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Abstract 

The main purpose of the paper is to relate different models for Horn Clause Logic: opera­
tional, denotational, declarative. We study their relationship by contrasting models based on 
interleaving, on the one hand, to models based on maximal parallelism, on the other. We 
make use of complete metric spaces as an important mathematical tool, both in defining and 
in comparing the various models . 
Key words and phrases: operational semantics, denotational semantics, declarative seman­
tics, parallelism, logic languages, correctness, complete metric spaces, partial orders. 
1985 Mathematics Subject Classification: 68Q55, 68Q10. 
1987 Computing Reviews Categories: D.1.3, D.3.1, F.1.2, F.3.2. 

1 Introduction 

The most basic example of a (parallel) logic programming language is Horn Clause Logic (HCL) . An 
HCL program is a finite set of definite clauses of the form H +- B, where His an atom and lJ is a 
finite sequence of atoms. We shall introduce three different types of models for HCL: operational, 
denotational, and declarative. The first and the latter were already introduced elsewhere {see 
below). In addition to the definition of two denotational models for HCL, the contribution of 
this paper consists of a systematic comparison of the different models . In particular, we shall 
establish a precise relationship between the denotational and the declarative models. Although 
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we have been recently investigating various models for more advanced parallel logic languages like 
GHC and Parlog (dBKPR89a, dBKPR89b], which contain constructs like the commit operator 
and annotations for communication, it is necessary to understand the precise relationship of these 
models first at the basic level of HCL. 

1. 1 The operational models 

We shall consider two operational models, which are both based on a transition system (in the so­
called SOS style [HP79]). The first one, called OFr (FI for fair interleaving), corresponds to the stan­
dard (sequential) operational semantics of HCL based on SLD resolution (like in [vEK76, Llo87]); 
it uses a fair derivation rule (reduction from left to right) in order to model also failure behav­
ior. From OFr we can deduce the three sets that are classically used to describe the operational 
behavior of an HCL program : the success set, the finite failure set, and the infinite failure set. 

The second operational semantics, OMP, models maximal parallelism; the derivation rule 
used here amounts to executing in parallel one resolution step for each atom in a goal. (In this 
way, fairness is automatically ensured .) Then a goal, consisting of several atoms, can do one 
step by composing all local substitutions of the individual atoms in parallel by means of a parallel 
composition operator o for substitutions (introduced in [Pal89]). It has two effects: it tests whether 
these substitutions are mutually compatible and, if so, it takes the union of all the bindings. This 
model is of interest because it could serve as a basis for a parallel implementation of HCL based 
languages; furthermore, it can be seen as a starting point for the formalization of additional features 
such as atomic unification (Cf. [Sha83]). Technically, OMP will play a role (or, more precisely, 
the denotational model corresponding to it) as an intermediate in establishing the correspondence 
between OFr and the declarative model, to be presented in a minute. 

For both operational models, we shall introduce corresponding denotational models. Their 
main characteristic is compositionality: the meaning of the conjunction of two goals will be com­
puted by composing the meanings of the separate goals . (Note that we do not study composition­
ality with respect to the union of programs; this we consider to be a separate issue .) 

1.2 The denotational models 

In order to be compositional, the denotational models are considerably more complicated than 
their operational counterparts. This is mainly due to the difficulty of describing failure behavior in 
a compositional manner. The denotational model corresponding to OFI will be called VFr - In order 
to allow for the definition of an operator for parallel composition, corresponding to the conjunction 
of goals , the codomain of this model (also called its semantic universe) will be more complicated 
than the operational one . Both for OFr and OMP it suffices to consider sets of sequences (or words) 
of substitutions. Here, we need sets of sequences (or vectors) of sequences (or words) of pairs of 
substitutions. We shall prove the correctness of VFr with respect to OFr by showing that the latter 
equals the composition of an abstraction operation with the former. 

Next a second denotational model, called VMP, is introduced, which equals the operational 
semantics OMP . Its semantic universe is the same as the one of OMP , which is simpler than that of 
VFr- The semantic operator for the parallel composition (conjunction) of two goals is the operator 
o described above, but now extended to sets of sequences of substitutions. 

1.3 The declarative model 

The third type of model we describe is the declarative semantics. We recall the definition of 
the declarative semantics Vee as introduced in [FLPM89]. The term declamtive means that the 
program is seen as a set of first order formulas and that the semantics is intended in the model­
theoretic sense, i .e., characterizing the set of logical consequences of the program. This semantics 
is obtained as the least fixed-point of a continuous transformation T on the interpretations of the 
program, the so-called immediate consequence operator. An important distinction between the 
denotational models above and the declarative semantics is that the latter describes the success 
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set only, whereas the denotational semantics additionally model (finite and infinite) failure. The 
first declarative semantics for HCL was proposed by van Emden and Kowalski in (vEK76] (see 
also (Llo87]). In their approach, interpretations are sets of ground atoms and the least fixed-point, 
which is equivalent to the least Herbrand model of the program, characterizes the validity of the 
ground atoms only. The construction in (FLPM89] extends this approach in that interpretations 
may also contain non-ground atoms. Therefore Vee can also express the validity of so-called generic 
atoms, i.e., atoms of the form p(x) . 

1.4 The mathematical tools 

We work mainly in the framework of complete metric spaces, in which we follow the tradition 
initiated by De Bakker and Zucker in (dBZ82] . The metric approach is particularly useful in those 
situations where (sets of) sets of sequences occur, since these can be supplied with a standard 
metric. This is the case in the operational and (all but one) denotational models, since they 
describe in addition to success behavior also (finite and infinite) failure behavior, for which the use 
of sequences seems natural. The metric structure of our semantic universa is exploited in two ways: 
first, it enables us to introduce both our models and our semantic operators as the (by Banach's 
theorem) unique fixed-points of so-called contractions . Secondly, this uniqueness implies that in 
order to prove the equality of two models, it is sufficient to show that they are both a fixed-point 
of the same contraction . It is in particular this second point that distinguishes between the metric 
and the more usual partial order (or lattice) approach: a continuous operator on a complete partial 
order has a (least) fixed-point but may have more than one. Therefore it is there more involved to 
prove such equalities. (Cf. [dV90].) We shall use ordered structures in those cases where we want 
to describe only success behavior, such as the declarative semantics. 

1.5 Comparing the models 

After having introduced all these models, we shall make a precise and complete comparison. The 
two operational models are related to the corresponding two denotational models, as just men­
tioned. The main result of the paper consists in establishing a connection between the first deno­
tational model, VFI , and the declarative model Vee. This is done in two steps. 

First we shall relate VF1 and VMP · To this end, an intermediate denotational model I is 
introduced, to which both are then related. Secondly, and this is the more difficult part, VMP and 
Vee are compared. Again an intermediate denotational semantics, called Des (CS for computed 
substitutions) is introduced . It is essentially a model for maximal parallelism, like VMP, but 
does not deliver sets of sequences of substitutions, but sets of single substitutions only. As a 
consequence, it only models success behavior. The relationship between VMP and Des is fairly 
easy; the only technical problem is that the first model is defined as the fixed-point of a contraction 
on a complete metric space, whereas the latter is given as the least fixed-point of a continuous 
function on a complete lattice. Finally, Des and Vee are related . Although their connection is 
intuitively obvious, it takes some (technical) effort to make this precise. 

At the end of our paper, we mention some consequences that can be deduced from the 
various relations between the different models. The most important of these is that we can easily 
establish a proof of the soundness and completeness of the declarative semantics with respect to 
the success set (which was derived from OF1). In this way, we find a fairly transparent alternative 
to the equivalence proof given in [FLPM89], the latter being quite complicated. The main problem 
is the contrast between the bottom-up and (maximally) parallel nature of the declarative semantics 
and the top-down and interleaving nature of the operational semantics. The intermediate models 
that we have introduced above allow for a decomposition of this proof into several steps, and thus 
give some insight into the contrasting concepts involved . 
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2 Mathematical preliminaries 

We assume the following notions to be known: complete metric space, continuous function on a 
metric space, compact subset of a metric space. (The reader might consult, e.g., [Eng77] .) We 
shall also use the following notions from order theory: complete partial order (CPO), complete 
lattice, continuous function on a CPO. 

Let (M1, di) and (M2, d2) be two complete metric spaces. A function / : M1 -+ M2 is called 
non-expansive if for all x, y E M1 

It is called contracting (or a contraction) if there exists f E [0, 1) such that for all x,y E M1 

Non-expansive and contracting functions are continuous. The following fact is known as Banach's 
Theorem: let (M, d) be a complete metric space and / : M -+ M a contraction. Then / has a 
unique fixed point, that is, there exists a unique x E M such that J(x) = x . 

The set M 1 -+ M2 is the set of all functions from M 1 to M2. It can be turned into a complete 
metric space by taking as a metric 

(All our metrics will have [O, l] as their range.) Let 

Pnco(M) = {X: X ~MI\ Xis non-empty and compact} 

We can turn Pnco(M) into a complete metric space by defining a metric dH, called the Hausdorff 
distance induced by d (the metric on M), as follows: For every X, Y E Pnco(M) 

dH(X, Y) = max{sup.,Ex{d(x, Y)}, supyEY{d(y,X)}} 

where d(x,Z) = infzEz{d(x, z)} for every Z CM, x EM. 
We shall often use the following notation: we write (x, y E) X when introducing a set X 

with typical elements x and y. 
A typical example of a complete metric space that we shall often use is the set ( w1, w2 E) 

A 00 = A* U A"' of all finite and infinite words over an alphabet A, supplied with a metric d given 
by 

d(wi,w
2

) = 2- sup{k: w , (k)=w2(k)} 

where w(k) denotes the prefix of the word w of length k. We denote the usual concatenation of 
two words by w1 · w2 . 

3 The language HCL 

We only give an informal introduction to the language HCL. For further details we refer to [Llo87, 
Apt87]. 

The sets Term of terms, (A,B,H E) Atom of atomic formulas (or atoms), and (iJ,u,-y E) 
Subst of substitutions are defined as usual. Elementary atoms (EA tom) are of the form p(x), where 
p is a predicate and i is a tuple of distinct variables. A definite clause is a construct of the form 
H - B1, ... , Bn (n ~ 0), where H and each B; is an atom; H is called the head and B1, ... , Bn 
(also denoted by B) the body of this clause. An HCL program W is a finite set of definite clauses. 
A goal statement (or goal) is a construct of the form - A 1 , ... ,An (n ~ 0), where each A; is an 
atom. If n > 0 we denote - A1, . . . , An also by - A. If n = 0 we have the so-called empty goal, 
and we write □ . The set of all goals is denoted by Goal. 

We have the usual notion of most general unifier of two atoms A and H , denoted by 
mgu(A,H). For the composition of two substitutions we write iJ1{}2 . For technical convenience, 
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we shall throughout this paper consider only idempotent substitutions, i.e., satisfying{}{} = ,{} (see 
(Pal89] for some discussion on this point). The set of variables occurring in the atom A is indicated 
by Var(A). For an atom A and a substitution ,{} we write {}IA for the restriction of,{} to Var(A). 
The empty substitution is denoted by f. 

The classical operational semantics of HCL programs is based on the notion of refutation. 
Let G =+- A1, ... , Am be a goal and let H +- B1, .. . , Bn be a (properly renamed variant of a) 
clause in the program W. Assume that Ai and H are unifiable with most general unifier{}. Then 
the goal 

is derivable from G by one resolution step. A repeated application of such a resolution step is 
called a derivation. A derivation is successful (and called a refutation) if it ends with the empty 
goal D; it is failing if no further reductions are possible while the empty goal has not been reached; 
and it is infinite otherwise. A selection rule is a function that gives for each goal the atom to be 
reduced. A derivation according to a certain selection rule is called an SLD-derivation. A selection 
rule is fair if and only if all the atoms in all the possible goals generated in SLD-derivations are 
eventually selected. Classically, the (operational) semantics of an HCL program is defined by three 
sets : 

• the success set (Oss), containing all the atoms that have a refutation, instantiated by the 
last substitution (the so-called computed answer substitution) . 

• the finite failure set (OFFS), containing all the atoms for which all the fair SLD-derivations 
are failing (see (AvE82]). 

• The infinite failure set (01Fs), containing all atoms, for which there are no successful deriva-
tions and there is at least one fair infinite derivation. 

The notion of success set given above is not completely satisfactory for characterizing the opera­
tional behavior of a logic program. In the present paper, we use a different notion of success set: 
we take the one introduced in [FLPM88, FLPM89], which contains all the elementary atoms that 
have a refutation, instantiated by the computed answer substitution (see the next section and that 
on the declarative semantics). 

4 Operational semantics 

We present two operational semantics for HCL, which will both be based on a labelled transition 
system (in the style of (HP79]) . The first one models interleaving and uses a breath-first selection 
rule, which is fair. The second operational semantics, in which all the atoms occurring in a goal 
are reduced at the same time, describes maximal parallelism. Throughout the rest of this paper, 
we assume the program W to be fixed. 

4.1 Interleaving 

First we introduce a labelled transition system for fair interleaving, on which our first operational 
semantics will be based. 

Definition 4.1 Let ( Goal, Subst,-+) be the labelled transition system, of which the transition re­
lation -~ Goal x Subst x Goal is defined as the smallest relation satisfying the following aziom: 

- ,, - -
+- A,A --+ +- A{},B{} 

- " - - -{As U8ual, we write +-A--+<- B rather than (+-A,{},+- B) E--+.) Here{}= mgu(A,H) and 
H +- B is a clause of W . We assume this clau8e to be renamed such that A, A and H have no 
variables in common. 
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Note that in the above axiom, a breath-first selection rule is used. In this way, fairness is 
automatically ensured. This left-to-right strategy does not impose any restrictions; we still get all 
possible fair behaviors. This can be proved by making use of the so-called switching (or square) 
lemma (see (Llo87)) . Another feature of the above transition system is the fact that the computed 
substitution (above the arrow) is applied to the goal at the right of the arrow. This ensures that 
all subsequently computed substitutions will be consistent with (i.e., extensions of) the current 
one. 

Based on this transition system we define an operational semantics OFI : Goal -+ PsT, which 
associates with a goal a set of sequences of substitutions. The semantic universe (X, YE) PsT (ST 
is an abbreviation for streams) is given by 

PsT = Pnco(Subst6t) 

where Subst6\ the set of finite, infinite and deadlocking sequences (or words, or streams), is defined 
by 

(v,w,z E) Subst6t = Subst• U Subst"' U Subst• • 8 

As a metric on PsT we take the Hausdorff metric induced by the standard metric on sequences (see 
the preliminaries). The empty sequence is denoted by ..\ and the concatenation of two sequences 
w1 and w2 by w 1 ·W2. To denote failure we have added to the set of substitutions a special element 
8. We postulate for any substitution {) that {)8, the composition of {) and o, equals 8; for any 
sequence of substitutions v we have that 8 • v, the concatenation of 8 and v, is equal to 8. Each 
sequence represents a particular computation that corresponds to a specific choice of clauses. The 
elements of such a sequence represent the partial results of the computation. Finite sequences not 
ending in 8 (elements of Subst+) correspond to successfully terminating computations (refutations). 
Sequences ending in 8 (in Subst• • O) represent failing computations. Infinite sequences (in Subst"') 
are associated with infinitely failing computations. 

Definition 4.2 Let OF1 be the unique fixed point of the contracting operator 4>FJ : ( Goal -+ PsT) -+ 

(Goal-+ PsT ), which is given by 

4>F1(F)[D] 

4>F1(F)[+- A] = 
{f} 

- - ~ - -U{ {) · ({)~FI F[A']) : +- A --++- A'} U { o : +- A f----+} 

Here ~F1: Subst x PsT-+ PsT is defined by{) ~FIX={{) ~FI x : x EX}, with 

{) ~FI (a-. z) = ({)a-).({) ~FI z) 

The contractivity of 4>FI in the above definition is straightforward. The compactness of 
4>F1(F)[+- A] follows from the fact that only finitely many transitions are possible from +- A. 

The definition of OF1[□] is obvious. For a non-empty goal +- A we have that OF1[+- A] 
equals { o} if there are no transitions possible from +- A (indicated by +- A f----+ ). Otherwise, 
OFI[+- A] contains all sequences that start with{) and continue with a sequence stemming from 
OFI[+- A'], in which every element is composed with{)_ The latter is caused by the application of 
{) ~FI to OFI[+- .A'], which is added because we want to collect the total effect of all intermediate 
substitutions. 

The definition has been presented in a fixed-point format, because this will ease the compar­
ison of OF1 with other models still to come. We could, however, have given a more direct definition 
based on transition sequences. A second remark concerns the use of the somewhat abstract oper­
ation {) ""FI. This could have been avoided as well by using a different type of transition system, 
in which a configuration <+- A,a- > would consist of both a goal and a substitution. The latter 
could then be used to store all the bindings found sofar. The axiom corresponding to the one above 
would be 

< (+- A,A), a>--+<(+- .A,B),a{) > 
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with f3 and iJ as above. 
The following counter example shows that OF1 is not compositional. Consider the following 

program 

It is easy to see that with respect to this program OF1[+- p(x)] = OF1[+- q(x)l But, on the other 
hand , we have {x/a}6 E OF1[+- r(x) , p(x)] \ OFI[+- r(x),q(x)] . 

4.2 Success, finite failure and infinite failure sets 

From the operational semantics OF1 we can derive the success set, the finite failure set, and the 
infinite failure set in the following way: 

{p(x)t9 : p(x) E EAtom A t9 E last(OFi[+- p(x)] n Subst+ )} 
{A : OF1[+- A]~ Subst• · 6} 
{A : OF1[+- A] n Subst• = 0 A OF1[+- A] n Substw # 0} 

In the first set, the function last takes from a set of sequences the last elements (not equal to 6). 
Those elements represent the computed answer substitution for successful refutations. The notion 
of success set we consider here is introduced in [FLPM89, FLPM88) and extends the standard 
one given in [Llo87, vEK76) . (See also the section on the declarative semantics for some more 
discussion.) The second set, OFFS, contains those atoms that give rise to only failing computations, 
i.e., sequences of substitutions that end in 6. The last set, 01Fs, contains the so-called infinitely 
failing atoms ; those give rise to no successful computations and at least one fair infinite one. 

4.3 Maximal parallelism 

The next execution model we consider for our language is called maximally parallel. Each step in 
the execution of a goal consists conceptually of two stages : first, all atoms present in the goal per­
form one step independently. Secondly, the substitutions resulting from these local computations 
are composed in order to obtain the global outcome of the computation . For this composition 
we introduce a new operator on substitutions called parallel composition. (Sometimes it is called 
reconciliation operator; Cf. [ J ac89].) It is defined as follows. 

Definition 4.3 We define the parallel composition of two substitutions t9 and a , denoted by {Jo a, 
by 

i} 0 a_ { mgu(S(iJ) U S(a)) 
- 6 

if it exists 
otherwise 

where S(t9) = { < x, t >: x/t E t9} . Furthermore we define t9 a 6 = 6 o 1'J = 6. {Note that the notion 
of mgu is extended to sets of pairs of terms.) 

This operator tests whether the two substitutions are compatible and, if this is the case, 
yields the minimal substitution containing the same information (bindings) as these substitutions. 
Otherwise it yiels 6. It is straightforward to show that o is commutative , associative, and idem­
potent (modulo the renaming of variables) . 

The proof of the correspondence of the interleaving and the maximally parallel semantics 
will make use of the following property of this operator. 

Lemma 4.4 For all substitutions t91 and t92 

iJ1 01'J2 = t91mgu(S(t92)1'Ji) 

where S(iJ2)'191 = {< x'l91 , t'l91 >: < x,t >E 8('192)} . 
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For the proof of this lemma and additional discussion of o we refer to [Pal89]. The definition 
of o is illustrated by the following example. 

Example 4.5 Let{Ji = {x/f(y,a), z/g(b)} and..?2 = {x/f(b,w), z/g(y)}. Then 

1?1 01?2 = mgu{< x,f(y,a) >, < z,g(b) >, < x,f(b,w) >, < z,g(y) >} 
= {x/ f(b,a), z/g(b), y/b, w/a} 

If we take '1?1 as before and.i2 = {x/f(a,w), z/g(y)} we have 

mgu{< x,f(y,a) >, < z,g(b) >, < x,f(a,w) >, < z,g(y) >} 
6 

Next we introduce a transition relation for maximal parallelism. It is specified by the fol­
lowing axiom and rule. 

Definition 4.6 We define 

1. 
+-A ..!.....-f3 

where .i = mgu(A, H) and H +- f3 is an ( appropriately renamed) clause of W. 

2. 
- ,, - - u -

+-A---++- A', +- B ---++- B' 

A- B- t'Jou A-, B-1 
+-- ' __..,_ ' 

Note that in the conclusion of the rule above, we can have that 'I? o a equals 6. This means 
that the two substitutions are not compatible. 

Definition 4. 7 The operational semantics ('.)MP is defined as the fixed point of the contraction 
'PMP : ( Goal -+ PsT) -+ ( Goal -+ PsT), given by 

{f} 'PMp(F)[□] = 
'PMP(F)[+- A] = - - ,, - -

LJ{l? · ('!?"-+MP F[+- A']):+- A---++- A'} U {6: +- A f---+} 

Here "-+MP: Subst x PsT -+ PsT is defined by .i "-+MP X = { .i "-+MP x : x E X}, with 

.i "-+MP <1 • Z .i o a · ( .i "-+MP Z) 
if .i o a= 6 
otherwise 

The definition of ('.)MP is very similar to that of ('.)FI· Two differences should be noticed here. 
First, the transition relation that is used is different from the one in the definition of ('.)FI; secondly, 
the definition of the function 'I? "-+MP differs from the fuction 'I? "-+FI. It composes 'I? in parallel with 
the elements of ('.)Mp[+- A'], as opposed to 'I? "-+FI, which uses ordinary composition. Here we use 
the parallel composition, because in the transition system above, the substitution above the arrow 
is not applied to the atom at its right-hand side. Therefore, the next computation step will not 
take this substitution into account and the next substitution that is computed has to be reconciled 
with the previous one. 
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5 Denotational semantics for interleaving 

In this section, we develop a denotational semantics VFI for the operational interleaving semantics 
OFI• We start by introducing the complete metric space PFr, which is defined by 

PF1 = Pnco(((Subst x Subst6)+)'x,) 

with a metric on PFI similar to the one on PsT • It consists of sets of (finite and infinite) sequences 
of finite sequences of pairs of substitutions. Such a sequence (called a vector) we denote by 
< vi, . . . , Vn, .. . >, where each Vi is a finite sequence of pairs of substitutions. We shall use 
the following prefixing operator, which composes a vector containing one pair of substitutions, 
< ( t?1, t?2) > and a vector < vi, v2, ... >, and is defined by 

< ('!?1,'!?2) > · < v1,v2, ... >=< (t?1,'!?2),v1,v2, ... > 

We use pairs of substitutions to represent the basic ( unification) steps in the computation. The 
first substitution of a pair is called the input substitution and can be seen as an assumption on the 
behavior of the environment or, in other words, the computation that has taken place sofar. The 
second one, called the output substitution, denotes the result of this computation step. As we shall 
see below, it will be the substitution resulting from a unification. Failure of such a unification is 
denoted by 6. (An alternative would have been to use functions from substitutions to substitutions. 
This would yield a semantics that is less abstract, i.e., more discriminating.) 

Next we explain why we use vectors (instead of just sequences of pairs of substitutions). 
When we define a compositional semantics we introduce a semantic merge operator !!FI• Opera­
tionally, a goal is executed by performing from left to right one step of each atom in the goal. The 
operator IIFI is defined such that it mimics this strategy. If we had sequences of pairs of substitu­
tions in our basic domain we would not be able to do this: we would not know how many processes 
(atoms) contributed to this goal. Vectors have this kind of information. The intuition is that the 
n-th element of a vector represents the n -th left to right swap of the goal. Hence the operator 
IIFI combines two vecors by concatenating their elements, i.e., their sequences of substitutions, 
component-wise. 

Definition 5.1 We define !!FI : .Pr1 x PF1 -+ PF1, for every X, YE PF1, by 

X IIFI Y = LJ{x IIFI Y: x E X,y E Y} 

where 

Now we are ready to give the definition of the denotational semantics VFI • 

Definition 5.2 We define VFI : Goal-+ .Pr1: 

= {>.} 
= { < (t?, t?mgu(At?, H)) > · VF1[+- .B] : t? E Subst, H +-BE W} 

U{ < (t?, 6) >: \:/H +-BE W[mgu(At?, H) does not exist]} 
= VF1[+-A1] IIFI VF1[+- A2] 

This recursive definition can be justified with the use of contractions in the standard way. (See 
Definition 6.2 for an example.) 

In section 8, the correctness of VFI with respect to OFI will be proved. 
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6 Denotational semantics for maximal parallelism 

We next introduce a denotational variant, named 'DMP, of the operational model OMP for maximal 
parallelism. Unlike the case of fair interleaving, we need not introduce a new semantic universe; 
we can again take PsT. Recall that PsT is defined as 

PsT = Pnco(Subst6t) 
Before we introduce the model VMP, we first extend the parallel composition operator 8 to a 
parallel operator IIMP defined on sets of sequences of substitutions. 

Definition 6.1 We define IIMP: PsT x PsT-+ PsT by, for all X and Y in PsT, 

XIIMPY=LJ{xllMPY: xEX,yEY} 

Here x !IMP y is defined by the following cases. 

= 

= 

if 0-1 8 0-2 = 6 
otherwise 

if 0-1 8 0-2 = 6 
otherwise 

Note that IIMP is recursively defined. Formally, we can introduce it as the unique fixed point 
of a suitably defined contraction . 

Now we can introduce the semantics VMP· It turns out to be equal to OMP, which will be 
proved in section 8. 

Definition 6.2 Let the function VMP : Goal -+ PsT be the unique fixed point of the contraction 
'VMP : (Goal-+ PsT) -+ ( Goal -+ PsT ), given by 

'VMp(F)[D] = {f} 

'VMp(F)[..-A] = LJ{mgu(A,H) "-'MP F(..- B): H ..- BEW} U 
{6 : 'r/H ..- BEW mgu(A,H) does not exist} 

It is not difficult to show that 'VMP in the above definition is contracting; a proof would make 
use of the fact that IIMP is non-expansive, an observation that on its turn is rather straightforward. 

7 Declarative semantics 

In this section, we recall the definition of the declarative semantics Vee introduced in [FLPM89]. 
The term declarative means that the program is seen as a set of first order formulas and that the se­
mantics is intended in the model-theoretic sense, i.e ., characterizing the set of logical consequences 
of the program. This semantics is obtained as the least fixed-point of a continuous transformation 
T on the interpretations of the program. Such a transformation is called immediate consequence 
operator because for an interpretation I , the set T(I) contains all the (atomic) consequences ob­
tained from the (atomic) formulas that are true in I by a one step inference from the program. The 
first declarative semantics for HCL was proposed by van Emden and Kowalski in [vEK76] . In their 
approach, interpretations are sets of ground atoms and the least fixed-point, shown equivalent to 
the least Her brand model of the program, characterizes the validity of the ground atoms only. The 
construction in [FLPM89] extends this approach in that interpretations contain also non ground 
atoms and therefore the least fixed-point allows to express validity for so-called generic atoms. 

Next we give the construction of [FLPM89] in more detail. We refer to that paper for the 
proofs of the results we mention here. For Theorem 7. 7 a proof will be presented in section 9. 
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Definition 7.1 The partially ordered set of (extended) interpretations, with typical element I, is 
defined as (Pnec, ~), where Pnec = P(Atom). 

Proposition 7.2 (..Pnec, ~) is a complete lattice. 

Definition 7.3 The (extended) immediate consequence operator T : Pnec -+ Pnec, is defined by 

T(J) = {Hmgu(f3,fl1): H +- f3 E W, f3' E J} 

Proposition 7 .4 The operator T is continuous. 

Since T is continuous, its least fixed-point lfp(T) exists; moreover, lfp(T) = Un :2'.0 T"(0), 
where T"(I) is defined by 

The declarative semantics is defined as follows. 

Definition 7.5 Dec= lfp(T) 

The next theorem gives the relation between the model-theoretic semantics of W and Dec. 

Theorem 7.6 For every atom A, 

W FA (i.e., A is a logical consequence ofW) iff 

:3A' E Dec :3'11 E Subst [A'i1 = A]. 

Finally, the following result expresses the relation between Dec and the success set . 

Theorem 7. 7 Dec = Oss 

8 The relations between the models 

8.1 The relations between the denotational and the operational models 

8.1.1 Relating OFI and 'DFr 

We start with the relation between OF1 and DF1, the operational and denotational semantics based 
on interleaving. They will be connected by the following abstraction operator. 

Definition 8.1 The operator /JFr : Subst6 -+ PFI -+ PsT is defined by /3Fr(h)(X) = {.A}, and for 
'11 f. 6, by 

/JF1('!1)({.A}) = 
/JFI(t1)(X) 

{ ,\} 
U{t11 · /JF1('!11)(Xc,,,..,, )) : x,,,,,,,) f. 0} 

(The well-definedness of /JFr can be established in the by now familiar way: it can be given 
as the fixed-point of a contraction.) The abstraction operator /JFr first selects from the set X the 
connected sequences, that is, those sequences such that the output substitution of a pair equals the 
input substitution of the following pair. From such a connected sequence it takes all the output 
substitutions. 

We have the following theorem relating OFI and DF1- (Recall that t: is the empty substitu­
tion.) 

Theorem 8.2 For every goal+- A we have /JFI(t:) o DFI[+- A] = OF1[+- A]. 
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Proof We prove .BFI(f) o 'DFI = OFI by showing that .BFI(f) o 'DFI is a fixed-point of the 
contraction 4>F1. Then the equality follows from Banach's theorem. We ommit the deadlock case, 
which can be taken care of straightforwardly. 

cpFI(.BFI(f) O 'DF1)[- A, A]= 

LJ{.i · (.i "-"FI (.BF1(f) o 'DF1[- A.i, B.i])): H .- B E Wand .i = mgu(A, H)} = 

(remark 1) 

LJ{.i · (.BFI(.i) o'DF1[.-A,.B]) : H .- BEW and .i = mgu(A,H)} = 

.BFI(f)(LJ{ < (f, .i) > ·('DF1[- A] IIFI 'DF1[- .B]) : 

H .- BEW and -a= mgu(A,H)}) = 

(remark 2) 

.BFI(f)(LJ{ < (f, .i) > ·'DFr[- .B] IIFI 'DFr[- A] : 

H .- BEW and .i = mgu(A,H)}) = 

.8FI(f)(LJ{ < (f, .i) > ·'DFr[.- .B] : 

H .- BEW and ,a= mgu(A,H)} IIFI 'DF1[- A])= 

.BF1(f)('DF1[- A] IIFI 'DFI[- A])= 

.BFI(f) 0 'DFI[- A, A] 

Remark 1 The identity .i "-"FI .BFI(f) o 'DF1[- A.i, B.i] = .BF1(.i) o 'DF1[- A, .B] is justified by the 
following observations. Let< vi,••· >E 'DF1[<- A,.B] be a connected sequence with its first 
pair of the form ( .i, .i'), for some .i'. It follows that v1 = < ( .i, 19191), .. . , ( 19191 . . . {) n-l, {){)1 ... .in) >, 
with .ii= mgu(Ai{){)1 ... .ii-l,Hi), for some Hi<- .B;. Here we have A1, . .. An = A,B. 
So for vt =< (f,{)i), ... ,({)1 ••• {)n-1,191 ... .in) > there exists a sequence< vL ... >E 
'DF1[<- A.i,B.i]. Now each pair occurring in< v2, ... >E 'DFr[- .81, .. . ,.Bn] is of the 
form ({).i',{){)'.i"), where .i" = mgu(B{).i',H), for some atoms Band H. But due to the 
renaming mechanism, which we implictly assume, we have that .i does not affect the vari­
ables of B. So we have that{)"= mgu(B{)',H) implying that we can eliminate{) from the 
sequence < v2 , ••• >. This argument could be formalized by the introduction of an explicit 
renaming mechanism. 

Remark 2 We show that .BFI(f)(< (f,{)) > · (X IIFr Y)) = .BFI(f)(< (f,{}) > · Y IIFI X). (For 
convenience, we write < Vn >n for < v1, v2, ... >.) 

.BFI(f)( < (f, .i) > . (X IIFI Y)) = 

< Wn >nE X, < Vn >nE Y}) = 

(from Definition 5.1 and Definition 8.1) 
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8.1.2 Relating OMP and VMP 

Next we prove the identity of the operational model OMP and the denotational model VMP for 
maximal parallelism. 

Theorem 8.3 OMP = VMP 

Proof Similarly to the proof of Theorem 8.2, it can be shown that VMP is a fixed-point of 
the contraction <l>MP, from which the theorem follows. 

8.2 Relating 'Dp1 and 'DMP 

In order to relate VFI and VMP, we introduce an intermediate semantics I : Goal -+ Pi, with 
Pi = Pnco((Subst6 +)00

), as the fixed-point of the contraction \JI : ( Goal -+ Pi) -+ ( Goal -+ Pi) 
defined as follows . 

Definition 8.4 We define 

= {f} 'll(F)[□] 

\Jl(F)[.- A] 

\Jl(F)[.-A1,A2] 

= { LJ{< mgu(A,H) > ·F(B) : H <- i3 E W} 
U{6: \:/H <- i3 E W mgu(A,H) does not exist} 

w(F)[.- Ai] II w(F)[.- A2] 

Here II is defined in a similar way as IIFI. 

Now VF1 and I are related by the following abstraction operator. 

Definition 8.5 We define a : PF1 -+ Pi by 

{We have omitted the case that X contains finite sequences.} 

This abstraction operator selects from each set those sequences that make no assumptions 
on the environment, i.e., of which all pairs have f (the empty substitution) as the first element. 

Theorem 8.6 I = a o VFI 

Proof It can be shown that a o VFI is a fixed-point of \JI . 

We continue the equivalence proof of VF1 and VMP by relating I and VMP. For this purpose 
we again need an abstraction operator. 

Definition 8. 7 We define O:MP : Pi -+ PsT by 0:MP ( < s1, s2, ... >) = ( o s1) · ( o (s1 · s2)) · · ·, where 
Si E Subst6 + and o 191 · · · 1911. = 191 o • • · o 1911.. 

This operator takes for each word 191 • • • 19n E Subst6 + the parallel composition, thus turning 
it into one maximally parallel step. Further, it passes through the result of previous steps to the 
next one to be considered. This mimics the behavior of the "->MP operator in the definition of 
VMP· Now we can establish the following theorem. 

Theorem 8.8 VMP = O:MP o I 

Proof Again it can easily be shown that 0:MP o I is a fixed-point of WMP· 

Combining the two above theorems yields the following corollary. 

Corollary 8.9 VMP = o:MP o a o VFI 
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8.3 Relating VMP and Vee: an intermediate model 'Des 

We introduce an intermediate denotational semantics Vcs (CS is an abbreviation for computed 
substitutions), to which both VMP and Vee will be related. It can be seen as a denotational variant 
of Vee, which yields for every goal the set of computed answer substitutions; since it delivers a set 
of substitutions, rather than a set of sequences of substitutions, it models only success behavior. 
Like VMP it is a model for maximal parallelism. Formally, Vcs is introduced as the least fixed-point 
of a continuous function on a complete lattice, which we introduce next. 

Definition 8.10 The set Pcs, with typical element F is given by Pcs = Goal-+ P(Subst). 

The set P(Subst) of sets of substitutions, is a complete lattice with respect to set inclusion. 
Thus Pcs is also a complete lattice, when supplied with the inclusion relation induced by the 
one on P(Subst): Ji ~ h iff V - A[fi(- A) ~ h(- A)]. Since we do not need to consider 
sequences, a lattice structure, rather than a metric one, suffices as a domain for 'Des. 

The least upper bound of a set F ~ Pes, denoted by LJFEF• is defined by 

( LJ )[-A]= LJ F[- A] 
FEF FEF 

Before giving the definition of 'Des we first extend the definition of c3 , the operator for the 
parallel composition of substitutions, to sets of substitutions. We put, for X, Y E P(Subst), 

XoY={.ioa: .iEX,aEY,.ioa:/-6} 

The following lemma states that it is continuous, a fact that we shall need in the definition 
below. 

Lemma 8.11 Let {Xm}m~O, {Yn}n~O be chains in P(Subst) ('t/k [Xi. ~ Xi.+1 /\ Y,. ~ Yi.+1]) . 
Then u,.~o(X,. o Y,.) = (Um~O Xm) o (Un~O Yn) -

Next we introduce Vcs : Goal -+ P(Subst) . 

Definition 8.12 Let 'Des : Goal-+ P(Subst) be the least fixed-point of the continuous (with respect 
to the lattice structure on Pes) operator Wes : ( Goal -+ P(Subst)) -+ ( Goal -+ P(Subst)), given 
by 

{t:} Wes(F)[□] 

Wes(F)[- A] 

Wcs(F)[- A1, A2] 

= LJ{(mgu(A,H) o F(- B))lvar(A) : H - BEW} 

Wes(F)[- Ai] c3 Wes(F)[- A2] 

The continuity of Wes is a direct consequence of Lemma 8.11. 

8.4 Relating VMP and 'Des 

The relation between the models 'DMP and 'Des is described by the abstraction operator 

acs: PsT-. P(Subst) defined by acs(X) = last(X n Subst+) 

(The function last used above yields for a set of finite sequences the set of their last elements.) We 
have the following theorem. 

Theorem 8.13 Ves = aes o VMP 

The theorem is immediate from the following two lemmas, which can be proved by induction 
on n. Let the functions ..1. and /, .. be defined by ..1. ( - A) = 0 and /, .. ( - A) = { t:"'}, for all - A. 
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Lemma 8.14 For all n: W8s(..l) = (aes O WMp)(/,w) 

Lemma 8.15 For all n and +- B; ( aes O WMP) (f,w )( +- B) ~ ( aes O w~t,1) (f,w )( +- B) 

Proof of Theorem 8.13: For any +- B we have 

(aesoVMP)(+-B) = aes(lim 'VMp(f,w)(+-B)) 
n-+oo 

= (Lemma 8.15) aes(LJ WMp(J, ... )( +- B)) 
n 

n 

(Lemma 8.14) LJ Wcs(..l)( +- B) 
n 

= Des(+- B). 

8.5 Relating Des and Dec 

D 

Next we shall compare the denotational semantics modeling the computed answer substitutions, on 
the one hand, and the declarative semantics, on the other. The relation will be given by defining 
two uniform functions, v and µ and by showing that Vee = v(Ves) and Des = µ(Vee) . Here 
uniform means that these two functions do not depend upon the specific program W. 

The sketch of the proof is the following: first we consider a sub-domain P of the domain of 
Wes such thatµ and v make T and Wes to commute on this domain, namely: Wes(µ(J)) = µ(T(I)), 
and v(Wes(F)) = T(v(F)) for all FE P. Then we show that v allows to simulate step by step the 
fixed-point construction of Wes by T and vice-versa, namely: for each n ;:::: 0, T"(0) = v(Wcs(Fo)) 
and Wcs(Fo) = µ(T"(0)) (where Fo is the minimal element of P). Finally, by continuity of v and 
µ, we can commute also the least upper bounds of these chains, so that lfp(T) = Un >o T"(0) = 
v(Un :::-:o Wcs(Fo)) = v(lfp(Wes)) and lfp(Wes) = Un :::-:o Wcs{Fo) = µ(Un :::-: o T"(0)) = µ(Tfp(T)). 

We use the following notation: Var(A) is the set of variables occurring in A. Dom(iJ) (the 
domain of iJ) is the set { x : xiJ f. x}. Cod ( rJ) ( the codomain of rJ) is the set UzEDom( 1') Var( xiJ) . 
If Xis a set of substitutions and A is an atom, then XA is the set {rJA : iJ EX}, where rJA is any 
renaming of 1'J with respect to A, i .e. , such that 'v'x[ Var(xrJ A) n Var(A) = 0] . 

Definition 8.16 P is the subset of Pes = Goal --+ P(Subst) of all elements F that satisfy the 
following properties. 

Rl F[□] = {E} 

R2 'v'iJ [Dom(rJ) ~ x =:> (.i o F[+- p(x)]p(z)1') lp(z)1' = F[+- p(x).i]] 

R3 F[+- A1, A2] = F[+- A1] o F[+- A2] 

R4 'v'A 'v'.i E F[+- A] [Dom(.i) ~ Var(A)] 

The motivation of these restrictions is of a technical nature: the set P will turn out to be 
isomorphic to the set Poec· The isomorphism pair,< v,µ >, will be defined later. R3 requires the 
information given by F about generic goals to be obtainable by the information about atomic goals. 
This correspond to the compositional nature of interpretations in Poec: the meaning of a conjunc­
tion is declaratively defined in terms of its conjuncts . R2 also reflects a kind of compositionality: 
the possibility to obtain the information about an instantiated atom from the uninstantiated one. 
Rl and R4 impose a sort of minimality on the information associated to a goal. 

The set Pis a complete partial order with respect to the ordering it inherits from Pes- This 
we prove next. 
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Proposition 8.17 (P, ~) is a complete partial order; the least upper bound of a chain (F,.),. is 
given by (U,. F,.. In other words, (P, ~) is a sub CPO of (Pes, ~) . 

Proof We have to show that for any chain (F,.),. in P, U,. F,. preserves the properties 
Rl-R4. Rl, R2 and R4 are obvious. R3 follows by lemma 8.11. □ 

Definition 8.18 

• The function 11 : P - Poec is defined by 

11(F) = {p(x)t9: ,9 E F[+- p(x)] I\ p(x) E EAtom} 

• The function µ : Poec - P is defined by 

= {t} µ(J)[D] 
µ(I)[..- A] 
µ(I)[..-A1,A2] 

= {mgu(A, A')IA: A' EI I\ Var(.A') n Var(.A) = 0} 
= µ(I)[..- .A1] o µ(I)[..- .A2] 

Remark 8.19 The functionµ is well defined, i .e., VIE Poec [µ(I) E P]. 

Proof Rl, R3 and R4 are trivial, and R2 is an immediate consequence of the following lemma. 

Lemma 8.20 Let rJ be an idempotent substitution, and assume Dom(rJ) ~ x. Let A be an atom 
such that Var(A) n { x} = 0 and Var(A) n Var( { xrJ}) = 0. Then 

(rJ o mgu(p(x),A)) lp(:!)1' = mgu(p(x)rJ,A) lp(z)1'· 

Proof The proof uses some elementary properties of idempotent substitutions (see [Pal89]). 

The following facts can be readily established. 

Proposition 8.21 The functions II and µ are continuous. 

Proposition 8.22 P is closed with respect to Wes, i.e., VF E P [Wes(F) E P] . 

The following result shows thatµ and II commute the functions Wes and Ton P . 

Lemma 8.23 

1. If FE P then 11(Wes(F)) = T(11(F)) 

2. If IE Poec then Wes(µ(!))= µ(T(I)) 

The functions II and µ allow to simulate, step by step, the fixed-point construction of Des 
in Dec, and vice-versa. There is only one difficulty: the fixed-point construction of Wes starts 
from the minimal element of Pes, that is the function F.1. such that for every A, F.1_ [..- A] = 0. 
Unfortunately, F.1. is not the minimal element of P, in fact F.1. (/. P. The minimal element of Pis 
the function Fo such that 

F. [ .._ A] = { { t} iff ..- ~ = □ 
0 0 otherwise 

However, the fixed-point of Wes can be also obtained by starting from Fo, as the following 
remark shows. 

Remark 8.24 We have Fo = µ(0) and Fo = Wcs(F.1_). 

Lemma 8.25 

1. Vn ~ 0 [T"(11(Fo)) = 11('l'cs(Fo))] 
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Proof By induction on n. 

Finally, we show the correspondence between 'Des and Vee 

Theorem 8.26 

l. Vee= v('Dcs) 2. 'Des = µ(Vee) 

Proof 
l. Vee lfp(T) 

= Un~O Tn(0) 

= Un~O Tn(v(Fo)) (by Remark 8.24, part 1) 

Un~O v(IJl88(Fo)) (by Lemma 8.25, part 1) 

v(Un~o(IJ!cs(Fo)) (by continuity of v) 

= v(lfp(\Jlcs)) (by Remark 8.24, part 2) 

v('Dcs). 
2. Similar to the previous one. 

9 Collecting the results 

□ 

After the long and exhausting previous section, the reader might be comforted by a schematic 
overview of the relationships that were established . We have the following equalities. 

OF1 = fJFI o 'DF1 

I O O 'DF1 

OMP = 'DMP = 0MP O I 

'Des oes O 'DMP 

'Des µ(Vee) 

Vee = v('Dcs) 

In Figure 9, these equalities are graphically represented . Moreover, it contains some arrows 
between OF1 and the sets Oss, OFFs and 01Fs, indicating that the definition of these sets is based 
on that of OFr-

Combining some of the equalities above, we find 

Vee= v(acs o OMP o a o 'DFr), 

a maybe somewhat complicated but precise relationship between the declarative semantics 'Dec and 
the denotational semantics 'DFI · From this the following theorem, which establishes the soundness 
and completeness of the declarative semantics, is fairly immediate. Thus an alternative is given 
for the quite complicated proof that is given in (FLPM89]. The fact that here the relationship 
between Vee and 'DF1 and, hence, between Vee and Oss has been decomposed into several steps 
makes the proof below more transparent. 

Theorem 9.1 A E Oss ¢:? A E 'Dec 

Proof 
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• 

Oss OFFS 

L 01FS 

OFI OMP 

f PFI = II 
Q 0MP acs -

VFI - I -vMP-Vcs µ -
A E Oss 

# (definition Oss ) 3p(x)3.i1 · · -.i,. E OF1[+- p(x)] : A= p(x).i,. 

# (OF1 = PF1 o VFI) 3p(x)3s1, ... , s1r. E VFI[+- p(x)]: 

Vee 

# (using .imgu(A.i, H) = .i o mgu(A, H), a direct consequence of Lemma 4.4) 

# (I= QO VFI) 

3p(x)3 <vi, ... , v1r. >EI[+- p(x)]: vi • .. v1r. = '!?1 .. •'!?,."A= p(x)(.ii o • .. o .i,.) 

# (VMP = 0MP o I) 3p(x)3.i1 ·· •.in E VMp[+- p(x)] : A= p(x).i,. 

# (Vcs = acs o VMP) 3p(x)3.i E Vcs[+- p(x)]: A= p(x).i 

# A E Vee 

D 
We deduce from the equalities above a second fact, which says that Oss, OFFs and 01Fs can 

be characterized in terms of OMP ( = VMP), instead of OFI. In other words, for the semantics of 
an HCL program, it does not matter whether we consider an interleaving or a maximally parallel 
model. Although this might seem not very surprising, it is not completely straightforward, since 
OMP and OFr have a different deadlock behavior: the former delivers deadlock for more goals than 
the latter. (See the counter example at the end of section 4.1.) 

Theorem 9.2 We have the following equalities. 

Oss = {p(x).i: p(x) E EAtom I\ .i E last(OMP[+- p(x)] n Subst+)} 

OFFS = {A: OMp[+- A]~ Subst• · 6} 

01Fs {A: OMp[+- A] n Subst• = 0 /\ OMP[+- A] n Subst"' f. 0} 

Proof Similar to that of the previous theorem. 
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