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Typed Logics With States
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P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

The paper presents a simple format for typed logics with states by adding a function for register update to

standard typed lambda calculus. It is shown that universal validity of equality for this extended language is

decidable (extending a well-known result of Friedman for typed lambda calculus). This system is next extended

to a full edged typed dynamic logic, and it is illustrated how the resulting format allows for very simple and

intuitive representations of dynamic semantics for natural language and denotational semantics for imperative

programming. The proposal is compared with some alternative approaches to formulating typed versions of

dynamic logics.
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1. Introduction

A slight extension to the format of typed lambda calculus is enough to model states (assignments of
values to storage cells) in a very natural way. Let a set R of registers or storage cells be given. If we
assume that the values to be stored all have type T , then the domain of the states is the set R! DT .
Call this domain D�.
If we want to be able to talk about stores in the calculus itself, we have to do two things:

1. introduce a format for talking about register assignment, and

2. make sure that we cannot assign values to types that are themselves built out of stores.

Point (1) is easy: just add expressions (rjE) to the language, where r is a register or store and E a
possible value for that store. The type of (rjE) will be (�; �), for the act of putting the new value E
in store cell r e�ects a mapping from states to states.
To see what (2) is about, note that we our de�nition of D� becomes circular if we take D� to be the

set R! DT , for some type T with DT de�ned in terms of D�. To avoid circularity we have to make
sure that the types that are built using states are not among the possible values that can be stored
in the memory cells.
We need not assume, of course, that all storage cells have the same type, but we must assume that

the stored values are all of a type which does not depend on D�. What we need for this is a distinction
between standard types (types de�ned without the help of �) and extended types (types construed
by means of �, possibly among other things). Storage cells or registers are expressions of type (�; T ),
where T is a standard type. If r is a register of type (�; T ), then [[r]], the interpretation of r, is in
the domain D� ! DT , i.e., [[r]] is a map from states to values of the stored type. Thus, under the
assumption that storage cells can store items of all standard types, the domain D� consists of all those
functions f from [TR�T to [TDT with the property that f(r) 2 DT i� r has type (�; T ).
We will present the basic format of typed logic with states (TLS) in Section 2. Section 3 presents an

equational calculus for TLS, extending the familiar rules for � and � equality with axioms for register
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lookup (� equalities), axioms for register update (� equalities), and an axiom of register extensionality
(� equality). Section 4 proves that these axioms are sound and complete for standard models. The
completeness proof uses a detour via general models along the lines of Friedman [8]. Section 5 extends
the familiar �� reduction from typed logic to ����� reduction for TLS. Combining the fact that
����� reduction for TLS is strongly normalizing with the completeness theorem we get the rather
surprising result that the relation j= E = F is decidable. Section 6 adds equations to the language
as expressions in their own right and de�nes the boolean operations and the universal and existential
quanti�ers in terms of those.
The next sections show that TLS can serve as a meeting ground for programming semantics and

natural language semantics. Section 7 presents a translation of while programs into TLS, and Section
8 discusses various ways of formulating a dynamic semantics for natural language fragments into TLS.
Section 9 compares the proposal with some alternative approaches. The �nal section of the paper
puts some further work on the agenda.

2. How to Extend Typed Logics with States

To de�ne Typed Logic with States (TLS), let B be a set of basic types. Then the set of standard types
over B is given by:

T ::= B j (T1; T2)

Extend the set of standard types as follows (it is assumed that � =2 B):

U ::= � j T j (U1; U2)

Call the members of U � T extended types. The extended types are the types in which � occurs. We
will often abbreviate a type (U;U 0) as UU 0.
For simplicity, we will not employ constants in the language (constants will be added in the extension

of the language de�ned in Section 6). For every standard type T , registers of type (�; T ) are allowed.
As explained before, a register of type (�; T ) is a store for items of type T . Let R�T be the set of
registers of type (�; T ). Let R be the set

S
T R�T . We assume that there is an enumeration r1; r2; : : :

of the members of R.
We allow variables in all types U , indeed we assume a countably in�nite supply VU of them for

every type U .
The set of expressions of our language of typed logics with states (TLS) is given by the rule (we

use v for the variables and r for the registers):

E ::= v j r j (E1E2) j (�v:E) j (rjE):

For every register r there is a standard type T such that r has type (�; T ). The formation of applications
(E1E2) is constrained by the requirement that E1; E2 must have types (U1; U2) and U1, respectively.
If this requirement is met, (E1E2) is well-formed, and its type is U2. If v has type U1 and E type U2,
then the type of (�v:E) is (U1; U2). The type of (rjE) is (�; �). An expression (rjE) is called a state

changer, because it is to be interpreted as a function from states to states which changes the input
state by assigning a new value E to register r. The formation of state changers (rjE) is constrained
by the requirement that if r has type (�; T ) then E must have type T . Call this language L�.
If the types of v, E and F are known, the types of (�v:E) and (EF ) are uniquely determined,

and the type of (rjE) is always (�; �), so we will not always write all subscripts for types. We will
also occasionally omit outer parentheses, and write (�v:E) as �v:E, and (EF ) as EF . An expression
�v1:(�v2:(: : : (�vn:E) : : : )) will be written as �v1v2 : : : vn:E, and (: : : ((EF1)F2) : : : Fn) as EF1 : : : Fn,
i.e., we assume that application, indicated by parentheses ( and ), associates to the left. Also, we will
let type subscripts do double duty as indices, by writing, e.g., ((rjEz)E�) instead of ((rjEz)E

0
�). It is

a feature of the language that expressions of di�erent types are di�erent, so this habit is harmless.
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3. An Equational Calculus for TLS

The equational calculus L� has as its formulas statements of the form E = F , with E;F 2 L�. The
axioms and rules employ the notion of substitution of F for free occurrences of v in E, with notation
E[v := F ]; the formal de�nition is completely standard. Also, FV (E) is used for the set of variables
with free occurrences in E; again, the de�nition is routine.
Reexivity, symmetry and transitivity of equality:

E = E

E = F

F = E

E = F F = G

E = G

Context rules:

E = F

EG = FG

E = F

GE = GF

E = F

�v:E = �v:F

E = F

(rjE) = (rjF )

� and � axioms:

(�v:E)F = E[v := F ] �v:Ev = E
v =2 FV (E)

� axioms (for register lookup):

ri((rijE)F ) = E ri((rj jE)F ) = riF
i 6= j

� axioms (for register update):

(rijE)((rijF )G) = (rijE)G (rijE)((rj jF )G) = (rj jF )((rijE)G)
i 6= j

� axiom (for register extensionality):

(rj(rE))E = E:

Only the �, � and � axioms are new.
If E = F can be derived with the rules from the axioms in a �nite number of steps, we say that

E = F is a theorem of the calculus; we indicate this with ` E = F .

4. Soundness and Completeness for TLS

First we de�ne full models for TLS. Let non-empty domains Db be given for all b 2 B. Then the full
model over fDbg is constructed as follows:

D(T1;T2) := DT1 ! DT2

D� := fs 2 R!
S
TDT j 8r�T 2 R s(r�T ) 2 DT g

D(U1;U2) := DU1
! DU2

:

Note that in case all members of R are of the same type T , the domain D� has the form R! DT . If
s 2 D�, r 2 R�T and d 2 DT , we use s[r 7! d] for the function f 2 D� which is given by f(r0) = d if
r � r

0 and f(r0) = s(r0) otherwise. Note that s[r 7! d] 2 D�.
We refer to the full model over fDbg as M = fDbg. An assignment in a full model M = fDbg is a

function g : V !
S
U DU satisfying g(v) 2 DU if v 2 VU .

Let g be an assignment for M = fDbg. Then the interpretation function [[�]]Mg in M is de�ned as
follows (note the use of � for `lambda abstraction in the metalanguage' in what follows):

[[vU ]]
M
g := g(vU )

[[rT ]]
M
g := the function given by �s:s(r)

[[(rT jET )]]
M
g := the function given by �s:s[rT 7! [[ET ]]

M
g ]

[[(E(U1;U2)EU1
)]]Mg := [[E(U1;U2)]]

M
g ([[EU1

]]Mg )

[[(�vU1
:EU2

)]]Mg := the function given by �d:[[EU2
]]Mg[vU1 7!d]
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Note in particular that the interpretation of a register r�T is indeed a function in D� ! DT , and that
the interpretation of a state changer (rjE) is indeed a function in D� ! D�.
If M is a full TLS model, we use M j= E = F for: for every assignment g, [[E]]Mg = [[F ]]Mg , and we

use j= E = F for: for all full models M it holds that M j= E = F .

Proposition 1 (Soundness) L� is sound for full TLS models: if ` E = F then j= E = F .

To establish completeness, we make a detour via general TLS models. A general TLS structure
is a set of non-empty domains DU (for every type U), a function A� : D� � R !

S
T DT , and a

set of application functions AU1U2
: DU1U2

� DU1
! DU2

, satisfying the following extensionality
requirements:

1. if A�(s; r) = A�(s
0
; r) for all r 2 R, then s = s

0,

2. if a; b 2 DU1U2
and for every c 2 DU1

it holds that AU1U2
(a; c) = AU1U2

(b; c), then a = b.

Note that a full TLS model is a general TLS structure where

D� = fs 2 R!
S
TDT j 8r�T 2 R s(r�T ) 2 DT g;

with A�(s; r) given by s(r), and where each DU1U2
is the full function space DU1

! DU2
, with

AU1U2
(a; b) given by a(b).

Lemma 2 Suppose E 2 L�. Let

[E] := fF j ` E = Fg;

DU := f[E] j E has type Ug;

A�([E]; r) := [rE] (E of type �, r 2 R);

AU1U2
([E]; [F ]) := [EF ] (E of type (U1; U2), F of type U1):

Then M0 = (fDUg; A�; fAU1U2
g) is a general TLS structure.

Proof. To see that M0 is well-de�ned, note that if ` E = F then E and F have the same type.
Also, if ` E = E

0 and ` F = F
0, then ` (EF ) = (E0

F
0).

To see that M0 satis�es the requirements for a general structure, we must check the requirements
on the A functions.
1. Assume [E]; [F ] 2 D�, [E] 6= [F ]. Then: ` E = (re1 jGe1 ) � � � (ren jGen)E

0, where n � 0 and E
0

is such that [E0] 6= [(rjH)E00], for any r;H;E
00. To �nd such a form, just apply the � and � rules to

simplify E, and when hitting on a term of the form (rjH)G, add (rjH) to the state switcher list and
go on with G. This process terminates by the fact that �� reduction is strongly normalizing, plus the
fact that E mentions only �nitely many registers. Similarly, we �nd F = (rf1 jHf1) � � � (rfm jHfm)F

0,
with the same constraints. By the � axiom we may also assume that no Gei has the form reiE

0,
and similarly, no Hfi has the form rfiF

0. By the � axioms we may assume that (e1; : : : ; en) and
(f1; : : : ; fm) are in increasing order and without repetitions.
If [E0] 6= [F 0] we are done, for then we can take any

r =2 fre1 ; : : : ; ren ; rf1 ; : : : ; rfmg;

and by the second � axiom we have [rE] = [rE0] 6= [rF 0] = [rF ], where the inequality holds because
of the constraint on E

0
; F

0.
Now assume that [E0] = [F 0] and that (e1:::en) = (f1:::fm). Then, by the fact that [E] 6= [F ] there

must be a pair (rei jGei ); (rfj jHfj ) with ei = fj and [Gfi ] 6= [Hfj ]. In this case we are done, for then
by the �rst � axiom, [reiE] = [Gei ] 6= [Hfj ] = [reiF ].
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Finally, assume that [E0] = [F 0] and that (e1:::en) 6= (f1:::fm). Then either there is an ei =2 (f1:::fm)
or there is an fj =2 (e1:::en). Without loss of generality, assume the former. Then by the � axioms
[reiE] = [Gei ] 6= [reiE

0] = [reiF
0] = [reiF ], and we are done.

2. Assume [E]; [E0] 2 DU1U2
. Suppose that for every [F ] 2 DU1

, we have [(EF )] = [(E0
F )].

Let v 2 VU1
with v =2 FV (E1) [ FV (E2). Then [(Ev)] = [(E0

v)], so ` (Ev) = (E0
v). Therefore,

` �v:Ev = �v:E
0
v, and by means of the � axiom and two applications of the transitivity rule we

derive from this that ` E = E
0, and therefore [E] = [E0]. a

An assignment in a general structure (fDUg; A�; fAU1U2
g) is a function g : V !

S
U DU satisfying

g(v) 2 DU if v 2 VU .
A general model is a general structure M = (fDUg; A�; fAU1U2

g) together with an interpretation
function [[�]]M de�ned on the terms of the language, such that [[EU ]]

M is a function from assignments
to DU satisfying the following constraints (we will write [[EU ]]

M (g) as [[EU ]]
M
g ):

1. [[vU ]]
M
g = g(vU ),

2. for all s 2 D�, all standard types T , all r 2 R�T it holds that

A�T ([[r�T ]]
M
g ; s) = A�(s; r);

3. for all s 2 D�, all r; r
0
2 R it holds that

A�(A��([[(rjE)]]
M
g ; s); r0) =

�
[[E]]Mg if r = r

0
;

A�(s; r
0) otherwise,

4. [[(E(U1;U2)EU1
)]]Mg = AU1U2

([[E(U1;U2)]]
M
g ; [[EU1

]]g),

5. for all d 2 DU1
; AU1U2

([[(�vU1
:EU2

)]]Mg ; d) = [[EU2
]]M
g[vU1 7!d]

:

It follows from the requirements on general structures that there can be at most one interpretation
function for any general structureM and any assignment g forM . This is so because the requirements
on general structures force the values of [[rT ]]

M
g , of [[(rjE)]]Mg and of [[(�vU1

:EU2
)]]g to be unique. If an

interpretation for a general structureM = (fDUg; A�; fAU1U2
g) exists, then we callM a general model.

We use M j= E = F just in case every assignment g for general model M satis�es [[E]]Mg = [[F ]]Mg .
A substitution � is a mapping from variables to terms satisfying the constraint that �(vU ) is of type

U . This is extended to terms in the standard manner. We will use �E for the result of applying � to
E. Note that E and �E have the same type. Notation for the substitution �

0 that di�ers only from
� in the fact that v is mapped to E is �[v 7! E]. If g is an assignment in the term general structure
(i.e., the values g(v) are term equivalence classes), then substitution � represents g if it holds for all
variables v that �(v) is a representative of the equivalence class g(v).

Lemma 3 Let � be a substitution that represents g in the term structure M . Then putting [[E]]Mg =
[�E] makes M a general model.

Proof. To see that [[E]]Mg = [�E] is well-de�ned, observe that �EU has type U , so [�EU ] 2 DU .
Next, we must check the requirements on the interpretation function.
1. [[vU ]]

M
g = [�(vU )] = (by the fact that � represents g) = g(vU ).

2. [[rT ]]
M
g = [�(rT )] = [rT ]. By the fact that A�([E]; r) = [rE] = A�T ([r]; [E]) this is indeed the

required element of D�T .
3. The following reasoning shows that the requirement is met:

A�(A��([[(rT jET )]]
M
g ; [E�]); r

0) = A�(A��([�(rT jET )]; [E�]); r
0)

= A�(A��([(rT j�ET )]; [E�]); r
0)

= A�([(rT j�ET )E�]; r
0)

= [r0((rT j�ET )E�)]

= [�ET ] if r = r
0
; [r0E�] otherwise.
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4. Here is the reasoning for this case:

[[(E(U1;U2)EU1
)]]Mg = [�(E(U1;U2)EU1

)]

= [�(E(U1;U2))�EU1
]

= AU1U2
([[E(U1;U2)]]

M
g ; [[EU1

]]Mg ):

5. Let [EU1
] 2 DU1

. Then:

AU1U2
([[(�vU1

:EU2
)]]Mg ; [EU1

]) = AU1U2
([�(�vU1

:EU2
)]; [EU1

])

= AU1U2
([�vU1

:�EU2
]; [EU1

])

= [�[vU1
7! EU1

](EU2
)]

= [[EU2
]]Mg[vU1 7![EU1 ]]

;

where the last step is licensed because �[vU1
7! EU1

] represents g[vU1
7! [EU1

]].
This completes the check of the requirements and the proof. a

Theorem 4 (Generalized Completeness)

If for every general model M , M j= E = F , then ` E = F .

Proof. By means of the construction of a canonical general model M0. Let g be the identity
assignment v 7! [v]. Then the identity substitution � : v 7! v represents g, and we have:

[E] = [�E] = [[E]]M0

g :

By construction we have: if 6` E = F , then M0 6j= [E] = [F ]. a

Let M = (fDUg; A�; fAU1U2
g) and N = (fEUg; B�; fBU1U2

g) be general TLS models. A system
ffUg is a partial homomorphism of M onto N i� the following hold:

1. Each fU is a partial surjective map from DU onto EU .

2. If f� is de�ned for s 2 D�, then f�(s) is the unique element of E� with

fT (A�(s; r)) = B�(f�(s); r);

for all T , all r 2 R�T .

3. If fU1U2
is de�ned for d then fU1U2

(d) is the unique element ofEU1U2
such that fU2

(AU1U2
(d; x)) =

BU1U2
(fU1U2

(d); fU1
(x)), for all x 2 dom (fU1

).

4. For all T , all r 2 R�T , f�T (�s:A�(s; r)) is de�ned.

5. If f� is de�ned for s 2 D� and fT is de�ned for d 2 DT , and r 2 R, then it holds that f� is
de�ned for s[r 7! d] 2 D�, and f� satis�es

f�(s[r 7! d]) = f�(s)[r 7! fT (d)]:

Note that a partial homomorphism ffUg is fully determined by ffb j b 2 Bg.

Proposition 5 If M;N are general models and ffUg a partial homomorphism of M onto N then

f�T (�s:A�(s; r)) = �s:B�(s; r).

Proof. Because ffUg is a partial homomorphism, f�T (�s:A�(s; r)) is de�ned. By property (3) of
partial homomorphisms, f�T (�s:A�(s; r)) is the unique element z of E�;T such that

fT (A�T (�s:A�(s; r); s)) = fT (A�(s; r))

( property (2)) = B�(f�(s); r)

= B�T (z; f�(s));

for all s 2 dom (f�). Because f� is onto, it follows that z = �s:B�(s; r). a
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Proposition 6 If M;N are general models, g is an M assignment, h an N assignment, and ffUg

a partial homomorphism of M onto N satisfying fU (g(v)) = h(v) for every U , every v 2 VU , then

fU [[E]]
M
g = [[E]]Nh for every term E of type U .

Proof. Induction on the structure of E.
For E a variable the property holds by what is given about ffUg.
For r 2 R, we have by Proposition 5:

f�T ([[r]]
M
g ) = f�T (�s:A�(s; r))

= �s:B�(s; r)

= [[r]]Nh :

For expressions of the form (EF ) we have:

fU ([[EF ]]
M
g ) = fU (AU 0U ([[E]]

M
g ; [[F ]]Mg ))

= BU 0U ([[E]]
N
h ; [[F ]]

N
h )

= [[EF ]]Nh :

To show fU1U2
([[�v:E]]Mg ) = [[�v:E]]Nh , take d 2 dom (fU1

). We must establish that fU2
(AU1U2

([[�v:E]]Mg ; d)) =

BU1U2
([[�v:E]]Nh ; fU1

(d)).

fU2
(AU1U2

([[�v:E]]Mg ; d)) = fU2
([[E]]Mg[v 7!d])

= [[E]]Nh[v 7!fU1 (d)]

= BU1U2
([[�v:E]]Nh ; fU1

(d)):

Finally, to show f��([[rjE]]
M
g ) = [[rjE]]Nh , take s 2 D�. We must show that

f�(A��([[rjE]]
M
g ; s)) = B��([[rjE]]

N
h ; f�(s)):

f�(A��([[rjE]]
M
g ; s)) = f�(s[r 7! [[E]]Mg ])

= f�(s)[r 7! f�([[E]]
M
g )

= f�(s)[r 7! [[E]]Nh ]

= B��([[rjE]]
N
h ; f�(s)):

a

Proposition 7 If there is a partial homomorphism from M onto N , then M j= E = F implies

N j= E = F .

Proof. Use Proposition 6. a

Proposition 8 If N = (fEUg; A�; fAU1U2
g) is a general model and M = fDUg is a full model, and

moreover jEbj � jDbj for b 2 B, then there is a partial homomorphism from M onto N.

Proof. Let ffbg be a set of arbitrary partial surjective maps from Db to Eb. First extend ffbg to all
standard types, as follows. Suppose fT1 and fT2 have been de�ned. De�ne fT1T2(d) to be the unique
element of ET1T2 (if it exists) such that fT2(d(y)) = AT1T2(fT1T2(d); fT1(y)), for all y 2 dom (fT1).
To see that fT1T2 is surjective, take z 2 ET1T2 , and let x 2 DT1T2 be such that for all y 2 dom (fT1),

x(y) 2 f
�1
T2

(AT1T2(z; fT1(y))). (This uses the surjectivity of fT2 .) Then fT1T2(x) = z.
Next de�ne the map f�, by putting f�(s) = the unique element of E� (if it exists) with fT (s(r)) =

A�(f�(s); r), for all standard types T , all r 2 R�T . We can check that this map is surjective, as before.
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Extend the map to all types U , in the same manner as before, and check surjectivity as before.
All fU are surjective, and satisfy properties (2) and (3) by de�nition. Because M is full, property

(4) boils down to: f�T (�s:s(r)) is de�ned. To check this property, we have to show that there is a
unique z 2 E�T with fT (y(r)) = A�T (z; f�(y)), for all y 2 dom (f�). Clearly, z is given by �s:A�(s; r).
Finally, we check property (5). Assume f� is de�ned for s 2 D�, and fT is de�ned for d 2 DT .

Assume r 2 R�T . We check whether f�(s[r 7! d]) is de�ned. By the construction of f�, this is the
case i� there is a unique z 2 E� with fT (s[r 7! d](r0) = A�(z; r

0) for all standard T , all r0 2 R�T .
Clearly, this z is given by �s:s[r 7! fT (d)]. a

Theorem 9 (Full Completeness) If j= E = F , then ` E = F .

Proof. Suppose 6` E = F . Then, by the generalized completeness theorem, M0 6j= E = F , where
M0 is the canonical general model. By proposition 8 there is a full model M of which M0 is a partial
homomorphic image. By proposition 7, M 6j= E = F . a

Note that for all full models M with in�nite base domains, the relation M j= E = F coincides with
the relation M0 j= E = F , where M0 is our canonical term model. This is because any full model
with large enough base domains has the canonical model as a partial homomorphic image. Indeed,
any equality that is true in a large enough full model will be true in the canonical term model. The
situation is completely analogous to the case of the ordinary typed lambda calculus (see Friedman
[8]).

5. Reducing TLS Expressions

If R is a relation on the set of expressions of L� (a so-called notion of reduction), then R determines

a relation
R
�! of one-step R reduction in the following standard manner:

(E;E0) 2 R

E
R
�! E

0

E
R
�! E

0

(FE)
R
�! (FE0)

E
R
�! E

0

(EF )
R
�! (E0

F )

E
R
�! E

0

(�v:E)
R
�! (�v:E0)

E
R
�! E

0

(rjE)
R
�! (rjE0)

R reduction (notation
R
!!) is the reexive transitive closure of

R
�!:

E
R
�! E

0

E
R
!! E

0
E

R
!! E

E
R
!! E

0
E
0 R
!! E

00

E
R
!! E

00

Recall that the notion of beta reduction is the relation between an expression of the form ((�v:E)E0)

and the expression E[v := E
0]. � reduction is the relation

�
!!. Similarly, the notion of � reduction is

the relation between �v:Ev and E (provided v =2 FV (E)). We add three new notions of reduction to
this list:

� The notion of � reduction is the union of the relations

(ri((rijE)F ); E)

and

(ri((rj jE)F ); riF ); provided i 6= j:

� The notion of � reduction is the union of the relations

((rijE)((rijF )G); (rijE)G)
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and

((rijE)((rj jF )G); (rj jF )((rijE)G)); provided j < i:

� The notion of � reduction is the relation ((rj(rE))E;E).

From the soundness of the L� calculus it follows that � reduction, � reduction, � reduction, � reduction
and � reduction are all sound (after all, these reduction notions are nothing but directed versions of
the corresponding equality axioms).
The standard reduction notion for typed logic is �� reduction i.e., reduction for the notion � [ �),

and the standard results of typed logic that �� reduction is conuent and strongly normalizing extend
readily to the setting of TLS:

Proposition 10 �� reduction is conuent, i.e., E
��
!! F and E

��
!! F

0 together imply that there is a

G with F
��
!! G and F

0 ��
!! G.

Proposition 11 �� reduction is strongly normalizing for TLS, i.e., every reduction sequence E
��
�!

F
��
�! � � � terminates.

Let
���
!! be the relation of R reduction for R = � [ � [ � .

Proposition 12
���
!! is weakly conuent, i.e., E

���
�! F and E

���
�! F

0 together imply that there is a

G with F
���
!! G and F

0 ���
!! G.

Proof. The claim is proved by a case analysis. We just give one case in full. The reasoning for the
other cases is similar.
Assume E[r((rjET )E�)]

���
�! E[ET ], and E[r(rjET )E�]

���
�! F , with F 6� E[ET ]. Then there are

four sub-cases to consider.

1. The reduction E[r((rjET )E�)]
���
�! F leaves subexpression (r(rjET )E�) una�ected, i.e., we can

write F as E0[r(rjET )E�]. In this case both F and E[ET ] reduce in one ��� step to E0[ET ].

2. The reduction E[r((rjET )E�)]
���
�! F removes subexpression (r(rjET )E�). In this case E[ET ]

reduces in one ��� step to F .

3. The reduction E[r((rjET )E�)]
���
�! F a�ects ET . In this case, F can be written as E[r(rjE0

T )E�],
and both F and E[ET ] reduce in one ��� step to E[E0

T ].

4. The reduction E[r((rjET )E�)]
���
�! F a�ects E�. In this case F reduces in one ��� step to

E[ET ].

a

Proposition 13 ��� reduction is strongly normalizing, i.e., every reduction sequence E
���
�! F

���
�!

� � � terminates.

Proof. Every ��� reduction step either reduces the number of symbols in an expression, or (� steps
of the second kind) is a step towards putting a sequence of registers in increasing order. a

Proposition 14
���
!! is conuent, i.e., E

���
!! F and E

���
!! F

0 together imply that there is a G with

F
���
!! G and F

0 ���
!! G.
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Proof. By an application of Newman's lemma (see Klop [17]) from Propositions 12 and 13. a

Let ����� reduction be the relation
R
!! for R = � [ � [ � [ � [ � . It follows immediately from the

soundness of L� that ����� reduction is sound.
Here is an example ��� reduction:

(�p:(p (rjx)i))(�i:((r0 j(r0x))(ri)))
�
�! ((�i:((r0j(r0x))(ri))) (rjx)i)

�
�! ((r0j(r0x))(r (rjx)i))
�
�! ((r0j(r0x))x)
�
�! x:

To prove that ����� reduction is conuent we again need to make a detour via weak conuence.
This is because the combination of �� reduction and ��� reduction is not orthogonal (see Klop [17]).
Intuitively, orthogonality of two reduction relations R and S means that R reduction steps never `spoil'
opportunities for S reduction and vice versa. If two conuent reduction relations are orthogonal, then
their union is again conuent. In our case, orthogonality fails due to the presence of � reductions (an
opportunity to apply (rj(rE))E ! E may in principle be spoiled by a reduction E ! E

0).

Proposition 15 ����� reduction is weakly conuent, i.e., E
�����
�! F and E

�����
�! F

0 together imply

that there is a G with F
�����
!! G and F

0 �����
!! G.

Proof. A case analysis similar to the analysis in the proof of Proposition 12. a

Proposition 16
�����
�! is strongly normalizing, i.e., every reduction sequence E

�����
�! F

�����
�! � � �

terminates.

Proof. The proof is a straightforward adaptation of the proof of strong normalization for typed
lambda calculus. See Barendregt [1], Appendix A, or Hindley and Seldin [14]. a

Proposition 17
�����
!! is conuent, i.e., E

�����
!! F and E

�����
!! F

0 together imply that there is a G

with F
�����
!! G and F

0 �����
!! G.

Proof. Again by an application of Newman's lemma from Propositions 15 and 16. a

Theorem 18 The relation ` E = F is recursive.

Proof. Immediate from the fact that ����� reduction is strongly normalizing. Just reduce E and
F to �nd out if their normal forms are the same (modulo changes in bound variables). a

Theorem 19 The relation j= E = F is recursive.

Proof. Immediate from Theorem 18 and the Completeness Theorem 9. a

It should be noted that deciding equality in TLS is not cheap, for Statman's result that the typed
lambda calculus is not elementary recursive [26] applies to TLS as well.

6. The Logical Theory of TLS

Equations in typed logic have the form E = F , where E;F are assumed to be of the same type. If we
assume a basic type t, with Dt = f1; 0g, we can consider equations as terms of type t, by extending
the language with a rule:

Et ::= EU = E
0
U
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Note that this language extension boils down to adding constants Q(U;(U;t)) for every type U , and
writing the term ((Q(U;(U;t))EU )FU ) as EU = FU . The interpretation of EU = FU in (standard or
general) modelM , for assignment g, is given by (note the use of equals for `identity at the meta-level'):

[[EU = FU ]]
M
g :=

�
1 if [[EU ]]

M
g equals [[FU ]]

M
g ;

0 if [[EU ]]
M
g does not equal [[FU ]]

M
g :

We agree to write Et = Ft as E $ F . Call an expression of type t a formula. Some useful abbreviations
for formulas and formula-forming operators can now be given:

> := (�xt:xt) = (�xt:xt)

? := (�xt:xt) = (�xt:>)

: := (�xt:(xt $ ?))

^ := (�xtyt:(�z(t;t):((zx)$ y)) = (�z(t;t):(z>)))

8xUE := (�xU :E) = (�xU :>)

Write (E ^ F ) for ((^E)F ), and abbreviate :(:E ^ :F ) as (E _ F ), :(E ^ :F ) as (E ! F ), and
:8xU:E as 9xUE. 8x1(8x2 : : : (8xnE : : : )) will be written as 8x1x2 : : : xnE, and similarly for 9.
We will also omit brackets in n-ary conjunctions and disjunctions, so we write E1 ^ : : : ^ En and
E1 _ : : : _ En.
A formula Et is valid if [[Et]]

M
g = 1 for every choice of M; g (M a standard model).

A logical calculus for this extended TLS language can be de�ned by adding the following axioms
and rules to the equational calculus (see e.g. Gallin [9]).
Axiom scheme for the Booleans (giving an explicit de�nition of Dt as f0; 1g):

(Ett>^ Ett?)$ 8xtEttx:

Extensionality expressed by means of universal quanti�cation:

8x(Ex = Fx)$ (E = F ):

Axiom schemes for �xing the meanings of the constants Q(U;(U;t)):

vU = wU ! EUtvU $ EUtwU :

Inference rule (B0
t is the result of replacing an occurrence of EU in Bt by E

0
U ):

EU = E
0
U Bt

B
0
t

This logic is not complete for full models, for the extended language is expressive enough to de�ne
the standard model of arithmetic, and the existence of a complete logic for TLS would contradict
Tarski's theorem of the non-axiomatizability of arithmetical truth.
Still, we know that the incomplete logic of types and states contains the TLS equational calculus.

Also, we have completeness for general models (as can be shown by a standard extension of the
completeness proof given above; see also Henkin [13]). This means that universal validities that
continue to hold in all general models are provable in the logic.
As an example, we mention that for every register r 2 R�T of the language the following formula is

valid and provable:

8i�8xT9j�(j = (rjx)i):

This is certainly valid, by virtue of the de�nition of the domain D�. The principle is also provable,
for it continues to hold in general models.
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The truth of the formula illustrates that the construction of the typed domains itself guarantees
that there are `enough states', and that no update axiom in the style of [15] is needed, or rather,
that such an update axiom is `provided algebraically' by the (rjE) functions and the �; �; � principles
governing their behaviour.
It is instructive to check how the notion of equality works out for the types (�; T ). Note that the

following formula is valid (and indeed an axiom of the TLS logic):

(E�T = F�T )$ 8x�(Ex = Fx):

This axiom says that two functions g; h in D� ! DT are equal i� for every s 2 D�, g(s) = h(s).

Proposition 20 Let r; r0 2 R�T . On the assumption that jDT j � 2, the formula r = r
0 evaluates to

true in general model M i� r and r
0 are the same register.

Proof. Let M be a general model. According to the rule for interpreting equalities, [[r = r
0]]Mg = 1

i� [[r]]Mg (s) = [[r0]]Mg (s) for all s 2 D�. By the evaluation clause for store registers, this requirement
boils down to: A�T (r; s) = A�T (r

0
; s) for all s 2 D�. By requirement (2) on interpretation in general

models, this is the case i� A�(s; r) = A�(s; r
0) for all s 2 D�. If r � r

0 (r and r0 are the same register),
then this requirement is always met, of course. If r 6� r

0, then we have two cases.

� If we assume that DT contains at most one element, then A� cannot assign di�erent objects
to r; r

0, for any s 2 D�, in the �rst place. Therefore, in this case the equality relation holds
between [[r]]Mg and [[r0]]Mg for any pair r; r0.

� Suppose DT contains at least two objects (call them d1 and d2). Assume s 2 D� with A�(s; r) =
d1. Suppose g(v) = d2, and let s0 := A��([[r

0
jv]]Mg ; s). Then it follows from requirement (3) on

interpretations in general models that A�(s
0
; r) = d1 and A�(s

0
; r
0) = d2. Therefore, in this case

[[r]]Mg and [[r0]]Mg are not equal.

a

The proposition shows that equalities for registers behave in a reasonable fashion.

7. Denotational Semantics in TLS

The assignment statement r := t is the basic building block of imperative programming. Therefore,
an analysis of imperative programs in a language that has register assignment in its algebraic basis is
in a sense more natural than analysing the assignment statement r := t in a more roundabout way.
In this section we demonstrate the semantic analysis of while programs in TLS.
Let z be the type of integers, and assume that r ranges over R�z. Then the following de�nes the

language of while programs with program variables taken from the set R�z.

N ::= 0 j � � � j 9 j N0 j � � � j N9

A ::= r j N j (A1 +A2) j (A1 �A2) j (A1 �A2)

B ::= A1 = A2 j A1 < A2 j A1 � A2 j :B j (B1 ^ B2)

S ::= r := A j skip j (S1;S2)

j if B then S1 else S2 j while B do S

The meanings of the statements of the while language are partial functions overR�z ! Z, i.e., members
of (R�z ! Z) ,! (R�z ! Z), where Z is used for the set of integers. Recall that if we build a TLS
logic over basic type set fz; tg, and assume that R�z is the set of all registers, then the domain D�

has the form R�z ! Z. Thus, the members of (R�z ! Z) ,! (R�z ! Z) are in fact members of
D� ,! D�. We can represent a member of D� ,! D� (a partial function from states to states) by
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means of its graph, which is a member of D(�;(�;t)). Meanings of while statements can be represented
as members of D(�;(�;t)). We will now show how one can refer to them by means of TLS expressions
in a straightforward way.
First de�ne a relation v on D(�;(�;t)) by means of:

F v G () 8ij(Fij ! Gij);

where F;G are expressions of type (�; (�; t)), and i; j variables of type �.
Next, de�ne a function FIX in

(D(�;(�;t)) ! D(�;(�;t)))! (D(�;(�;t)) ! Dt)

by means of:

FIX := �Fg:8ij(Fgij = gij);

where F is a variable of type ((�; (�; t)); (�; (�; t))), g a variable of type (�; (�; t)), and i; j are variables
of type �.
If H has type D(�;(�;t)) ! D(�;(�;t)) and h type D(�;(�;t)), then FIX Hh has type Dt. The expression

FIX Hh reduces to:

8su(Hhsu = hsu);

which is true i� (the interpretation of) h is the graph of a �xed point of (the interpretation of) H .
Finally, de�ne a function � in

(D(�;(�;t)) ! D(�;(�;t)))! D(�;(�;t))

by means of:

� := �F ij:9g(FIX Fg ^ 8d(FIX Fd! g v d) ^ gij);

where F a variable of type ((�; (�; t)); (�; (�; t))), g; d are variables of type (�; (�; t)), and i; j variables
of type �.
If H has type D(�;(�;t)) ! D(�;(�;t)), then �H has type D(�;(�;t)), and �H reduces to

�su:9g(FIX Hg ^ 8d(FIX Hd! g v d) ^ gsu):

This expression denotes the graph of the least �xed point of (the interpretation of) H , if it exists, and
the empty relation on D� otherwise.
The translation of while to TLS now proceeds in four stages: �rst we translate numerals into type

z, next arithmetical expressions into type (�; z), then boolean expressions into type (�; t), and �nally
statements into type (�; (�; t)).
Translation of numerals into type z (we assume that we have a 0 for zero, that s names the successor

function, that +;�;� are names of the functions for addition, subtraction and multiplication in Z,
and we abbreviate s0 as 1, : : : , sssssssss0 as 9 and ssssssssss0 as 10.

0� := 0
...

9� := 9

(N0)� := N
�
� 10

...

(N9)� := (N�
� 10) + 9
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Translation of arithmetical expressions into type (�; z), using the functions +;�;� on the domain Z:

N
� := �i:N

�

r
� := r

(A1 +A2)
� := �i:(A�

1i+A
�
2i)

(A1 �A2)
� := �i:(A�

1i�A
�
2i)

(A1 �A2)
� := �i:(A�

1i�A
�
2i)

Note that the translation of r is r itself. This is correct, for r is a variable in the programming
language, but a register in the TLS language, and it has type (�; z).
Translation of boolean expressions into type (�; t). We already have = in type (z; (z; t)). Here we

assume that we also have a relation < in (z; (z; t)) available. � is then de�ned as �PQ:(P < Q_P =
Q).

(A1 = A2)
� := �i:(A�

1i = A
�
2i)

(A1 < A2)
� := �i:(A�

1i < A
�
2i)

(A1 � A2)
� := �i:(A�

1i � A
�
2i)

(:B)� := �i::(B�
i)

(B1 ^B2)
� := �i:(B�

1 i ^ B
�
2 i)

Translation of statements into type (�; (�; t)):

(r := A)� := �ij:((rj(A�
i))i = j)

skip� := �ij:(i = j)

(S1;S2)
� := �ij:9k(S�1 ik ^ S

�
2kj)

(if B then S1 else S2)
� := �ij:((B�

i ^ S
�
1 ij) _ (:B�

i ^ S
�
2 ij))

(while B do S)� := (��gij:((B�
i ^ 9k(S�ik ^ gkj))

_(:B�
i ^ i = j))))

Proposition 21 The translation S
� is correct in the sense that the interpretation of S� corresponds

to the semantic function speci�ed for S by the standard semantics for the while language.

Proof. First specify the semantics of while by some other means, e.g., in operational style, by
means of transition rules, and then engage in a lengthy induction exercise (see e.g. Plotkin [24], or
the textbook presentation in Nielson and Nielson [23]). a

The proposition shows that TLS provides a cheap way of representing the meanings of while pro-
grams (by means of simpleton domains, so to speak).
The purpose of this section was to demonstrate that reexive domains (domains D that are iso-

morphic to the function space [D ! D] of all continuous functions on D, proposed as a denotational
semantics for programming in Scott and Strachey [25]) are by no means essential for providing a
denotational semantics of recursion in imperative programming. The same point is made at greater
length in Muskens [22], but with the help of a higher order logic that introduces registers by means
of logical axioms, while we have register assignment in the algebraic basis of our set-up.

8. Representing Dynamic NL Semantics

Let De be a domain of basic entities, and assume that all registers are of type R�e, and therefore all
state changers are of the form (r�ejEe). This assumption entails that the domain D� has the form
R�e ! De. We consider the language L of dynamic predicate logic [11] given by:

t ::= r j c

� ::= r j P
n
t1 � � � tn j (�1;�2) j :�
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Dynamic implication �1 ) �2 is de�ned as :(�1;:�2), and the hackneyed example `If a farmer owns
a donkey he beats it' gets the following rendering:

(r1;Fr1; r2;Dr2;Or1r2)) Br1r2:

There are various ways of specifying a dynamic semantics for such a language, and these di�erent
speci�cations suggest di�erent translations into TLS.
Perhaps the simplest presentation of the semantics of L is as a relation [[�]] on the set D�. Assume a

domain of discourse De and an interpretation I for the predicates P and the constants ce. Let s; s
0
; s
00

range over D�. If s 2 D�, then Is is the interpretation function on terms given by Is(c) := I(c),
Is(r) := s(r). The interpretation relation [[�]] for the formulas of dynamic predicate logic is given by:

s[[r]]s0 i� s
0 = s[r 7! d] for some d in De

s[[Pn
t1 � � � tn]]s

0 i� s = s
0 and (Ist1; � � � ; Istn) 2 I(P )

s[[�1;�2]]s
0 i� there is an s

00 with s[[�1]]s
00 and s

00[[�2]]s
0

s[[:�]]s0 i� s = s
0 and there is no s00 with s[[�]]s00

This semantic speci�cation suggests a straightforward translation into TLS, where the translations
for terms get type (�; e) and those for dynamic formulas get type (�; (�; t)).
In the translation � for terms we map registers to themselves, ordinary constants to constant func-

tions in (�; e):

r
� := r

c
� := �i:c

The translation � for formulas is a completely straightforward rendering of the semantic speci�cations
in TLS:

r
� := �ij:9xe((rjxe)i = j)

(Pn
t1 � � � tn)

� := �ij:(i = j ^ P (t�1i) � � � (t
�
ni))

(�1;�2)
� := �ij:9k(��1ik ^ �

�
2kj)

(:�)� := �ij:(i = j ^ :9k�
�
ik)

This is essentially the translation given in [21].
The dynamic semantics above can also, equivalently, be given in functional style, as a mapping from

sets of states to sets of states, as follows:

[[r]](A) := fs[r 7! d] j s 2 A; d 2 Deg

[[Pn
t1 � � � tn]](A) := fs 2 A j (Ist1; � � � ; Istn) 2 I(P )g

[[�1;�2]](A) := [[�2]]([[�1]](A))

[[:�]](A) := fs 2 A j [[�]](fsg) = ;g

This suggests a translation in type ((�; t)(�; t)), as follows (assume p is a variable of type (�; t)):

r
� := �p�i:9j9x(pj ^ (rjx)j = i)

(Pn
t1 � � � tn)

� := �p�i:(pi ^ P (t�1i) � � � (t
�
ni))

(�1;�2)
� := �p:�

�
2(�

�
1p)

(:�)� := �p�i:(pi ^ :9k��(�j:j = i)k)

Less obviously, it is also possible to specify the semantics for L as a function mapping states to sets
of sets of states:

jj�jj(s) := fA � D� j s
0
2 A for some s0 with s[[�]]s0g:
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This is the basis for the system of Dynamic Montague Grammar proposed in [10]. Essentially, the
DMG translation of L boils down to:

�
y := �p:9j(��ij ^ pj):

Note that this translation has i free. In fact, the DMG translation uses Montague's intensional typed
logic with [ and \ (IL), but every IL formula has a corresponding typed logic formula in a language
with one extra basic type (in our case: �), with possibly one extra variable i free in this basic type
(see Gallin [9]).
In our framework, it would be more natural to abstract over the state variable. This yields the

following translation into type (�; ((�; t); t)):

�
z := �i�p:9j(��ij ^ pj):

To see that this higher type does make sense, let us bother to spell out the semantics for L as a
function in D� ! PPD�.

jjrjj(s) := fA � D� j s[r 7! d] 2 A for some d 2 Deg

jjP
n
t1 � � � tnjj(s) := fA � D� j s 2 A and (Ist1; � � � ; Istn) 2 I(P )g

jj�1;�2jj(s) :=
[
fjj�2jj(s

0) j fs0g 2 jj�1jj(s)g

jj:�jj(s) := fA � D� j s 2 A and jj�jj(s) = f;gg

Because of the equation

jj�jj(s) = fA � D� j s
0
2 A for some s0 with s[[�]]s0g

we have that sets in jj�jj(s) are always up-sets, in the sense that they are all of the form " B, where
" B := fB

0
� B j B 2 Bg. Indeed, we can write the function jj � jj as follows:

jj�jj(s) = " ffs
0
g j s[[�]]s0g:

In [10] an alternative negation � is proposed, to be used in addition to :, with semantics

jj � �jj(s) := PPDs � jj�jj(s):

For an extensive discussion of the pros and cons of this dynamic negation see the second chapter of
Dekker [4]. In brief, the meaning of an expression containing � negations will not be an up-set, for
if jj�jj(s) is an up-set, jj � �jj(s) is a down-set, and vice versa. This is slightly problematic, for in
general one wants that the meaning of an expression acts as an information update, and information
updates correspond to up-sets. On the positive side, we have that jj�jj(s) and jj �� �jj(s) are the
same, so we recover the law of double negation at the dynamic level.
Note that � � is also readily translated into TLS, by means of the following extension of z:

(� �)z := �i�p:(:((�zp)i)):

The further extensions proposed in Dekker [4] also have obvious translations in TLS.

9. Comparisons

In this section we will compare TLS with some of the typed logics that have been proposed for
integrating discourse representation theory [16, 7] into a Montague-style compositional framework
[3, 10, 20, 21, 18]. The proposals that come closest to the present approach are [3] and [20].
The two main avours of dynamic typed logic are a dynamic version of Montague's [19] IL, and a

dynamic version of Gallin's [9] Ty2. Both of these take a typed logic in which possible worlds either
�gure as a domain for forming intensions (IL) or as a basic type (Ty2), and impose extra meaning
postulates intended to force these possible worlds to behave like storage states for a given set of store
constants.
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One good reason for allowing � abstraction over states, i.e., for following the Ty2 tradition rather
than the IL route, is that an extension with `real' possible worlds is trivial. Just build your TLS
models over a basic type set B which includes the type s, and interpret s as the domain Ds of
possible worlds. Translations of dynamic modal predicate logic [5] and similar logics into TLS are
now straightforward. Also, TLS comes with a notion of reduction which is both precise and elegant,
while reduction of expressions in dynamic versions of IL is hopelessly cumbersome.
The standard procedure for distilling a typed logic with states out of ordinary typed logic is as

follows (we assume for simplicity that the values to be stored all have the same type T ): in the
footsteps of Janssen [15], one starts out with an arbitrary domain Ds, one introduces a set C of `store
constants' of type (s; T ) (where T does not depend on s), and one tries to force Ds to behave as the
function space C ! DT . The two principles needed to carry out this procedure are:

1. states can only di�er in the values of the store constants,

2. there are enough states, in the sense that an update of an arbitrary store constant with an
arbitrary value will always yield a new state.

Unfortunately, it is impossible to formulate a postulate for (1) as a statement of the typed language.
A postulate for (1) must refer to a constant REG which is assumed to be true of a term E i� E is a
register of values of type T . Assume for simplicity that all registers store values of the same type T ,
and consider the following postulate.

DIST 8isjs(8x(s;T )(REG x! (xi = xj))! i = j):

Obviously, given a compositional semantics, there can be no interpretation function with [[REG x]] = 1
i� x itself is a register for values of type T , simply because compositionality means that the objects
in a model (in this case: the object [[x]]) do not reveal the names that have been used to refer to them
(in this case: the register name x).
Note, however, that what DIST attempts to express is true for all TLS models. The following

principle (which cannot be expressed as a formula of the language for reasons explained above) holds
for every general model M = (fDUg; A�; fAUU 0g) and every assignment g for M :

[[i = j]]Mg = 1 i� g(i) = g(j)

i� A�(g(i); r) = A�(g(j); r) for all r 2 R:

This illustrates that distributivity is built into the TLS general models (and therefore also into the
full models) from the start.
Since (1) cannot be enforced by a formula of standard typed logic, one way around it is to make a

virtue out of a necessity by dropping the requirement that states are only made up out of the named
registers. This is what Muskens proposes in [20]. Here a constant ST is introduced to be interpreted
as the property of being a store function. Appropriate axioms are employed to ensure that store
functions are the stu� that states are made of. Assume that ST is a constant for the property of being
a store function. Then the formula

8x(s;T )((STx ^ x 6= c)! (xi = xj))

can abbreviate the relation of di�ering at most in the value of store register c. Notation: i[c]j. Next,
it is ensured by means of axioms that there are enough states and that at least all store constants are
interpreted as store functions, as follows:

AX 1 8i8x8e(STx! 9j(i[x]j ^ xj = e))

AX 2 STc for each store constant c

AX 3 c 6= c
0 for each pair of di�erent store constants c; c0:
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To see that these axioms are consistent, consider the following model (personal communication from
Reinhard Muskens): states are the functions s 2 N ! N with the property that fn 2 N j s(n) 6= 0g is
�nite. This set of states is denumerable, so we can arrange states and registers in a square as follows:

u1 u2 u3 u4 u5 � � �

s1

s2

s3

s4

s5

...

Now the columns can be taken to be the interpretations of the register constants, so ui is interpreted
as the i-th column. It is not di�cult to see that the store functions are precisely those F 2 S ! N

with the property that there is some n 2 N such that for all s 2 S, F (s) = s(n). (n is the index of
the column.) Therefore we put STf true i� f corresponds to a column.
One thing to check now is that the store functions are indeed independent. We want to ensure

that, for example, �i:u1i+ u2i, does not correspond to a register. But this is easy. Take an arbitrary
register (column) ui, and an arbitrary state (row) sj . Suppose we put a new value m at the position
of sj(i) (the place where the column and the row intersect). Then the resulting row must be present
somewhere in the table, for it is again a function s with the property that fn 2 N j s(n) 6= 0g is
�nite. But this means that ui must be independent of the other stores. Thus, �i:u1i + u2i does not
correspond to a store.
Note that all the axioms are true in this model. This shows that the axioms are consistent. Note

that the axioms do not ensure that the states are built of precisely the registers mentioned in the
axioms. For an example of a model with anonymous registers, consider the following slight extension
of the previous model: states and interpretation of ST as before, interpretation of registers as follows
(A1; A2; A3; : : : are anonymous registers):

u1 A1 u2 A2 u3 � � �

s1

s2

s3

s4

s5

...

This is also a model of the axioms AX1{AX3. It seems that the choice between the approach of
Muskens and the present approach depends on whether one wants DIST or not.
The postulate that should guarantee requirement (2) (enough states) can be formulated in TLS as

follows:

UPDATE 8i�8xT9j�(j = (cjx)i)

We have already seen above that the UPDATE postulate is true in all TLS models (note that in
Muskens' approach UPDATE is guaranteed by AX 1).

10. Further Work

The two main areas of further work are:

� exploring further use of TLS as a tool,

� further logical investigation of TLS.
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Proposals for dynamic semantics are more readily compared when they are formulated within the
same framework. In the area of NL semantics, suitable candidates for translation into TLS are the
sequence semantics for dynamic predicate logic from [27], the extension of dynamic predicate logic
with procedures from [6], the modalized versions of dynamic predicate logic of [5, 12], and so on.
In the area of programming language semantics, static program analysis for while programs is easily

performed within TLS. Note, for instance, that partial correctness assertions fPgSfQg are readily
translated into TLS formulas by means of:

8ij((Pi ^ S�ij)! Qj);

while total correctness assertions take the form:

8i(Pi! 9j(S�ij ^Qj):

In a slightly di�erent direction, TLS is a suitable tool for variable dependency analysis of while pro-
grams, including reasoning about safety of the analysis with respect to a given semantic speci�cation
(see [23] for examples of such reasoning).
There are further logical questions to be asked about TLS. Modi�cations of the �, � and � axioms

may provide an interesting connection with Van Benthem's weak predicate logics [2], which are also
the result of varying the restrictions on the set of available variable assignments. As an example, con-
sider the � axiom permitting the swap between (rijE)((rj jF )G) and (rj jF )((rijE)G). This expresses
independence of the registers; if we drop this axiom we allow models with states where register ri
may depend in some way on rj or vice versa. In a similar way, one can consider dropping the other
� axiom, (rijE)((rijF )G) = (rijE)G, which expresses the destructiveness of register update. If one
considers (rijE)((rijF )G) and (rijE)G as di�erent states, this means that registers e�ectively become
stacks. Together with an appropriate mechanism for register lookup (lookup at arbitrary depths in
the register stacks, or an operator for throwing the top of the stack away) this would give us the
typing superstructure for a dynamic logic with stack updates in the spirit of the already mentioned
[27].
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