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ABSTRACT

This paper proposes a combined mechanism for coordinagiegts
in timed normative multi-agent systems. Timing constint a
multi-agent system make it possible to force action exeoutd
happen before certain time invariants are violated. In suatti-
agent systems we achieve coordination at two orthogonaldev
with respect to states and actions. On the one hand, theibeha¥
individual agents is regulated by means of social and osgdioinal
inspired concepts like norms and sanctions. On the othet, lihe
behaviour of sets of agents is restricted according to mdiased
coordination mechanisms called choreographies. In batbs;ahe
resulting behaviour is constrained by time.
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1. INTRODUCTION

One of the challenges in the design and development of multi-
agent systems is to coordinate and control the behaviouhef t
constituting agents. There are different approaches, foanievel
ones (e.g., channel-based coordination) to high level degs,
normative or action-based artifacts), each with its owrppse and
expressive power.

For example, the normative language proposed in [10] was de-
signed to facilitate the implementation of norm-based oigggtion
artifacts. Such artifacts refer to norms as a way to signanwh-
olations take place and sanctions as a way to respond (bysmean
of punishments) in the case of violations. Basically, a rative
artifact observes the actions performed by individual &gete-
termines their effects in the environment (which is shargdalh
individual agents), determines the violations caused bjope-
ing the actions, and possibly, imposes sanctions. Thusraative
artifact can be used tenforcethe system to be in a specific, i.e.,
non-violating,state
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On the other hand, the choreography language proposed in [5]
was designed to allow the representation of global synésation
and ordering conditions restricting the action executibagents.
Thus choreographies can be usedetdorce specific actionsto
be executed. Introducing action-based coordination nrésins
while respecting the autonomy of the agents is however probl
atic. Choreographies might constrain agents’ autonomyekier,
this is a very common practise in multi-agent systems whenifip
properties need to be guaranteed. The advantage of thethoita
tures proposed in [5] lies in the@xogenoudeature: the update of
the agent’s mental states is separated from the coordinpéittern.
Nobody changes the agent's beliefs but itself. Besidesctiarteo-
graphies are oblivious to mental aspects, they controlouithav-
ing to know the internal structure of the agent. More prdygjsbe
degree of freedom of an agent can be seen, depending on tite age
language, in the choice of plans or in the mechanism of hagdli
failures (the choreography does not constrain the agenbentd
select an appropriate “repair” operation). In these regditte au-
tonomy of agents is preserved.

Since their expressive power is not the same, in this paper, w
consider a combination of the above approaches. Furthermar
extend such approaches by explicitly modelling time. Wehiolty
adapting the theory of timed automata [1]. There, time is efled
as clocks denoted by real-valued variables. Initiallytladl clock
variables are initialised with zero. They increase syncbusly at
the same uniform rate, counting time with respect to a fixetal
time frame. Clocks should be seen as fictious, invented tceszp
the timing properties of the system. We equip both agentchad
reographies with clocks. In this way it is possible to modetk
constraints which can (1) time restrict action executi@penforce
delays between actions and (3) enable the sanctioning @jsiebr
example, postponing to pay a fine. We emphasise this latiee is
as being a fresh approach to introductiged normative rules

Both semantics of the normative and the choreography layggua
are operational, thus they have a natural encoding as eethieb-
ries. One of the advantages of prototyping languages asteewr
theories is that it makes it quick and easy to perform vetifica
and to experiment with the language definitions. Prototypie
normative language as a rewrite theory has been alreadyuinne
ing Maude [9], a rewriting logic software, as it is described4].
Furthermore, given instances of prototyped normative iragjent
systems have been verified with the Maude LTL model-checker
[13]. The timed extension of both languages in a rewritestas
framework like Maude is practically feasible thanks to RE€ahe
Maude [20]. This is also the case for verifying choreographe
timed normative multi-agent systems using the same teaknid
model-checking, however for timed systems.

We stress the importance of prototyping languages before im



plementing them on a standard platform like Java, for examipl
can be the case that during the process of prototyping news- que
tions about design choices need to be taken, sometimesgiritd
light the lack of precision or weaknesses in definitions. éf take
the case of normative artifacts, usually, their implemgoaboils
down to fixing a scheduling policy for the application of natine
rules. For example, one can think of an artifact which afsehe
action execution considegdl applicable normative rules such that
all possible violations are signalled and resolved by meanaraf-s
tions. Or it can be thabnly the violations are recorded and at a
later time corresponding sanctions are applied. In [4],cheice
goes for the first option. Furthermore, the implementatibthe
normative artifact is hard-wired in the semantics of thermettive
language. There isnetransition rule wheréoth the execution
of an actionandthe application of normative rules are considered.
Such design decisions can give rise to further questiongreTis

a close dependence between the instrumentation of the tieema
rules and the semantics of the language. Thus, changes imothe
mative artifact must directly reflectin the semantics. &&a more
generic approach which would allow the implementation &edi
ent normative artifacts by using the same normative langelag

Pei=xc <t|t< x| Te<t|t<zc| PN Do,

wheret € QQ is a constant and.. is a clock variable. When a clock
constraint is associated with a state, it is calileariant, and it
expresses that time can elapse in the state as long as thiairtva
stays true. When a clock constraint is associated with aitran,

itis calledguard, and it expresses that the action may be taken only
if the current values of the clocks satisfy the guard.

To record clock values one uses clock interpretationsclosk
interpretationv for a set of clocks\ assigns a real value to each
clock. A clock interpretation is said to satisfy a clock constraint
¢e, v E ¢, if and only if ¢. evaluates to true according to the
values given by. Ford € R, v+ 6§ denotes the clock interpretation
which maps every clock. € ) to the valuev(z.) + §. For any
A1 C A, v[A1 := 0] denotes the clock interpretation which assigns
0to everyz. € A1 and agrees witlr over the other clocks.

2.1 Syntax

Due to space limit, we will illustrate the syntax of the timmat-
mative language by means of an example. Before, we briefly pro
vide an intuitive description of the key concepts. Pleagg4kfor

In this paper we focus on such a generic approach. We proposea more rigorous presentation of the untimed normative laggu

the use of aneta-level language/here we can definstrategiesas
an alternative way to implement different normative adiawith-
out changing the semantics of the normative language. Tdtus,
the object-level the normative multi-agent system is executed (its
states change) with respect to the rewrite rules which dieeek-
ecutable semantics of the normative language. Howéav,the
system changes is described ateta-levelby strategically instru-
menting the rules. By using strategies there is a clear agparme-
tween executions (at object-level) and control (at metatje This
gives a great degree of flexibility which becomes importahemw
the interest is in verification. In order to analyse or expert
with another type of normative artifact (thus a differenéagsoci-
ety) one only needs to change thgtax of the strategynstead of
changingthe semantics of the normative language

Our contribution is three fold. First, we introduce a timegkat-
based framework. In this framework, we provide two distioat
ordination mechanisms which, on the one hand, monitor ard en
force certain normative states and, on the other hand, enfmar-
tain actions to be executed. The advantages of our appr@ach ¢
be seen at both practical and theoretical level. Thanksadtieg
logic, we can prototype the timed normative and the timedesho
ography languages in Real-Time Maude. This makes it passibl
(1) execute, by rewriting, and (2) verify, by model-checkihore-
ographed timed normative multi-agent systems. At a thaaidet
level we provide the basis for a further analysis of propertf
different classes of normative artifacts.

2. TIMED NORMATIVE ARTIFACTS

In this section we introduce a timed variant of the normaltéve
guage presented in [4]. First, we present the standard tome ¢
structions which we further use in the paper. As we have djrea
mentioned in the introduction, our idea of time comes from th
theory of timed automata [1]. Aimed systenis a finite transi-
tion system extended with clock variables. Time advancégion
states since transitions are instantaneous. Clocks caese¢ at
zero simultaneously with any transition. We usually derimte\
the set of clocks to be reset on transitions. At any instaetréad-
ing of a clock equals the time elapsed since the last time & wa
reset. States and transitions haleck constraintsdefined by the
following grammar:

A timed normative multi-agent system is a collection of tdne
agents where the behaviour in time of the individual agesan-
itored and normative rules are applied consequently. Tloéceh
of agent language is not relevant. However, for the sake wf-co
pleteness, in this paper we only consider timed agent layegua
In this way we can describe in a uniform manner a timed, agent-
based framework. The untimed version can be obtained bylygimp
dropping time constructions since the time extension wésage
is modular. Roughly, timed agents are agents equipped \oidtks.
These clocks can be seen as stop-watches which can be stadted
checked independently of one another, however they useathe s
unit to measure the passing of time. At each moment the clocks
values of any agent can be checked by an external observer. Th
observer cannot, however, change the agents’ clocks valoes
it is only the agents that manipulate their own clocks. Thg wa
they can do this will be intuitively described later on ingiection.
The advantage of agents having their own clocks is that theao
tive system does not need to have a clock on its own. In order to
(dis)allow the execution of actions at given instancesrgtor to
punish delays it is sufficiehto consult the clocks of the agents.

We further make the remark that the agents themselves are not
able to reason about the normative rules of the system diree t
is no assumption about the internals of individual agenks dnly
thing that agents can do is to perfomwtionsin an external en-
vironmentwhich is part of and controlled by the timed normative
multi-agent system. Actions are of two types: either irbisior
observable. An example of invisible ones are the actionsrar
nipulating clocks. The ones which are of interest in a noiweat
language are the observable actions. These are given is t#rm
enabling conditionsand effects The effects are recorded in the
brute stateof the environment. The enabling conditions are queries
on the brute state and on the valuations of the agents’ clocks

The normative rules are eithepunts-asor sanctions Syntac-
tically they are given in the form of implication$g, ¢.) = 1,
where(¢, ¢.) generally denotes preconditionas a pair of a first
order formula and a clock constraint angdapostconditioras a list
of literals. Informally, the meaning of counts-as (respci@ns) is
to update the normative (resp. brute) state with the elesrfenin
the postcondition if the precondition is satisfied. Clockstoaints

!please note that by definition clocks cannot “break” or héake"
time units”.



are present in the precondition because in a timed framen@sk
violations and sanctions can arise due to time delays. Famex
ple not paying a fine in a given amount of time might entail the
application of a new violation. Or a sanction might be calecel
when the expiration time has passed. The only differencedest
counts-as and sanctions is that the preconditions of casgiery
both brute and normative states while the preconditionsaots
tions query only the normative state. This is because neutisais
reflected in the brute state of the system can entail thegin
of new counts-as rules.
We take as an illustration a timed variant of the train scerce-
scribed in [4]. Figure 1 represents a timed normative magent
Agent s:
psgl cl ockl passenger_progl 1
psg2 cl ock2 passenger _prog2 1
Facts:
Ef fects:
{not at_platform(X)}

{at _platform(X)}
clock(X) < 10, {not ticket(X)}

buy-ticket (X)
{ticket(X)}

ent er ( X)

{at _platform(X), not in_train(X)}
enbar k( X)
{not at_platform(X), in_train(X)}

{fined(X, )

{paid-fine(X, Y)}
Counts-As rul es:

at_platfornm(X) /\ not ticket(X) =>

viol _ticket (X)

( fined(X, Y) /\ not paid-fine(X),

clock(X) > 100 ) => viol _fine(X Y)
Regi nentati on rul es:

in_train(X) /\ not ticket(X) => viol_|_
Sanction rul es:

viol _ticket(X) => fined(X, 25)

viol _fine(X, Y) => fined(X 2*Y)

Figure 1: A Timed NMAS Program

system program consisting of two agemtsgl and psg2 with
their clockscl ockl (resp.,cl ock2) and their implementations
in the filespassenger _progl (resp.,passenger _prog2).
The initial bruteFact s are empty, thus by absence the fact that
psglisnotinthetrainis true. ThEf f ect s indicate the changes
in the environment, for instancesgl performingent er when
not at the platform, results ipsgl being at the platform (with or
without a ticket). The enabling conditions can include klaon-
straints, for example, in our scenario, buying a ticket leve¢d
only if this is done at most untit| ock( X) 2 shows 10 units of
time. TheCount s- As rul es determine the normative effects
for a given state of the multi-agent system. In our scendeing

at the platform without having a ticket counts-as a specifitav
tion (vi ol _ti cket ( X)). Itis also the case that fines which are
not paid within 100 units of time entail new violations. Thesles
function as arenforcementechanism [14] which is based on the
idea of responding to a violation such that the system rettomn
acceptable state. However, there are situations whenegetroe-
guirements need to be implemented, for example, where éism
the case that agents enter the train without having a tidkes is
what is calledregimentationand in order to implement it we con-
sider the literabiol ; by means of regimentation rules. As we will
see, the operational semantics of the language ensuresithat
can never hold during any run of the system. Intuitively,megn-

not paid-fine(X)}
pay-fine(X, Y)

2For our scenariog| ock( X) should be seen as a “library func-
tion” returning the valuation of the clock of agexit

tation can be thought of as placing gates blocking an agectisn.
In our scenario, th8anct i on r ul es determines the punishment
for vi ol _ti cket ( X), which is the sanctioti i ned( X, 25) .
Furthermore, not paying a fine in time results in doublingfthe.

In order to analyse the above scenario, we assume a speeific be
haviour for the agentpsgl andpsg2. As we have mentioned,
they are timed agents. Examples of timed agent languageteare
scribed in [5]. We will not focus on their precise syntax aethan-
tics, as this is out of the scope of our paper, but describe short
recipe, how to cook such languages. Roughly, the designadeth
ology to time a language can be reduced to the following steps
First, each agent is assigned a set of clocks which can b&ethey
any external observer. Second, the agent language is extevith
two basic constructions which can be used in the agent profpa
delayingandresettingclocks. For example, the delay mechanism
can be provided as a default actiah,— I, where¢ is a query
on the belief base of the agent ahds an invariant likex. < 1.
This mechanism allows time to pass in a state under the d¢ondit
that ¢ is satisfied and as long dsis valid. Third, action calls are
surrounded by blockgp., a, A), consisting of clock constraints.
and sets\ of clock resets. A timed extension of an agent language
following these steps has the important feature that “titelogy
of actions is timeless”. This implies that reflecting the tagtical
time constructions at the semantic level can be done in a faodu
way. First a new transition rule for delay actions is neededHe
passing of time. Second, the rule for action execution isatgutl
such that for each action cdl., a, A) two additional operations
are performed: (1) a checkdf. is satisfied by the values of clocks
and (2) a reset of the clocks in

For our case of study, we assume tpaigl can be dishonest,
and its planp1 in Figure 2, is to buy a ticket if its clockc shows
less than 9 units, otherwise it will enter without a tickdtpsgl
manages to embark, it spends at most 200 units in the traimotée
thatif psg1 does not buy a ticket and the normative system applies
the sanctiorf i ned( psgl, 25), thenifpsgl delays for more
than 100 units of time, a new sanction consisting of the dogbl
of the fine is entailed. This would not be the caspsigl delays
for less than 100 units and intends to pay the fipay(- f i ne is
in p’ ). On the other hand, we assume tpatg2 is correct and
its plan,p2, is to always buy a ticket before entering the platform.
Furthermore, it has up to 8 units of time to decide what titdtuy
and it resets the clock after the action is done. The detaye - >
yc < 10 means thapsg2 waits at most 10 units of time before
embarking the train.

pl = ( ((xc < 9), buy-ticket) +
((xc >=9), enter) );
embark; (true -> (xc < 200)); p’
p2 = ((yc < 8), buy-ticket, yc := 0);
enter; (true -> yc < 10); enbark

Figure 2: The plans gisgl andpsg2

In Figure 2 4 " (resp. “+”) denotes the usual sequencing (resp.
choice) operator. Furthermore, to simplify notation, thecks
(¢,a, N), are written as pair§p., a) (resp. a) whenever the ex-
ecution ofa does not reset any clock (resp. and additionallyis
considered as being true).

2.2 Operational Semantics

A timed normative multi-agent system std#e, o, o, ) records
the configuration of the constituting timed agemtss {(A41,v1),
(A2,v2), ..., (An,vn)}, together with the brutes,) and norma-
tive states €,,). We recall from Section 2 that denotes clock



interpretations. Thus; represents the current clock valuesAf
The states of a timed normative multi-agent system changerdke

ing on the “event” arising in the system. Roughly, updatethef
brute stater;, are triggered after the execution of actions and after
the application of sanctions. Updates of the normativesstatare
triggered after the application of counts-as rules. Wheggamen-
tation rule (a counts-as withiol | as postcondition) is applicable,
the system enters a deadlock state, denoted byrhese changes
can be modelled by means of the following transition rulegctvh

in fact, give the semantics of the timed normative language:

(e, {0}afv}) (A, i) = (A, vi)
6 € Sols(oy = ¢) Vi = ¢e

(A0, 0m)— (A 00 © 00, 0) (act
(¢, hc) = viol L) € R .
0e Sols(((jj ﬁ”ﬁfﬁﬁf Cz/* E ¢
A ov om) (A os 0w T 00) (counts-a¥
(¢, 0c) =) €S
0 € Sols(op Uy, |=¢) 1™ = e (sanction

<Aa Ob, U’ﬂ>_)<A7 Op & ’(/)03 U’”«>

whereA'” = (A\ {(As,vi)}) U{(A4;,v{)} andR, C, S are sets of
regimentation, counts-as and sanction rules. By abusetafion
we refer toa(z) (resp. ¢(Z), ¥(T)) as« (resp. ¢, ¥) whenz,

the set of variables, is not relevant. The double arféwdenotes
the transitive closure of> with respect tor steps,—, for internal

actions, and steps,i, for delay actionsSols(c = ) represents
the set of all matchers af againsis. The notation)d denotes the
usual application of the substitutighto the set of literals). The
symbolw denotes thepdateoperation. Its semantics is as follows:

leyo
-l eyl
a€PON|Y|>1

O'L‘L‘ll:UU{l}a
O'L*_'J“l:a\{l}v
oWl = (0 Wa)W (0 \ {a}),

which means that for each atanfrom «6, if it is a positive literall
then! is added t@ and if itis a negative literahl thenl is removed
from o. We further denote by”* the valuation of all of the clocks
of all agents fromA, i.e.,v® = {v; | 1 < i < n}® We say that
1 = ¢, is true whenever the valuations frarft satisfy the clock
constrainty.. For example, let us consider a multi-agent system
with two agents A; and A, with A; having two clockse., . and
A having one clockz.. Let us further assume that we “freeze”
the system for an instant in a state where the clock inteapost

vy of the first agent is/i(z.) = 2,v1(y.) = 4 and the clock
interpretation, of the second agent is(z.) = 6. We have that,
in the clock interpretationvA, i.e., v1 U s, the clock constraint
de = (zc < 3) A (2. > b) is satisfied however this is not the case
for the clock constrainp. = (y. < 3).

The meaning of the transition rules is as follows. The trzorsi
(act) takes place whenever an agentcan perform an action
with the additional requirements that (1) there is a sultsih 0
such that the preconditiops of « matches the current set of brute
factso, and (2) the clock constraint. is satisfied by the current

%In order to have a well-defined interpretatiofi the set of clock
variables of individual agents must be disjoint

clock interpretation; of A;. The rule (act) then evaluates the ef-
fectsvy of o and the configuration of the timed normative multi-
agent system changes such that it reflects the update wfith
10 and the new configuration of; with its possibly new clock
interpretation which might have changed whilesteps. We re-
call that time passes inside agents by means of the inteuil&if
delay actions. The transition (reg) can take place wheninaze

is a regimentation rule with a precondition matching therexitr
set of brute and normative facts and a clock constraintfeatiby
the current clock interpretation of all clocks existing e tsystem.
The rule (reg) then blocks the execution of actions whosectff
are regimented. The mechanism for the transitions (ccas)tsnd
(sanction) is similar. They are both meant to apply corradp@ly
counts-as and sanction rules.

3. TIMED CHOREOGRAPHIES

The normative constructions described previously are ti@an
provide a monitoring mechanism and furthermore, to enftinee
system to be in a certain state, non-violating or confornfiaméex-
ample. They cannot, however, enforce certaitionsto take place.
As we have mentioned in the introduction, it is sometimesamp
tant to require a particular order on the execution of astiorhis
is the case when using a scheduling policy and the resultiduil
a better performance or an increased efficiency of the ragkiat
system. This is why, based on the formalism from [5], we ptevi
a mechanism for implementing action-based coordinatitifaets
by means of timed transition systems.

3.1 Syntax

We see timed choreographies as represented by a partigoéar t
of regular expressions. Thus, we define them using strudtura
duction. The basic cases can be divided into two groups. One
group is denoted bis and is meant to represent the passing of time
by delaying clocks. The other group is denoted byand is meant
to represent timed action synchronisation. Synchrorisas de-
noted by the parallel operatol™. The parallel operator applies on
pairs (A, a)* consisting of agents and action names. In order to
have a more expressive language, we also allotion variables
instead of action names, i.e., the pairs can have the fotm,).
Timing the synchronisation is modelled by surrounding tba-c
structionsl,, by clock constraints and resets. We then have that
timed choreographies are any combinationofnd !, obtained
with the usual sequence “;”, choice “+” and Kleeri@ bperators.

In BNF notation, timed choreographies are defined as fotlows

ls
la
ch

re <t
(A, 0) | (A,2a) | (la || 1a)
Is | la| (¢peylayN) | ch;ch | ch+ ch | ch®

with z, being an action variable. We use the following naming
convention. Action variables are denoted by small letteith w
as subscriptfa, ya, zq...) in order to distinguish them from clock
variables. They are meant to be placeholders for action same
Action variables are seen as global static variables, thas bound
their value cannot be changed. The binding is according o th
actions that an agent is enabled to execute at a given tinmabla
bindings are recorded as substitutions.

Before we present the semantics of timed choreographies, we
take, as an illustration, a few examples with intuitive megnLet
us first consider the following timed choreograpfiy :

4Since 1]” is associative and commutative, for simplicity, we use
the notation||z (A;, ;) to denote(Ai,, iy ) || - .- || (Asj, )
whereZ = {i1,...,i;} andj > 2. This is also the case far,.



((zc < 6), (psg2, buy-ticket))™ (psg2,

This is a choreography for the aggrgg2. Intuitively, it specifies
thatpsg?2 can buy tickets for at most 6 units of time and after it
can execute an arbitrary actiaa. Let us now consider the timed
choreographyhs:

(psgl, buy-ticket); ((zc>7), (psgl,

which says that the agepisgl buys one ticket and as soon as
zc shows 7 it performs an arbitrary actiora. If we compose
chy1 andchz by a sequence operator we can add that the action
xa performed bypsgl is the same as the last one performed by
psg2. If we also recall that the plan gfsg1l is to enter without
tickets if more than 9 units of time have passed, we can furtbge
that the clock constrairtzc < 6) ensures that such a situation
never happens singesg2 has always time to buy tickets. Thus it
is impossible fopsg2 to behave dishonestly.

In order to illustrate the use of the parallel operator lefuther
consider the timed choreographys:

(zc < 10);
((psgl, enbark)|(psg2, enbark), (zc:=0))

and analyse it in the context ehy = chi;chz;chs. The chore-
ographychy says that after both agents bought their tickets and
performed the same actiora, the whole system delays for at most
10 units while the agents wait for the arrival of the train arficbr
they both embark synchronously. This synchronised actagt h
pens with a reset afc. We make one last remark with respect
to chy. The reader might have already noticed thatcan only

be the actiorent er since it is the only one enabled after the
agents buy tickets. As we will see in what follows, the substin

[ xal ent er] is recorded in all choreography states that precede
the one where the binding takes place.

3.2 Operational Semantics

We give operational semantics to timed choreographiesthiath
it is easily integrated into the timed normative language=foBe

xa) .

xa))

Given a choreoraphy, a timed automaton can always be con-
structed, as it is stated in Proposition 3.1 and the proofis e
reduced to the basic construction steps described above.

ProPOSITION 3.1. For any timed choreographyh there exists
a timed automatotd®" which acceptsh.

We define the semantics of timed choreograghi¢€ by means
of transition systems where the states are denoteldsag) with
cs being a state afA°" andv the current clock interpretation. The
transition rules are with respect to the transition labéldd, that
is, corresponding to delays() and to agents’ actions):

e (cs,v) 2, (es,v+6)if v+ 8 |= I(cs) foranys € RY
llz(Aiszai) .
o (cs,v) ————— (cs', V') if cs

¢e, V' =v[A:=0]andV | I(cs').

The first rule says that the choreography can pass time asaong
the new valuation does not violate the invaridifts) associated
with the statecs. The second rule says that for any labgl (|2
(As,za;i), \) in A" we construct a transition labelldg (A;, zaq;)
from (cs, v) only if ¢. is satisfied by the current clock interpreta-
tion v and if after resetting i the clocks from\ the new interpre-
tation’ does not violate the invariant associated with

3.3 Timed Normative Systems Revisited

Adding timed choreographies to the timed normative languag
from Section 2 implies that we need to revise the semantitiseof
language. We recall that the states of the timed normatige sy
tems were defined a#\, oy, 0,). In the context of timed chore-
ographies, this is no longer enough since they should redlsot
the states of choreographies. We denote their new configarat
by the notation(A, och, op, 00n). The symbolo.;, denotes triples
(cs,v,0.1). We use it to record the current clock interpretation of
the choreography and the active substitution of actioraldes.

Taking into account the two transitions giving the semantt
timed choreographies, we need to extend the semantics tifitbe
normative language such that the new stéfesr ..., o1, 0, ) change

desllz(Aiszai)A

cs', v E

presenting the semantics we show how any timed choreography,yith respect to the “directions” given by the choreograpfyis

can be accepted by a timed automatowe do this following the
standard approach from [17]. The timed automaton is builinby
duction on the structure of the choreography. Due to spatitsli
we will not provide a complete analysis of all cases but byridé-
scribe the construction. The timed automaton associatéu avi
basic choreography.. < t consists of only one state to which
we associate the invariamt < ¢. There are no transitions in this
case. The timed automaton associated with a basic chopogta
(resp.(de¢, la, A)) has two states and one transition labelled With
(resp.(ée, la, A)). Given.A°" and.A°"2 the timed automata asso-
ciated with the choreographie#, andch., the timed automaton
Achich2 js the one obtained by concatenatid€’* and.A°"2. As
an illustration of how timed automata look like, Figure 3 cléses

the one associated with the timed choreograghy.
(psg2, buy-ticket)
zc<6

(psgl, embark)||
(psg2, embark)

(psgl, buy-ticket) — ze > 7, (psgl, xa)

Figure 3: The Timed Automatad*"s

SFor the present context, it is sufficient to see timed autarast
timed transition systems with accepting states

means that we need to (1) add a rule for passing time when the
choreography indicates a delay and (2) change the rule gach

that only the actions specified by the choreography are éxecu
We first consider the rule (delay) for passing time:

(cs,v) 2, (cs,v +6) /\((Ai,ui) 2, (As,vi +9))

(A Uv+6) | I(cs)
(A, (cs,v,0c1), 06, 0n)— (A, (cs,v + 6,0ck),0p,0n)

whereA' is {(Ai,v; + 6) | 1 < i < n}. This rule says that the
whole system can delay units as long as the updated valuations
do not violate the invariant of the current choreographyesta
The rule (sync-act) for timed synchronised action execute
places the rule (act). The changes are as follows:
Iz (A wa;)
(es,v) ——— (es', V)

/_\((Az-, vi) = (A, v))) /\(%» {oitai{vi})
0 € Sols(oy = /_\@-) 0., € Sols(/\ (i = Taibcn))
A uv ': /\ be;

<A? (CS, v, eCh)a Ob, 0-77«>_)<A, ) (08/7 Vl? 9Ch6£h)7 Op W 1/]/7 Un>

WU I(cs)

5For convenience, we usé°” instead ofch.



whereA is {(Ai,vi) | i € T} UA" (resp. A is {(A4},vj) | i €
I} UA), with A" = {(Aj,vj) | 7 € {1,...,n} \ I}, ¢ is
{10 | i € T} andI(cs) is the invariant associated with the chore-
ography states. In the constructimﬂols(/\(ai = 24,0c1)), by

abuse of notation we use action namesas atoms. A solution in
this case is a substitution, either the identity or one whittds
variablesz,; not bound already by.,. With respect to the previ-
ous rule (act), this rule says, in addition, that only theragérom
the subse{A; | ¢ € 7} are allowed to execute actions while the
ones fromA” remain unchanged. Furthermore, if for an agdnt
the choreography only specifies that it can do an arbitratiprac
x4 and if the setf(A;) of enabled actions ofl; is not empty, then
xq Will be bound to an action name frofi(A;). This binding is
recorded in the new state,;, such that whenever, appears again
in the choreography it will be substituted by the binding.

4. EXECUTING NORMATIVE SYSTEMS

In [4] it is described how the untimed version of the normativ
language presented in Section 2 can be prototypedesrie the-
ory. The process of prototyping the timed language s=a&time
rewrite theory([20]) is similar, nevertheless longer and slightly
more difficult to follow due to a more complex notation. Thigda
also the space limit are the reasons why we decide to takenthe u
timed normative language as reference from now on until tite e
of the paper. Besides, we appraise as valuable the consisand
the elegance of rewriting logic which ease the reading.

A rewrite theory consists of a signature (types and function-
bols), equations and rewrite rules. In our case, the sigaata-
scribes the states of the normative multi-agent system.réligte
rules describe how the states change. There is a naturafiegco
of transition rules asonditional rewrite rules The general mathe-
matical format of a conditional rewrite rule is:

lit—=tif (/\ul :’UZ‘)/\(/\U)]' : Sj)/\(/\pk — qk)
i J k

which says thatis the label of the rewrite rute— ¢’ which is used

to “rewrite” the termt to ¢’ when the conditions on the left side
are satisfied. Such conditions can be either equations:like v,
memberships likev; : s; (thatis,w; is of types;) or other rewrites
like pr — qi.. For example, the corresponding rewrite rule for the
untimed transition (act) from Section 2 is:

act : ({Ai, A}, 00, 0n) — ({A}, A}, update(op, 10), or) if
A S AN a = (o,9) A0 = match(op, d)

whereupdate andmatch are functions defined by equations. Due
to space limit, we do not further explain the encoding of e |

there might be more rewrite rules applicable at the same, tinee
execution process is highly nondeterministic. Dependmthe ap-
plication order of the rewrite rulesct, reg, counts-asaandsanction
we execute, in fact, different types of “agent societiestespond-
ing to specific normative artifacts. For example, in a “tidadan”
agent society, the normative artifact monitors each aeti@etution
and applies all active normative rules. Such an artifaatesponds
to a scheduling policy which specifies that first a check ifreg
rule is enable should occur, then eflunts-agules are applied un-
til no longer possible, and finally aflanctionrules. The process is
reiterated until it is no longer the case.

In the next section we show how we can use rewriting strasegie
to specify different scheduling policies of the normativkes. Thus
we reduce the inherent nondeterminism in the semanticeofdh
mative language by means of strategies. A strategy langbiaga
be viewed as a transformation of a rewrite theBrinto S(R) such
that the latter represents the executiotRah a controlled way, i.e.,
the application of rewrite rules is controlled by the stggte

We make a short remark that to implement normative artifacts
at the object-level means to encode directly into the seicwapf
the normative language specific procedures based on clgstire
computations. This creates a dependency between the magmat
artifact and the normative language. Such a dependencyhbkas t
implication that changing to a different normative arttfarust be
reflected in the semantics of the normative language.

Following [12], we promote the design principle that autteda
deduction methods (e.g., closure sets) should be spediéieldr-
atively and notprocedurally Depending on the normative multi-
agent system application, specific algorithms for impletingrthe
normative artifact should be specified stsategiesto apply the
rewrite rules. This implies that the control of the rewriiis at
the meta-level. The separation betwesecutionby rewriting) at
the object-level andontrol (of rewriting) at the meta-level makes
it simpler to reason in a modular way about normative mugtfe
systems. When something goes wrong in the system one can first
verify the normative artifact for an error. Only if this pess is
unsuccessful one needs to focus on debugging one by onerthe co
stituting agent programs.

4.2 Normative Artifacts as Strategies

In this section we briefly describe a strategy langudder im-
plementing normative artifacts. The language has beeoduated
in [12]. Given the untimed normative language from Sectipw@
denote the corresponding rewrite theory By Given a normative
multi-agent system written as a program in the normativguage,
its initial state has a corresponding term which we denote Bjis
term can be rewritten by the rewrite rules frdi Given a strategy
expressions in the strategy languagg, the application ofs to ¢

guage as a rewrite theory. From the same reason neither do wes denoted bys@t. The semantics of@t is the set of successors

explain the encoding of the choreography language. We aotly n
that prototyping the untimegl°" as a rewrite theory is a straight-
forward process. However, to make the connection between th
prototypes of choreographies and normative systems,shiat én-
code the transition (sync-act) from Section 3 is slightlyrencom-
plicated because the sBthas an arbitrary siZe To understand the
next section, we only need to remember that each transiisrah
corresponding rewrite rule labelled with the same name.

4.1 Promoting Strategies

which result by rewriting in S(R).

The simplest strategies we can define in the strategy laeguag
S are the constantslle andfail: idle @ ¢t = {¢}, fail @ ¢ = 0.
Another basic strategy consists of applying to a normativétim
agent system statea rule identified by one of the labelact, reg,
counts-asor sanction possibly with instantiating some variables
appearing in the rule. The semantics@ft, wherel is one of the
above rule labels, is the set of all terms to whiatewrites in one
step using the rule labellédFor example, applying the strateggt
to the untimed initidl normative multi-agent system from Figure 1

Having the normative language encoded as a rewrite theory we has 2 solutions corresponding to each agent executing ti@nac

can execute normative multi-agent systems by rewritingncsi

"Technically, we address this issue by consuming one by ame th
indexes froniZ and maintaining a history of remaining indexes

from the head of their initial plans, i.e., one solution reffethat

8To simplify, we take untime@1 asent er ; enbar k (untimed
p2 is leftunchangedhuy-ti cket; enter; enbark).



psgl entered the platform and the other, thag2 bought a ticket.
The languages allows further strategy definitions by combin-
ing them under the usual regular expression constructiong:
catenation (*;"), union (|"), iteration (**", “+"). Thus, given the
strategiesE, F’, the strategy E; E')@t is defined a2’ @Q( EQt),
that is, E’ is applied to the result of applying to ¢. The strategy
(E | E')Qt defined ag EQt) U (E'@Qt) means that botly and £

are applied ta. The strategyl ™ @t is defined aUN(Ei@t)

with B = EandE™ = E" 4 E, E* = idle | ET, thus it
recursively re-applies itself.

Theif-then-elsecombinators are denoted iy ? £’ : E” and
their definition is (if FQt) # 0 then E'Q(EQt) else E” @t fi)
with the meaning that if, when evaluated in a given state ténm
strategy F is successful then the strate@y is evaluated in the
resulting states, otherwigg” is evaluated in thénitial state. This
strategy is further used to define:

not(E) = E ?falil : idle try(F) = E ?idle: idle
tes(F) = not(F) ?fail : idle E!=E" ;not(E)

which have the following meaning. The strategyt reverses the
result of applyingE. The strategyry changes the state term if the
evaluation ofE is successful, and if not, returns the initial state.
The strategytestchecks the success/failure resultfout it does
not change the initial state. The stratdgy “repeats until the end”.

We now describe how to implement different normative multi-
agent systems using strategies. We start with:

vigilant = tes{act; reg) ? fails :

(act; counts-ad ; sanction!)!

saying that actions are executed only if they do not enaleleipli-
cation of regimentation rules (in which case the strategg)faAf-
ter executing an action, counts-as rules are applied untibnger
possible. Finally, all corresponding sanctions are agpli&his
process is iterated until no action can be executed. In @im tr
scenario, if we assume that a fine equals having a ticket, ttreen
result of applying this strategy reflects that both agengsimthe
train with tickets and that previouslpsgl has been sanctioned.
If this were not the case, then the system is in a deadlock btat
causgrsgl embarks without a ticket, thus enabling the application
of the regimentation rule. We note that a simple change likes-
tuting “;” by “|” in counts-ad ; sanction! leads to a less restrictive
normative system. An illustrative scenario is that of a eidamera
monitoring in a supermarket, or of a radar measuring thecitylo
of the passing vehicles. In such cases, sanctions do no$seedy
follow immediately after recording an infraction.

A more restricted society is implemented by means of:

totalitarian = (tes(act; reg) ? fails :

(act; ( counts-ad ; sanction! )!) )!

saying that the process of applying counts-as rules foliolwe
sanctions is iterated until it is no longer possible. Thiarelsterises
scenarios where the application of a sanction enables theap
tion of a new counts-as. We take, for instance, a traffic segna
where an actor drives through the red light, thus violatheytraf-
fic law. Consequently, a fine is applied. We assume that tkigrig
automatically by withdrawing a certain amount of money friva
actor’s account. It is then the case that not enough monelyein t
account results in a new violation. This is under the supjosi
that the bank has a regulation specifying that the clienttmas
go below a certain debt level, otherwise the client is addetthé
bank’s black list and has to pay an additional fee. We notettis
latter sanction rule can never be applied when the systeswith

respect to the strategyigilant. However, in the case of the train
scenario the result of applying either one of the strategjgitant
or totalitarian is the same.

A liberal society is implemented using the strategy:

liberal = (tes(act; reg) ? fails: act)*;

(try(counts-a¥ ? try(sanction) : idle)*

This strategy imposes no restrictions whennormative rules are
applied. One possible result could be that the ageygl was
sanctioned because of being at the platform without a ticket
other solution in a “liberal” agent society could be also¢hee that
psgl is at the platform without a ticket and without being fined.
Such a scenario would never be possible when using eithenfone
the strategiesigilant or totalitarian.

We conclude this section with a short discussion of how we can
further use strategies at both theoretical and practieal.|&o far,
we have shown how, thanks to strategies, we can explicithém
ment normative artifacts. Having a classification of typésar-
mative systems we can systematically study the expressivernp
for each class separately. By expressive power of a norenativ
tifact we mean the domain of possible resulting behavioursrw
the multi-agent system runs under the coordination of thitaet.
For example, in totalitarian societies certain correctn@s terms
of safety) properties are modelled by definition. It is ndficlilt to
see that this is no longer the case in liberal societies. Netheer
point of interest is to find not only the differences but alse ton-
nections between classes. For example, we can state thevifadl
proposition:

PROPOSITION 4.1. For any (A, 0,, 0,,) there exists4°" such
thattotalitarian@(A, op, 05) = liberal@Q(A, ocp, op, 0rn) Where
aen is (cso, B, := 0) and s is the initial state ofA°".

which says that there exists a choreography such thatttotah
societies and liberal ones running under the directionsethore-
ography have the same power. This result suggests that aitet co
see choreographies as a way to implement regimentation.

At a more practical level, we mention that the strategy laggu
S is, in fact, implemented in the Maude system. This made it sim
ple to experiment the use of strategies on the Maude pratatyp
the untimed normative multi-agent system from Figure 1. rikisa
to Real-Time Maude, prototyping the timed extension of the n
mative (resp. choreography) language as real-time retiréeries
should be an easy exercise. However, since the strategydgeg
S'is implemented on top of Full-Maude, further effort is negife
order to useS on Real-Time Maude modules.

5. CONCLUSIONS

In this paper, we have focused on coordination in timed nerma
tive multi-agent systems. We have first described how tingezha
systems can be implemented. We then presented how cododinat
in timed agent systems can be achieved at two orthogondkleve
On the one hand, we have shown how gtatesof a system can
be enforced by means abrms and sanctionsThe use of social
and organisational concepts (e.g., norms, roles, groapppnsibil-
ity) and mechanisms for monitoring agents’ actions and tiamc
ing has already been advocated in [11, 10, 7]. Temporal &spec
of normative structures have been addressed in [2, 22]. Tdie m
difference in our approach is the “separation of concerastions
areuntimed time constraints arapplication-specificActions have
a natural definition as belief base transformers, thus lgaaimun-
timed ontology of actions allows reusability. Furthermdraving
time constrainton top of actionsallows expressing synchronisa-
tions and multiple independent delays between actions.



On the other hand, we have shown hawtion executiortan be
enforced by means éfmed choreographiesRelated work with re-
spect to action-based coordination artifacts appearslififizerms
of resource access relation. The concepts of choreograpghgra
chestration have already been introduced to web servicgs8in
19]. With respect to [6], though we use the same terminology,
framework is in essence different since we deliberatelgligrrom-
munication issues. Our choreography model is explicit wasfin
[6] is implicit in the communication protocol. Being extatnthe
choreography represents, in fact, contexts while in thero#p-
proaches there is a distinction between the modularity aadon-
textuality of the communication operator. Timed chorepbias
are inspired from the theory of timed automata. Timed autama
has been applied to testing real-time systems specificafithi,
to scheduling problems [8], and to web-services [16]. The afs
timed automata in a normative multi-agent setting is new.

Besides timed coordination, we have also approached the is-

sue of implicit nondeterminism in the operational semantitcthe
timed normative language. We have presented strategiesasta
handle nondeterminism at a meta-level. Such strategiessevéou
implement different normative artifacts for normative tivalgent
systems. We did not discuss termination issues with regpect
strategies. Because of “malformed” counts-as rules, eegyr-
sive, the application ofigilant may not always terminate. It is also
the case that “circularities” can lead to non-terminatiotglitarian
strategies. These aspects are subject to future work, leoweore
details and some examples can be found in [3].

We recall that currently, when regimentation rules areiapple,
the system reaches a deadlock state. This is not an optiroapex
tion handling mechanism. If an agent tries to do an actiorckvhi
leads to the application @ég but it can also do a permitted action
a, it should not be the case that the system enters a deadhtek st
but it constrains the agent to executé/e view such mechanisms
as self repairing and we will formalise them in future work.
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