
Strategic Executions of Choreographed
Timed Normative Multi-Agent Systems

Lăcrămioara Aştefănoaei
L.Astefanoaei@cwi.nl

Frank S. de Boer
F.S.de.Boer@cwi.nl

Mehdi Dastani
mehdi@cs.uu.nl

ABSTRACT
This paper proposes a combined mechanism for coordinating agents
in timed normative multi-agent systems. Timing constraints in a
multi-agent system make it possible to force action execution to
happen before certain time invariants are violated. In suchmulti-
agent systems we achieve coordination at two orthogonal levels
with respect to states and actions. On the one hand, the behaviour of
individual agents is regulated by means of social and organisational
inspired concepts like norms and sanctions. On the other hand, the
behaviour of sets of agents is restricted according to action-based
coordination mechanisms called choreographies. In both cases, the
resulting behaviour is constrained by time.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Agent Languages, Theory, Verification

Keywords
Formal models of agency, Normative systems, Coordination

1. INTRODUCTION
One of the challenges in the design and development of multi-

agent systems is to coordinate and control the behaviour of the
constituting agents. There are different approaches, fromlow level
ones (e.g., channel-based coordination) to high level ones(e.g.,
normative or action-based artifacts), each with its own purpose and
expressive power.

For example, the normative language proposed in [10] was de-
signed to facilitate the implementation of norm-based organisation
artifacts. Such artifacts refer to norms as a way to signal when vi-
olations take place and sanctions as a way to respond (by means
of punishments) in the case of violations. Basically, a normative
artifact observes the actions performed by individual agents, de-
termines their effects in the environment (which is shared by all
individual agents), determines the violations caused by perform-
ing the actions, and possibly, imposes sanctions. Thus a normative
artifact can be used toenforcethe system to be in a specific, i.e.,
non-violating,state.
Cite as: Strategic Executions of Choreographed Timed Normative Multi-
Agent Systems, L. Aştefănoaei, F. S. de Boer and M. Dastani,Proc. of 9th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2010), van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May,
10–14, 2010, Toronto, Canada, pp. XXX-XXX.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

On the other hand, the choreography language proposed in [5]
was designed to allow the representation of global synchronisation
and ordering conditions restricting the action execution of agents.
Thus choreographies can be used toenforcespecific actions to
be executed. Introducing action-based coordination mechanisms
while respecting the autonomy of the agents is however problem-
atic. Choreographies might constrain agents’ autonomy, however,
this is a very common practise in multi-agent systems when specific
properties need to be guaranteed. The advantage of the infrastruc-
tures proposed in [5] lies in theirexogenousfeature: the update of
the agent’s mental states is separated from the coordination pattern.
Nobody changes the agent’s beliefs but itself. Besides thatchoreo-
graphies are oblivious to mental aspects, they control without hav-
ing to know the internal structure of the agent. More precisely, the
degree of freedom of an agent can be seen, depending on the agent
language, in the choice of plans or in the mechanism of handling
failures (the choreography does not constrain the agent on how to
select an appropriate “repair” operation). In these regards, the au-
tonomy of agents is preserved.

Since their expressive power is not the same, in this paper, we
consider a combination of the above approaches. Furthermore, we
extend such approaches by explicitly modelling time. We do this by
adapting the theory of timed automata [1]. There, time is modelled
as clocks denoted by real-valued variables. Initially, allthe clock
variables are initialised with zero. They increase synchronously at
the same uniform rate, counting time with respect to a fixed global
time frame. Clocks should be seen as fictious, invented to express
the timing properties of the system. We equip both agents andcho-
reographies with clocks. In this way it is possible to model clock
constraints which can (1) time restrict action execution, (2) enforce
delays between actions and (3) enable the sanctioning of delays, for
example, postponing to pay a fine. We emphasise this latter issue
as being a fresh approach to introducingtimed normative rules.

Both semantics of the normative and the choreography languages
are operational, thus they have a natural encoding as rewrite theo-
ries. One of the advantages of prototyping languages as rewrite
theories is that it makes it quick and easy to perform verification
and to experiment with the language definitions. Prototyping the
normative language as a rewrite theory has been already doneus-
ing Maude [9], a rewriting logic software, as it is describedin [4].
Furthermore, given instances of prototyped normative multi-agent
systems have been verified with the Maude LTL model-checker
[13]. The timed extension of both languages in a rewrite-based
framework like Maude is practically feasible thanks to Real-Time
Maude [20]. This is also the case for verifying choreographed
timed normative multi-agent systems using the same technique of
model-checking, however for timed systems.

We stress the importance of prototyping languages before im-

plementing them on a standard platform like Java, for example. It
can be the case that during the process of prototyping new ques-
tions about design choices need to be taken, sometimes putting into
light the lack of precision or weaknesses in definitions. If we take
the case of normative artifacts, usually, their implementation boils
down to fixing a scheduling policy for the application of normative
rules. For example, one can think of an artifact which after each
action execution considersall applicable normative rules such that
all possible violations are signalled and resolved by means of sanc-
tions. Or it can be thatonly the violations are recorded and at a
later time corresponding sanctions are applied. In [4], thechoice
goes for the first option. Furthermore, the implementation of the
normative artifact is hard-wired in the semantics of the normative
language. There isone transition rule whereboth the execution
of an actionand the application of normative rules are considered.
Such design decisions can give rise to further questions. There is
a close dependence between the instrumentation of the normative
rules and the semantics of the language. Thus, changes in thenor-
mative artifact must directly reflect in the semantics. Is there a more
generic approach which would allow the implementation of differ-
ent normative artifacts by using the same normative language?

In this paper we focus on such a generic approach. We propose
the use of ameta-level languagewhere we can definestrategiesas
an alternative way to implement different normative artifacts with-
out changing the semantics of the normative language. Thus,at
theobject-level, the normative multi-agent system is executed (its
states change) with respect to the rewrite rules which give the ex-
ecutable semantics of the normative language. However,how the
system changes is described at ameta-level, by strategically instru-
menting the rules. By using strategies there is a clear separation be-
tween executions (at object-level) and control (at meta-level). This
gives a great degree of flexibility which becomes important when
the interest is in verification. In order to analyse or experiment
with another type of normative artifact (thus a different agent soci-
ety) one only needs to change thesyntax of the strategyinstead of
changingthe semantics of the normative language.

Our contribution is three fold. First, we introduce a timed agent-
based framework. In this framework, we provide two distinctco-
ordination mechanisms which, on the one hand, monitor and en-
force certain normative states and, on the other hand, enforce cer-
tain actions to be executed. The advantages of our approach can
be seen at both practical and theoretical level. Thanks to rewriting
logic, we can prototype the timed normative and the timed chore-
ography languages in Real-Time Maude. This makes it possible to
(1) execute, by rewriting, and (2) verify, by model-checking chore-
ographed timed normative multi-agent systems. At a theoretical
level we provide the basis for a further analysis of properties of
different classes of normative artifacts.

2. TIMED NORMATIVE ARTIFACTS
In this section we introduce a timed variant of the normativelan-

guage presented in [4]. First, we present the standard time con-
structions which we further use in the paper. As we have already
mentioned in the introduction, our idea of time comes from the
theory of timed automata [1]. Atimed systemis a finite transi-
tion system extended with clock variables. Time advances only in
states since transitions are instantaneous. Clocks can be reset at
zero simultaneously with any transition. We usually denoteby λ
the set of clocks to be reset on transitions. At any instant, the read-
ing of a clock equals the time elapsed since the last time it was
reset. States and transitions haveclock constraints, defined by the
following grammar:

φc ::= xc ≤ t | t ≤ xc | xc < t | t < xc | φc ∧ φc,

wheret ∈ Q is a constant andxc is a clock variable. When a clock
constraint is associated with a state, it is calledinvariant, and it
expresses that time can elapse in the state as long as the invariant
stays true. When a clock constraint is associated with a transition,
it is calledguard, and it expresses that the action may be taken only
if the current values of the clocks satisfy the guard.

To record clock values one uses clock interpretations. Aclock
interpretationν for a set of clocksλ assigns a real value to each
clock. A clock interpretationν is said to satisfy a clock constraint
φc, ν |= φc, if and only if φc evaluates to true according to the
values given byν. Forδ ∈ R, ν+δ denotes the clock interpretation
which maps every clockxc ∈ λ to the valueν(xc) + δ. For any
λ1 ⊆ λ, ν[λ1 := 0] denotes the clock interpretation which assigns
0 to everyxc ∈ λ1 and agrees withν over the other clocks.

2.1 Syntax
Due to space limit, we will illustrate the syntax of the timednor-

mative language by means of an example. Before, we briefly pro-
vide an intuitive description of the key concepts. Please see [4] for
a more rigorous presentation of the untimed normative language.

A timed normative multi-agent system is a collection of timed
agents where the behaviour in time of the individual agents is mon-
itored and normative rules are applied consequently. The choice
of agent language is not relevant. However, for the sake of com-
pleteness, in this paper we only consider timed agent languages.
In this way we can describe in a uniform manner a timed, agent-
based framework. The untimed version can be obtained by simply
dropping time constructions since the time extension we envisage
is modular. Roughly, timed agents are agents equipped with clocks.
These clocks can be seen as stop-watches which can be startedand
checked independently of one another, however they use the same
unit to measure the passing of time. At each moment the clocks’
values of any agent can be checked by an external observer. The
observer cannot, however, change the agents’ clocks valuessince
it is only the agents that manipulate their own clocks. The way
they can do this will be intuitively described later on in this section.
The advantage of agents having their own clocks is that the norma-
tive system does not need to have a clock on its own. In order to
(dis)allow the execution of actions at given instances of time or to
punish delays it is sufficient1 to consult the clocks of the agents.

We further make the remark that the agents themselves are not
able to reason about the normative rules of the system since there
is no assumption about the internals of individual agents. The only
thing that agents can do is to performactions in an external en-
vironmentwhich is part of and controlled by the timed normative
multi-agent system. Actions are of two types: either invisible or
observable. An example of invisible ones are the actions forma-
nipulating clocks. The ones which are of interest in a normative
language are the observable actions. These are given in terms of
enabling conditionsand effects. The effects are recorded in the
brute stateof the environment. The enabling conditions are queries
on the brute state and on the valuations of the agents’ clocks.

The normative rules are eithercounts-asor sanctions. Syntac-
tically they are given in the form of implications,(φ,φc) ⇒ ψ,
where(φ, φc) generally denotes apreconditionas a pair of a first
order formula and a clock constraint andψ, apostconditionas a list
of literals. Informally, the meaning of counts-as (resp. sanctions) is
to update the normative (resp. brute) state with the elements from
the postcondition if the precondition is satisfied. Clock constraints

1Please note that by definition clocks cannot “break” or have “fake
time units”.

are present in the precondition because in a timed frameworknew
violations and sanctions can arise due to time delays. For exam-
ple not paying a fine in a given amount of time might entail the
application of a new violation. Or a sanction might be cancelled
when the expiration time has passed. The only difference between
counts-as and sanctions is that the preconditions of counts-as query
both brute and normative states while the preconditions of sanc-
tions query only the normative state. This is because new sanctions
reflected in the brute state of the system can entail the application
of new counts-as rules.

We take as an illustration a timed variant of the train scenario de-
scribed in [4]. Figure 1 represents a timed normative multi-agent
Agents:

psg1 clock1 passenger_prog1 1
psg2 clock2 passenger_prog2 1

Facts:
Effects:

{not at_platform(X)}
enter(X)

{at_platform(X)}
clock(X) < 10, {not ticket(X)}

buy-ticket(X)
{ticket(X)}
{at_platform(X), not in_train(X)}

embark(X)
{not at_platform(X), in_train(X)}
{fined(X, Y), not paid-fine(X)}

pay-fine(X, Y)
{paid-fine(X, Y)}

Counts-As rules:
at_platform(X) /\ not ticket(X) =>

viol_ticket(X)
(fined(X, Y) /\ not paid-fine(X),
clock(X) > 100) => viol_fine(X, Y)

Regimentation rules:
in_train(X) /\ not ticket(X) => viol_|_

Sanction rules:
viol_ticket(X) => fined(X, 25)
viol_fine(X, Y) => fined(X, 2*Y)

Figure 1: A Timed NMAS Program

system program consisting of two agentspsg1 andpsg2 with
their clocksclock1 (resp.,clock2) and their implementations
in the filespassenger_prog1 (resp.,passenger_prog2).
The initial bruteFacts are empty, thus by absence the fact that
psg1 is not in the train is true. TheEffects indicate the changes
in the environment, for instance,psg1 performingenter when
not at the platform, results inpsg1 being at the platform (with or
without a ticket). The enabling conditions can include clock con-
straints, for example, in our scenario, buying a ticket is allowed
only if this is done at most untilclock(X)2 shows 10 units of
time. TheCounts-As rules determine the normative effects
for a given state of the multi-agent system. In our scenario,being
at the platform without having a ticket counts-as a specific viola-
tion (viol_ticket(X)). It is also the case that fines which are
not paid within 100 units of time entail new violations. These rules
function as anenforcementmechanism [14] which is based on the
idea of responding to a violation such that the system returns to an
acceptable state. However, there are situations where stronger re-
quirements need to be implemented, for example, where it is never
the case that agents enter the train without having a ticket.This is
what is calledregimentationand in order to implement it we con-
sider the literalviol⊥ by means of regimentation rules. As we will
see, the operational semantics of the language ensures thatviol⊥
can never hold during any run of the system. Intuitively, regimen-
2For our scenario,clock(X) should be seen as a “library func-
tion” returning the valuation of the clock of agentX.

tation can be thought of as placing gates blocking an agent’saction.
In our scenario, theSanctionrules determines the punishment
for viol_ticket(X), which is the sanctionfined(X,25).
Furthermore, not paying a fine in time results in doubling thefine.

In order to analyse the above scenario, we assume a specific be-
haviour for the agentspsg1 andpsg2. As we have mentioned,
they are timed agents. Examples of timed agent languages arede-
scribed in [5]. We will not focus on their precise syntax and seman-
tics, as this is out of the scope of our paper, but describe, asa short
recipe, how to cook such languages. Roughly, the design method-
ology to time a language can be reduced to the following steps.
First, each agent is assigned a set of clocks which can be checked by
any external observer. Second, the agent language is extended with
two basic constructions which can be used in the agent program for
delayingandresettingclocks. For example, the delay mechanism
can be provided as a default action,φ → I , whereφ is a query
on the belief base of the agent andI is an invariant likexc ≤ 1.
This mechanism allows time to pass in a state under the condition
thatφ is satisfied and as long asI is valid. Third, action calls are
surrounded by blocks,(φc, a, λ), consisting of clock constraintsφc

and setsλ of clock resets. A timed extension of an agent language
following these steps has the important feature that “the ontology
of actions is timeless”. This implies that reflecting the syntactical
time constructions at the semantic level can be done in a modular
way. First a new transition rule for delay actions is needed for the
passing of time. Second, the rule for action execution is updated
such that for each action call(φc, a, λ) two additional operations
are performed: (1) a check ifφc is satisfied by the values of clocks
and (2) a reset of the clocks inλ.

For our case of study, we assume thatpsg1 can be dishonest,
and its plan,p1 in Figure 2, is to buy a ticket if its clockxc shows
less than 9 units, otherwise it will enter without a ticket. If psg1
manages to embark, it spends at most 200 units in the train. Wenote
that ifpsg1 does not buy a ticket and the normative system applies
the sanctionfined(psg1, 25), then ifpsg1 delays for more
than 100 units of time, a new sanction consisting of the doubling
of the fine is entailed. This would not be the case ifpsg1 delays
for less than 100 units and intends to pay the fine (pay-fine is
in p’). On the other hand, we assume thatpsg2 is correct and
its plan,p2, is to always buy a ticket before entering the platform.
Furthermore, it has up to 8 units of time to decide what ticketto buy
and it resets the clock after the action is done. The delaytrue ->
yc < 10 means thatpsg2 waits at most 10 units of time before
embarking the train.

p1 = (((xc < 9), buy-ticket) +
((xc >= 9), enter));
embark; (true -> (xc < 200)); p’

p2 = ((yc < 8), buy-ticket, yc := 0);
enter; (true -> yc < 10); embark

Figure 2: The plans ofpsg1 andpsg2

In Figure 2 “;” (resp. “+”) denotes the usual sequencing (resp.
choice) operator. Furthermore, to simplify notation, the blocks
(φ, a, λ), are written as pairs(φc, a) (resp. a) whenever the ex-
ecution ofa does not reset any clock (resp. and additionallyφc is
considered as being true).

2.2 Operational Semantics
A timed normative multi-agent system state〈A, σb, σn〉 records

the configuration of the constituting timed agents,A = {(A1, ν1),
(A2, ν2), . . . , (An, νn)}, together with the brute (σb) and norma-
tive states (σn). We recall from Section 2 thatν denotes clock

interpretations. Thusνi represents the current clock values ofAi.
The states of a timed normative multi-agent system change depend-
ing on the “event” arising in the system. Roughly, updates ofthe
brute stateσb are triggered after the execution of actions and after
the application of sanctions. Updates of the normative stateσn are
triggered after the application of counts-as rules. When a regimen-
tation rule (a counts-as withviol⊥ as postcondition) is applicable,
the system enters a deadlock state, denoted by⊥. These changes
can be modelled by means of the following transition rules which,
in fact, give the semantics of the timed normative language:

(φc, {φ}α{ψ}) (Ai, νi)
α
⇒ (A′

i, ν
′
i)

θ ∈ Sols(σb |= φ) νi |= φc

〈A, σb, σn〉→〈A’ , σb ⊎ ψθ, σn〉
(act)

((φ,φc) ⇒ viol⊥) ∈ R
Sols(σb ∪ σn |= φ) 6= ∅ νA |= φc

〈A, σb, σn〉→⊥
(reg)

((φ, φc) ⇒ ψ) ∈ C
θ ∈ Sols(σb ∪ σn |= φ) νA |= φc

〈A, σb, σn〉→〈A, σb, σn ⊎ ψθ〉
(counts-as)

((φ, φc) ⇒ ψ) ∈ S
θ ∈ Sols(σb ∪ σn |= φ) νA |= φc

〈A, σb, σn〉→〈A, σb ⊎ ψθ, σn〉
(sanction)

whereA’ = (A \ {(Ai, νi)}) ∪ {(A′
i, ν

′
i)} andR, C, S are sets of

regimentation, counts-as and sanction rules. By abuse of notation
we refer toα(x) (resp. φ(x), ψ(x)) asα (resp. φ, ψ) whenx,
the set of variables, is not relevant. The double arrow

α
⇒ denotes

the transitive closure of
α
→ with respect toτ steps,→, for internal

actions, andδ steps,
δ
→, for delay actions.Sols(σ |= ψ) represents

the set of all matchers ofψ againstσ. The notationψθ denotes the
usual application of the substitutionθ to the set of literalsψ. The
symbol⊎ denotes theupdateoperation. Its semantics is as follows:

8

<

:

σ ⊎ l = σ ∪ {l}, l ∈ ψθ

σ ⊎ ¬l = σ \ {l}, ¬l ∈ ψθ

σ ⊎ ψθ = (σ ⊎ a) ⊎ (ψθ \ {a}), a ∈ ψθ ∧ | ψ |> 1

which means that for each atoma fromψθ, if it is a positive literall
thenl is added toσ and if it is a negative literal¬l thenl is removed
from σ. We further denote byνA the valuation of all of the clocks
of all agents fromA, i.e.,νA = {νi | 1 ≤ i ≤ n}3. We say that
νA |= φc is true whenever the valuations fromνA satisfy the clock
constraintφc. For example, let us consider a multi-agent system
with two agents,A1 andA2 with A1 having two clocksxc, yc and
A2 having one clockzc. Let us further assume that we “freeze”
the system for an instant in a state where the clock interpretation
ν1 of the first agent isν1(xc) = 2, ν1(yc) = 4 and the clock
interpretationν2 of the second agent isν2(zc) = 6. We have that,
in the clock interpretationνA , i.e., ν1 ∪ ν2, the clock constraint
φc = (xc < 3) ∧ (zc > 5) is satisfied however this is not the case
for the clock constraintφc = (yc < 3).

The meaning of the transition rules is as follows. The transition
(act) takes place whenever an agentAi can perform an actionα
with the additional requirements that (1) there is a substitution θ
such that the preconditionφ of α matches the current set of brute
factsσb and (2) the clock constraintφc is satisfied by the current

3In order to have a well-defined interpretationνA the set of clock
variables of individual agents must be disjoint

clock interpretationνi of Ai. The rule (act) then evaluates the ef-
fectsψ of α and the configuration of the timed normative multi-
agent system changes such that it reflects the update ofσb with
ψθ and the new configuration ofAi with its possibly new clock
interpretation which might have changed whileδ steps. We re-
call that time passes inside agents by means of the internal built-in
delay actions. The transition (reg) can take place wheneverthere
is a regimentation rule with a precondition matching the current
set of brute and normative facts and a clock constraint satisfied by
the current clock interpretation of all clocks existing in the system.
The rule (reg) then blocks the execution of actions whose effects
are regimented. The mechanism for the transitions (counts-as) and
(sanction) is similar. They are both meant to apply correspondingly
counts-as and sanction rules.

3. TIMED CHOREOGRAPHIES
The normative constructions described previously are meant to

provide a monitoring mechanism and furthermore, to enforcethe
system to be in a certain state, non-violating or conformantfor ex-
ample. They cannot, however, enforce certainactionsto take place.
As we have mentioned in the introduction, it is sometimes impor-
tant to require a particular order on the execution of actions. This
is the case when using a scheduling policy and the result could be
a better performance or an increased efficiency of the multi-agent
system. This is why, based on the formalism from [5], we provide
a mechanism for implementing action-based coordination artifacts
by means of timed transition systems.

3.1 Syntax
We see timed choreographies as represented by a particular type

of regular expressions. Thus, we define them using structural in-
duction. The basic cases can be divided into two groups. One
group is denoted bylδ and is meant to represent the passing of time
by delaying clocks. The other group is denoted bylα and is meant
to represent timed action synchronisation. Synchronisation is de-
noted by the parallel operator “‖”. The parallel operator applies on
pairs (A,α)4 consisting of agents and action names. In order to
have a more expressive language, we also allowaction variables
instead of action names, i.e., the pairs can have the form(A, xa).
Timing the synchronisation is modelled by surrounding the con-
structionslα by clock constraints and resets. We then have that
timed choreographies are any combination oflδ and lα obtained
with the usual sequence “;”, choice “+” and Kleene “∗” operators.
In BNF notation, timed choreographies are defined as follows:

lδ ::= xc ≤ t

lα ::= (A,α) | (A, xa) | (lα ‖ lα)
ch ::= lδ | lα | (φc, lα, λ) | ch; ch | ch+ ch | ch∗

with xa being an action variable. We use the following naming
convention. Action variables are denoted by small letters with a
as subscript (xa, ya, za...) in order to distinguish them from clock
variables. They are meant to be placeholders for action names.
Action variables are seen as global static variables, thus once bound
their value cannot be changed. The binding is according to the
actions that an agent is enabled to execute at a given time. Variable
bindings are recorded as substitutions.

Before we present the semantics of timed choreographies, we
take, as an illustration, a few examples with intuitive meaning. Let
us first consider the following timed choreographych1:

4Since “‖” is associative and commutative, for simplicity, we use
the notation‖I (Ai, αi) to denote(Ai1 , αi1) ‖ . . . ‖ (Aij

, αij
)

whereI = {i1, . . . , ij} andj ≥ 2. This is also the case forxa.

((zc < 6), (psg2, buy-ticket))∗; (psg2, xa).

This is a choreography for the agentpsg2. Intuitively, it specifies
thatpsg2 can buy tickets for at most 6 units of time and after it
can execute an arbitrary actionxa. Let us now consider the timed
choreographych2:

(psg1, buy-ticket);((zc≥7),(psg1, xa))

which says that the agentpsg1 buys one ticket and as soon as
zc shows 7 it performs an arbitrary actionxa. If we compose
ch1 and ch2 by a sequence operator we can add that the action
xa performed bypsg1 is the same as the last one performed by
psg2. If we also recall that the plan ofpsg1 is to enter without
tickets if more than 9 units of time have passed, we can further note
that the clock constraint(zc < 6) ensures that such a situation
never happens sincepsg2 has always time to buy tickets. Thus it
is impossible forpsg2 to behave dishonestly.

In order to illustrate the use of the parallel operator let usfurther
consider the timed choreographych3:

(zc < 10);
((psg1, embark)‖(psg2, embark), (zc:=0))

and analyse it in the context ofchf = ch1; ch2; ch3. The chore-
ographychf says that after both agents bought their tickets and
performed the same actionxa, the whole system delays for at most
10 units while the agents wait for the arrival of the train andafter
they both embark synchronously. This synchronised action hap-
pens with a reset ofzc. We make one last remark with respect
to chf . The reader might have already noticed thatxa can only
be the actionenter since it is the only one enabled after the
agents buy tickets. As we will see in what follows, the substitution
[xa/enter] is recorded in all choreography states that precede
the one where the binding takes place.

3.2 Operational Semantics
We give operational semantics to timed choreographies suchthat

it is easily integrated into the timed normative language. Before
presenting the semantics we show how any timed choreography
can be accepted by a timed automaton5. We do this following the
standard approach from [17]. The timed automaton is built byin-
duction on the structure of the choreography. Due to space limits,
we will not provide a complete analysis of all cases but briefly de-
scribe the construction. The timed automaton associated with a
basic choreographyxc ≤ t consists of only one state to which
we associate the invariantxc ≤ t. There are no transitions in this
case. The timed automaton associated with a basic choreography lα
(resp.(φc, lα, λ)) has two states and one transition labelled withlα
(resp.(φc, lα, λ)). GivenAch1 andAch2 the timed automata asso-
ciated with the choreographiesch1 andch2, the timed automaton
Ach1;ch2 is the one obtained by concatenatingAch1 andAch2 . As
an illustration of how timed automata look like, Figure 3 describes
the one associated with the timed choreographychf .

cs0 cs4

cs1 cs2

cs3

zc < 10

(psg2, buy-ticket)
zc<6

(psg2, xa)

(psg1, buy-ticket) zc ≥ 7, (psg1, xa)

zc := 0
(psg1, embark)‖

(psg2, embark)

Figure 3: The Timed AutomatonAchf

5For the present context, it is sufficient to see timed automata as
timed transition systems with accepting states

Given a choreoraphy, a timed automaton can always be con-
structed, as it is stated in Proposition 3.1 and the proof is can be
reduced to the basic construction steps described above.

PROPOSITION 3.1. For any timed choreographych there exists
a timed automatonAch which acceptsch.

We define the semantics of timed choreographies6 Ach by means
of transition systems where the states are denoted as〈cs, ν〉 with
cs being a state ofAch andν the current clock interpretation. The
transition rules are with respect to the transition labels of Ach, that
is, corresponding to delay (lδ) and to agents’ actions (lα):

• 〈cs, ν〉
δ
→ 〈cs, ν + δ〉 if ν + δ |= I(cs) for anyδ ∈ R+

• 〈cs, ν〉
‖I(Ai,xai)

−−−−−−−→ 〈cs′, ν′〉 if cs
φc,‖I(Ai,xai),λ

−−−−−−−−−−→ cs′, ν |=
φc, ν′ = ν[λ := 0] andν′ |= I(cs′).

The first rule says that the choreography can pass time as longas
the new valuation does not violate the invariantI(cs) associated
with the statecs. The second rule says that for any label (φc, ‖I
(Ai, xai), λ) inAch we construct a transition labelled‖I (Ai, xai)
from 〈cs, ν〉 only if φc is satisfied by the current clock interpreta-
tion ν and if after resetting inν the clocks fromλ the new interpre-
tationν′ does not violate the invariant associated withcs′.

3.3 Timed Normative Systems Revisited
Adding timed choreographies to the timed normative language

from Section 2 implies that we need to revise the semantics ofthe
language. We recall that the states of the timed normative sys-
tems were defined as〈A, σb, σn〉. In the context of timed chore-
ographies, this is no longer enough since they should reflectalso
the states of choreographies. We denote their new configuration
by the notation〈A, σch, σb, σn〉. The symbolσch denotes triples
(cs, ν, θch). We use it to record the current clock interpretation of
the choreography and the active substitution of action variables.

Taking into account the two transitions giving the semantics of
timed choreographies, we need to extend the semantics of thetimed
normative language such that the new states〈A, σch, σb, σn〉 change
with respect to the “directions” given by the choreography.This
means that we need to (1) add a rule for passing time when the
choreography indicates a delay and (2) change the rule (act)such
that only the actions specified by the choreography are executed.
We first consider the rule (delay) for passing time:

〈cs, ν〉
δ
→ 〈cs, ν + δ〉

^

i

((Ai, νi)
δ
→ (Ai, νi + δ))

(νA ∪ ν + δ) |= I(cs)

〈A, (cs, ν, θch), σb, σn〉→〈A’ , (cs, ν + δ, θch), σb, σn〉

whereA’ is {(Ai, νi + δ) | 1 ≤ i ≤ n}. This rule says that the
whole system can delayδ units as long as the updated valuations
do not violate the invariant of the current choreography state.

The rule (sync-act) for timed synchronised action execution re-
places the rule (act). The changes are as follows:

〈cs, ν〉
‖I(Ai,xai)

−−−−−−−→ 〈cs′, ν′〉
^

i

((Ai, νi)
αi⇒ (A′

i, ν
′
i))

^

i

(φci, {φi}αi{ψi})

θ ∈ Sols(σb |=
^

i

φi) θ′ch ∈ Sols(
^

i

(αi |= xaiθch))

νA ∪ ν |=
^

i

φci νA’ ∪ ν′ |= I(cs′)

〈A, (cs, ν, θch), σb, σn〉→〈A’ , (cs′, ν′, θchθ
′
ch), σb ⊎ ψ

′, σn〉

6For convenience, we useAch instead ofch.

whereA is {(Ai, νi) | i ∈ I} ∪ A” (resp. A’ is {(A′
i, ν

′
i) | i ∈

I} ∪ A”), with A” = {(Aj , νj) | j ∈ {1, . . . , n} \ I}, ψ′ is
{ψiθ | i ∈ I} andI(cs) is the invariant associated with the chore-

ography statecs. In the constructionSols(
^

i

(αi |= xai
θch)), by

abuse of notation we use action namesαi as atoms. A solution in
this case is a substitution, either the identity or one whichbinds
variablesxaj

not bound already byθch. With respect to the previ-
ous rule (act), this rule says, in addition, that only the agents from
the subset{Ai | i ∈ I} are allowed to execute actions while the
ones fromA” remain unchanged. Furthermore, if for an agentAi

the choreography only specifies that it can do an arbitrary action
xa and if the setE(Ai) of enabled actions ofAi is not empty, then
xa will be bound to an action name fromE(Ai). This binding is
recorded in the new stateσch such that wheneverxa appears again
in the choreography it will be substituted by the binding.

4. EXECUTING NORMATIVE SYSTEMS
In [4] it is described how the untimed version of the normative

language presented in Section 2 can be prototyped as arewrite the-
ory. The process of prototyping the timed language as areal-time
rewrite theory([20]) is similar, nevertheless longer and slightly
more difficult to follow due to a more complex notation. This and
also the space limit are the reasons why we decide to take the un-
timed normative language as reference from now on until the end
of the paper. Besides, we appraise as valuable the conciseness and
the elegance of rewriting logic which ease the reading.

A rewrite theory consists of a signature (types and functionsym-
bols), equations and rewrite rules. In our case, the signature de-
scribes the states of the normative multi-agent system. Therewrite
rules describe how the states change. There is a natural encoding
of transition rules asconditional rewrite rules. The general mathe-
matical format of a conditional rewrite rule is:

l : t→ t′ if (
^

i

ui = vi) ∧ (
^

j

wj : sj) ∧ (
^

k

pk → qk)

which says thatl is the label of the rewrite rulet→ t′ which is used
to “rewrite” the termt to t′ when the conditions on the left side
are satisfied. Such conditions can be either equations likeui = vi,
memberships likewj : sj (that is,wj is of typesj) or other rewrites
like pk → qk. For example, the corresponding rewrite rule for the
untimed transition (act) from Section 2 is:

act : 〈{Ai,A}, σb, σn〉 → 〈{A′
i,A}, update(σb, ψθ), σn〉 if

Ai
α
→ A′

i ∧ α = (φ, ψ) ∧ θ = match(σb, φ)

whereupdate andmatch are functions defined by equations. Due
to space limit, we do not further explain the encoding of the lan-
guage as a rewrite theory. From the same reason neither do we
explain the encoding of the choreography language. We only note
that prototyping the untimedAch as a rewrite theory is a straight-
forward process. However, to make the connection between the
prototypes of choreographies and normative systems, that is, to en-
code the transition (sync-act) from Section 3 is slightly more com-
plicated because the setI has an arbitrary size7. To understand the
next section, we only need to remember that each transition has a
corresponding rewrite rule labelled with the same name.

4.1 Promoting Strategies
Having the normative language encoded as a rewrite theory we

can execute normative multi-agent systems by rewriting. Since
7Technically, we address this issue by consuming one by one the
indexes fromI and maintaining a history of remaining indexes

there might be more rewrite rules applicable at the same time, the
execution process is highly nondeterministic. Depending on the ap-
plication order of the rewrite rulesact, reg, counts-asandsanction
we execute, in fact, different types of “agent societies” correspond-
ing to specific normative artifacts. For example, in a “totalitarian”
agent society, the normative artifact monitors each actionexecution
and applies all active normative rules. Such an artifact corresponds
to a scheduling policy which specifies that first a check if noreg
rule is enable should occur, then allcounts-asrules are applied un-
til no longer possible, and finally allsanctionrules. The process is
reiterated until it is no longer the case.

In the next section we show how we can use rewriting strategies
to specify different scheduling policies of the normative rules. Thus
we reduce the inherent nondeterminism in the semantics of the nor-
mative language by means of strategies. A strategy languageS can
be viewed as a transformation of a rewrite theoryR intoS(R) such
that the latter represents the execution ofR in a controlled way, i.e.,
the application of rewrite rules is controlled by the strategy.

We make a short remark that to implement normative artifacts
at the object-level means to encode directly into the semantics of
the normative language specific procedures based on closureset
computations. This creates a dependency between the normative
artifact and the normative language. Such a dependency has the
implication that changing to a different normative artifact must be
reflected in the semantics of the normative language.

Following [12], we promote the design principle that automated
deduction methods (e.g., closure sets) should be specifieddeclar-
atively and notprocedurally. Depending on the normative multi-
agent system application, specific algorithms for implementing the
normative artifact should be specified asstrategiesto apply the
rewrite rules. This implies that the control of the rewriting is at
the meta-level. The separation betweenexecution(by rewriting) at
the object-level andcontrol (of rewriting) at the meta-level makes
it simpler to reason in a modular way about normative multi-agent
systems. When something goes wrong in the system one can first
verify the normative artifact for an error. Only if this process is
unsuccessful one needs to focus on debugging one by one the con-
stituting agent programs.

4.2 Normative Artifacts as Strategies
In this section we briefly describe a strategy languageS for im-

plementing normative artifacts. The language has been introduced
in [12]. Given the untimed normative language from Section 2, we
denote the corresponding rewrite theory byR. Given a normative
multi-agent system written as a program in the normative language,
its initial state has a corresponding term which we denote byt. This
term can be rewritten by the rewrite rules fromR. Given a strategy
expressions in the strategy languageS, the application ofs to t
is denoted bys@t. The semantics ofs@t is the set of successors
which result by rewritingt in S(R).

The simplest strategies we can define in the strategy language
S are the constantsidle and fail: idle @ t = {t}, fail @ t = ∅.
Another basic strategy consists of applying to a normative multi-
agent system statet a rule identified by one of the labels:act, reg,
counts-asor sanction, possibly with instantiating some variables
appearing in the rule. The semantics ofl@t, wherel is one of the
above rule labels, is the set of all terms to whicht rewrites in one
step using the rule labelledl. For example, applying the strategyact
to the untimed initial8 normative multi-agent system from Figure 1
has 2 solutions corresponding to each agent executing the action
from the head of their initial plans, i.e., one solution reflects that

8To simplify, we take untimedp1 asenter; embark (untimed
p2 is left unchanged,buy-ticket; enter; embark).

psg1 entered the platform and the other, thatpsg2 bought a ticket.
The languageS allows further strategy definitions by combin-

ing them under the usual regular expression constructions:con-
catenation (“;”), union (“|”), iteration (“*”, “+”). Thus, given the
strategiesE,E′, the strategy(E;E′)@t is defined asE′@(E@t),
that is,E′ is applied to the result of applyingE to t. The strategy
(E | E′)@t defined as(E@t)∪ (E′@t) means that bothE andE′

are applied tot. The strategyE+@t is defined as
[

i≥1
(Ei@t)

with E1 = E andEn = En−1;E, E∗ = idle | E+, thus it
recursively re-applies itself.

The if-then-elsecombinators are denoted byE ? E′ : E′′ and
their definition is (if (E@t) 6= ∅ thenE′@(E@t) elseE′′@t fi)
with the meaning that if, when evaluated in a given state term, the
strategyE is successful then the strategyE′ is evaluated in the
resulting states, otherwiseE′′ is evaluated in theinitial state. This
strategy is further used to define:

not(E) = E ? fail : idle try(E) = E ? idle : idle
test(E) = not(E) ? fail : idle E! = E∗ ; not(E)

which have the following meaning. The strategynot reverses the
result of applyingE. The strategytry changes the state term if the
evaluation ofE is successful, and if not, returns the initial state.
The strategytestchecks the success/failure result ofE but it does
not change the initial state. The strategyE! “repeats until the end”.

We now describe how to implement different normative multi-
agent systems using strategies. We start with:

vigilant = test(act ; reg) ? fails :
(act ; counts-as! ; sanction!)!

saying that actions are executed only if they do not enable the appli-
cation of regimentation rules (in which case the strategy fails). Af-
ter executing an action, counts-as rules are applied until no longer
possible. Finally, all corresponding sanctions are applied. This
process is iterated until no action can be executed. In our train
scenario, if we assume that a fine equals having a ticket, thenthe
result of applying this strategy reflects that both agents are in the
train with tickets and that previously,psg1 has been sanctioned.
If this were not the case, then the system is in a deadlock state be-
causepsg1 embarks without a ticket, thus enabling the application
of the regimentation rule. We note that a simple change like substi-
tuting “;” by “ |” in counts-as! ; sanction! leads to a less restrictive
normative system. An illustrative scenario is that of a video camera
monitoring in a supermarket, or of a radar measuring the velocity
of the passing vehicles. In such cases, sanctions do not necessarily
follow immediately after recording an infraction.

A more restricted society is implemented by means of:

totalitarian = (test(act ; reg) ? fails :
(act ; (counts-as! ; sanction!)!))!

saying that the process of applying counts-as rules followed by
sanctions is iterated until it is no longer possible. This characterises
scenarios where the application of a sanction enables the applica-
tion of a new counts-as. We take, for instance, a traffic scenario
where an actor drives through the red light, thus violating the traf-
fic law. Consequently, a fine is applied. We assume that this isdone
automatically by withdrawing a certain amount of money fromthe
actor’s account. It is then the case that not enough money in the
account results in a new violation. This is under the supposition
that the bank has a regulation specifying that the client must not
go below a certain debt level, otherwise the client is added to the
bank’s black list and has to pay an additional fee. We note that this
latter sanction rule can never be applied when the system runs with

respect to the strategyvigilant. However, in the case of the train
scenario the result of applying either one of the strategiesvigilant
or totalitarian is the same.

A liberal society is implemented using the strategy:

liberal = (test(act ; reg) ? fails : act)* ;
(try(counts-as) ? try(sanction) : idle)*

This strategy imposes no restrictions onwhennormative rules are
applied. One possible result could be that the agentpsg1 was
sanctioned because of being at the platform without a ticket. An-
other solution in a “liberal” agent society could be also thecase that
psg1 is at the platform without a ticket and without being fined.
Such a scenario would never be possible when using either oneof
the strategiesvigilant or totalitarian.

We conclude this section with a short discussion of how we can
further use strategies at both theoretical and practical level. So far,
we have shown how, thanks to strategies, we can explicitly imple-
ment normative artifacts. Having a classification of types of nor-
mative systems we can systematically study the expressive power
for each class separately. By expressive power of a normative ar-
tifact we mean the domain of possible resulting behaviours when
the multi-agent system runs under the coordination of the artifact.
For example, in totalitarian societies certain correctness (in terms
of safety) properties are modelled by definition. It is not difficult to
see that this is no longer the case in liberal societies. Yet another
point of interest is to find not only the differences but also the con-
nections between classes. For example, we can state the following
proposition:

PROPOSITION 4.1. For any 〈A, σb, σn〉 there existsAch such
that totalitarian@〈A, σb, σn〉 = liberal@〈A, σch, σb, σn〉 where
σch is (cs0, ∅, ν

A := 0) andcs0 is the initial state ofAch.

which says that there exists a choreography such that totalitarian
societies and liberal ones running under the directions of the chore-
ography have the same power. This result suggests that one could
see choreographies as a way to implement regimentation.

At a more practical level, we mention that the strategy language
S is, in fact, implemented in the Maude system. This made it sim-
ple to experiment the use of strategies on the Maude prototype of
the untimed normative multi-agent system from Figure 1. Thanks
to Real-Time Maude, prototyping the timed extension of the nor-
mative (resp. choreography) language as real-time rewritetheories
should be an easy exercise. However, since the strategy language
S is implemented on top of Full-Maude, further effort is needed in
order to useS on Real-Time Maude modules.

5. CONCLUSIONS
In this paper, we have focused on coordination in timed norma-

tive multi-agent systems. We have first described how timed agent
systems can be implemented. We then presented how coordination
in timed agent systems can be achieved at two orthogonal levels.
On the one hand, we have shown how thestatesof a system can
be enforced by means ofnorms and sanctions. The use of social
and organisational concepts (e.g., norms, roles, groups, responsibil-
ity) and mechanisms for monitoring agents’ actions and sanction-
ing has already been advocated in [11, 10, 7]. Temporal aspects
of normative structures have been addressed in [2, 22]. The main
difference in our approach is the “separation of concerns”:actions
areuntimed, time constraints areapplication-specific. Actions have
a natural definition as belief base transformers, thus having an un-
timed ontology of actions allows reusability. Furthermore, having
time constraintson top of actionsallows expressing synchronisa-
tions and multiple independent delays between actions.

On the other hand, we have shown howaction executioncan be
enforced by means oftimed choreographies. Related work with re-
spect to action-based coordination artifacts appears in [21] in terms
of resource access relation. The concepts of choreography and or-
chestration have already been introduced to web services in[18,
19]. With respect to [6], though we use the same terminology,our
framework is in essence different since we deliberately ignore com-
munication issues. Our choreography model is explicit whereas in
[6] is implicit in the communication protocol. Being external, the
choreography represents, in fact, contexts while in the other ap-
proaches there is a distinction between the modularity and the con-
textuality of the communication operator. Timed choreographies
are inspired from the theory of timed automata. Timed automata
has been applied to testing real-time systems specifications [15],
to scheduling problems [8], and to web-services [16]. The use of
timed automata in a normative multi-agent setting is new.

Besides timed coordination, we have also approached the is-
sue of implicit nondeterminism in the operational semantics of the
timed normative language. We have presented strategies as away to
handle nondeterminism at a meta-level. Such strategies we use to
implement different normative artifacts for normative multi-agent
systems. We did not discuss termination issues with respectto
strategies. Because of “malformed” counts-as rules, e.g.,recur-
sive, the application ofvigilant may not always terminate. It is also
the case that “circularities” can lead to non-terminatingtotalitarian
strategies. These aspects are subject to future work, however, more
details and some examples can be found in [3].

We recall that currently, when regimentation rules are applicable,
the system reaches a deadlock state. This is not an optimal excep-
tion handling mechanism. If an agent tries to do an action which
leads to the application ofreg but it can also do a permitted action
a, it should not be the case that the system enters a deadlock state
but it constrains the agent to executea. We view such mechanisms
as self repairing and we will formalise them in future work.

6. REFERENCES
[1] R. Alur. Timed automata. InProceedings of the 11th

International Conference on Computer Aided Verification
(CAV), LNCS, pages 8–22. Springer, 1999.

[2] A. Artikis, M. J. Sergot, and J. V. Pitt. Specifying
norm-governed computational societies.ACM Trans.
Comput. Log., 10(1), 2009.

[3] L. Astefanoaei, M. Dastani, J.-J. Meyer, and F. de Boer. On
the semantics and verification of normative multi-agent
systems.Journal of Universal Computer Science (J.UCS),
15(13):2629–2652, 2009.http://www.jucs.org/
jucs_15_13/on_the_semantics_and.

[4] L. Astefanoaei, M. Dastani, J.-J. C. Meyer, and F. S. de Boer.
A verification framework for normative multi-agent systems.
In Proceedings of the 11th Pacific Rim International
Conference on Multi-Agents (PRIMA), LNCS, pages 54–65.
Springer, 2008.

[5] L. Astefanoaei, F. S. de Boer, and M. Dastani. The
refinement of choreographed multi-agent systems. In
Proceedings of the 9th International Workshop on
Declarative Agent Languages and Technologies (DALT).
LNAI, 2009.

[6] M. Baldoni, C. Baroglio, A. K. Chopra, N. Desai, V. Patti,
and M. P. Singh. Choice, interoperability, and conformance
in interaction protocols and service choreographies. In
Proceedings of the 8th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS),
pages 843–850. IFAAMAS, 2009.

[7] G. Boella and L. van der Torre. Substantive and procedural
norms in normative multiagent systems.J. Applied Logic,
6(2):152–171, 2008.

[8] P. Bouyer, E. Brinksma, and K. G. Larsen. Optimal infinite
scheduling for multi-priced timed automata.Formal Methods
in System Design, 32(1):3–23, 2008.

[9] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet,
J. Meseguer, and C. L. Talcott, editors.All About Maude - A
High-Performance Logical Framework, How to Specify,
Program and Verify Systems in Rewriting Logic, volume
4350 ofLNCS. Springer, 2007.

[10] M. Dastani, D. Grossi, J.-J. C. Meyer, and N. Tinnemeier.
Normative multi-agent programs and their logics. In
Proceedings of the Workshop on Knowledge Representation
for Agents and Multi-Agent Systems (KRAMAS), 2008.

[11] V. Dignum.A Model for Organizational Interaction. PhD
thesis, Utrecht University, 2003.

[12] S. Eker, N. Martí-Oliet, J. Meseguer, and A. Verdejo.
Deduction, strategies, and rewriting.ENTCS, 174(11):3–25,
2007.

[13] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude
LTL model checker and its implementation. InModel
Checking Software: Proc. 10 th Intl. SPIN Workshop, volume
2648 ofLNCS, pages 230–234. Springer, 2003.

[14] D. Grossi, F. Dignum, and J.-J. C. Meyer. A formal road
from institutional norms to organizational structures. In
Proceedings of the 6th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS),
page 89. IFAAMAS, 2007.

[15] A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen,
P. Pettersson, and A. Skou. Testing real-time systems using
UPPAAL. In Formal Methods and Testing, LNCS, pages
77–117. Springer, 2008.

[16] A. Lomuscio, W. Penczek, M. Solanki, and M. Szreter.
Runtime monitoring of contract regulated web services. In
Proceedings of the 12th International Workshop on
Concurrency, Specification and Programming (CS&P09),
2009. to appear.

[17] R. McNaughton and H. Yamada. Regular expressions and
state graphs for automata.IEEE, 9:39–47, 1960.

[18] S. Meng and F. Arbab. Web services choreography and
orchestration in Reo and constraint automata. InProceedings
of the 2007 ACM Symposium on Applied Computing (SAC),
pages 346–353. ACM, 2007.

[19] J. Misra. A programming model for the orchestration of web
services. InSEFM, pages 2–11. IEEE, 2004.

[20] P. C. Ölveczky and J. Meseguer. Semantics and pragmatics
of Real-Time Maude.Higher-Order and Symbolic
Computation, 20(1-2):161–196, 2007.

[21] A. Ricci, M. Viroli, and A. Omicini. Give agents their
artifacts: the A&A approach for engineering working
environments in mas. InProceedings of the 6th International
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), page 150. IFAAMAS, 2007.

[22] F. Viganò, N. Fornara, and M. Colombetti. An event driven
approach to norms in artificial institutions. InProceedings of
the International Workshop on Agents, Norms and
Institutions for Regulated Multi-Agent Systems (ANIREM),
LNCS, pages 142–154. Springer, 2005.

