
Self-organizing Structured RDF in MonetDB
Minh-Duc Pham #1

supervised by Peter Boncz #2

CWI, Amsterdam, The Netherlands
1duc@cwi.nl

2boncz@cwi.nl

Abstract— The semantic web uses RDF as its data model, pro-
viding ultimate flexibility for users to represent and evolve data
without need of a schema. Yet, this flexibility poses challenges
in implementing efficient RDF stores, leading from plans with
very many self-joins to a triple table, difficulties to optimize
these, and a lack of data locality since without a notion of multi-
attribute data structure, clustered indexing opportunities are lost.
Apart from performance issues, users of huge RDF graphs often
have problems formulating queries as they lack any system-
supported notion of the structure in the data. In this research, we
exploit the observation that real RDF data, while not as regularly
structured as relational data, still has the great majority of triples
conforming to regular patterns. We conjecture that a system
that would recognize this structure automatically would both
allow RDF stores to become more efficient and also easier to
use. Concretely, we propose to derive self-organizing RDF that
stores data in PSO format in such a way that the regular parts of
the data physically correspond to relational columnar storage;
and propose RDFscan/RDFjoin algorithms that compute star-
patterns over these without wasting effort in self-joins. These
regular parts, i.e. tables, are identified on ingestion by a schema
discovery algorithm – as such users will gain an SQL view of the
regular part of the RDF data. This research aims to produce a
state-of-the-art SPARQL frontend for MonetDB as a by-product,
and we already present some preliminary results on this platform.

I. INTRODUCTION AND MOTIVATION

The Resource Description Framework (RDF) is the main
semantic web technology for publishing collections of inter-
linked datasets on the web. In the RDF data model, a data set is
represented as a collection of <subject, predicate, object>
triples, in which the object can be considered as the value for
the property (i.e., predicate) of the described resource (i.e.,
subject). This collection also forms a labeled directed RDF
graph. SPARQL is the W3C recommendation query language
for RDF graphs, essentially allowing subgraph search.

The semantic web proponents of RDF highlight two advan-
tages: (i) it is based on URIs such that not only meta-data
but also data instances (e.g., “keys”) can be standardized for
interoperability over the web and (ii) it is extremely flexible,
so the global RDF graph (the semantic web) can be extended
by everyone in a grass-roots and pay-as-you-go way.

The database community has taken a critical stance towards
RDF because of (ii): RDF de-emphasizes the need for a
schema and the notion of structure in the data, and this leads
to performance issues in systems that manage large amounts

of RDF data. Specifically, RDF store relies on triple tables
which leads to query plans with many self-joins. Also, the lack
of a multi-attribute object structure in triple storage blocks the
use of advanced relational physical storage optimizations, such
as clustered indexing, hash/range data partitioning, etc. Yet,
studies of actual datasets have found that despite the fact that
most RDF does not have a (RDFS) schema, the great majority
of RDF triples do conform to regular structural patterns [1].
Additionally, the lack of a schema also makes it harder for
users to formulate queries on RDF graphs. To tackle this
latter problem, the semantic web community has recently been
studying graph structure analysis techniques to construct visual
graph summaries to help users comprehend RDF graphs [2].

Despite these issues, we do not dismiss RDF, because it
is the unrivaled standard behind the vision of global data
standardization (e.g., LOD, see point (i)), and simply be-
cause RDF currently does have significant traction in certain
domains, such as the life sciences. With quickly growing
RDF data volumes, there is a true need to better support it
in database systems. In this PhD track, the key idea is to
automatically recover the structure typically present in RDF
data sets, and leverage this structure both internally inside
the database system (in storage, optimization, and execution),
and externally towards the users who pose queries. This idea
will be realized and experimentally evaluated inside the open-
source MonetDB column-store system1, known for its adaptive
storage structures (such as Recycling [3] and Cracking [4])
with the aim to create self-organizing structured RDF. Thus,
apart from developing new RDF storage and SPARQL query
evaluation and optimization techniques, this PhD research is
a database architecture project.

In this PhD proposal, we will now identify what we see
as the main problems in RDF data management (bad query
plans, low storage locality and lack of user schema insight),
and then move on to the general idea behind this project, its
main research questions and our intended research approach.
Bad query plans. Considering a simple SPARQL query:

SELECT ?a ?n WHERE {
?b <has_author> ?a.
?b < in_year> ‘‘1996’’.
?b <isbn_no> ?n }

1www.monetdb.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301659707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This query looks for the author and the ISBN number of a
book published in 1996. Despite the fact that a book entity al-
ways has the co-occurrence of <isbn no> and <has author>
properties, the query plan still needs a separated join for these
properties to construct the answer. This problem of having
unnecessary joins is serious in most SPARQL queries as they
commonly ask for many properties from a subject. However,
relational query processors that know about the structure of
data waste no effort here. The only joins they process are
“real” joins between different entities.

Besides, being unaware of structural correlations (e.g., avail-
ability of <isbn no> causes the occurrence of <has author>
almost a certainty) also makes it difficult to estimate the join
hit ratio between triple patterns, thus, with such join-intensive
queries as SPARQL queries, hard to find the optimal join order.
Low storage locality. A crucial aspect of efficient analytical
query processing is data locality, as provided by a clustered
index or partitioning scheme. However, without the notion of
classes/tables with regular columns/attributes, it is impossible
to formulate a clustered index or partitioning scheme, which
RDF stores therefore do not offer.

Current state-of-the-art RDF stores such as RDF-3X[5],
create exhaustive indexes for all permutations of subject(S),
predicate(P), object(O) triples as well as their binary and unary
projections. This abundance of access paths does not create
any of the access locality that a relational clustered index or
partitioning scheme offers. A Scan-Select SPARQL query may
use a POS index to execute a range selection quickly, but for
retrieving the other attributes needs a CPU intensive nested-
loop index join into a PSO index; one for each attribute. This
nested-loop join will hit the index all over the place: no locality
despite so-called exhaustive indexing.
Lack of user schema insight. In handling large RDF graphs
with data from multiple domains, SPARQL users often experi-
ence trouble formulating queries; since for doing so one needs
an understanding of the structure of this data. SPARQL does
not offer specific features for querying data with unknown and
variable structure, and semantic web technologies lack schema
browsing and visualization tools. Besides, a general problem
in the semantic web stack is that the number of tools and their
maturity is low when compared to relational tool support. As
such, we conjecture that a relational view of the data would
help SPARQL users better comprehend the data and allow
users to enjoy the benefits of the relational tool-chain, which
may still be beneficial to them even though it is incomplete,
as the “irregular” triples would fall out of this view.
Roadmap. The rest of this proposal is organized as follows. In
Section 2, we describe the general idea behind self-organizing
structured RDF, and subsequently the research questions,
initial results and future approach. In Section 3, we the discuss
related work, before concluding in Section 4.

II. SELF-ORGANIZING STRUCTURED RDF

Our proposal is inspired by the work on so-called ”char-
acteristic sets” (CS’s) [1] showing that it is relatively easy to
recover large part of the implicit class structure underlying

ID type creator title partOf

inproc1 inproceeding {author3,

author4}

“AAA” conf1

inproc2 inproceeding author2 “BBB” conf1

inproc3 inproceeding author3 “CCC” conf2

ID type title issued

conf1 Conference “conference1” 2010

conf2 Proceedings “conference2” 2011

Foreign Key Relationship

MonetDB

SPARQL

SQL

M
o
n
e
t
D
B
K
e
r
n
e
l

Front-Ends

Relational

Table

Storage

Triple

Table

Storage

conf2

“index.php”

“content.php”

Fig. 1: RDF store architecture in MonetDB

data stored in RDF triples. Here, a characteristic set is a set
of properties that occurs frequently with the same subject.

Our general idea is first to extend the initial algorithm for
finding CS’s and discover a rough relational schema which
covers most of the input RDF triples (e.g., 85% of the
dataset). This schema contains a set of CS’s and foreign key
relationships between them. Then, by exploiting this schema,
we physically design a CS clustering scheme, focusing on
subject clustering, that can help create real locality in selection
queries, even across joins between multiple CS’s. The rough
relational schema could also be presented to users as a SQL
view of exactly the same data. In fact, since we store data
in PSO order, the subjects belonging to the same CS will
re-surface as multiple, aligned, ranges in the PSO table. The
storage for each such property, in fact forms a “column” so the
CS could alternatively be viewed and queried as a relational
table in column-store format. As shown in Figure 1, relational
infrastructure is also brought into the RDF store so that the
relational indexing and query optimization techniques can be
applied in the RDF model.

Further, to fully leverage this storage method in SPARQL
queries we propose to extend the database kernel with new
query processing algorithms, that is, RDFscan and RDFjoin.

This PhD track will focus on following research questions:
i) How to efficiently and scalably detect and summarize CS’s,
at both bulk and trickle loads?
ii) How to generate automatic schema representations includ-
ing foreign key links (relationships between CS’s) with shapes
and names that can be easily understood and used?
iii) How to automatically leverage relational clustered storage
techniques in our self-organizing RDF storage scheme?
iv) How to integrate RDFjoin/RDFscan into a database kernel,
such that it can leverage relational access methods?

A. Schema exploration and Summarization
We observe that there is quite a bit of regularity in RDF data,

even in web-crawled data which is considered the dirtiest data
encountered in practice. The structure typically surfaces as:

• Certain kinds of subjects have the same set of properties,
i.e., CS (belong to the same class).

• Certain classes are connected, over the same kind of
property paths (“foreign key” relationships)

Figure 2 shows the data structure captured from an example
DBLP-like data. In this figure, in addition to the structured
data, real-world RDF data also contains irregularities which
may be caused by the occurrence of different schematic
structures, data dirtiness, missing, or duplicated values.

Aiming to reduce the amount of CS’s and enrich the schema,
we extend the initial algorithm for finding CS’s [1].

inproc1

inproceeding

author4

inproc2
type

inproceeding

author2

“BBB”

inproc3

inproceeding
author3

“CCC”
conf1

conf2

Conference

“conference1”

“2010”

webpage1

ID type creator title partOf

inproc1 inproceeding {author3,

author4}

“AAA” conf1

inproc2 inproceeding author2 “BBB” conf1

inproc3 inproceeding author3 “CCC” conf2

ID type title issued

conf1 Conference “conference1” 2010

conf2 Proceedings “conference2” 2011

Foreign Key Relationship

Irregularity

conf2

“content.php”

“Table Cont.”
“index.php”

“index.php”

“content.php”

Fig. 2: Structure recognized from an example RDF graph

Generalization. In contrast to the original CS algorithm
which created a different CS for each unique combination
of attributes, we allow attributes of kind 0..n (NULLABLE
attributes) if a significant minority fraction of the subjects has
at least one occurrence. This reduces the number of CS’s.
Typed Properties. After defining the initial set of CS’s we
further analyze the type of the literal properties that have been
grouped. For literal objects, we look at the atomic type. In case
of URI objects, we type them using initial CS membership.
Here, we increment the number of CS’s as we will create a
separate CS variant for each different combination of types;
the advantage being in faster processing of each CS variant,
as the types of the columns are known and homogeneous.
Relationships. The above process also leads to a foreign key
graph between CS’s. That is, as a URI property of one CS
always refers in the object field to members of one other CS,
this is a foreign key between these two CS’s.
Schema fine-tuning. The schema can be further fine-tuned,
e.g. by reducing 0..n attributes to 0..1 or in case the multiplicity
is > 2 splitting it off into a separate table (CS), or by unifying
CS’s that are 1-1 linked; which is often the case for blank
nodes. Further, while the detection algorithm only collects
CS’s with high support, these CS’s over relationships may refer
to small (infrequent) CS’s that would normally not be detected,
but should be included to complete the schema. Thus, rather
than looking at direct support, we add incoming links to the
CS to the tally in order to determine the support of a CS.

With the explored structure, we can provide an important
feature for SPARQL users: RDF schema summarization. The
schema generated by the methods sketched above may still be
quite large. Thus, we envision methods to reduce the schema
size during a query session. This can be done by reducing
the support thresholds, but a more advanced form is to use
keyword search to identify relevant CS’s. In both cases we
will show a schema consisting of these selected CS’s plus other
CS’s reachable from them over foreign key links. The system
can present these reduced schemas to the SQL toolchain
by extending the SQL catalog with a new artificial schema
holding references only to these tables and their relationships;
still allowing existing SQL tools to be used unmodified.

B. Subject clustering
While loading RDF triples, current RDF stores typically

assign object identifiers (OIDs) to Subject (S), Predicate (P),
Object (O) in order of appearance This order might be quite

random and uncorrelated with the access paths of interest to
the database users. Given the fact that the OID order (whatever
it happens to be) is heavily exploited in RDF systems, this is
in fact the direct cause of non-locality in RDF query plans.

Given the discovered CS’s, to obtain real locality we would
like to order the OIDs in a meaningful way. For S OIDs:

• we group them by characteristic sets.
• within a characteristic set, we can then further sub-

order them on some index keys (i.e. property values). An
extreme form of this is to adopt a multi-table clustering
strategy for this ordering over foreign keys.

Similarly, the O OIDs used for literals should be ordered
in a way that is meaningful to SPARQL value comparison
semantics, such that comparisons on the O identifiers can be
used for executing value range-predicates.

Regarding the choosing of P identifiers, there are typically
few values P that are very frequent. But there may be a long
tail of infrequent P’s (often spelling errors or low-value noisy
properties). Such P’s could be treated differently than the
frequent P’s.

In our clustered storage, we focus on the ordering of the
subject OIDs, which we call Subject Clustering. Figure 3
shows an example of Subject Clustering in which a loaded
basic triple storage (e.g., PSO) is moved to the clustered repre-
sentation following a reorganization exploiting CS’s. Subjects
corresponding to a CS are physically grouped together. The
irregular data containing triples that do not belong to any CS
is stored separately in the basic triple storage.

P S O

clustering
= CS

1

CS
2

CS
3

SQL

tables

S

P S O P S O

Irregularity

Fig. 3: Subject clustering

C. RDFscan/RDFjoin
The core idea of our novel RDF storage proposal is to

store RDF data that has been recognized as conforming to
a characteristic set together in an aligned way, such that for a
whole stretch of subjects we get aligned stretches of Objects;
as all properties will have multiplicity “exactly one” (in case
of 0..1 attributes, the missing values will be represented as
SQL NULL). This CS-wise storage can be exploited to provide
CPU efficient algorithms which are faster than multiple merge-
or index-lookup joins in processing typical star-patterns in
SPARQL queries. Specifically, we propose a new operator,
RDFscan, that delivers a tuple stream for multiple properties in
one go. A slight variant is the RDFjoin, which does the same,
but receiving a stream of candidate subjects. The latter opera-
tor was recently proposed as “Pivot Index Scan”[6], though our
RDFscan/RDFjoin leverages CS-wise storage: eliminating all
join effort when producing a star that stems from a single CS.
Figure 4 shows how RDFscan and RDFjoin strongly reduce
the number of joins in SPARQL queries.

IdxScan

prop
4
,“A”

IdxScan

prop
3

IdxScan

prop
2

IdxScan

prop
1

SELECT ?o1 ?o2 ?o3

WHERE{
?s prop 1 ?o1.
?s prop 2 ?o2.
?s prop 3 ?o3.
?s prop 4 “A”. }

RDFscan

prop
4
,“A”

prop 1

prop 2

prop 3

(a) RDFscan

IdxScan

prop
5
,“B”

IdxScan

prop
4

SELECT ?o1 ?o2 ?o3

WHERE{
?s prop 1 ?o1.
?s prop 2 ?o2.
?s prop 3 ?o3.
?s prop 4 ?s 2.
?s 2 prop 5 “B”. }

RDFjoin

?s
2

prop 1
prop 2
prop 3

IdxScan

prop
3

IdxScan

prop
2

IdxScan

prop
1

IdxScan

prop
4

IdxScan

prop
5
,“B”

(b) RDFjoin

Fig. 4: Example of using RDFscan and RDFjoin.

D. Preliminary Evaluation
To test our ideas, we studied queries 6 and 3 of the 10GB

size RDF-H benchmark – a straight 1-1 mapping of the TPC-H
benchmark to SPARQL (see sf.net/projects/bibm). We used the
MonetDB+HSP[7] prototype that pursues a classical exhaus-
tive indexing approach, storing RDF in 6 ordered projections
on all P, S, O order permutations. This prototype was hand-
modified to do subject-clustering into CS’s, so LINEITEM
subjects form one stretch of S-OIDs and ORDER subjects
another. Further, within each CS, we applied sub-ordering:
we ordered the LINEITEM and ORDERS CS-es internally
on resp. the shipdate and orderdate attributes. Finally, we
added in Netteza-style Zone-Maps that allow us, given an
LINEITEM date selection, to find a range of referenced S-
OIDs so a restriction on shipdate can be pushed to ORDERS
(and vice versa a restriction on orderdate restricts LINEITEM),
exploiting the strong correlation on all dates between tables.
The final result is still a PSO table, but very intelligently
organized. We acknowledge that a self-organizing RDF system
would need workload analysis in order to derive the usefulness
of such subject-clustering on dates. As RDF-H is fully regular,
this can be taken as a best-case analysis of what state-of-
art relational storage and execution can bring to SPARQL.
In the near future, we will further test and develop our self-
organizing RDF algorithms on dirty data, such as web crawls,
where we expect the gain to be less, but still nonzero. The
primary purpose of the experiment is to show viability and as
a morale boost going into this PhD track.
TABLE I: MonetDB+HSP performance on RDF-H (SF=10),
using various optimizations (time in seconds)

Query Plan Scheme ZoneMaps Q3 Q6
Cold Hot Cold Hot

Default
ParseOrder No 37.50 19.66 28.25 6.52

Clustered No 18.01 15.32 9.27 3.27
Yes 2.13 2.02 n.a

RDFscan/
RDFjoin

ParseOrder No 3.34 2.93 8.64 2.16

Clustered No 2.13 2.01 1.47 0.44
Yes 0.89 0.78 n.a

The results in Table I show that clustered RDF store with
all optimizations including RDFscan/RDFjoin and Zone-Map
index can accelerate the original MonetDB+HSP by a factor
> 40. Using CPU efficient SPARQL query operators, i.e.,
RDFscan/RDFjoin, can help improve the performance of the
system by an order of magnitude.

III. RELATED WORK

The exploration of CS’s from RDF triples is somewhat
discussed in existing RDF stores using the property tables

approach[8], [9], [10], [11]. In this approach, each property
table corresponding to a set of properties (e.g., CS) needs to be
obtained from input RDF triples. However, most of the early
RDF systems[8], [9] do not provide automatic methods for
exploring the schema. They rely on the DBA modeling such
regular data, but given that RDF graphs often contain many
different structures, this limits the applicability (and observed
popularity) of this approach.

Automated methods for detecting property tables from RDF
triples have been proposed by Levandoski et al.[10], Wang
et al.[11]. However, the methods do not attempt to find
relationships between property tables as we propose, nor do
they attempt to make the schemas human-readable, nor do they
aim to export the regular tables as a SQL views on the data,
nor do these efforts focus on leveraging such storage inside
database kernels with new algorithms such as RDFjoin.

Recently, Matono and Kojima[12] construct so-called para-
graph tables which are similar to property tables from adjacent
RDF triples that are physically correlated. However, this
method relies on well-structured input RDF documents and
the parse order of RDF triples. Neumann et al.[1] extract the
characteristic sets from RDF triples but merely use them for
improving the cost model of a query plan.

IV. CONCLUSION

We propose PhD research into self-organizing RDF storage
in MonetDB, where on RDF ingestion the system automatical-
ly detects structure in the data. This knowledge is then used to
store the data in structured form, to accelerate RDF star join
patterns through new RDFscan/RDFjoin algebraic operators,
and to aid the RDF user in comprehending the data by offering
a SQL view on it that elicits the schema at variable degrees of
detail. The main research questions are around i) detecting so-
called characteristic sets efficiently, ii) algorithms to generate
a usable schema from this, iii) leveraging this storage schema
in new RDFscan/RDFjoin operators, and iv) integrating these
new operators in a database kernel.

REFERENCES

[1] T. Neumann and G. Moerkotte, “Characteristic sets: Accurate cardinality
estimation for rdf queries with multiple joins,” in ICDE. IEEE, 2011.

[2] S. Goyal and R. Westenthaler, “Rdf gravity (rdf graph visualization
tool),” Salzburg Research, Austria, 2004.

[3] M. Ivanova, M. Kersten, N. Nes, and R. Gonçalves, “An architecture for
recycling intermediates in a column-store,” TODS, vol. 35, no. 4, 2010.

[4] Idreos, Kersten, and Manegold, “Database cracking,” in CIDR, 2007.
[5] T. Neumann and G. Weikum, “Rdf-3x: a risc-style engine for rdf,”

VLDB, vol. 1, no. 1, pp. 647–659, 2008.
[6] A. Brodt, O. Schiller, and B. Mitschang, “Efficient resource attribute

retrieval in rdf triple stores,” in CIKM. ACM, 2011, pp. 1445–1454.
[7] Tsialiamanis, Sidirourgos, Fundulaki, Christophides, and Boncz,

“Heuristics-based query optimisation for sparql,” in EDBT, 2012.
[8] K. Wilkinson, “Jena property table implementation,” 2006.
[9] E. Chong, S. Das, G. Eadon, and J. Srinivasan, “An efficient sql-based

rdf querying scheme,” in VLDB, 2005, pp. 1216–1227.
[10] J. Levandoski and M. Mokbel, “Rdf data-centric storage,” in Web

Services, ICWS 2009. IEEE, 2009, pp. 911–918.
[11] Y. Wang, X. Du, J. Lu, and X. Wang, “Flextable: using a dynamic

relation model to store rdf data,” in DASFAA, 2010, pp. 580–594.
[12] A. Matono and I. Kojima, “Paragraph tables: A storage scheme based

on rdf document structure,” in DEXA. Springer, 2012, pp. 231–247.

