
Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

F.S. de Boer, J .N. Kok, C. Palamidessi , J.J.M.M. Rutten

From failure to success: comparing a denotational and a
declarative semantics for Horn clause logic

Computer Science/Department of Software Technology Report CS-R9019 May

'
Centrum vom Wisk.,. ;r::- en lntorrnatic.:;o

lf'ne!•o,-."'t:.•,...,.

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11 ,
1946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

From Failure to Success: Comparing a Denotational and a
Declarative Semantics for Horn Clause Logic *

F.S. de Boer

Department of Computer Science, Technical University Eindhoven,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

J.N. Kok

Department of Computer Science, University of Utrecht,

P.O. Box 80089, 3508 TB Utrecht, The Netherlands

C. Palamidessi

Dipartimento di Informatica, Universita di Pisa,

Corso Italia, 40, 56125 Pisa, Italy

J.J.M.M. Rutten
Centre for Mathematics and Computer Science,

Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Abstract

The main purpose of the paper is to relate different models for Horn Clause Logic: opera­
tional, denotational, declarative. We study their relationship by contrasting models based on
interleaving, on the one hand, to models based on maximal parallelism, on the other. We
make use of complete metric spaces as an important mathematical tool, both in defining and
in comparing the various models .
Key words and phrases: operational semantics, denotational semantics, declarative seman­
tics, parallelism, logic languages, correctness, complete metric spaces, partial orders.
1985 Mathematics Subject Classification: 68Q55, 68Q10.
1987 Computing Reviews Categories: D.1.3, D.3.1, F.1.2, F.3.2.

1 Introduction

The most basic example of a (parallel) logic programming language is Horn Clause Logic (HCL) . An
HCL program is a finite set of definite clauses of the form H +- B, where His an atom and lJ is a
finite sequence of atoms. We shall introduce three different types of models for HCL: operational,
denotational, and declarative. The first and the latter were already introduced elsewhere {see
below). In addition to the definition of two denotational models for HCL, the contribution of
this paper consists of a systematic comparison of the different models . In particular, we shall
establish a precise relationship between the denotational and the declarative models. Although

•Part of this work was carried out in the context of ESPRIT Basic Research Action (3020) Integration. The
research of C . Palamidessi was partially supported by the Dutch REX (Research and Education in Concurrent
Systems) project .

Report CS-R9019
Centre for Mathematics and Computer Science 1
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

we have been recently investigating various models for more advanced parallel logic languages like
GHC and Parlog (dBKPR89a, dBKPR89b], which contain constructs like the commit operator
and annotations for communication, it is necessary to understand the precise relationship of these
models first at the basic level of HCL.

1. 1 The operational models

We shall consider two operational models, which are both based on a transition system (in the so­
called SOS style [HP79]). The first one, called OFr (FI for fair interleaving), corresponds to the stan­
dard (sequential) operational semantics of HCL based on SLD resolution (like in [vEK76, Llo87]);
it uses a fair derivation rule (reduction from left to right) in order to model also failure behav­
ior. From OFr we can deduce the three sets that are classically used to describe the operational
behavior of an HCL program : the success set, the finite failure set, and the infinite failure set.

The second operational semantics, OMP, models maximal parallelism; the derivation rule
used here amounts to executing in parallel one resolution step for each atom in a goal. (In this
way, fairness is automatically ensured .) Then a goal, consisting of several atoms, can do one
step by composing all local substitutions of the individual atoms in parallel by means of a parallel
composition operator o for substitutions (introduced in [Pal89]). It has two effects: it tests whether
these substitutions are mutually compatible and, if so, it takes the union of all the bindings. This
model is of interest because it could serve as a basis for a parallel implementation of HCL based
languages; furthermore, it can be seen as a starting point for the formalization of additional features
such as atomic unification (Cf. [Sha83]). Technically, OMP will play a role (or, more precisely,
the denotational model corresponding to it) as an intermediate in establishing the correspondence
between OFr and the declarative model, to be presented in a minute.

For both operational models, we shall introduce corresponding denotational models. Their
main characteristic is compositionality: the meaning of the conjunction of two goals will be com­
puted by composing the meanings of the separate goals . (Note that we do not study composition­
ality with respect to the union of programs; this we consider to be a separate issue .)

1.2 The denotational models

In order to be compositional, the denotational models are considerably more complicated than
their operational counterparts. This is mainly due to the difficulty of describing failure behavior in
a compositional manner. The denotational model corresponding to OFI will be called VFr - In order
to allow for the definition of an operator for parallel composition, corresponding to the conjunction
of goals , the codomain of this model (also called its semantic universe) will be more complicated
than the operational one . Both for OFr and OMP it suffices to consider sets of sequences (or words)
of substitutions. Here, we need sets of sequences (or vectors) of sequences (or words) of pairs of
substitutions. We shall prove the correctness of VFr with respect to OFr by showing that the latter
equals the composition of an abstraction operation with the former.

Next a second denotational model, called VMP, is introduced, which equals the operational
semantics OMP . Its semantic universe is the same as the one of OMP , which is simpler than that of
VFr- The semantic operator for the parallel composition (conjunction) of two goals is the operator
o described above, but now extended to sets of sequences of substitutions.

1.3 The declarative model

The third type of model we describe is the declarative semantics. We recall the definition of
the declarative semantics Vee as introduced in [FLPM89]. The term declamtive means that the
program is seen as a set of first order formulas and that the semantics is intended in the model­
theoretic sense, i .e., characterizing the set of logical consequences of the program. This semantics
is obtained as the least fixed-point of a continuous transformation T on the interpretations of the
program, the so-called immediate consequence operator. An important distinction between the
denotational models above and the declarative semantics is that the latter describes the success

2

set only, whereas the denotational semantics additionally model (finite and infinite) failure. The
first declarative semantics for HCL was proposed by van Emden and Kowalski in (vEK76] (see
also (Llo87]). In their approach, interpretations are sets of ground atoms and the least fixed-point,
which is equivalent to the least Herbrand model of the program, characterizes the validity of the
ground atoms only. The construction in (FLPM89] extends this approach in that interpretations
may also contain non-ground atoms. Therefore Vee can also express the validity of so-called generic
atoms, i.e., atoms of the form p(x) .

1.4 The mathematical tools

We work mainly in the framework of complete metric spaces, in which we follow the tradition
initiated by De Bakker and Zucker in (dBZ82] . The metric approach is particularly useful in those
situations where (sets of) sets of sequences occur, since these can be supplied with a standard
metric. This is the case in the operational and (all but one) denotational models, since they
describe in addition to success behavior also (finite and infinite) failure behavior, for which the use
of sequences seems natural. The metric structure of our semantic universa is exploited in two ways:
first, it enables us to introduce both our models and our semantic operators as the (by Banach's
theorem) unique fixed-points of so-called contractions . Secondly, this uniqueness implies that in
order to prove the equality of two models, it is sufficient to show that they are both a fixed-point
of the same contraction . It is in particular this second point that distinguishes between the metric
and the more usual partial order (or lattice) approach: a continuous operator on a complete partial
order has a (least) fixed-point but may have more than one. Therefore it is there more involved to
prove such equalities. (Cf. [dV90].) We shall use ordered structures in those cases where we want
to describe only success behavior, such as the declarative semantics.

1.5 Comparing the models

After having introduced all these models, we shall make a precise and complete comparison. The
two operational models are related to the corresponding two denotational models, as just men­
tioned. The main result of the paper consists in establishing a connection between the first deno­
tational model, VFI , and the declarative model Vee. This is done in two steps.

First we shall relate VF1 and VMP · To this end, an intermediate denotational model I is
introduced, to which both are then related. Secondly, and this is the more difficult part, VMP and
Vee are compared. Again an intermediate denotational semantics, called Des (CS for computed
substitutions) is introduced . It is essentially a model for maximal parallelism, like VMP, but
does not deliver sets of sequences of substitutions, but sets of single substitutions only. As a
consequence, it only models success behavior. The relationship between VMP and Des is fairly
easy; the only technical problem is that the first model is defined as the fixed-point of a contraction
on a complete metric space, whereas the latter is given as the least fixed-point of a continuous
function on a complete lattice. Finally, Des and Vee are related . Although their connection is
intuitively obvious, it takes some (technical) effort to make this precise.

At the end of our paper, we mention some consequences that can be deduced from the
various relations between the different models. The most important of these is that we can easily
establish a proof of the soundness and completeness of the declarative semantics with respect to
the success set (which was derived from OF1). In this way, we find a fairly transparent alternative
to the equivalence proof given in [FLPM89], the latter being quite complicated. The main problem
is the contrast between the bottom-up and (maximally) parallel nature of the declarative semantics
and the top-down and interleaving nature of the operational semantics. The intermediate models
that we have introduced above allow for a decomposition of this proof into several steps, and thus
give some insight into the contrasting concepts involved .

3

2 Mathematical preliminaries

We assume the following notions to be known: complete metric space, continuous function on a
metric space, compact subset of a metric space. (The reader might consult, e.g., [Eng77] .) We
shall also use the following notions from order theory: complete partial order (CPO), complete
lattice, continuous function on a CPO.

Let (M1, di) and (M2, d2) be two complete metric spaces. A function / : M1 -+ M2 is called
non-expansive if for all x, y E M1

It is called contracting (or a contraction) if there exists f E [0, 1) such that for all x,y E M1

Non-expansive and contracting functions are continuous. The following fact is known as Banach's
Theorem: let (M, d) be a complete metric space and / : M -+ M a contraction. Then / has a
unique fixed point, that is, there exists a unique x E M such that J(x) = x .

The set M 1 -+ M2 is the set of all functions from M 1 to M2. It can be turned into a complete
metric space by taking as a metric

(All our metrics will have [O, l] as their range.) Let

Pnco(M) = {X: X ~MI\ Xis non-empty and compact}

We can turn Pnco(M) into a complete metric space by defining a metric dH, called the Hausdorff
distance induced by d (the metric on M), as follows: For every X, Y E Pnco(M)

dH(X, Y) = max{sup.,Ex{d(x, Y)}, supyEY{d(y,X)}}

where d(x,Z) = infzEz{d(x, z)} for every Z CM, x EM.
We shall often use the following notation: we write (x, y E) X when introducing a set X

with typical elements x and y.
A typical example of a complete metric space that we shall often use is the set (w1, w2 E)

A 00 = A* U A"' of all finite and infinite words over an alphabet A, supplied with a metric d given
by

d(wi,w
2

) = 2- sup{k: w , (k)=w2(k)}

where w(k) denotes the prefix of the word w of length k. We denote the usual concatenation of
two words by w1 · w2 .

3 The language HCL

We only give an informal introduction to the language HCL. For further details we refer to [Llo87,
Apt87].

The sets Term of terms, (A,B,H E) Atom of atomic formulas (or atoms), and (iJ,u,-y E)
Subst of substitutions are defined as usual. Elementary atoms (EA tom) are of the form p(x), where
p is a predicate and i is a tuple of distinct variables. A definite clause is a construct of the form
H - B1, ... , Bn (n ~ 0), where H and each B; is an atom; H is called the head and B1, ... , Bn
(also denoted by B) the body of this clause. An HCL program W is a finite set of definite clauses.
A goal statement (or goal) is a construct of the form - A 1 , ... ,An (n ~ 0), where each A; is an
atom. If n > 0 we denote - A1, . . . , An also by - A. If n = 0 we have the so-called empty goal,
and we write □ . The set of all goals is denoted by Goal.

We have the usual notion of most general unifier of two atoms A and H , denoted by
mgu(A,H). For the composition of two substitutions we write iJ1{}2 . For technical convenience,

4

we shall throughout this paper consider only idempotent substitutions, i.e., satisfying{}{} = ,{} (see
(Pal89] for some discussion on this point). The set of variables occurring in the atom A is indicated
by Var(A). For an atom A and a substitution ,{} we write {}IA for the restriction of,{} to Var(A).
The empty substitution is denoted by f.

The classical operational semantics of HCL programs is based on the notion of refutation.
Let G =+- A1, ... , Am be a goal and let H +- B1, .. . , Bn be a (properly renamed variant of a)
clause in the program W. Assume that Ai and H are unifiable with most general unifier{}. Then
the goal

is derivable from G by one resolution step. A repeated application of such a resolution step is
called a derivation. A derivation is successful (and called a refutation) if it ends with the empty
goal D; it is failing if no further reductions are possible while the empty goal has not been reached;
and it is infinite otherwise. A selection rule is a function that gives for each goal the atom to be
reduced. A derivation according to a certain selection rule is called an SLD-derivation. A selection
rule is fair if and only if all the atoms in all the possible goals generated in SLD-derivations are
eventually selected. Classically, the (operational) semantics of an HCL program is defined by three
sets :

• the success set (Oss), containing all the atoms that have a refutation, instantiated by the
last substitution (the so-called computed answer substitution) .

• the finite failure set (OFFS), containing all the atoms for which all the fair SLD-derivations
are failing (see (AvE82]).

• The infinite failure set (01Fs), containing all atoms, for which there are no successful deriva-
tions and there is at least one fair infinite derivation.

The notion of success set given above is not completely satisfactory for characterizing the opera­
tional behavior of a logic program. In the present paper, we use a different notion of success set:
we take the one introduced in [FLPM88, FLPM89], which contains all the elementary atoms that
have a refutation, instantiated by the computed answer substitution (see the next section and that
on the declarative semantics).

4 Operational semantics

We present two operational semantics for HCL, which will both be based on a labelled transition
system (in the style of (HP79]) . The first one models interleaving and uses a breath-first selection
rule, which is fair. The second operational semantics, in which all the atoms occurring in a goal
are reduced at the same time, describes maximal parallelism. Throughout the rest of this paper,
we assume the program W to be fixed.

4.1 Interleaving

First we introduce a labelled transition system for fair interleaving, on which our first operational
semantics will be based.

Definition 4.1 Let (Goal, Subst,-+) be the labelled transition system, of which the transition re­
lation -~ Goal x Subst x Goal is defined as the smallest relation satisfying the following aziom:

- ,, - -
+- A,A --+ +- A{},B{}

- " - - -{As U8ual, we write +-A--+<- B rather than (+-A,{},+- B) E--+.) Here{}= mgu(A,H) and
H +- B is a clause of W . We assume this clau8e to be renamed such that A, A and H have no
variables in common.

5

Note that in the above axiom, a breath-first selection rule is used. In this way, fairness is
automatically ensured. This left-to-right strategy does not impose any restrictions; we still get all
possible fair behaviors. This can be proved by making use of the so-called switching (or square)
lemma (see (Llo87)) . Another feature of the above transition system is the fact that the computed
substitution (above the arrow) is applied to the goal at the right of the arrow. This ensures that
all subsequently computed substitutions will be consistent with (i.e., extensions of) the current
one.

Based on this transition system we define an operational semantics OFI : Goal -+ PsT, which
associates with a goal a set of sequences of substitutions. The semantic universe (X, YE) PsT (ST
is an abbreviation for streams) is given by

PsT = Pnco(Subst6t)

where Subst6\ the set of finite, infinite and deadlocking sequences (or words, or streams), is defined
by

(v,w,z E) Subst6t = Subst• U Subst"' U Subst• • 8

As a metric on PsT we take the Hausdorff metric induced by the standard metric on sequences (see
the preliminaries). The empty sequence is denoted by ..\ and the concatenation of two sequences
w1 and w2 by w 1 ·W2. To denote failure we have added to the set of substitutions a special element
8. We postulate for any substitution {) that {)8, the composition of {) and o, equals 8; for any
sequence of substitutions v we have that 8 • v, the concatenation of 8 and v, is equal to 8. Each
sequence represents a particular computation that corresponds to a specific choice of clauses. The
elements of such a sequence represent the partial results of the computation. Finite sequences not
ending in 8 (elements of Subst+) correspond to successfully terminating computations (refutations).
Sequences ending in 8 (in Subst• • O) represent failing computations. Infinite sequences (in Subst"')
are associated with infinitely failing computations.

Definition 4.2 Let OF1 be the unique fixed point of the contracting operator 4>FJ : (Goal -+ PsT) -+

(Goal-+ PsT), which is given by

4>F1(F)[D]

4>F1(F)[+- A] =
{f}

- - ~ - -U{ {) · ({)~FI F[A']) : +- A --++- A'} U { o : +- A f----+}

Here ~F1: Subst x PsT-+ PsT is defined by{) ~FIX={{) ~FI x : x EX}, with

{) ~FI (a-. z) = ({)a-).({) ~FI z)

The contractivity of 4>FI in the above definition is straightforward. The compactness of
4>F1(F)[+- A] follows from the fact that only finitely many transitions are possible from +- A.

The definition of OF1[□] is obvious. For a non-empty goal +- A we have that OF1[+- A]
equals { o} if there are no transitions possible from +- A (indicated by +- A f----+). Otherwise,
OFI[+- A] contains all sequences that start with{) and continue with a sequence stemming from
OFI[+- A'], in which every element is composed with{)_ The latter is caused by the application of
{) ~FI to OFI[+- .A'], which is added because we want to collect the total effect of all intermediate
substitutions.

The definition has been presented in a fixed-point format, because this will ease the compar­
ison of OF1 with other models still to come. We could, however, have given a more direct definition
based on transition sequences. A second remark concerns the use of the somewhat abstract oper­
ation {) ""FI. This could have been avoided as well by using a different type of transition system,
in which a configuration <+- A,a- > would consist of both a goal and a substitution. The latter
could then be used to store all the bindings found sofar. The axiom corresponding to the one above
would be

< (+- A,A), a>--+<(+- .A,B),a{) >

6

with f3 and iJ as above.
The following counter example shows that OF1 is not compositional. Consider the following

program

It is easy to see that with respect to this program OF1[+- p(x)] = OF1[+- q(x)l But, on the other
hand , we have {x/a}6 E OF1[+- r(x) , p(x)] \ OFI[+- r(x),q(x)] .

4.2 Success, finite failure and infinite failure sets

From the operational semantics OF1 we can derive the success set, the finite failure set, and the
infinite failure set in the following way:

{p(x)t9 : p(x) E EAtom A t9 E last(OFi[+- p(x)] n Subst+)}
{A : OF1[+- A]~ Subst• · 6}
{A : OF1[+- A] n Subst• = 0 A OF1[+- A] n Substw # 0}

In the first set, the function last takes from a set of sequences the last elements (not equal to 6).
Those elements represent the computed answer substitution for successful refutations. The notion
of success set we consider here is introduced in [FLPM89, FLPM88) and extends the standard
one given in [Llo87, vEK76) . (See also the section on the declarative semantics for some more
discussion.) The second set, OFFS, contains those atoms that give rise to only failing computations,
i.e., sequences of substitutions that end in 6. The last set, 01Fs, contains the so-called infinitely
failing atoms ; those give rise to no successful computations and at least one fair infinite one.

4.3 Maximal parallelism

The next execution model we consider for our language is called maximally parallel. Each step in
the execution of a goal consists conceptually of two stages : first, all atoms present in the goal per­
form one step independently. Secondly, the substitutions resulting from these local computations
are composed in order to obtain the global outcome of the computation . For this composition
we introduce a new operator on substitutions called parallel composition. (Sometimes it is called
reconciliation operator; Cf. [J ac89].) It is defined as follows.

Definition 4.3 We define the parallel composition of two substitutions t9 and a , denoted by {Jo a,
by

i} 0 a_ { mgu(S(iJ) U S(a))
- 6

if it exists
otherwise

where S(t9) = { < x, t >: x/t E t9} . Furthermore we define t9 a 6 = 6 o 1'J = 6. {Note that the notion
of mgu is extended to sets of pairs of terms.)

This operator tests whether the two substitutions are compatible and, if this is the case,
yields the minimal substitution containing the same information (bindings) as these substitutions.
Otherwise it yiels 6. It is straightforward to show that o is commutative , associative, and idem­
potent (modulo the renaming of variables) .

The proof of the correspondence of the interleaving and the maximally parallel semantics
will make use of the following property of this operator.

Lemma 4.4 For all substitutions t91 and t92

iJ1 01'J2 = t91mgu(S(t92)1'Ji)

where S(iJ2)'191 = {< x'l91 , t'l91 >: < x,t >E 8('192)} .

7

For the proof of this lemma and additional discussion of o we refer to [Pal89]. The definition
of o is illustrated by the following example.

Example 4.5 Let{Ji = {x/f(y,a), z/g(b)} and..?2 = {x/f(b,w), z/g(y)}. Then

1?1 01?2 = mgu{< x,f(y,a) >, < z,g(b) >, < x,f(b,w) >, < z,g(y) >}
= {x/ f(b,a), z/g(b), y/b, w/a}

If we take '1?1 as before and.i2 = {x/f(a,w), z/g(y)} we have

mgu{< x,f(y,a) >, < z,g(b) >, < x,f(a,w) >, < z,g(y) >}
6

Next we introduce a transition relation for maximal parallelism. It is specified by the fol­
lowing axiom and rule.

Definition 4.6 We define

1.
+-A ..!.....-f3

where .i = mgu(A, H) and H +- f3 is an (appropriately renamed) clause of W.

2.
- ,, - - u -

+-A---++- A', +- B ---++- B'

A- B- t'Jou A-, B-1
+-- ' __..,_ '

Note that in the conclusion of the rule above, we can have that 'I? o a equals 6. This means
that the two substitutions are not compatible.

Definition 4. 7 The operational semantics ('.)MP is defined as the fixed point of the contraction
'PMP : (Goal -+ PsT) -+ (Goal -+ PsT), given by

{f} 'PMp(F)[□] =
'PMP(F)[+- A] = - - ,, - -

LJ{l? · ('!?"-+MP F[+- A']):+- A---++- A'} U {6: +- A f---+}

Here "-+MP: Subst x PsT -+ PsT is defined by .i "-+MP X = { .i "-+MP x : x E X}, with

.i "-+MP <1 • Z .i o a · (.i "-+MP Z)
if .i o a= 6
otherwise

The definition of ('.)MP is very similar to that of ('.)FI· Two differences should be noticed here.
First, the transition relation that is used is different from the one in the definition of ('.)FI; secondly,
the definition of the function 'I? "-+MP differs from the fuction 'I? "-+FI. It composes 'I? in parallel with
the elements of ('.)Mp[+- A'], as opposed to 'I? "-+FI, which uses ordinary composition. Here we use
the parallel composition, because in the transition system above, the substitution above the arrow
is not applied to the atom at its right-hand side. Therefore, the next computation step will not
take this substitution into account and the next substitution that is computed has to be reconciled
with the previous one.

8

5 Denotational semantics for interleaving

In this section, we develop a denotational semantics VFI for the operational interleaving semantics
OFI• We start by introducing the complete metric space PFr, which is defined by

PF1 = Pnco(((Subst x Subst6)+)'x,)

with a metric on PFI similar to the one on PsT • It consists of sets of (finite and infinite) sequences
of finite sequences of pairs of substitutions. Such a sequence (called a vector) we denote by
< vi, . . . , Vn, .. . >, where each Vi is a finite sequence of pairs of substitutions. We shall use
the following prefixing operator, which composes a vector containing one pair of substitutions,
< (t?1, t?2) > and a vector < vi, v2, ... >, and is defined by

< ('!?1,'!?2) > · < v1,v2, ... >=< (t?1,'!?2),v1,v2, ... >

We use pairs of substitutions to represent the basic (unification) steps in the computation. The
first substitution of a pair is called the input substitution and can be seen as an assumption on the
behavior of the environment or, in other words, the computation that has taken place sofar. The
second one, called the output substitution, denotes the result of this computation step. As we shall
see below, it will be the substitution resulting from a unification. Failure of such a unification is
denoted by 6. (An alternative would have been to use functions from substitutions to substitutions.
This would yield a semantics that is less abstract, i.e., more discriminating.)

Next we explain why we use vectors (instead of just sequences of pairs of substitutions).
When we define a compositional semantics we introduce a semantic merge operator !!FI• Opera­
tionally, a goal is executed by performing from left to right one step of each atom in the goal. The
operator IIFI is defined such that it mimics this strategy. If we had sequences of pairs of substitu­
tions in our basic domain we would not be able to do this: we would not know how many processes
(atoms) contributed to this goal. Vectors have this kind of information. The intuition is that the
n-th element of a vector represents the n -th left to right swap of the goal. Hence the operator
IIFI combines two vecors by concatenating their elements, i.e., their sequences of substitutions,
component-wise.

Definition 5.1 We define !!FI : .Pr1 x PF1 -+ PF1, for every X, YE PF1, by

X IIFI Y = LJ{x IIFI Y: x E X,y E Y}

where

Now we are ready to give the definition of the denotational semantics VFI •

Definition 5.2 We define VFI : Goal-+ .Pr1:

= {>.}
= { < (t?, t?mgu(At?, H)) > · VF1[+- .B] : t? E Subst, H +-BE W}

U{ < (t?, 6) >: \:/H +-BE W[mgu(At?, H) does not exist]}
= VF1[+-A1] IIFI VF1[+- A2]

This recursive definition can be justified with the use of contractions in the standard way. (See
Definition 6.2 for an example.)

In section 8, the correctness of VFI with respect to OFI will be proved.

9

6 Denotational semantics for maximal parallelism

We next introduce a denotational variant, named 'DMP, of the operational model OMP for maximal
parallelism. Unlike the case of fair interleaving, we need not introduce a new semantic universe;
we can again take PsT. Recall that PsT is defined as

PsT = Pnco(Subst6t)
Before we introduce the model VMP, we first extend the parallel composition operator 8 to a
parallel operator IIMP defined on sets of sequences of substitutions.

Definition 6.1 We define IIMP: PsT x PsT-+ PsT by, for all X and Y in PsT,

XIIMPY=LJ{xllMPY: xEX,yEY}

Here x !IMP y is defined by the following cases.

=

=

if 0-1 8 0-2 = 6
otherwise

if 0-1 8 0-2 = 6
otherwise

Note that IIMP is recursively defined. Formally, we can introduce it as the unique fixed point
of a suitably defined contraction .

Now we can introduce the semantics VMP· It turns out to be equal to OMP, which will be
proved in section 8.

Definition 6.2 Let the function VMP : Goal -+ PsT be the unique fixed point of the contraction
'VMP : (Goal-+ PsT) -+ (Goal -+ PsT), given by

'VMp(F)[D] = {f}

'VMp(F)[..-A] = LJ{mgu(A,H) "-'MP F(..- B): H ..- BEW} U
{6 : 'r/H ..- BEW mgu(A,H) does not exist}

It is not difficult to show that 'VMP in the above definition is contracting; a proof would make
use of the fact that IIMP is non-expansive, an observation that on its turn is rather straightforward.

7 Declarative semantics

In this section, we recall the definition of the declarative semantics Vee introduced in [FLPM89].
The term declarative means that the program is seen as a set of first order formulas and that the se­
mantics is intended in the model-theoretic sense, i.e ., characterizing the set of logical consequences
of the program. This semantics is obtained as the least fixed-point of a continuous transformation
T on the interpretations of the program. Such a transformation is called immediate consequence
operator because for an interpretation I , the set T(I) contains all the (atomic) consequences ob­
tained from the (atomic) formulas that are true in I by a one step inference from the program. The
first declarative semantics for HCL was proposed by van Emden and Kowalski in [vEK76] . In their
approach, interpretations are sets of ground atoms and the least fixed-point, shown equivalent to
the least Her brand model of the program, characterizes the validity of the ground atoms only. The
construction in [FLPM89] extends this approach in that interpretations contain also non ground
atoms and therefore the least fixed-point allows to express validity for so-called generic atoms.

Next we give the construction of [FLPM89] in more detail. We refer to that paper for the
proofs of the results we mention here. For Theorem 7. 7 a proof will be presented in section 9.

10

Definition 7.1 The partially ordered set of (extended) interpretations, with typical element I, is
defined as (Pnec, ~), where Pnec = P(Atom).

Proposition 7.2 (..Pnec, ~) is a complete lattice.

Definition 7.3 The (extended) immediate consequence operator T : Pnec -+ Pnec, is defined by

T(J) = {Hmgu(f3,fl1): H +- f3 E W, f3' E J}

Proposition 7 .4 The operator T is continuous.

Since T is continuous, its least fixed-point lfp(T) exists; moreover, lfp(T) = Un :2'.0 T"(0),
where T"(I) is defined by

The declarative semantics is defined as follows.

Definition 7.5 Dec= lfp(T)

The next theorem gives the relation between the model-theoretic semantics of W and Dec.

Theorem 7.6 For every atom A,

W FA (i.e., A is a logical consequence ofW) iff

:3A' E Dec :3'11 E Subst [A'i1 = A].

Finally, the following result expresses the relation between Dec and the success set .

Theorem 7. 7 Dec = Oss

8 The relations between the models

8.1 The relations between the denotational and the operational models

8.1.1 Relating OFI and 'DFr

We start with the relation between OF1 and DF1, the operational and denotational semantics based
on interleaving. They will be connected by the following abstraction operator.

Definition 8.1 The operator /JFr : Subst6 -+ PFI -+ PsT is defined by /3Fr(h)(X) = {.A}, and for
'11 f. 6, by

/JF1('!1)({.A}) =
/JFI(t1)(X)

{ ,\}
U{t11 · /JF1('!11)(Xc,,,..,,)) : x,,,,,,,) f. 0}

(The well-definedness of /JFr can be established in the by now familiar way: it can be given
as the fixed-point of a contraction.) The abstraction operator /JFr first selects from the set X the
connected sequences, that is, those sequences such that the output substitution of a pair equals the
input substitution of the following pair. From such a connected sequence it takes all the output
substitutions.

We have the following theorem relating OFI and DF1- (Recall that t: is the empty substitu­
tion.)

Theorem 8.2 For every goal+- A we have /JFI(t:) o DFI[+- A] = OF1[+- A].

11

Proof We prove .BFI(f) o 'DFI = OFI by showing that .BFI(f) o 'DFI is a fixed-point of the
contraction 4>F1. Then the equality follows from Banach's theorem. We ommit the deadlock case,
which can be taken care of straightforwardly.

cpFI(.BFI(f) O 'DF1)[- A, A]=

LJ{.i · (.i "-"FI (.BF1(f) o 'DF1[- A.i, B.i])): H .- B E Wand .i = mgu(A, H)} =

(remark 1)

LJ{.i · (.BFI(.i) o'DF1[.-A,.B]) : H .- BEW and .i = mgu(A,H)} =

.BFI(f)(LJ{ < (f, .i) > ·('DF1[- A] IIFI 'DF1[- .B]) :

H .- BEW and -a= mgu(A,H)}) =

(remark 2)

.BFI(f)(LJ{ < (f, .i) > ·'DFr[- .B] IIFI 'DFr[- A] :

H .- BEW and .i = mgu(A,H)}) =

.8FI(f)(LJ{ < (f, .i) > ·'DFr[.- .B] :

H .- BEW and ,a= mgu(A,H)} IIFI 'DF1[- A])=

.BF1(f)('DF1[- A] IIFI 'DFI[- A])=

.BFI(f) 0 'DFI[- A, A]

Remark 1 The identity .i "-"FI .BFI(f) o 'DF1[- A.i, B.i] = .BF1(.i) o 'DF1[- A, .B] is justified by the
following observations. Let< vi,••· >E 'DF1[<- A,.B] be a connected sequence with its first
pair of the form (.i, .i'), for some .i'. It follows that v1 = < (.i, 19191), .. . , (19191 . . . {) n-l, {){)1in) >,
with .ii= mgu(Ai{){)1ii-l,Hi), for some Hi<- .B;. Here we have A1, . .. An = A,B.
So for vt =< (f,{)i), ... ,({)1 ••• {)n-1,191in) > there exists a sequence< vL ... >E
'DF1[<- A.i,B.i]. Now each pair occurring in< v2, ... >E 'DFr[- .81, .. . ,.Bn] is of the
form ({).i',{){)'.i"), where .i" = mgu(B{).i',H), for some atoms Band H. But due to the
renaming mechanism, which we implictly assume, we have that .i does not affect the vari­
ables of B. So we have that{)"= mgu(B{)',H) implying that we can eliminate{) from the
sequence < v2 , ••• >. This argument could be formalized by the introduction of an explicit
renaming mechanism.

Remark 2 We show that .BFI(f)(< (f,{)) > · (X IIFr Y)) = .BFI(f)(< (f,{}) > · Y IIFI X). (For
convenience, we write < Vn >n for < v1, v2, ... >.)

.BFI(f)(< (f, .i) > . (X IIFI Y)) =

< Wn >nE X, < Vn >nE Y}) =

(from Definition 5.1 and Definition 8.1)

12

8.1.2 Relating OMP and VMP

Next we prove the identity of the operational model OMP and the denotational model VMP for
maximal parallelism.

Theorem 8.3 OMP = VMP

Proof Similarly to the proof of Theorem 8.2, it can be shown that VMP is a fixed-point of
the contraction <l>MP, from which the theorem follows.

8.2 Relating 'Dp1 and 'DMP

In order to relate VFI and VMP, we introduce an intermediate semantics I : Goal -+ Pi, with
Pi = Pnco((Subst6 +)00

), as the fixed-point of the contraction \JI : (Goal -+ Pi) -+ (Goal -+ Pi)
defined as follows .

Definition 8.4 We define

= {f} 'll(F)[□]

\Jl(F)[.- A]

\Jl(F)[.-A1,A2]

= { LJ{< mgu(A,H) > ·F(B) : H <- i3 E W}
U{6: \:/H <- i3 E W mgu(A,H) does not exist}

w(F)[.- Ai] II w(F)[.- A2]

Here II is defined in a similar way as IIFI.

Now VF1 and I are related by the following abstraction operator.

Definition 8.5 We define a : PF1 -+ Pi by

{We have omitted the case that X contains finite sequences.}

This abstraction operator selects from each set those sequences that make no assumptions
on the environment, i.e., of which all pairs have f (the empty substitution) as the first element.

Theorem 8.6 I = a o VFI

Proof It can be shown that a o VFI is a fixed-point of \JI .

We continue the equivalence proof of VF1 and VMP by relating I and VMP. For this purpose
we again need an abstraction operator.

Definition 8. 7 We define O:MP : Pi -+ PsT by 0:MP (< s1, s2, ... >) = (o s1) · (o (s1 · s2)) · · ·, where
Si E Subst6 + and o 191 · · · 1911. = 191 o • • · o 1911..

This operator takes for each word 191 • • • 19n E Subst6 + the parallel composition, thus turning
it into one maximally parallel step. Further, it passes through the result of previous steps to the
next one to be considered. This mimics the behavior of the "->MP operator in the definition of
VMP· Now we can establish the following theorem.

Theorem 8.8 VMP = O:MP o I

Proof Again it can easily be shown that 0:MP o I is a fixed-point of WMP·

Combining the two above theorems yields the following corollary.

Corollary 8.9 VMP = o:MP o a o VFI

13

8.3 Relating VMP and Vee: an intermediate model 'Des

We introduce an intermediate denotational semantics Vcs (CS is an abbreviation for computed
substitutions), to which both VMP and Vee will be related. It can be seen as a denotational variant
of Vee, which yields for every goal the set of computed answer substitutions; since it delivers a set
of substitutions, rather than a set of sequences of substitutions, it models only success behavior.
Like VMP it is a model for maximal parallelism. Formally, Vcs is introduced as the least fixed-point
of a continuous function on a complete lattice, which we introduce next.

Definition 8.10 The set Pcs, with typical element F is given by Pcs = Goal-+ P(Subst).

The set P(Subst) of sets of substitutions, is a complete lattice with respect to set inclusion.
Thus Pcs is also a complete lattice, when supplied with the inclusion relation induced by the
one on P(Subst): Ji ~ h iff V - A[fi(- A) ~ h(- A)]. Since we do not need to consider
sequences, a lattice structure, rather than a metric one, suffices as a domain for 'Des.

The least upper bound of a set F ~ Pes, denoted by LJFEF• is defined by

(LJ)[-A]= LJ F[- A]
FEF FEF

Before giving the definition of 'Des we first extend the definition of c3 , the operator for the
parallel composition of substitutions, to sets of substitutions. We put, for X, Y E P(Subst),

XoY={.ioa: .iEX,aEY,.ioa:/-6}

The following lemma states that it is continuous, a fact that we shall need in the definition
below.

Lemma 8.11 Let {Xm}m~O, {Yn}n~O be chains in P(Subst) ('t/k [Xi. ~ Xi.+1 /\ Y,. ~ Yi.+1]) .
Then u,.~o(X,. o Y,.) = (Um~O Xm) o (Un~O Yn) -

Next we introduce Vcs : Goal -+ P(Subst) .

Definition 8.12 Let 'Des : Goal-+ P(Subst) be the least fixed-point of the continuous (with respect
to the lattice structure on Pes) operator Wes : (Goal -+ P(Subst)) -+ (Goal -+ P(Subst)), given
by

{t:} Wes(F)[□]

Wes(F)[- A]

Wcs(F)[- A1, A2]

= LJ{(mgu(A,H) o F(- B))lvar(A) : H - BEW}

Wes(F)[- Ai] c3 Wes(F)[- A2]

The continuity of Wes is a direct consequence of Lemma 8.11.

8.4 Relating VMP and 'Des

The relation between the models 'DMP and 'Des is described by the abstraction operator

acs: PsT-. P(Subst) defined by acs(X) = last(X n Subst+)

(The function last used above yields for a set of finite sequences the set of their last elements.) We
have the following theorem.

Theorem 8.13 Ves = aes o VMP

The theorem is immediate from the following two lemmas, which can be proved by induction
on n. Let the functions ..1. and /, .. be defined by ..1. (- A) = 0 and /, .. (- A) = { t:"'}, for all - A.

14

Lemma 8.14 For all n: W8s(..l) = (aes O WMp)(/,w)

Lemma 8.15 For all n and +- B; (aes O WMP) (f,w)(+- B) ~ (aes O w~t,1) (f,w)(+- B)

Proof of Theorem 8.13: For any +- B we have

(aesoVMP)(+-B) = aes(lim 'VMp(f,w)(+-B))
n-+oo

= (Lemma 8.15) aes(LJ WMp(J, ...)(+- B))
n

n

(Lemma 8.14) LJ Wcs(..l)(+- B)
n

= Des(+- B).

8.5 Relating Des and Dec

D

Next we shall compare the denotational semantics modeling the computed answer substitutions, on
the one hand, and the declarative semantics, on the other. The relation will be given by defining
two uniform functions, v and µ and by showing that Vee = v(Ves) and Des = µ(Vee) . Here
uniform means that these two functions do not depend upon the specific program W.

The sketch of the proof is the following: first we consider a sub-domain P of the domain of
Wes such thatµ and v make T and Wes to commute on this domain, namely: Wes(µ(J)) = µ(T(I)),
and v(Wes(F)) = T(v(F)) for all FE P. Then we show that v allows to simulate step by step the
fixed-point construction of Wes by T and vice-versa, namely: for each n ;:::: 0, T"(0) = v(Wcs(Fo))
and Wcs(Fo) = µ(T"(0)) (where Fo is the minimal element of P). Finally, by continuity of v and
µ, we can commute also the least upper bounds of these chains, so that lfp(T) = Un >o T"(0) =
v(Un :::-:o Wcs(Fo)) = v(lfp(Wes)) and lfp(Wes) = Un :::-:o Wcs{Fo) = µ(Un :::-: o T"(0)) = µ(Tfp(T)).

We use the following notation: Var(A) is the set of variables occurring in A. Dom(iJ) (the
domain of iJ) is the set { x : xiJ f. x}. Cod (rJ) (the codomain of rJ) is the set UzEDom(1') Var(xiJ) .
If Xis a set of substitutions and A is an atom, then XA is the set {rJA : iJ EX}, where rJA is any
renaming of 1'J with respect to A, i .e. , such that 'v'x[Var(xrJ A) n Var(A) = 0] .

Definition 8.16 P is the subset of Pes = Goal --+ P(Subst) of all elements F that satisfy the
following properties.

Rl F[□] = {E}

R2 'v'iJ [Dom(rJ) ~ x =:> (.i o F[+- p(x)]p(z)1') lp(z)1' = F[+- p(x).i]]

R3 F[+- A1, A2] = F[+- A1] o F[+- A2]

R4 'v'A 'v'.i E F[+- A] [Dom(.i) ~ Var(A)]

The motivation of these restrictions is of a technical nature: the set P will turn out to be
isomorphic to the set Poec· The isomorphism pair,< v,µ >, will be defined later. R3 requires the
information given by F about generic goals to be obtainable by the information about atomic goals.
This correspond to the compositional nature of interpretations in Poec: the meaning of a conjunc­
tion is declaratively defined in terms of its conjuncts . R2 also reflects a kind of compositionality:
the possibility to obtain the information about an instantiated atom from the uninstantiated one.
Rl and R4 impose a sort of minimality on the information associated to a goal.

The set Pis a complete partial order with respect to the ordering it inherits from Pes- This
we prove next.

15

Proposition 8.17 (P, ~) is a complete partial order; the least upper bound of a chain (F,.),. is
given by (U,. F,.. In other words, (P, ~) is a sub CPO of (Pes, ~) .

Proof We have to show that for any chain (F,.),. in P, U,. F,. preserves the properties
Rl-R4. Rl, R2 and R4 are obvious. R3 follows by lemma 8.11. □

Definition 8.18

• The function 11 : P - Poec is defined by

11(F) = {p(x)t9: ,9 E F[+- p(x)] I\ p(x) E EAtom}

• The function µ : Poec - P is defined by

= {t} µ(J)[D]
µ(I)[..- A]
µ(I)[..-A1,A2]

= {mgu(A, A')IA: A' EI I\ Var(.A') n Var(.A) = 0}
= µ(I)[..- .A1] o µ(I)[..- .A2]

Remark 8.19 The functionµ is well defined, i .e., VIE Poec [µ(I) E P].

Proof Rl, R3 and R4 are trivial, and R2 is an immediate consequence of the following lemma.

Lemma 8.20 Let rJ be an idempotent substitution, and assume Dom(rJ) ~ x. Let A be an atom
such that Var(A) n { x} = 0 and Var(A) n Var({ xrJ}) = 0. Then

(rJ o mgu(p(x),A)) lp(:!)1' = mgu(p(x)rJ,A) lp(z)1'·

Proof The proof uses some elementary properties of idempotent substitutions (see [Pal89]).

The following facts can be readily established.

Proposition 8.21 The functions II and µ are continuous.

Proposition 8.22 P is closed with respect to Wes, i.e., VF E P [Wes(F) E P] .

The following result shows thatµ and II commute the functions Wes and Ton P .

Lemma 8.23

1. If FE P then 11(Wes(F)) = T(11(F))

2. If IE Poec then Wes(µ(!))= µ(T(I))

The functions II and µ allow to simulate, step by step, the fixed-point construction of Des
in Dec, and vice-versa. There is only one difficulty: the fixed-point construction of Wes starts
from the minimal element of Pes, that is the function F.1. such that for every A, F.1_ [..- A] = 0.
Unfortunately, F.1. is not the minimal element of P, in fact F.1. (/. P. The minimal element of Pis
the function Fo such that

F. [.._ A] = { { t} iff ..- ~ = □
0 0 otherwise

However, the fixed-point of Wes can be also obtained by starting from Fo, as the following
remark shows.

Remark 8.24 We have Fo = µ(0) and Fo = Wcs(F.1_).

Lemma 8.25

1. Vn ~ 0 [T"(11(Fo)) = 11('l'cs(Fo))]

16

Proof By induction on n.

Finally, we show the correspondence between 'Des and Vee

Theorem 8.26

l. Vee= v('Dcs) 2. 'Des = µ(Vee)

Proof
l. Vee lfp(T)

= Un~O Tn(0)

= Un~O Tn(v(Fo)) (by Remark 8.24, part 1)

Un~O v(IJl88(Fo)) (by Lemma 8.25, part 1)

v(Un~o(IJ!cs(Fo)) (by continuity of v)

= v(lfp(\Jlcs)) (by Remark 8.24, part 2)

v('Dcs).
2. Similar to the previous one.

9 Collecting the results

□

After the long and exhausting previous section, the reader might be comforted by a schematic
overview of the relationships that were established . We have the following equalities.

OF1 = fJFI o 'DF1

I O O 'DF1

OMP = 'DMP = 0MP O I

'Des oes O 'DMP

'Des µ(Vee)

Vee = v('Dcs)

In Figure 9, these equalities are graphically represented . Moreover, it contains some arrows
between OF1 and the sets Oss, OFFs and 01Fs, indicating that the definition of these sets is based
on that of OFr-

Combining some of the equalities above, we find

Vee= v(acs o OMP o a o 'DFr),

a maybe somewhat complicated but precise relationship between the declarative semantics 'Dec and
the denotational semantics 'DFI · From this the following theorem, which establishes the soundness
and completeness of the declarative semantics, is fairly immediate. Thus an alternative is given
for the quite complicated proof that is given in (FLPM89]. The fact that here the relationship
between Vee and 'DF1 and, hence, between Vee and Oss has been decomposed into several steps
makes the proof below more transparent.

Theorem 9.1 A E Oss ¢:? A E 'Dec

Proof

17

•

Oss OFFS

L 01FS

OFI OMP

f PFI = II
Q 0MP acs -

VFI - I -vMP-Vcs µ -
A E Oss

(definition Oss) 3p(x)3.i1 · · -.i,. E OF1[+- p(x)] : A= p(x).i,.

(OF1 = PF1 o VFI) 3p(x)3s1, ... , s1r. E VFI[+- p(x)]:

Vee

(using .imgu(A.i, H) = .i o mgu(A, H), a direct consequence of Lemma 4.4)

(I= QO VFI)

3p(x)3 <vi, ... , v1r. >EI[+- p(x)]: vi • .. v1r. = '!?1 .. •'!?,."A= p(x)(.ii o • .. o .i,.)

(VMP = 0MP o I) 3p(x)3.i1 ·· •.in E VMp[+- p(x)] : A= p(x).i,.

(Vcs = acs o VMP) 3p(x)3.i E Vcs[+- p(x)]: A= p(x).i

A E Vee

D
We deduce from the equalities above a second fact, which says that Oss, OFFs and 01Fs can

be characterized in terms of OMP (= VMP), instead of OFI. In other words, for the semantics of
an HCL program, it does not matter whether we consider an interleaving or a maximally parallel
model. Although this might seem not very surprising, it is not completely straightforward, since
OMP and OFr have a different deadlock behavior: the former delivers deadlock for more goals than
the latter. (See the counter example at the end of section 4.1.)

Theorem 9.2 We have the following equalities.

Oss = {p(x).i: p(x) E EAtom I\ .i E last(OMP[+- p(x)] n Subst+)}

OFFS = {A: OMp[+- A]~ Subst• · 6}

01Fs {A: OMp[+- A] n Subst• = 0 /\ OMP[+- A] n Subst"' f. 0}

Proof Similar to that of the previous theorem.

18

Acknowledgements

We thank Jean-Marie Jacquet, Peter Knijnenburg and Erik de Vink for their detailed comments
on a draft of this paper.

References

[Apt87)

[AvE82)

[dBKPR89a)

[dBKPR89b)

[dBZ82)

[dV90]

[Eng77]

[FLPM88]

[FLPM89]

[HP79]

[Jac89]

[Llo87]

[Pal89]

K.R. Apt. Introduction to logic programming. Technical Report CS-R8741, Centre
for Mathematics and Computer Science, Amsterdam, 1987. To appear as a chapter in
J . van Leeuwen, editor, Handbook of Theoretical Computer Science, North-Holland.

K.R. Apt and M.H. van Emden. Contributions to the theory of logic programming.
Journal of the ACM, 29(3):841- 862, 1982.

F.S. de Boer, J.N . Kok, C. Palamidessi, and J.J.M.M. Rutten. Control flow versus
logic: a denotational and a declarative model for guarded horn clauses. In A. Krecz­
mar and G. Mirkowska, editors, Proceedings Mathematical Foundations of Computer
Science (MFCS 89}, volume 379 of Lecture Notes in Computer Science, pages 165-
177, 1989.

F .S. de Boer, J.N . Kok, C. Palamidessi, and J .J .M.M. Rutten . Semantic models for
a version of parlog. In G. Levi and M. Martelli, editors, Proceedings International
Conference on Logic Programming (/CLP 89}, pages 621- 636. MIT Press, 1989. To
appear in Theoretical Computer Science.

J . W. de Bakker and J .I. Zucker. Processes and the denotational semantics of con­
currency. Information and Control, 54:70- 120, 1982.

E.P. de Vink. Concurrency semantics applied to logic programming. Technical report,
Vrije Universiteit, Amsterdam, 1990.

R . Engelking. General Topology. Polish Scientific Publishers, 1977.

M. Falaschi, G. Levi, C. Palamidessi, and M. Martelli . A new declarative semantics
for logic languages . In Proceedings Conference and Symposium on Logic Program­
ming, pages 993- 1005. MIT press, 1988.

M. Falaschi, G . Levi, C. Palamidessi, and M. Martelli. Declarative modeling of the
operational behaviour of logic languages. Theoretical Computer Science, 69(3):289-
318, 1989.

M. Hennessy and G.D. Plotkin . Full abstraction for a simple parallel programming
language. In J. Becvar, editor, Proceedings Mathematical Foundations of Computer
Science (MFCS 79}, volume 74 of Lecture Notes in Computer Science, pages 108- 120.
Springer Verlag, 1979.

J .-M. Jacquet. Conclog: A methodological approach to concurrent logic programming.
PhD thesis, Facultes Universitaires Notre Dame de la Paix, Namur, 1989.

J .W. Lloyd. Foundations of Logic Programming. Springer Verlag, 1987. Second
edition.

C. Palamidessi. Algebraic properties of idempotent substitutions. Technical Report
TR-32/89, Dipartimento di Informatica, University of Pisa, Pisa, 1989. To appear
in the Proceedings of the 17th International Colloquium on Automata, Languages
and Programming, Warwick, England, 1990.

19

(Sha83]

[vEK76]

E.Y. Shapiro. A subset of concurrent prolog and its interpreter. Technical Report
TR-003, ICOT, 1983.

M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a program­
ming language. Journal of the ACM, 23(4) :733-742, 1976.

20

ONTVANGEN 3 JULI 1990

