward-complete. The same applies, for any gms X , to the space X̂ of metric predicates
(Theorem 3.3). Also the space A1 is both forward- and backward-complete.

For any gms X , the forward-completion [BBR96, De�nition 5.1] �X of a gms X is de�ned by

�X =
\
fV � X̂ j ŷ (X) � V and V is a forward-complete subspace of X̂ g:

(Recall that ŷ : X ! X̂ is the Yoneda embedding.) Because X̂ is a forward-complete quasi metric
space, so is �X . It has the usual universal property [BBR96, Theorem 5.5].

A mapping h : X ! Y between generalized metric spaces is forward-continuous if it preserves
forward-Cauchy sequences and their forward-limits: that is, if f : N ! X is forward-Cauchy
then h � f : N ! Y is again forward-Cauchy, and any forward-limit of f is mapped by h to a
forward-limit of h � f . Schematically:

h (lim
!

f) �= lim
!

h � f:

Backward-continuity of h : X ! Y is de�ned dually, denoted by

h (lim
 

f) �= lim
 

h � f:

For symmetric metric spaces, forward-continuity and backward-continuity are equivalent to the
usual notion of metric continuity. For partial orders, forward-continuity means preservation of
least upper bounds of ascending chains, and backward-continuity is its dual.

It may be worthwhile to contrast the de�nition of forward-continuity with the following condi-
tion, based on the notion of [0;1]-co-continuity (Section 3): for every forward-Cauchy sequence
f : N ! X and every forward-Cauchy witness g : N ! [0;1] for f ,

h (lim
!g

f) �= lim
!g

h � f:

(This could be called: [0;1]-co-continuity with respect to forward-Cauchy sequences.) This condi-
tion is stronger than forward-continuity, since it requires h to preserve forward-limits with respect
to the same Cauchy witness g (notably, g should again be a witness for h � f). This property is
satis�ed, for instance, by non-expansive functions between symmetric metric spaces, but not by
the function h : [0;1]! [0;1] de�ned by h(r) = 2� r, which is forward-continuous.

The following lemma [BBR96, Proposition 3.1] will be useful in the sequel.

Lemma 4.5 The distance function

[0;1][�;�] : [0;1]op 
 [0;1]! [0;1]

is both forward- and backward-continuous. 2
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Also the following fact will be used, which states that in [0;1], backward- and forward-Cauchy
sequences are closely related.

Lemma 4.6 Any forward-Cauchy sequence in [0;1] is also backward-Cauchy. The reverse holds
for those sequences f : N ! [0;1] which are bounded: there exists K in N with f(n) � K, for
all n � 0. 2

The boundedness condition in the lemma above is to exclude sequences like (0; 1; 2; : : :), which is
backward-Cauchy but not forward-Cauchy.

Even though the metric on [0;1] is not symmetric, limits in [0;1] are as we are used to:

Corollary 4.7 Every sequence f : N ! [0;1] that is both forward-Cauchy and backward-Cauchy
has a forward-limit and a backward-limit, which coincide and are equal to the limit of the sequence
f with respect to the standard Euclidian distance:

jr � sj = maxf(r �� s); (s �� r)g:
2

Lemma 4.6 and Corollary 4.7 can be easily proved. They also follow from [Smy91][Theorem 10].

5 Algebraicity

We briey recall from [BBR96] the de�nition of algebraic generalized metric space together with
the observation that [0;1] is algebraic. This will be used in Section 7.

An element k in a gms X is �nite (or compact) in X if the mapping

X(k;�) : X ! [0;1]; x 7! X(k; x)

is forward-continuous: that is, for all forward-convergent sequences f : N ! X ,

X(k; lim
!
f) = lim

!
X(k; f):

If X is a partial order this means that for any chain (xn)n in X ,

X(k;
G
xn) = lim

 
X(k; xn);

or, equivalently,

k �X

G
xn i� 9n; k �X xn;

which is the usual de�nition of �niteness in ordered spaces. If X is a symmetric metric space then
X(k;�) is forward-continuous for any k in X , hence all elements are �nite.

A basis for a gms X is a subset K � X consisting of �nite elements such that every element
x in X is the forward-limit of a forward-Cauchy sequence (kn)n of elements in K. A gms X is
algebraic if there exists a basis for X . Note that such a basis is in general not unique. If X is
algebraic then the collection KX of all �nite elements of X is the largest basis. If there exists a
countable basis then X is !-algebraic.

Any symmetric metric space is algebraic, because all elements are �nite. If the space is sepa-
rable then it is !-algebraic. The gms A1 from Section 2 is algebraic with basis A�, the set of all
�nite words over A. If A is countable then A1 is !-algebraic.

Also the space [0;1] is algebraic: by Lemma 4.5, all elements are �nite. (It is even !-algebraic,
with the set of non-negative rational numbers as a basis.) This fact is somewhat surprising, since
[0;1] is not algebraic as a partial order.

Every forward-complete quasi metric space X with basis K, is isomorphic to the completion
of its basis: X �= �K. For a proof, see [BBR96, Theorem 5.6].
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6 Balls: formal, fuzzy, closed

Let X be a generalized metric space. We repeat from [Law86] the de�nition of the subspace of X̂
consisting of (fuzzy) balls. Dually, we introduce as a subspace of �X a collection of so-called formal
balls. The partial order underlying this subspace of formal balls is shown to be isomorphic with
the partially ordered set of formal balls introduced in [WS81]. Moreover, balls and formal balls
will be related by means of the Isbell conjugation between X̂ and �X. In Section 7, the collection
of formal balls will be shown to be a computational model for ordinary metric spaces.

Let for any r 2 [0;1] and x 2 X ,

Bhr; xi = x̂ �� r (= �y 2 X: X(y; x) �� r);

F hr; xi = r + �x (= �y 2 X: r +X(x; y));

and de�ne two parameterized families B � X̂ and F � �X by

B = fBhr; xi j r 2 [0;1]; x 2 Xg;

F = fF hr; xi j r 2 [0;1]; x 2 Xg:

The sets B and F are taken with the distance inherited from X̂ and �X , respectively. The elements
Bhr; xi of B are called fuzzy balls , and the elements F hr; xi of F are called formal balls , for reasons
to be explained next.

To start with the former, we recall [Law86, BBR96] the following adjuction between the col-
lection P(X) of subsets of X , and X̂:

P(X)
,,

�

? X̂;mm R

de�ned for � 2 X̂ and V 2 P(X) byR
� = fx 2 X j �(x) = 0g; �(V ) = �x 2 X: inf

v2V
X(x; v):

Applying
R
to Bhr; xi yieldsR

Bhr; xi = fy 2 X j Bhr; xi(y) = 0g

= fy 2 X j X(y; x) �� r = 0g

= fy 2 X j X(y; x) � rg

= Br(x);

the closed ball with centre x and radius r [Law86, p.171].
The connection between elements F hr; xi 2 F and formal balls in the sense of [WS81] can be

understood by looking at the ordering underlying F . First we note that for F hr; xi and F hs; yi in
F ,

F(F hr; xi; F hs; yi)

= �X(r + �x; s+ �y)

= ([0;1]
X
)op(r + �x; s+ �y)

= [0;1]
X
(s+ �y; r + �x)

= [0;1]
X
(�y; (r + �x) �� s)

= �X((r + �x) �� s; �y)

= ((r + �x) �� s)(y) [co-Yoneda Lemma 2.2]

= (r +X(x; y)) �� s:
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Lemma 6.1 For F hr; xi and F hs; yi in F ,

F(F hr; xi; F hs; yi) = (r +X(x; y)) �� s:
2

Consequently, the ordering �F underlying F can be characterized by

F hr; xi �F F hs; yi

() F(F hr; xi; F hs; yi) = 0

() (r +X(x; y)) �� s = 0

() r +X(x; y) � s;

which is precisely the de�nition of the ordering on formal balls from [WS81, p.7].
Formal balls and closed balls can be related by the so-called Isbell conjugation, which is recalled

�rst [Law86, p.169]: for � 2 X̂ and  2 �X let

(�)� = �x 2 X: X̂(�; x̂);

( )] = �x 2 X: �X(�x;  ):

The functions ()� and ()] are non-expansive; moreover, ()� is left adjoint to ()]:

X̂
,,

()�

? �X:ll
()]

Proposition 6.2 For F hr; xi in F ,

(F hr; xi)] = Bhr; xi:

Applying the function
R
on both sides yields

R
(F hr; xi)] = Br(x).

Proof: The second equality is immediate from the �rst one, which is proved as follows: for all
y 2 Xop,

(F hr; xi)](y)

= (r + �x)](y)

= �X(�y; r + �x)

= F(F h0; yi; F hr; xi)

= X(y; x) �� r [by Lemma 6.1]

= Bhr; xi(y):

2

The assignment of a formal ball to every pair hr; xi in fact de�nes a non-expansive function

F : ([0;1]op 
X)! F ; hr; xi 7! F hr; xi

(recall from Section 2 that 
 is the tensor product):

F(F hr; xi; F hs; yi)

= (r +X(x; y)) �� s [Lemma 6.1]

� (r �� s) + X(x; y)

= [0;1]
op
(r; s) + X(x; y)

= ([0;1]op 
X)(hr; xi; hs; yi):
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Restricted to [0;1)op 
X , F is a bijection. Similarly, the function

B : ([0;1]
op 
X)! B; hr; xi 7! Bhr; xi;

is non-expansive. The space X can be isometrically embedded into F and B by composing F and
B, respectively, with

� : X ! [0;1]
op 
X; x 7! h0; xi:

Theorem 6.3 Both F � � = �y : X ! F and B � � = ŷ : X ! B are isometric. 2

All in all, we have the following diagram, in which every triangle commutes:

B Foo ()]

[0;1]
op 
X

ee

B

K K K K K K K K K K

99

F

ssssssssss

X:

OO
�

QQ

ŷ

MM

�y

7 A computational model for metric spaces

As a variation on recent de�nitions and results on computational models for ordinary metric spaces
[Law95, EH96, FK], we show that for an ordinary metric spaceX , the opposite Fop of its collection
of formal balls can be considered as a computational model in the following sense:

1. X is isometric to the collection of maximal elements (with respect to the underlying ordering)
of Fop by means of the co-Yoneda embedding;

2. X is complete if and only if Fop is forward-complete;

3. X is separable if and only if Fop is !-algebraic.

The �rst claim is a consequence of the following.

Theorem 7.1 For an ordinary metric space X, the collection of minimal elements of F ,

minF = f� 2 F j 8 2 F ;  �F �)  = �g

is isometric with X: minF �= X.

Proof: Since �y = F � � is isometric, it is su�cient to show that �y is a bijection between X and
minF . For all x in X , �y(x) = �x is minimal: if r + �z �F �x, for some z in X and r in [0;1],
then r + X(z; x) � 0, whence r = 0 and X(z; x) = 0. Because X is an ordinary metric space,
by assumption, it follows that x = z. Thus r + �z = �x. Conversely, suppose r + �z is minimal in
F . Since �z �F r + �z it follows that �z = r + �z, thus r + �z 2 �y(X). Clearly, the above de�nes a
bijection. 2

It follows that the image ofX (in F) with the generalized Scott topology [BBR96] is homeomorphic
to X with the �-ball topology.

The second claim, which relates completeness of X and Fop, will follow from the next lemma.

Lemma 7.2 Let (xn)n be a sequence in X and (rn)n a sequence in [0;1].

1. The sequence (F hrn; xni)n is backward-Cauchy in F if and only if

(a) (xn)n is backward-Cauchy in X, and
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(b) (rn)n is forward-Cauchy in [0;1].

2. In the situation of 1.: for all x 2 X and r 2 [0;1),

(x = lim
 

xn and r = lim
!

rn)) F hr; xi = lim
 

F hrn; xni:

If X is a symmetric metric space or if the forward-limit of (rn)n is 0, then the converse
implication holds as well.

3. If (rn)n is bounded, then the dual of 1. and 2. (interchanging forward and backward) hold
as well.

Proof: We prove 1 and 2, the proof of 3 is dual.

1. Assuming (a) and (b), it follows that hrn; xnin is backward-Cauchy in [0;1]
op
X . Because

F : [0;1]op 
X ! F is non-expansive, also (F hrn; xni)n is backward-Cauchy.

For the converse, assume that (F hrn; xni)n is backward-Cauchy. For all n � m,

F(F hrn; xni; F hrm; xmi)

= (rn +X(xn; xm) ) �� rm (2)

� rn �� rm

= [0;1](rm; rn);

which shows that (rn)n is forward-Cauchy. By Lemma 4.6, it is also backward-Cauchy. Since
equality 2 above implies

rn +X(xn; xm) � F(F hrn; xni; F hrm; xmi) + rm;

we have

X(xn; xm)

� (F(F hrn; xni; F hrm; xmi) + rm ) �� rn

� F(F hrn; xni; F hrm; xmi) + (rm �� rn)

= F(F hrn; xni; F hrm; xmi) + [0;1](rn; rm);

which shows that (xn)n is backward-Cauchy.

2. Assume

x = lim
 

xn and r = lim
!

rn:

For all s 2 [0;1] and y 2 X ,

lim
 

F(F hs; yi; F hrn; xni)

= lim
 

((s+X(y; xn)) �� rn)

= lim
 

(s+X(y; xn)) �� lim
!

rn [ �� is backward-continuous]

= (s+ lim
 

X(y; xn)) �� lim
!

rn

= (s+X(y; x)) �� lim
!

rn [by Theorem 4.4]

= (s+X(y; x)) �� r

= F(F hs; yi; F hr; xi):

Again by Theorem 4.4, this implies

F hr; xi = lim
 

F hrn; xni:

18



For the converse, assume that the latter equality holds, for certain r in [0;1] and x in X . It
follows from the above that for all s in [0;1] and y in X ,

(s+ lim
 

X(y; xn)) �� lim
!

rn = (s+X(y; x)) �� r:

Taking in this equation

s = r + lim
!

rn

yields

r + lim
 

X(y; xn) = lim
!

rn + X(y; x): (3)

If

lim
!

rn = 0

then taking y = x in equation 3 yields r = 0, whence

lim
 

X(y; xn) = X(y; x);

which by Theorem 4.4 is equivalent to

x = lim
 

xn:

Otherwise, assume that the space X is symmetric. Then the sequence (xn)n is bi-Cauchy. Taking
y = x in equation 3 now gives

r + lim
 

X(x; xn) = lim
!

rn; (4)

which implies

lim
 

X(y; xn) = lim
 

X(x; xn) + X(y; x): (5)

Taking y = xk in equation 5 yields

lim
 
X(x; xn)

� lim
 
X(x; xn) + X(xk; x)

= lim
 
X(xk; xn);

where in the formulae above the limit is taken with respect to n. Because (xn)n is bi-Cauchy, the
latter number becomes arbitrarily small (for large k), whence

lim
 

X(x; xn) = 0:

It now follows from equation 4, and from equation 3 and Theorem 4.4 that

r = lim
!
rn and x = lim

 
xn:

2
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The following theorem is an immediate consequence.

Theorem 7.3 A generalized metric space X is backward-complete if and only if the space F is.

Proof: Suppose that X is backward-complete. Let (F hrn; xni)n be a backward-Cauchy sequence
in F . By Lemma 7.2(1), (rn)n is forward-Cauchy and (xn)n is backward-Cauchy. By Lemma
7.2(2),

lim
 

F hrn; xni = F hlim
!

rn; lim
 

xni:

Thus F is backward-complete. For the converse, consider a backward-Cauchy sequence (xn)n in
X . By Lemma 7.2(1), (F h0; xni)n is backward-Cauchy in F . Let F hr; xi be its backward-limit.
By Lemma 7.2(2), it follows that (r = 0 and)

lim
 

xn = x:

Thus X is backward-complete. 2

In particular, a symmetric metric space X is complete if and only if Fop is forward-complete.
Finally, an ordinary metric space X is separable if and only if Fop is !-algebraic. This will be

a consequence of the following lemma.

Lemma 7.4 If X is a symmetric metric space then Fop is algebraic: all elements in Fop are
�nite.

Proof: We have to show that for an element F hs; yi in Fop, the function Fop(F hs; yi; �) is
forward-continuous. That is, for any forward-Cauchy sequence (F hrn; xni)n in Fop,

Fop(F hs; yi; lim
!

F hrn; xni) = lim
!

Fop(F hs; yi; F hrn; xni):

Since forward-Cauchy and forward-limit in Fop means backward-Cauchy and backward-limit in
F , this is equivalent to

F(lim
 

F hrn; xni; F hs; yi) = lim
!

F(F hrn; xni; F hs; yi):

The latter equality follows from

F(lim
 

F hrn; xni; F hs; yi)

= F(F hlim
!

rn; lim
 

xni; F hs; yi) [Lemma 7.2(2)]

= (lim
!

rn + X(lim
 

xn; y)) �� s

= (lim
!

rn + X(y; lim
!

xn)) �� s [X is symmetric]

= (lim
!

rn + lim
!

X(y; xn)) �� s [X is symmetric, thus y is �nite]

= lim
!

(rn + X(y; xn)) �� s [+ and �

� are forward-continuous]

= lim
!

(rn + X(xn; y)) �� s [X is symmetric]

= lim
!

F(F hrn; xni; F hs; yi):

2

Corollary 7.5 An ordinary metric space X is separable if and only if Fop is !-algebraic.
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Proof: If X is separable then it has a countable basis V � X . Let

Q = fq 2 [0;1] j q is rational g:

It follows from Lemma 7.2 and Lemma 7.4 that Q�V is a countable basis for Fop. If, conversely,
B is a countable base for Fop, then the set

fx 2 X j 9r 2 [0;1]; hr; xi 2 Bg

is a countable base for X , hence X is separable. 2

The latter observation on separable metric spaces is to be contrasted with [EH96, Corollary 2.10],
stating that an ordinary metric space X is separable if and only if the poset Fop is !-continuous .

8 Conclusions and directions

(a) The use of weighted limits and colimits in gms's gives a purely enriched-categorical formulation
of forward- and backward-Cauchy sequences and their limits. Thus a categorical foundation has
been provided for generalized metric analysis.

Also in the standard analysis of real numbers, the formulation of metric limits as weighted
colimits may have some advantages. Consider, for instance, two ordinary, i.e., bi-Cauchy sequences
f; g : N ! [0;1], with (bi-)limits x = lim f and y = lim g. The following is a standard observation
in any basic course on analysis:

if 8n � 0; f(n) � g(n) then x � y:

A standard elementary proof derives from the assumption that x < y the fact that f(n) < g(n),
for some n big enough. The following direct proof in terms of weighted colimits exploits the fact
that [0;1] has a non-trivial underlying ordering. If k and l are (forward-)Cauchy witnesses for
the sequences f and g then m = k + l is is common witness for both f and g. Now:

[0;1](x; y)

= [0;1]
N
(m; [0;1](f; y)) [since x = lim

!m
f ]

� [0;1]
N
(m; [0;1](g; y)) [since [0;1](�; y) is anti-monotone]

= [0;1](y; y) [since y = lim
!m

g ]

= 0;

which implies x � y. In a similar way, the use of weights leads to very simple proofs of facts such
as: if x = lim f and x 6= 0 6= f then 1=x = lim 1=f , for which the traditional argument amounts
to a somewhat cumbersome calculation involving `�'. It would be interesting to see where the
development of a categorical, `�-less' form of analysis will lead us.

(b) Formal balls arise in a natural way in the world of generalized metric spaces by means of
the co-Yoneda embedding, and are related to fuzzy and closed balls by means of the Isbell con-
jugation. The (opposite of the) collection of formal balls is a computational model for ordinary
metric spaces.

Our de�nition of computational model is di�erent from the one in [Law95] and [EH96], though.
In particular, the space Fop is equipped with a non-symmetric distance, from which the usual or-
dering on formal balls (of [WS81]) can be retrieved as the underlying ordering. This leads to the
stronger result that an ordinary metric space is isometric and not only homeomorphic with the
collection of maximal elements.

(c) It may be worthwhile to investigate the use of weight functions and generalized metric
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spaces as computational models for ordinary metric spaces somewhat further still. In particu-
lar, if f : N ! [0;1] is a bi-Cauchy sequence with witness function g and limit x = lim f ,
then

lim
!g

f = x = lim
 g

f;

which implies

x �� g � f � x+ g:

Note that in this way we have approximated f from the left by a monotone increasing, and from
the right by a monotone decreasing function. (In other words, a descending chain and a chain in
Fop, respectively.) These simple approximations could be of help in a theory of approximation of
metric spaces in the style of [Law95] and [EH96].
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