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Deriving Denotational Models for Bisimulation 

from 

Structured Operational Semantics 

J.J.M.M. Rutten 
Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

We take as a starting point the notion of labelled transition system (L TS) in the style of the Structured 

Operational Semantics of Plotkin. Every L TS gives rise to a model that maps the states of the L TS (usually 

terms over some signature) to a representation of their bisimulation equivalence class, namely a so-called 

process. (Such a model is often called operational.) These processes are elements of a metric domain 

which was first introduced by De Bakker and Zucker. Next we show how the transition system 

specification (a set of rules for deriving transitions) by which the L TS is defined, induces a denotational 

model, given that it satisfies certain syntactic restrictions. Finally we prove that both models are equal by 

showing that they are fixed points of the same contraction , which has a unique fixed point by Banach's 

Theorem. 
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1. INTRODUCTION 

The central notion in the Structured Operational Semantics (SOS) approach of Gordon Plotkin 

([ Pl81]) is labelled transition system (LTS). A LTS is a triple < S, A, ~> consisting of a set S of 

states, a set A of transition labels, and a transition relation ~ ~ S X A X S. The set of states of the 

systems we consider in this paper will be the set T(~) of closed terms generated by a single sorted 
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signature I . Such a signature represents a programming language; it may contain constants (like 
atomic actions or recursion variables) and function symbols (operators) of arity greater than 0 (like 
sequential and parallel composition). Every L TS induces the well known notion of bisimulation 

equivalence ([Pa8 l ]): two states are bisimi/ar with respect to a L TS whenever every step starting in the 
first can also be made starting in the second such that the resulting states are again bisimilar, and the 
symmetrical property holds as well. 

Every (finitely branching) LTS et = <T(I), A, --,) > gives rise to a model~: T(I)-,)P. Here the 
semantic universe P satisfies the reflexive domain equation P = 0>c(A XP ). It is a complete metric 
space, which was first introduced by De Bakker and Zucker ([BZ82]). Its elements, called processes, 

are tree-like structures. The function ~ maps each term onto the process that represents the graph 
obtained by unfolding this term according to the transition relation of et. It is characterized by the 
fact that it identifies all terms that are bisimilar. Because the model ~ is based on the notion of 
L TS, it is often called operational. 

We exploit the metric structure of Pin two ways. First, ~ is defined as the (by Banach's theorem 
unique) fixed point of a contraction. In this way, we can deal with finite and infinite behavior at the 
same time. Secondly, the metric on P can be conveniently used to prove the fact that ~ indeed 
maps terms on their bisimulation equivalence class. 

An important aspect of the "structuredness" of SOS is the fact that the transition relation --,) of a 
LTS Ci = < T(I), A, --,) > is usually induced by a set of rules (and axioms) that specify which transi
tions are possible. Such is set is called a transition system specification (TSS) for T (I). In [GV88], 
Groote and Vaandrager introduce a restriction on the syntactic format of TSS's which implies that 
the bisimulation equivalence (induced by the corresponding L TS) is a congruence with respect to all 
the operators in the signature I . For completeness sake, we repeat this interesting result (without its 
proof) and translate it (rather obviously) into the observation that the function ~ introduced above 
is compositional. 

The contribution of this paper consists of showing how every TSS '!it that is in the so-called guarded 

structured operational semantics (GSOS) format induces a denotational model ~ll: T(I)~P. Here 
denotational means that the model is compositional and that recursion is treated by means of some 
fixed point argument. The GSOS format (the terminology is borrowed from [BIM88]) is a restriction 
of the format of [GV88], but still general enough to be interesting (see Section 9 for an example). The 
construction of the model ~ consists of the introduction of a semantic interpretation I ('!it) of all the 
operators in the signature I . For each such operator f EI an interpretation J(GJ..)(j) is defined such 
that it satisfies the rules in the TSS for I that have fat the left hand side of the conclusion. 

The main theorem of the paper (Theorem 8.3) then states that ~ and ~ are equal. This implies 
that also ~ identifies all terms that are bisimilar. Thus, from a TSS we have derived a denotational 
model that respects bisimulation equivalence. (A further consequence is that bisimulation equivalence 
is a congruence with respect to all the operators in I . Thus the proof of the theorem can be seen as 
an alternative for a restricted version of the congruence result of [GV88].) In the proof, the metric 
structure of the semantic universe P is again used: the equali ty of the models is proved by showing 
that both are fixed point of the same contraction. Then Banach's theorem implies the result. 

This paper is mainly inspired by three earlier ones. In [Ba87], the idea of taking interpretations as 
fixed points of contractions induced by TSS's was first introduced. The definition given there is more 
complex than is really necessary and is based on the format of [Si84], which is less general than the 
GSOS format. In [GV88], already mentioned above, the relationship between the syntactic format of 
TSS's and bisimulation as congruence is systematically studied. Finally, the method of defining and 
comparing models with the help of contractions on complete metric spaces was first systematically 
applied in [KR88]. 

Acknowledgements: We thank the anonymous referees for their constructive comments. Discussions 
with the Amsterdam Concurrency Group, including Jaco de Bakker, Frank de Boer, Arie de Bruin, 
Eiichi Horita, Jean-Marie Jacquet, Peter Knijnenburg, Joost Kok, Erik de Vink and Jeroen Warmer
dam have been very useful. 
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2. MATHEMATICAL PRELIMINARIES 

We assume the following notions to be known (the reader might consult [Du66] or [En77]): com
plete metric space, continuous function, compact subset of a metric space. 

Let (M J. d 1) and (M2, d 2) be two complete metric spaces. A function f :M 1~M2 is called non
expansive if for all x,y EM 1 

di <J (x),f (y)) .;;;;d 1(x,y). 

The set of all non-expansive functions from M 1 to M 2 is denoted by M 1~ 1M2 . A function 
J :M 1 ~M2 is called contracting (or a contraction) if there exists t: E[O, 1) such that for all x,y EM 1 

d 2 (j (x ),f (y )) .;;;; t:·d 1 (x,y ). 

(Non-expansive functions and contractions are continuous.) 
The following fact is known as Banach's Theorem: Let (M,d) be a complete metric space and 

J :M~M a contraction. Thenfhas a unique fixed point, that is, there exists a unique xEM such that 
f(x) = x. 

The set M 1 ~ 1 M 2 is a complete metric space by taking as a metric 

d<J1.f2) = SUPxeM, {d 2(f1(x ),J2(x))}. 

(All our metrics will have [O, I] as their range.) 
Let ?Pcompuci(M) = {X: Xr;;,M/\X is compact}. We can turn '3'compuci(M) into a complete metric 

space by defining a metric dH, called the Hausdorff distance induced by d (the metric on M), as fol
lows: For every X, Y E?Pcompuc1(M) 

dH(X, Y) = max{supxex{d(x, Y)},supy er{d(y,X)} }, 

where d (x, Z) = infzez {d(x,z)} for every Zr;;,M, xEM. (By convention we have sup 0=0 and 
inf0 = 1.) 

We call M 1 and M 2 isometric (notation: M 1 ~ M 2) if there exists a bijective mapping f :M 1~M2 
such that for all x,y EM 1 

d i<J (x),f (y)) = d 1 (x,y ). 

Finally, we introduce the set p,q EP of processes. (Throughout this paper we shall use the conven
tion that the introduction of a set X with typical elements x,y is denoted by x,y EX.) Let A be an 
arbi trary set. The process domain P is defined as the unique complete metric space that satisfies the 
following reflexive equation: 

P - ?Pcomput·i(A XP). 

The equation above was, in a metric setting, first solved in [BZ82]. The unicity of the solution is 
proved in [AR89]. The metric don P equals the Hausdorff metric dH induced by the following metric 
onA X P: 

The metric dH is characterized by the following equality 

dH(p,q) = 2 - sup{n : p [n j= q[n J} 

where p [ n ], the truncation of process p at depth n, is inductively defined by p [O] = 0 and 
p[n + l] = {<a,p'[n ]>: <a,p '>Ep} . 

A process p EP can be viewed as a tree-like object. It is a set of pairs <a,p'> , which represents all 
the possible steps that the process p can take. The process p' in such a step is called its resumption 
and represents all steps that can possibly follow upon this one. 

- .. : -o.;;;: .:, . _ 
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3. LABELLED TRANSITION SYSTEMS AND BISIMULATION 
DEFINITION 3.1 (LTS): A labelled transition system is a triple <'f= (S,A,~) consisting of a set of states 
S, a set of labels A, and a transition relation ~kSXA XS. We shall write s~s' for (s,a,s') E~. A 

L TS is called finitely branching if for all s ES the set { (a,s'): s ~s'} is finite. 

DEFINITION 3.2 (Bisimulation): Let ct= (S,A, ~> be a L TS. A relation R ks X S is called a (strong) 
bisimulation if it satisfies for all s, t ES and a EA : 

(sRt /\ s ~s') ~ 3t' ES [ t ~ t' /\ s' Rt'] and 

(sRt /\ t~t') ~ 3s' ES [s~s' /\ s'Rt' ]. 

Two states are bisimilar in er, notation s4dt, if there exists a bisimulation relation R with sRt. (Note 

that bisimilarity is an equivalence relation on states.) 

4. MODELS FOR BISIMULATION 
DEFINITION 4.1 (~): Let ct= (S,A, ~>be a finitely branching LTS. We define a model ~:s~P by 

~[s] = { <a,~[s'] >: s~s'}. 

(For the set A used in the definition of Pin Section 2 we take the set of labels of er.) 

We can justify this recursive definition by taking ~ as the unique fixed point (Banach's Theorem) 

of a contraction ll> : (S~P)~(s~P), defined by 

4'(F)(s) = { < a,F(s') >: s~s'} . 

The fact that 4' is a contraction can be easily proved. The compactness of the set ll>(F){s) is an 

immediate consequence of the fact that <f is finitely branching. 
This model is of interest because it assigns to bisimilar states the same meaning. This we prove 

next. 

THEOREM 4.2: Let 4d k S X S denote the bisimilarity relation induced by the labelled transition system 
lf= (S,A,~). Then: 

PROOF 
Let s,t ES. 
<=: 

'Vs,t ES [s4dt ~ ~[s] = ~[t]]. 

Suppose ~[s] =~[t]. We define a relation =ksxs by 

s'=t' ~ ~[s'] =~[t']. 

From the definition of '!>Ru it is straightforward that = is a bisimulation relation on S : Suppose s'=t' 
and s' ~s"; then < a, ~[s"] > E~[s'] = ~[t']; thus there exists t" ES with t' ~t" and 

~[s"] =~[t"], that is, s"= t". Symmetrically, the second property of a bisimulation relation holds. 

From the hypothesis we have s=t. Thus we have s4dt. 
~ : 

Let R k S X S be a bisimulation relation with sRt. We define 

£= sup {d(~[s'], ~[t ']) : s'Rt'}. 
s'.t'eS 

We prove that £= 0, from which ~[s] =~[t] follows, by showing that £E;;~·f. We prove for all 

s', t ' with s'Rt' that d(~i[s'], ~[t']) ...;; fr£. Consider s',t' ES with s'Rt'. From the definition of 
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the Hausdorff metric on P it follows that it suffices to show 

d(x,~[t']) ..;;; !-h and d(Y,~(s']) ..;;; !-h 

for all x E~[s '] and y E~[t']. We shall only show the first inequali~, the second being similar. 

Consider < a, ~[s"] > in ~[s'] with s' ~s". Because s' Rt' and s' ~s" there exists t" ES with 

t' ~ t 11 and s" Rt". Therefore 

d(< a, ~[s"] >, ~It']) = d(<a, ~Is"]>, { <ii.~(t]> : t'~t}) 

..;;; [we have: d(x, Y) = inf{d(x,y):yEY}] 

d( < a, ~[s"] >, <a, ~[t"] >) 

= !6·d(~[s"], ~[t"]) 

.;;;;; [ because s" Rt" ] !6·t 

(The proof above makes conveniently use of the Hausdorff metric on P. In [CP88] and [GR89] 

alternative proofs are given with the use of so-called non-well-founded sets.) 

5. INTERPRETATIONS AND COMPOSITIONALITY 
In the remaining sections of this paper we shall consider LTS's of a special format, namely, in 

which the set of states consists of the set of closed terms generated by a single sorted signature. Let 
us fix for the rest of this paper a signature I = (F,r), which consists of a set /EF of function names 

and a rank function r: F 41\1 indicating for each function symbol its arity. Function symbols of arity 
0 we call constants. Saying / EI for f EF is an abuse of language we shall sometimes indulge in. 
Further we introduce a set of variables x,y E Var. The set of terms s,t,u ET(I, Var) built from I and 
Var is defined as usual; using the so-called BNF syntax, it can be given by 

t :: = x I /(t i. ... , tr<Ji>· 

Terms containing no variables are called closed. The set of closed terms is denoted by T(I). Let 
x i. . .. , xk E Var be distinct variables. For a term t we write t (x,, . . . ,x,) or t x to indicate that the set 

of variables occurring in t is contained in the set {x" . . . ,xk} . Whenever it is clear from the context 
what the free variables occurring in t are, these subscripts are omitted. 

We have the usual syntactic substitution: We write t (x ,,. .. . x,>(u i. .. . , uk), or tx(u) for the term 

obtained by replacing every occurrence of x; in t by u;, for 1-;;;; i .;;;;k . 

DEFINITION 5.1 (Interpretations): Let V be a set. We define the set (J E) IntPr"i'., v of interpretations 

for ~= (F, r) as the collection of all functions 

I : F 4 LJ (Vk4 V) 
k 

with l(j) EV'if> 4 v for every / EF. (Read V for V 04V.) Whenever~ or Vis clear from the context 

the corresponding subscript in IntPr r.. v is omitted. An interpretation I induces for every term 
t (x , .... , x,) in T(~. Var) a function t~ : yk 4 V that is inductively given by 

(1) (x;)~(p i. ... • pk) = p; 

(2) J (t i. . .. , tr <Ji}~ (p J, ••• ,pd = 
I (f)((t 1)~(p" ... ,pd . . .. , (tr<Ji}~(p" . .. ·Pk)) 

(We also write J1 for /(/).) 



-·~.:='_. _: _· -

6 

Now every interpretation I ElntPrv induces a model~, : T(};)-+ V defined by ~,[t] = t1• Such a 

model is called compositional and satisfies for every term t(x ,, ... . x.) in T(};, Var) and closed terms 

U J, • .• ' Ur <J) 

~,[tx(UJ> . .. , Ur <J) )j = t~(~1lu1J. . .. , ~,[ur(j) ]) 

DEFINITION 5.2 (Compositionality): A model ~: T(};)-+ V is called compositional if there exists an 

interpretation I E/ntPrv with ~ = ~, . 

DEFINITION 5.3 (Congruence): An equivalence relation = c T(};) X T(};) is called a congruence rela

tion for }; if for all f E }; and closed terms u I> • •• , Ur<J)• v" . . . , Vr <J) 

if for all l :s;;; i :s;;; r(j ) U;-V; 

then f (u J. ... ,u,<J)) f(v 1 •. .. , v,<J)) 

Sometimes such a relation is called substitutive for };_ 

The following fact is standard. 

LEMMA 5.4: Consider ~: T(};)-+V. Let = -!>i, C T(};) X T(};) be defined by s=:!Ji,t ~ ~s] =~t]. Then 

~ is compositional iff = ".lt is a congruence. 

6. TRANSITION SYSTEM SPECIFICATIONS 
We show in this section how LTS's that have the set of closed terms T(};) over}; as states can be 

specified with the help of rules (and axioms). Next we restrict these so-called transition system 

specifications to a particular syntactic format and repeat the main result from [GV88], stating that the 

bisimulation relation induced by (the LTS derived from) such a specification is a congruence relation 

for };. From this fact it easily follows that the model ~ induced by the L TS (as in Definition 4.1) is 

compositional. 

DEFINITION 6.1 (TSS): A transition system specification (TSS) 0l. for }; is a (possibly infinite) set of 

rules R of the form 

{t;~t;': J:s;;; ; .;;;;n } 

t-54t' 

where n ;;;;. O, t;, t;', t, t' ET(};,Var), and a;, a EA, which is a given set of labels. If n = O then a rule is 

called an axiom. 
A TSS is finitely branching if for every function symbol f the number of labels a and terms t with 

f (x) -54 t in the conclusion of a rule is finite. In the rest of this paper only TSS's are considered that 

are finitely branching. (This property will be used in the construction of Definition 8.2 to ensure 

compactness of the resulting process.) 
A rule is in tyft format if it is of the form 

{t; ~y;: l .;;;; ; .;;;;n } 

f(x " ... , Xr<J))-54 t 

such that 

n ;;;;.O, 

a;, a EA, 



7 

y;, x ; E Var, all distinct, 

var(t;) k { x i. .. . , Xr(f )> y i. .. . ,y ; - iJ, 

var(t )k {X 1> ... ,Xr (f)> Y I> ·· · •Yn } 

A TSS is in tyft format if all its rules are. (End of Definition 6.1.) 

The tyft format and the restrictions it incorporates are extensively discussed in [GV88]. There a 

number of examples are given which show that the tyft format cannot be generalized in any obvious 

way such that Theorem 6.5 below would still hold. 
(Note that we do not speak about rules in tyxt format nor about non-circularity, two notions that 

play a role in [GV88]. Our reason for not considering rules in tyxt form is that these can all be 

expressed by equivalent rules in tyft format (Lemma 5.9 of [GV88]). The additional requirement of 

non-circularity that is needed in [GV88] to prove Theorem 6.5 below is hidden in our slightly adapted 

definition of the tyft format.) 

DEFINITION 6.2 (Transitions): An expression of the form t ~ t ' , with t,t ' E T(I), is called a transition. 

Let §l. be a TSS. A proof tree PT for a transition if1 from '!il, is defined in the usual way: It is a finite 

tree with root if1 such that the transition labelling a father node follows from the transitions labelling 

its sons by an application of (an instantiation of) a rule R E'3L Notation: 'iil, 1--PTilt· We write 'iil, 1- 1/t 
to express that there exists a proof tree PT with 'iil, 1--PTilt· A transition may have many proof trees. 

We define the degree of a transition by 

deg(l/t) = min{depth(PT): 'iil- 1-PTifl} 

DEFINITION 6.3 (Induced ~: Every TSS 'iil, induces a LTS 5=(T(I),A,~) by taking 

~k T(I)XA X T(I) as 

t ~ t' ~ 'iil, 1-- t ~ t ' 

DEFINITION 6.4 (Induction coefficient): Let '!il, be a TSS (which now is tacitly assumed to be finitely 

branching) for I . Fort E T (I) and a EA we define 

deg(t,a ) = max{deg(t ~ t '): t 'E T(I) and 'iil, 1-- t ~ t'} 

(We shall use this degree as an induction coefficient in the proof of Theorem 8.3.) 

The main result of Groote and Vaandrager ([GV88]) is the following theorem. 

THEOREM 6.5: Let 5= <T(I),A,~> be the LTS induced by a TSS 'iil, that is in tyftformat, and let~ 

be the bisimi/arity relation induced by '5. We have: 

~ is a congruence relation for I 

The proof uses induction on the depth of proof trees that are used to derive transitions. 

Let 'iil- and 5 be as in the above theorem and consider the model <'.)JL.3: T(I)~P that is induced by 5 

according to Definition 4.1, i.e., 

<'.)JL.3[s] = {<a, ~[s'] >: s~s' } 

An immediate consequence of the above theorem is that <'.)JL.; is compositional. 

COROLLARY 6.6: ~ is compositional. 
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PROOF 
From Theorem 4.2 we know that ~ = =~li.r· Thus also = '.>i.; is a congruence for I, according to the 

above theorem. Now Lemma 5.4 implies that~ is compositional. 

Since ~ is compositional there exists an interpretation I for I such that ~=".)R,1 • It can be 

defined as follows. Let/EI and pi. . .. •Prif) EP. We choose u 1, ••• ,ur<J> withp; =~[u;] for all 

i. (If there do not exist such terms then/1(p 1, ••• ·Pr<J>) can be defined arbitrarily.) We put 

J'(p,, · · · •Pr<J» = ~(ui. · · · ,Ur<J))] 

Note that the definition of I does not depend on the choice of the terms u; since ~ is substitutive 

for I . Now it is straightforward to show that~ = ".)R,1: 

~(u,, ... ,Ur<J))] = [definition I) 

/'(~[u,J, . . . , ~Iur(f)]) 

= [ induction ) 

J'(".)]L,[u,J, ... , ".)JL,[ur(f))) 

= ".)JL,[j (u i. ... , Ur(j))] 

for all / EI and"" . . . ,ur(f) E T(~). 
By definition the interpretation I introduced above is of a syntactic nature. One can give a recur

sive characterization of I that one might call semantic since it is formulated directly in terms of the 

elements of P. It depends on the fact that the L TS '!T under consideration is induced by a TSS 0l, that 

is in tyft format. 

THEOREM 6. 7: Let I be as above. We have for every f EI and p 1, ... •Prif) E~T(I)) 

f' (p" · · · •Pr<J> ) = 

{< a, t~.y(p,q)> : 3R E0l-'v'i E{I, . .. ,n} [ < a;, q; > E(t;)~.y(p,q)J} 

where 

{t;~y; : J .;;;; i .;;;;n } 
R = a 

f (xi. . . . , Xr (J))~t 

satisfies the conditions of Definition 6.1 andp=pi. . . . •Pr(f)> q = qi. . . . , qn. 

PROOF 
Let/E~ andp" .. . ·Pr<J>E~T(~)). Letsi. ... ,sr<J> be ·such thatp; = ~J(S;) for all i. We have 

f'(pi. · · · •Pr<J>) 

= /1(~s, ] , . ..• ~sr(f)]) 

= [ definition I ) 

~J (s,, . .. ,Sr([))] 

= ( Definition 4.1 : ~ I 

{< a, ~t]> : f (s i. ... , Sr(f))~t} 

= [ the L TS '!T is induced by '!il. ) 

{< a, ~t(s,, ... ,sr(f). u,, . . . , Un)] >: 

3R E0l- 'v'i E{I , .. . , n} [ t;(s" .. . ,sr(f), "" . . . ,un)~u;]} 
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(with R as above) 

= [ Definition 4.1: ~ ] 

{ < a, ~t(si, ... ,Sr<J), U1, . .. 'Un)J>: 3R E0t 'Vi E{l, ... 'n} 

[ < a;, ~u;]>E~t;(si, ... ,sr<J), u., ... ,un)]]} 

= [ Corollary 6.6: ~ = ~1 ] 

{<a, t 1 (~[si], .. . , ~[sr<J)), ~u1], ... , ~un])>: 

3R E0t 'Vi E{l, ... , n} 

[ < a;, ~u;]>Etf(~[si], ... ,~Sr<J)), ~3[u1J, ...• ~lunJ) J} 

= { <a,t1(p,q)>: 3R E0t'Vi E{ 1, .. . ,n} [ <a;,q;> Etf (p,q)]} 

7. DENOTATIONAL SEMANTICS 
We introduce our definition of denotational semantics. We consider a signature I,« in which we 

have a set of constants reserved for recursion; it is given by 

Irec = I U RecVar 

where I is arbitrary and (X E) RecVar is a set of recursion variables (which are constants in the signa

ture Irec). The interpretation of recursion variables will be dependent on so-called declarations. The 

set of declarations is given by 

(d E) Deel = RecVar_,,T(I,ec) 

In the sequel we shall consider only interpretations I ElntPrr.,.,, p that are non-expansive: for every 

/ EI the function/(/) is non-expansive. It is straightforward to prove that t! is non-expansive if I is. 

DEFINITION 7.1 (Denotational interpretation): Let I ElntPr!.,.,, p be an interpretation for I,« and let 

d EDecl be a declaration. We call I denotational (with respect to d) if there exist interpretations 

10 E IntPrr. 

free E lntPrRecVar 

such that 

(1) I = I o U lrec 

(2) Irec = fixed point f,ec where 

free: IntPrRecVar-4lntPrRecVar is a contraction given by 

r rec(JXX) = (d(X))
1
" UJ' for all J ElntPrRecVar and XERecVar 

Note that IntPrRecVar (as well as IntPr!.) is a complete metric space, of which the metric is induced 

by the metric on P. 

DEFINITION 7.2 (Denotational semantics): (Recall that every interpretation I ElntPrr.,., induces a com

positional model ~1 : T(I)-"P by ~1(t] = t1 as defined in Section 5.) We call a model ~: T(I)-"P 

denotational if there exists a denotational interpretation I ElntPr!.,., such that ~=~1 • 

---- · ---;:- . ~ · 
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8. DERIVING DENOTATIONAL INTERPRETATIONS FROM SOS 
In this section we return to the notion of transition system specification, now for the signature Im. 

We shall introduce yet another TSS format, the so-called GSOS format, which is a special case of the 
~yft format introduced in Section 6. Next we shall show how a TSS in GSOS format induces a denota
tional interpretation for Im. In this section, d EDec/ is a fixed declaration for the recursion variables 

in Irec = I U RecVar. 

DEFINITION 8.1 (GSOS format): A TSS <!R. for Irec is in GSOS format if 

<jl, = <!Ro U <iilrec 

where 'iilrec is a TSS for RecVar given by 

d(X)-l4y 
X-l4y 

for every X ERecVar, and where <!Ro is a TSS for I with all its rules in zyft format. A rule is in zyft 

format if it is of the form 

such that 

{z; ~y;: I .;;;;;i.;;;;n} 

f(x i. ... , Xr(j))-l4t 

n ~O. 

a;, a EA, (A is the set of labels) 

y;, X; E Var, all distinct, 

Z; E {xi. .. . , Xr(f)}, 

tET(I) with var(t)s;{xi. . . . ,Xr<J)> Yi. ... ,yn}· 

Every TSS in GSOS format is also in ryft format. 
The SOS in GSOS stands for the (in no way perilous) notion of Structured Operational Semantics 

([Pl8 l]); the G stands for Guarded, a notion about which nothing has been said in the above 

definition. In fact, it is not complete as it is. In Definition 8.2 below we shall formulate a semantic 
guardedness property that a TSS must additionally satisfy in order to be in GSOS format. 

The terminology GSOS is borrowed from [BIM88]. To be precise, the above definition of GSOS 
corresponds to what in [GV88] is called the positive GSOS format, indicating that as premises no 

negations are allowed. We conjecture that it is possible to allow also for negations and still obtain 
the results presented in this section. For a discussion of the expressibility of the GSOS format and a 
comparison with the ryft format, we refer to [GV88). 

We have restricted the ~yft format of Section 6 to the above GSOS format in order to carry out the 

following construction. It yields for every TSS for Irec that is in GSOS format a denotational 
interpretation for I,ei. .. 

DEFINITION 8.2 (/(<iil)): Let <!R. be a TSS for Irec in GSOS format. We define two contractions 

f 0 : lntPrr,-+lntPrr. 

f rec: lntPrRecVar-+lntPrRccVar 

as follows. First let I ElntPrr,, f EI and pi. . . . •Pr<J) EP. We put 

f oU)(f)(p,, ... • p,<J» = 
{<a, t~.y(p,q) >: 3R E<iil.'Vi t:: {l, ... ,n} [<a;, q;>Ez{(p)]} 
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where 

{z;~y;: lo;;;;;o;;;;n} 
R = a f (x 1, •.• ,x,,f))~t 

satisfies the conditions of Definition 8.1 and p=p1i .. . •Prif)> q = q1i ... ,qn. The function fo is 
well defined since the fact that ~ is finitely branching ensures the compactness of the set 
r 0(1)(/)(p 1i ... ·Pr<J»· This we prove below. Moreover, it is straightforward to see that it is con
tracting and that f 0(/)(/) is non-expansive. Thus we can define 

I o = fixed point f o 

Second we define f rec by putting 

rrec(J)(X) = (d(X)i"u', for all J ElntPrRecVtJr and XERecVar 

In general this function need not be contracting. We simply require the TSS 0\,,.ec to be such that rrec 
is contracting. This is the semantic formulation of the additional guardedness property for '31, that was 
announced above. (See Section 9 for an example.) Now we can put 

f ree = fixed point rm 
Thus the TSS 'iil, induces a denotational interpretation I ('3\,) given by 

/('!il) = lo U free 

We indicate the model induced by I(~) by 

~: T('i:.,eJ-+P 

(End of Definition 8.2.) 

We show that r 0(/)(/)(p 1i ... •Pr<J» = def V is compact. Consider a sequence ( <ak, rk > )k in V. 
We have to show that it has a converging subseguence. By the fact that ~ is finitely branching 
(Definition 6.1) there exists R E'EA, say withf(x)~t as a conclusion, such that for infinitely many k 

r ; = t 1(p,q*) with 

qk = < qf. . .. , q~ > satisfying < a;, qf >E zf(p) for l o;;;;; o;;;;n 

Now zf(p) E {pi. . . . ·Pr<J)}, thus it is compact. Hence the sequence (<a;, qf>)k in zf(p) has a con
verging subsequence (< a;, q':,(k) > )k> where P.;: N-+N is a monotonic function. We define a mono
tonic function µ. by 

µ. = µ.n o · • • oµ. 1 

The sequence 

(q"(k))k = ( <q~(k)' .. . 'qi:fk) > )k 

is converging. Because t1 is non-expansive also 

(< a, t1(p,ql'(k))>)k 

is convergent. Hence we have found a converging subsequence of ( <ak, rk > )k in V. 
The above construction cannot be generalized to the tyft format of Definition 6.1 by simply replac

ing zf (p) in the definition of f 0 with tf (p): if arbitrary terms are allowed at the left hand side of the 
premises, then r 0 need not be a contraction (and hence I 0 cannot be defined by taking the fixed 
point). This can be illustrated by the following (discouragingly) simple example: consider 

0t = {a~y} 
a~y 
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andlet/ 1 and/2 besuchthat/ 1(a) = 0 andfi(a) = {< a, 0>}. Then 

d(f 0(/ 1), f 0(/2)) ;;;. d(f0(/ 1)(a), f 0(/2)(a)) 

= d( 0 ,{ < a, 0 >}) 

= I 
Note that the characterizing equality given in Theorem 6.7 is in Definition 8.2 above used as a 

defining clause for I (gt). In contrast to the definition of I in Section 6, the definition of I (gt) does not 

use the model ~ (Definition 4. 1) and consequently does not depend on the congruence result of 

Theorem 6.5 (which, by the way, still applies since every TSS in GSOS format is in ~yft format). But 

the model ~ does equal ~J. as one would expect. This we prove nex t 

THEOREM 8.3: ~ = ~ 

PROOF: Let «I> : (T('2.)-')P)-')(T('2.)-')P) be the contraction used for the definition of ~ (following 

Definition 4.1). Because «I>(~)=~ and contractions have a unique fixed point, it is sufficient to 

prove «I>(~) =~. We shall prove for every terms ET('2.rec) and a EA: 

Vq EP [ <a,q> E~(s) <=> 3s' E T('2.recHs~s' /\ q=~(s')]J, (•) 

which is equivalent to «I>(~) =~. We use induction on the degree deg(s,a) (Definition 6.4). Let 

s ET('2.rec) and a EA. Suppose that(•) holds for alls' and a' with deg(s',a')<deg(s,a). 

Case 1: s = f (u i. • • • , Ur <f)) 
Consider f (u i. .. . , Ur (f) ) with f E°2. and u i. . . . , Ur([ ) ET('2.rec). Below we use the following abbrevi

ations: 

u for u 1' •.. , Ur([ )> x for x i. . .. , Xr(f)• s for s i. . .. , Sn 

We show(•) for f (u) and a. Let q EP. The following statements are equivalent: 

< a,q > E~[j(u)] 

<=> (Definition ~) 

< a,q> E//('ll)(~[u 1], . . . , ~[ur(f) ]) 

<=>(Definition 8.2: f' ('j.) = / • and 10 = f 0(/0)) 

<a,q>E/uVul (~j[U1 ) , .. . '~(Ur([))) 

<=>(Definition 8.2: f o(/o)(/)) . 

{z;~y; : I .;;;; i .;;;;n } 
3R = f(x)~t Egt 3q1 , ... , qn EP Vi E{l , .. . ,n} 

[q = t 1 " (~[u1], ... • ~[Ur([) ], qi. .. · ,qn) 

/\ <a;,q; > Ezf " (~lu 1J , ... • ~lur(f) ))] 

<=> ( t 1
" = t 1<';i.) since t E T('2.) and zf" = zf('j.) for all i) 

3R = · · · 3q 1i . . . ,qn EP 'o'i E{l , . .. ,n} 

[q = t/ (lj\) (~[u11. ...• ~[Ur([)] , qi. . . · ,qn) 

/\ <a;, q;> Ezf C':l1) (~.il [u11. ...• ~lurif)])] 

<=>(Definition ~) 

3R = · · · 3q 1, ... , qn EP Vi E{l , .. . ,n} 



[q = t 1 ('!il)(~[u 1 ], . . . • ~lur(f)], qi. ... ,qn) /\ <a;,q;>E~(z;(u)]] 

<=> (induction: deg(z;(u),a;)<deg(f(u),a), for all i) 

3R = · · · 3qi. ... ,qnEP Vi e {l, ... ,n} 3s; E T(Irec) 

[q = t 1 (<;\)(~[u1], .. . • ~lur(f)], qi. ·· · ,qn) 

/\ z;(u)~s; /\ q;=~(s;]] 

<=> (elimination of q; 's) 

3R = · · · Vi e {l, ... ,n} 3s; E T(Irec) 

[q = 1l('!il)(~[u1J, ... , ~[ur(f)],~(s1], ... , ~[sn]) /\ Z;(u)~s;] 

<=>(Definition~) 

3R = · · · 'o'i e {l, . . . ,n} 3s;ET(~rec) [q = ~[t(u,s)] /\ z;(u)~s;] 

<=> (Definition 8.2: ~ is induced by '!il) 

3s' ET(Irec) [q = ~[s'] /\ /(u)..J4s'] 

Thus we have proved (*) for f (u) and a. 

Case 2: s = X 
Let X e RecVar. We have 

<a,q >E~(X) 

<=> (Definition ~) 

< a, q > EXJ('!il) 

<=>(Definition 8.2: x1<'!il> = x1
- and free = f rec(lrec)) 

< a,q >eXr..,<1-> 

<=> (Definition 8.2: frec(lrec), using f o U free = f('!il)) 
< a,q >ed(X)1('!il) 

<=>(Definition ~) 

<a, q > E~(d (X)) 

<=> (induction: deg(d(X),a)<deg(X,a)) 

3s' e T(~rec) [q=~[s'] /\ d(X)..J4s'J 

<=>(Definition 8.2: ~ is induced by '!il) 

3s' ET(Irec) [q =~(s'J /\ X ..J4s'i 

This proves (*) for X and a and concludes the proof of Theorem 8.3. 
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For the proof of Case 1 it would have been sufficient to use a simple induction on the structural 

complexity of terms. Obviously, this would not work for Case 2. Therefore we make use of the induc

tion coefficient of Definition 6.4, which essentially measures for a transition the depth of the tree that 

is used to prove it. The proof of the above theorem is inspired on and generalizes the method of 

[KR88) for proving the equivalence of denotational and operational models for programming 

languages. 
Theorem 8.3 implies that ~ is compositional, since ~ is, and thus that = '!lt., is a congruence for 



· ~ : "~ -~ . -
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I nc. Then by Theorem 4.2 also ~ is a congruence. Thus the above proof can be viewed as an alterna

tive to that of the congruence result of Theorem 6.5 given in [GV88] for the case that the TSS is in 

GSOS format. 

9. A N EXAMPLE : A NON-UNIFORM LANGUAGE WITH VALUE PASSING 

As an example we consider a signature Irec = < F, r > that is defined as follows. First we intro

duce three syntactic categories, viz. the set (v E) Var of individual variables, the set (e E) Exp of 

expressions and the set (b E) Bexp of Boolean expressions. We shall not specify a syntax for Exp and 

Bexp. We assume that (Boolean) expressions are of an elementary kind; in particular, they have no 

side effects and their evaluation always terminates. Statement variables x,y, ... are as usual. The ele

ments c EC will be used as part of value passing communication actions c?v or c !e that will be intro

duced in a moment. Now let the set F of function symbols be given by 

F = Act U { ; , II , +, } U RecVar 

where (X E) RecVar is the set of recursion variables and the set (act E) A ct of basic actions is given by 

A ct = Comm U Bexp U Asg 

Here the set Comm of communications is defined by 

Comm = {c?v : c EC,v E Var} U {c!e : c EC,e EExp} 

and the set Asg, of assignments, by 

Asg = {v : = e: v E Var, e EExp} 

The rank function r of ~rec is defined by 

r(a) = 0, for every a EAct 

r(X) = 0, for every X ERecVar 

r (;) = r( ll ) = r (+) = 2 

The set T(Ire..) of closed terms over Irec is again called a language. In BNF notation it can be defined 

as the language (s E) e given by 

s ::= c !e l c?v l bi v := e l s ;t l s llt l s + t l X 

The interpretation of the operators ;, II and + , for sequential, parallel and non-deterministic composi

tion, respectively, is as before. There are three kinds of actions: communications, Boolean expressions 

and assignments. Communication actions are either send actions, indicated by c !e, or receive actions, 

indicated by c ?v. Thus we have here a CSP like communication mechanism (lHo85]). Boolean 

expressions can be used to model, e.g., if-then-else and while statements. For a more elaborate dis

cussion of this language we refer to [BKMOZ86]. 
Next we define a LTS '5' = < T(~reJ, A, -+>. The set (a E) A of labels is given by 

A = SAct U SAct 

Here the set SAct of semantic actions is the domain for the semantic interpretation of the basic 

actions: 

(a E) SAct = (States -+States) U (States-+{tt,.ff}) U 

(CX Var) U (C X (States-+Val)) 

The set States of (indeed) states is 
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States = Var~ Val 

with Val some set of values. The elements of SA et ( = (a: a ESAct}) are used to indicate termination 

(see the rules for sequential and parallel composition below). 
Note that in this example the labels are of considerable complexity, representing for every type of 

basic action a semantic interpretation. 
The transition relation ~ of ~is induced by the following TSS <31.. The transitions for the basic 

actions are given by 

act~8 

where 8 is a special element of Act denoting termination and where auc1 is defined by 

if act = v: = e 

A.a· [b]a if act = b EBExp 

auct = < c, v > if act = c?v 

< c, A.a· [e]a> if act = c le 

where av :=e is like a but for its value in v, which is [e]a. In this definition we have postulated the 

presence of two semantic evaluation functions; the values of e and b in a state a are simply denoted 

by 

[e]a, [b]a E Val 

Further rules in 0l are 

X1~Y 1 
x, ;x2..J4x 2 x1 ;x2..J4y1;x2 xi +x 2 ~YI 
X1 llx2 ..J4x2 X1 llX2 ..J4y1 llx 2 X2 +x, ~YI 
x 2llx1 ..J4x2 x 2llx1 ..J4x2 llY 1 

x1 < c,v> )yi. x2 <c,f>)y2 

x 1 llx 2....!7y1 llY2 

X2llX1 -4y2 llY 1 

where / = A.a·a', with a' like a but for its value in v, which is/(a). (We omit two rules that deal with 

communication in case either component terminates.) 
Finally, we have to supply rules for the recursion variables. So let us consider a declaration 

d EDec/. In order to let 0l be in GSOS format, which is what we aim at, we have to make sure that 

the semantic guardedness condition (of Definition 8.2) will be satisfied. This is the case, as one can 

easily proof, when we consider a declaration that assigns every recursion variable to a so-called 

guarded statement. The set (g E) GStat k T(~rec) of guarded statements is defined, in BNF notation, 

by 

g:: = c!e l c?v l b i v: = e l g;sl g1 llg2 I g1 + g2 

where s ET(l':rec)· E.g., (v :=e;X) + c!e is guarded whereas (X;v := e) + c!e is not. Now the rules 

for recursion are as in Definition 8.1, namely 

d(X)~y 
X~y 

Next we will apply the definitions and theorem of the previous section. First it can again be 

proved by structural induction that this 0l is finitely branching. Thus we can use Definition 4. I that 

yields a model ~;: T(~rec)~P given by 

~-[s] = { < a, ~s'] > : s ..J4s'} 

Moreover, 0l is in GSOS format. Thus it induces a denotational interpretation /('51.) according to 

Definition 8.2. We have for the interpretations of the function symbols the following equalities. 
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/(<;\) { < - 0>} "th b act = auct• Wl auct as a ove 

p;1<"1> q = {< a,q >: < a,p'>Ep} u {<a,p' ;1<"1> q>: < a,p'>Ep} 

p ll1("1) q = {< a,q > : < a,p'>Ep} u {<a,p' ll1("1) q > : <a,p' > Ep } u 

{<a,p > : < a,q'>Eq} u {<a,p li 1 <~> q'>: <a,q'>Eq} u 

{< l,p' ll1("1lq' > : < < c,v>,p'> Ep /\ <<c,f >, q'>Eq } U 

{< /,p' ll1("1lq'>: <<c,f > ,p'>Ep /\ <<c,v>,q'>Eq } 

(with I as in the rules above) 

p + I (<;\) q = p U q 

x1<"1> = (d(X))1<"1> 

According to Theorem 8.3 we have ~J = ~- Thus we have for ~J the following equalities. 

~;[act] = { < auc, , 0 > } 

~(s;t] = ~[s] ;1C'1J ~t] 

~;[s li t] = ~[s] 11
1<'1> ~[t] 

~ls + t) = ~(s] + 1 <~> ~t] 

~[X] = ~[d(X)] 

10. DISCUSSION 
The model ~J is often called operational because it is formulated in terms of a transition system. 

For those who do not like an operational semantics to be defined as the fixed point of a function, let 
it be observed that an equivalent definition for ~ can easily be given in terms of (finite and infinite) 
transition sequences only. On the other hand, ~ is by definition denotational. Summarizing we see 
that starting with a TSS in GSOS format we obtain an operational model ~ (according to Definition 
4.1) and a denotational model ~ (according to Definition 8.2) that are found to be equal and that 
identify all terms that are bisimilar. Thus progress is made with respect to the method described in 
[KR88], where operational and denotational models are defined separately and considerable effort is 
required to establish their equivalence. 

We would like to prove a similar result for the more general tyft format of [GV88]. (The fact that 
this format is more general can, for example, be illustrated by the fact that it allows for a description 
of weak bisimulation, whereas the GSOS format does not.) This seems impossible with the use of 
complete metric spaces, as is illustrated by the example following Definition 8.2. At present, we are 
investigating the universe of non-well-founded sets ([Ac88]) as a possibly more liberal alternative to 
complete metric spaces. 
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